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ABSTRACT

Enhancing the reasoning ability of Large Language Models (LLMs) has become a
central focus of current research. While approaches based on prompt engineering
have significantly improved LLM performance, the increasing complexity of rea-
soning frameworks has led to higher development costs. Moreover, these frame-
works often require extensive redesigns to actually work on different tasks, with
their performance heavily dependent on these specific designs. This creates chal-
lenges in establishing clear and consistent evaluation benchmarks. To address
these issues, we propose a unified infrastructure that represents reasoning pro-
cesses as graphs, thereby standardizing and structuring the reasoning workflow.
This approach enables more consistent and efficient implementation of diverse
reasoning frameworks, facilitates objective comparisons, and supports deeper
analysis through graph algorithms. Building on this infrastructure, we develop an
LLM reasoning benchmark and demonstrate its effectiveness through multiple ex-
periments, enabling more comprehensive evaluation and analysis. Code and data
can be found in https://anonymous.4open.science/r/210-5DD5/.

1 INTRODUCTION

The enhancement of reasoning ability has become a major focus in current research on LLMs
(Huang & Chang, 2023). With the emergence of the Chain-of-Thought (CoT) framework (Wei
et al., 2022b), prompt-based reasoning optimization methods have gained widespread applications
(Hao et al., 2024). Through CoT, LLMs can reason more transparently and better handle complex
tasks. Further advancements, such as Tree of Thoughts (ToT) (Yao et al., 2023b) and Graph of
Thoughts (GoT) (Besta et al., 2024b), represent the reasoning process in more complex tree-like
or graph-like structures, as well as others, facilitating more sophisticated forms of reasoning (Yao
et al., 2024; Shin & Kim, 2025; Sel et al., 2024; Zhou et al., 2023b).

However, as more complex and powerful reasoning frameworks are proposed, implementing them
incurs increasingly higher costs, including those related to coding and prompt design (McDonald
et al., 2024). Furthermore, these frameworks often require frequent redesigns of prompts and pro-
gram structures to perform effectively across different tasks (Gao et al., 2025). This not only results
in development inefficiencies but also creates a strong dependence between the performance of these
methods and their specific designs, making it challenging to establish clear and consistent bench-
marks.

In fact, logical reasoning is inherently a highly complex and difficult-to-quantify process (Shojaee
et al., 2025). Reasoning involves not only the organization and deduction of information but also
the integration of information across multiple dimensions and layers. Different reasoning paths may
lead to the same conclusion, and whether the reasoning steps within these paths are considered
“reasonable” or “correct” often lacks a unified standard. In the philosophy and cognitive science
of human thinking, logical reasoning is often viewed as a field filled with ambiguity and uncer-
tainty (Stenning & Van Lambalgen, 2012). Therefore, despite the significant advancements made
by LLMs in prompt-based reasoning optimization, how to avoid the continuous redevelopment
of reasoning frameworks and how to objectively and fairly evaluate these reasoning processes
remain unresolved challenges.
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To address the above issue, it is necessary to develop a unified framework that can standardize and
structure the reasoning process of LLMs. In fact, if the reasoning steps are represented as nodes
and the relationships between these steps are represented as edges, all reasoning processes can be
expressed as graphs. This is because all reasoning architectures—whether chains, trees, or other
forms—are essentially specialized instances of a graph. Moreover, by representing the reasoning
process as structured data in the form of a graph, we can make a more objective comparison of
these reasoning processes, e.g., using quantifiable graph distances to measure the differences be-
tween reasoning procedures. Additionally, if all reasoning processes can be represented as graphs, a
unified graph-based infrastructure would also, in turn, enable the implementation of any reasoning
framework. Figure 1 provides an intuitive illustration of such viewpoints.

     Can be represented as graphs

     Can be compared as graphs

     Can be implemented with graphsCoT ToT GoT AoT

...

Figure 1: Illustration of different reasoning frameworks.

Building on this perspective, we
have constructed an infrastruc-
ture for LLM reasoning called
Think in Graphs (TiG). TiG
implements different LLM rea-
soning frameworks in a uni-
fied manner. Specifically, all
reasoning processes in TiG are
specified by a configuration file.
Based on such a file, TiG continuously generates new thoughts, which are added to the graph-based
reasoning flow, enabling the ongoing progression of reasoning. For users of TiG, the only require-
ment is to define the configuration file, which eliminates the need to rebuild the entire reasoning
framework. Additionally, TiG can save the LLM reasoning process in graph form and use this data
structure for unified and objective comparisons. Furthermore, graph-based algorithms, such as our
proposed graph kernel (introduced later), can be applied to the analysis of logical reasoning, thereby
enabling more diverse and in-depth evaluations. Building on TiG and the collected reasoning tasks
of various types, we constructed a prompting-based reasoning benchmark for LLMs. We then con-
ducted extensive experiments with different reasoning frameworks on this benchmark to gain deeper
insights and to demonstrate the practicality of the proposed TiG.

Our contributions are as follows:

• We design TiG, a unified and efficient infrastructure that facilitates the rapid implemen-
tation of diverse LLM reasoning frameworks, serving as a foundation to support ongoing
research on prompt engineering for reasoning.

• With TiG, we design a series of new metrics for analyzing LLM reasoning logic, including
a novel graph kernel.

• Based on TiG and a dataset with a variety of test tasks, we construct a benchmark for
prompt engineering for reasoning.

• We conduct a series of analytical experiments based on the proposed benchmark and derive
the corresponding conclusions.

2 RELATED WORKS

2.1 REASONING WITH PROMPTING

Recent research has increasingly focused on designing logically consistent prompts that improve rea-
soning performance, enabling LLMs to tackle complex tasks more effectively. The CoT framework
(Wei et al., 2022a) has inspired advances like Auto-CoT (Zhang et al., 2023), which automates and
optimizes reasoning outputs, and LogiCoT (Zhao et al., 2024), which integrates symbolic logic for
refinement. Prompt Sketching (Beurer-Kellner et al., 2024) and CCoT (Mitra et al., 2024) improve
control over reasoning, while RASC (Wan et al., 2025) boosts consistency and reduces sampling
costs. More complex structures like ToT (Yao et al., 2023b), GoT (Besta et al., 2024a), and GoTR
(Yao et al., 2024) enhance multi-step and multimodal reasoning. EGoT (Shin & Kim, 2025) opti-
mizes inference paths, and ThoT (Zhou et al., 2023b) and AoT (Sel et al., 2024) structure reasoning
hierarchically and algorithmically, enabling more efficient exploration of complex reasoning paths.
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2.2 BENCHMARKING LLM REASONING

Recent research on the reasoning abilities of LLMs has led to the development of several bench-
marks. MMLU (Hendrycks et al., 2021), BIG-bench (Srivastava et al., 2022), and HELM (Liang
et al., 2022) provide comprehensive multi-task evaluations. MT-Bench (Zheng et al., 2023) focuses
on multi-turn dialogue reasoning, while OpenAI Evals (OpenAI, 2023b) facilitates benchmark shar-
ing. Specific datasets for reasoning include BBH (Suzgun et al., 2022), GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), ARC (Clark et al., 2018), and DROP (Dua et al., 2019).
ReClor (Yu et al., 2020) evaluates logical reasoning, and MME-CoT (Jiang et al., 2025) focuses on
CoT reasoning in LLMs. REVEAL (Greyling, 2024) verifies CoT correctness. We approach the
problem from a different perspective, constructing a new, more unified thinking infrastructure based
on graphs, then benchmarking LLM reasoning with it.

3 INFRASTRUCTURE
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Figure 2: Architecture of the proposed TiG infrastructure.

The overall architecture of TiG is illustrated in Figure 2. In TiG, the entire reasoning process is
represented as a directed acyclic graph (DAG), denoted asG(t) = {V(t), E(t)}, where t indicates the
number of reasoning iterations. V(t) represents the set of nodes in G(t), with each node correspond-
ing to a reasoning step generated by the LLM. Each node effectively encodes a segment of thought.
E(t) denotes the set of edges, where each edge represents a dependency between nodes. The use of
the DAG is motivated by its clear causal structure and computational simplicity (Spirtes et al., 2000).
Operations such as backtracking (Besta et al., 2024a), which might otherwise introduce cycles, are
also represented within acyclic structures. Specifically, a newly generated node resulting from a
backtracking operation can be formalized as a common child of the node requiring backtracking and
the node it backtracks to. In other words, as the reasoning process unfolds, G(t) is guaranteed to
always remain a DAG.

Clearly, the evolution of G(t) with increasing t reflects the ongoing reasoning process of the LLM.
TiG constrains and guides this evolutionary process, while also enabling the analysis ofG(t). Specif-
ically, the workflow of TiG consists of three phases: construction, reasoning, and analysis. (1) In the
construction phase, the user provides a configuration file to define the intended reasoning process,
including three sets of constraint rules that specify the reasoning behavior within the framework.
(2) In the reasoning phase, the LLM leverages our framework to extract the defined rules from the
user’s configuration and execute the reasoning accordingly. (3) In the analysis phase, we collect the
final G(t) graph and perform result analysis. These phases will be introduced separately below.
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3.1 CONSTRUCTION PHASE

In this phase, the user constructs the configuration file, specifying the basic settings, the decision
rule, and the reasoning rules. The approaches for building each of these three components will be
introduced in the following subsections. The implementation details of the configuration file can be
found in Appendix C, and Section 3.4 provides a running example.

Basic settings. The basic settings include the LLM to be used, as well as the specified limits on
the number of tokens and nodes consumed for task execution.

Decision rule. This rule specifies how to determine the next action for a given node v(t) ∈ G(t).
To be concise, we omit the superscript (t) for v(t), because the node v itself does not change over
time. The decision rule constrains whether the reasoning process should (1) terminate at v, (2) treat
v as the final answer, or (3) continue reasoning based on v. The decision rule is expressed as a
textual description.

Reasoning rules. These rules apply to nodes that require further reasoning, and they specify the
structure and attributes of the subgraph Gsub

(v) to be generated. In essence, Gsub
(v) represents the newly

generated thoughts together with their relationships to the preceding ones. Specifically, each node
v corresponds to one reasoning rule, which is selected based on the specific characteristics of v,
including its position in the graph, its distance from the root node, its attributes, and other contextual
features. For the defined set of rules Φ = {ϕi}mi=1, our infrastructure builds the following mapping:

i = s(v,G(t−1),Φ), i ∈ {1, 2, ...,m}, (1)

where i is the index of the specific rule, s(·) denotes the selection function. s(·) is defined by the
user with the configuration file, with details in Appendix C.

The selected rule determines, based on the features of node v and the current G(t), all possible child
nodes of v, their respective parent nodes, the connections between these nodes, and the prompt used
for generation. Formally, the child node set Ch(v) of v can be represented as:

Ch(v) =
{
u ∈ V(t+1) | (v, u) ∈ E(t+1)

}
, (2)

where E(t+1) and V(t+1) are generated by applying the rules. The set of parent nodes is:⋃
u∈Ch(v)

Pa(u) =
{
w ∈ V(t)

∣∣∣ ∃u ∈ V(t+1), (v, u) ∈ E(t+1) ∧ (w, u) ∈ E(t+1)
}
. (3)

Pa(·) denotes the parent nodes. The generated graph substructure corresponding to v is:

Gsub
(v) =

{
Ch(v),

{
(u,w) ∈ E(t+1) | u ∈ Ch(v), w ∈ Pa(u)

}
∩
{
(v, u) ∈ E(t+1) | u ∈ Ch(v)

}}
.

(4)

In the reasoning process, some methods generate only a single reasoning step—i.e., a single node
in G(t)—per generation round of LLM, while others may generate multiple reasoning steps at once.
Our framework is designed to support both approaches. Specifically, when multiple nodes are gen-
erated in a single round, we treat the entire output as a single node during initial processing, and
then split it into individual nodes based on predefined delimiters embedded in the infrastructure.

3.2 REASONING PHASE

In this phase, the framework processes the nodes and continuously updates the graph until either a
final result is obtained or the maximum token (or node) limit for reasoning is reached. At the t-th
update step, only the nodes newly generated in step (t− 1), i.e., u ∈ G(t−1) \G(t−2), are selected.
This is because all other nodes are either already terminated or are ancestor nodes of the newly
generated nodes, and thus no longer represent active reasoning processes. Excluding them helps
reduce computational cost. The detailed reasoning procedure is provided in Algorithm 1.

4
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Algorithm 1 Reasoning Procedure of TiG

Require: Problem description, decision rule, evolution rule set Φ
Ensure: Final answer to the problem

1: Initialize graph G(0) with a single root node based on the problem description
2: Set t← 1
3: while Total token usage or node count has not exceeded the maximum limit do
4: Select newly generated nodes: X ← G(t−1) \G(t−2)

5: for all v ∈ X do
6: Apply decision rule to determine whether v should be an answer node or terminated
7: if v is an answer node then
8: Output the answer and terminate the reasoning process
9: else if reasoning based on v should be stopped then

10: Skip to the next node
11: else
12: Identify evolution rule index: i← s(v,G(t−1),Φ)
13: Retrieve ϕi from Φ and the structure of Gsub

(v)

14: Generate node features of Gsub
(v) via LLM using v, G(t−1), and ϕi.

15: Integrate Gsub
(v) into G(t)

16: end if
17: end for
18: Update round index: t← t+ 1
19: end while

3.3 ANALYSIS PHASE

We represent the entire reasoning process using the graph obtained at the final time step, denoted
as G. This graph serves as a compact and interpretable abstraction of the sequence of intermediate
reasoning steps. Based on G, we are able to perform more precise and fine-grained analyses. In
particular, we can extract the exact set of reasoning paths that contribute to the final answer—namely,
the union of all directed paths from the root node r to the answer node a, denoted by Pr→a. This
allows us to compute the proportion of nodes involved in generating the final answer as:

λ =
|Pr→a|
|V|

.

Furthermore, the structural properties of G enable us to identify and quantify redundant nodes,
calculate the proportion of redundant tokens, and track the precise number of instances when the
reasoning reaches a dead end. These metrics are thoroughly analyzed in the experimental section.

Given this graph-based representation of the LLM’s reasoning trajectory, we further introduce the
concept of a graph kernel to formally measure the similarity between different reasoning processes.
Specifically, we propose an extension to the traditional Weisfeiler-Lehman (WL) kernel (Sher-
vashidze et al., 2011) that incorporates the directionality of G and the answer-contributing ratio
λ. The resulting kernel, termed the Reasoning Graph Weisfeiler-Lehman (RGWL) kernel, is defined
as follows:

K(h)
RGWL(G,G

′) =

h∑
i=1

(〈
η
(
ψ̃(i) (ρ (τ (G)))

)
, η

(
ψ̃(i) (ρ (τ (G′)))

)〉
+λλ′

〈
η
(
ψ̃(i) (ρ (G))

)
, η

(
ψ̃(i) (ρ (G′))

)〉)
, (5)

where τ(·) extracts the answer-contributing subgraph Pr→a, and ρ(·) performs KNN-based node
labeling by clustering node features from both G and G′ and assigning labels to each cluster. ψ̃(i)(·)
denotes the i-th round of label propagation as in the WL kernel, but restricted to the direction of
edges. λ′ is the answer-contributing ratio of G′. The function η(·) computes a histogram of node
labels after each round. Further details are provided in Appendix E.

We further prove that the RGWL kernel is positive semi-definite, ensuring that it defines a valid
inner product in a Reproducing Kernel Hilbert Space (RKHS). This theoretical guarantee supports

5
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the validity of subsequent analyses and allows the RGWL kernel to be broadly employed in a variety
of kernel-based learning algorithms.

Proposition 1. The kernel matrix K
(h)
RGWL defined by K(h)

RGWL(·, ·) is positive semi-definite.

The formal proof of this proposition is provided in Appendix D.

3.4 RUNNING EXAMPLE

Operation: 
10+10=20  
Updated number 
pool: [2,5,20]

Operation: 
2+10=12   
Updated number 
pool: [5,10,12]

Operation: 
20/5=4   
Updated number 
pool: [2,4]

Operation: 
2×5=10  
Updated number 
pool: [10,20]

Operation: 
10+10=20  
Updated number 
pool: [2,5,20]

Operation: 
10/5=2  Updated 
number pool: 
[2,2,10]

Operation: 
12×2=24  
Updated number 
pool: [24]

Below is a Game 
of 24 problem ... 
input numbers are: 
[2,5,10,10]

Operation: 
10×2=20  
Updated number 
pool: [2,20]

Operation: 
2+10=12  
Updated number 
pool: [2,12]

Decision Rule

Evolution Rule �� �(∙)

LLMReasoning
Continues LLM

Decision RuleLLMReasoning
Stops

t = 0

t = 1

t = 2

t = 3

Decision RuleLLMReasoning
Finishs

Operation: 
12+2=14   
Updated number 
pool: [14]

Root

1 2 3

4 5 76

8 109

Figure 3: A running example on Game of 24.

Here, we use a practical example to demonstrate the infrastructure. The example is a ToT (Yao et al.,
2023a) framework specifically built for the Game of 24 problem with TiG.

The first step is to construct the configuration file that specifies the decision rules and reasoning
rules. The specific content of the configuration file used in this example is provided in Appendix
C. Within it, the decision rule states that if the answer can be calculated to 24, the result should be
returned. If neither the current node nor any historical nodes can lead to 24, the reasoning based on
the current node should be terminated. The reasoning rules state that: If the node is the root, then
generate three child nodes for further reasoning. If the current node cannot lead to 24, but its parent
node can, then backtrack and generate two child nodes based on that parent node. In all other cases,
generate two child nodes for further reasoning. Additionally, the reasoning rules establish that,
regardless of the number of nodes generated, the generation of each node’s child nodes is carried
out through a single interaction with the LLM.

Next, reasoning is carried out based on the configuration file. The entire reasoning process is il-
lustrated in Figure 3. Initially, at time t = 0, reasoning begins at the root node. The root node
essentially serves as a description of the problem. As shown in the figure, the content of the root
node is evaluated by the decision rule and the LLM to determine whether reasoning should continue.
Once reasoning is confirmed to proceed, the corresponding rule from the reasoning rules is selected.
Since this is the root node, the rule specifically associated with the root is applied, leading to the
generation of three child nodes.

At t = 1, each newly generated node is evaluated for whether reasoning should continue. As
illustrated in the figure, the reasoning process terminates on Node 1 after applying the decision rule.
In contrast, two subsequent reasoning nodes are generated based on Node 3. At t = 2, Node 5,
which matches the backtracking rule, reinitiates the reasoning process together with its parent node.
Specifically, Node 5 generates a subgraph Gsub

(5), which includes Nodes 5, 2, and 8. The edges of
the subgraph are represented by the pairs (5, 8) and (2, 8). Ultimately, Node 10 meets the necessary
criteria and produces the final answer.

The resulting graph, along with the associated attributes, can subsequently be utilized for kernel-
based graph analysis.

6
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4 BENCHMARK

Sudoku
(410)

Game 
of 24
 (310)

Krypto 
(363)

Mathematical Logic 
Puzzles (1083)

Mathematics
(410)

Chemistry 
(188)

Physics
(278)

College Entrance 
Examination 

Questions (876)

Dynamic 
Programming

(66)

Graph 
Algorithms

(53)

Sorting and 
Searching

(32)

Greedy 
Algorithms

(18)

Recursion
(15)

Trees(26) Backtracking
(8)

Coding 
Tasks (218)

Civil 
Law
(421)

Criminal 
Law

 (328)

Administrati
ve Law
(290)

Criminal 
Procedure 
Law(291)

Legal 
Cases (1330)

Figure 4: Category and subcategory distribution of questions in TiG
Benchmark.

Statistic Number

Total questions 3529
Total categories 4
Total subcategories 27

Answer in text form 2313
Answer in function form 1207

Total implemented methods 55
Implemented methods per category 13.75

Table 1: Key statistics of
the TiG Benchmark

Based on the proposed TiG, we construct the corresponding TiG Benchmark to analyze prompt-
engineering-based LLM reasoning. For test data, we have collected a diverse set of reasoning tasks
with varying complexity, ensuring that the evaluation results can be reliably validated. Furthermore,
we have implemented different reasoning frameworks for each of these tasks using our proposed in-
frastructure. Specifically, we collected a total of four categories of data, namely Mathematical Logic
Puzzles, College Entrance Examination Questions, Coding Tasks, and Legal Cases. The detailed
composition of these datasets is illustrated in Figure 4. Among them, the problems in Mathematical
Logic Puzzles were constructed based on three different types of mathematical games. The prob-
lems in the College Entrance Examination Questions were derived from China’s national college
entrance examination. The Coding Tasks were collected from various online sources containing
programming problems. As for Legal Cases, they consist of publicly released court cases, where the
LLM is required to provide appropriate decisions based on the case descriptions. We provide details
concerning the collection procedure along with the provided data.

Answers for the questions come in two formats: textual and functional. Textual answers consist of
written content, such as selections for multiple-choice questions, authoritative judicial rulings from
official institutions, and other text-based responses. The functional answers, on the other hand, are
correctness-checking functions specifically designed for certain problems, e.g., a validation function
to check whether a submitted arithmetic expression evaluates to 24. Furthermore, for the questions,
our benchmark implements five state-of-the-art reasoning frameworks: CoT (Wei et al., 2022a), ToT
(Yao et al., 2023a), GoT (Besta et al., 2023), AoT (Sel et al., 2024), and EGoT (Shin & Kim, 2025).
Table 1 presents the specific statistics related to the benchmark.

5 EXPERIMENTS

5.1 STATISTICAL EVALUATIONS

Table 2: Results on Mathematical Logic Puzzles. The best performance is highlighted in bold, and
the second-best is indicated with underline.

Method Accuracy Time Cost (s) Node Redundancy Thought Redundancy Count of Invalid Branches Root-Answer Shortest Path Length

CoT 62.08 ± 2.11 26.87 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 1.51 4.68 ± 1.05
ToT 85.37 ± 7.03 78.16 71.96 ± 3.40 73.01 ± 6.42 6.10 ± 0.68 6.88 ± 0.03
AoT 89.55 ± 2.22 37.42 60.15 ± 5.04 63.31 ± 8.23 3.06 ± 0.08 3.03 ± 0.56
GoT 87.85 ± 8.47 74.65 79.01 ± 4.42 80.31 ± 6.03 5.47 ± 1.10 5.45 ± 0.98
EGoT 89.97 ± 7.67 70.78 51.10 ± 3.01 48.42 ± 7.04 4.99 ± 0.72 5.01 ± 1.43

Based on the constructed TiG Benchmark, we conducted a series of analytical experiments on the
implemented reasoning frameworks mentioned above, i.e., CoT, ToT, GoT, AoT, and EGoT, in or-
der to validate the usability of our infrastructure and further investigate the characteristics of these
reasoning paradigms. We first performed statistical evaluations across multiple metrics, including
accuracy, redundancy, and the number of invalid branches.

Specifically, based on our graph representation of reasoning logic, we propose the following new
metrics: node redundancy, thought redundancy, count of invalid branches, and root–answer shortest

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results on College Entrance Examination Questions. The best performance is highlighted
in bold, and the second-best is indicated with underline.

Method Accuracy Time Cost (s) Node Redundancy Thought Redundancy Count of Invalid Branches Root-Answer Shortest Path Length

CoT 48.06 ± 1.25 59.74 0.00 ± 0.00 0.00 ± 0.00 0.17 ± 0.06 3.57 ± 1.46
ToT 62.42 ± 0.96 154.33 78.41 ± 4.10 74.60 ± 4.16 5.08 ± 0.94 5.63 ± 1.01
AoT 65.17 ± 2.11 65.96 53.21 ± 4.13 51.56 ± 4.10 4.10 ± 0.10 4.52 ± 1.34
GoT 67.22 ± 3.31 101.23 69.33 ± 3.31 67.67 ± 4.30 5.96 ± 1.32 5.17 ± 0.21
EGoT 69.89 ± 1.30 135.47 50.51 ± 6.22 50.62 ± 6.10 5.03 ± 1.58 4.06 ± 0.85

Table 4: Results on Coding Tasks. The best performance is highlighted in bold, and the second-best
is indicated with underline.

Method Accuracy Time Cost (s) Node Redundancy Thought Redundancy Count of Invalid Branches Root-Answer Shortest Path Length

CoT 48.23 ± 7.23 95.44 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.08 3.56 ± 0.01
ToT 72.56 ± 9.21 143.92 74.96 ± 5.15 78.47 ± 6.01 3.56 ± 1.11 4.10 ± 0.75
AoT 82.12 ± 1.03 136.48 52.12 ± 3.08 56.34 ± 2.45 3.93 ± 1.23 5.22 ± 1.33
GoT 72.45 ± 2.56 140.01 72.56 ± 7.12 75.31 ± 9.04 3.12 ± 1.14 5.89 ± 0.31
EGoT 82.68 ± 9.32 131.45 69.01 ± 4.25 71.44 ± 4.56 4.15 ± 1.35 4.68 ± 1.10

Table 5: Results on Legal Cases. The best performance is highlighted in bold, and the second-best
is indicated with underline.

Method Accuracy Time Cost (s) Node Redundancy Thought Redundancy Count of Invalid Branches Root-Answer Shortest Path Length

CoT 43.33 ± 2.05 70.74 0.00 ± 0.00 0.00 ± 0.00 0.21 ± 0.06 3.57 ± 1.46
ToT 58.33 ± 1.02 154.33 71.41 ± 4.10 78.60 ± 4.16 5.08 ± 0.94 5.63 ± 1.01
AoT 61.67 ± 2.12 113.96 65.21 ± 4.13 65.56 ± 4.10 4.10 ± 0.10 4.52 ± 1.34
GoT 63.83 ± 3.31 135.47 76.33 ± 3.31 80.67 ± 3.40 4.96 ± 1.32 5.17 ± 0.21
EGoT 65.01 ± 1.30 129.23 65.51 ± 6.22 70.62 ± 6.10 6.23 ± 1.58 4.16 ± 0.85

path length. Node redundancy and thought redundancy respectively represent the percentage of
redundant nodes and tokens relative to the total numbers. Redundant nodes and tokens are defined
as those not lying on any path from the root node to the answer node, as well as the tokens contained
within such nodes. The count of invalid branches measures the number of terminated reasoning
branch that fail to acquire the answer. Root–answer shortest path length is the shortest distance from
the root node to the answer node in the graph.
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Figure 5: Average accuracy and stan-
dard deviation across datasets.

The experimental results are presented in Tables 2–5. As
shown in the tables, the four newly introduced metrics
enable a more in-depth analysis and comparison of the
reasoning process. Based on these metrics, we observe
that more complex reasoning frameworks tend to include
a larger number of redundant nodes; however, the actual
path length from the question to the answer does not vary
significantly. When considered alongside the accuracy of
different methods, this suggests that complex frameworks
explore a wider range of possibilities in order to achieve
higher accuracy. Figure 5 summarizes the average perfor-
mance of each framework across different datasets. From
the figure, it can be observed that the legal dataset is the
most challenging one, while the coding dataset exhibits
the largest performance gap among models.

5.2 DEEPER INSIGHTS

Additionally, we performed a similarity analysis between different reasoning approaches based on
the RGWL kernel. First, we compared the similarity between the reasoning processes generated by
a single reasoning framework, GoT, across different problems. The visualization of the comparison
results is shown in Figure 6. It can be observed that for the coding and legal datasets, the consistency
of reasoning between correct answers is higher, as indicated by higher RGWL kernel output. In
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Figure 6: Visualization of RGWL results with GoT: “C vs C” compares ten reasoning graphs with
correct answers, while “C vs I” compares ten correct-answer graphs with ten incorrect ones. Brighter
colors indicate higher RGWL output and greater similarity.
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Figure 7: Visualization of RGWL computation results for different reasoning processes with differ-
ent reasoning frameworks.

contrast, the distance between incorrect reasoning and correct reasoning is significantly greater than
the distance between two correct reasoning processes.

Furthermore, we compared the similarity between the reasoning processes generated by different
frameworks across various problems, with the results shown in Figure 7. It can be observed that
the similarity between reasoning processes produced by different frameworks is highest in the legal
dataset, which is consistent with our previous experimental findings. This observation indicates that
the knowledge structures and decision rules in the legal domain are relatively stable and standard-
ized, leaving less room for divergent reasoning paths. As a result, even when different reasoning
frameworks are applied, they tend to converge on similar reasoning trajectories and final conclu-
sions.

In contrast, datasets such as coding tasks or mathematical puzzles allow multiple solution strate-
gies and a more open-ended reasoning space, leading to lower similarity between frameworks. This
demonstrates that our graph-based analysis captures not only outcome accuracy but also the struc-
tural consistency and diversity of reasoning processes.

6 CONCLUSION

In this paper, we propose the TiG infrastructure based on graph structures, which enables the con-
struction of diverse prompt-engineering-based LLM reasoning frameworks in a unified and stream-
lined manner. Building upon TiG, we introduce a broader set of reasoning logic evaluation metrics
and develop a benchmark for comparing different reasoning frameworks, on which we conduct a
series of experiments and analyses.
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REPRODUCIBILITY STATEMENT

Our theoretical results have been rigorously proven, and the corresponding proofs are provided in
Appendix D. Additionally, our experiments provide both data and code to ensure reproducibility.
These resources are included in the anonymous link https://anonymous.4open.science/
r/210-5DD5/, with further details available in the accompanying README.md file.
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Achar Budihal Prasad, Adrià de Gispert, Agnika Kumar, Aishwarya Aryamane, Ajay Nair, Akilan
M, Akshaya Iyengar, Akshaya Vishnu Kudlu Shanbhogue, Alan He, Alessandra Cervone, Alex
Loeb, Alex Zhang, Alexander Fu, Alexander Lisnichenko, Alexander Zhipa, Alexandros Potami-
anos, Ali Kebarighotbi, Aliakbar Daronkolaei, Alok Parmesh, Amanjot Kaur Samra, Ameen
Khan, Amer Rez, Amir Saffari, Amit Agarwall, Amit Jhindal, Amith R. Mamidala, Ammar
Asmro, Amulya Ballakur, Anand Mishra, Anand Sridharan, Anastasiia Dubinina, Andre Lenz,
Andreas Doerr, Andrew Keating, Andrew Leaver, Andrew Smith, Andrew Wirth, Andy Davey,
Andy Rosenbaum, Andy Sohn, Angela Chan, Aniket Chakrabarti, Anil Ramakrishna, Anirban
Roy, Anita Iyer, Anjali Narayan-Chen, Ankith Yennu, Anna Dabrowska, Anna Gawlowska,
Anna Rumshisky, Anna Turek, Anoop Deoras, Anton Bezruchkin, Anup Prasad, Anupam De-
wan, Anwith Kiran, Apoorv Gupta, Aram Galstyan, Aravind Manoharan, Arijit Biswas, Arindam
Mandal, Arpit Gupta, Arsamkhan Pathan, Arun Nagarajan, Arushan Rajasekaram, Arvind Sun-
dararajan, Ashwin Ganesan, Ashwin Swaminathan, Athanasios Mouchtaris, Audrey Cham-
peau, Avik Ray, Ayush Jaiswal, Ayush Sharma, Bailey Keefer, Balamurugan Muthiah, Beatriz
Leon-Millan, Ben Koopman, Ben Li, Benjamin Biggs, Benjamin Ott, Bhanukiran Vinzamuri,
Bharath Venkatesh, and Bhavana Ganesh. The amazon nova family of models: Technical re-
port and model card. CoRR, abs/2506.12103, 2025. doi: 10.48550/ARXIV.2506.12103. URL
https://doi.org/10.48550/arXiv.2506.12103.

Meta AI. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
han Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin
Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Tim-
othy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul Ronald
Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan
Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Dani-
helka, Becca Roelofs, Anaı̈s White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A fam-
ily of highly capable multimodal models. CoRR, abs/2312.11805, 2023. doi: 10.48550/ARXIV.
2312.11805. URL https://doi.org/10.48550/arXiv.2312.11805.

Anthropic. Model card and evaluations for claude 2. Anthropic, 2023a. Available at https:
//www.anthropic.com.

Anthropic. Ai governance and accountability: An analysis of anthropic’s claude. arXiv preprint
arXiv:2407.01557, 2023b.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. arXiv preprint arXiv:2404.13813,
2024.

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia, Nitish Gupta, Shikhar Vashishth, Sriram Gana-
pathy, Abhishek Bapna, Prateek Jain, and Partha Talukdar. Llm augmented llms: Expanding
capabilities through composition, 2024. URL https://arxiv.org/abs/2401.02412.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: Solving elaborate problems with large language models, 2023.

10

https://anonymous.4open.science/r/210-5DD5/
https://anonymous.4open.science/r/210-5DD5/
https://doi.org/10.48550/arXiv.2506.12103
https://doi.org/10.48550/arXiv.2312.11805
https://www.anthropic.com
https://www.anthropic.com
https://arxiv.org/abs/2401.02412


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Giani-
nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: Solving elaborate problems with large language models. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Ar-
tificial Intelligence, February 20-27, 2024, Vancouver, Canada, pp. 17682–17690. AAAI Press,
2024a. doi: 10.1609/AAAI.V38I16.29720. URL https://doi.org/10.1609/aaai.
v38i16.29720.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024b.

Luca Beurer-Kellner, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Prompt sketching for
large language models. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=2Yu5FWdzde.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Trans. Mach. Learn.
Res., 2023, 2023. URL https://openreview.net/forum?id=YfZ4ZPt8zd.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
J. Mach. Learn. Res., 24:240:1–240:113, 2023. URL https://jmlr.org/papers/v24/
22-1144.html.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Mengyao Cui et al. Introduction to the k-means clustering algorithm based on the elbow method.
Accounting, Auditing and Finance, 1(1):5–8, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT

11

https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=2Yu5FWdzde
https://openreview.net/forum?id=2Yu5FWdzde
https://openreview.net/forum?id=YfZ4ZPt8zd
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason Weston. Chain-of-verification reduces hallucination in large language models. In
Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and
virtual meeting, August 11-16, 2024, pp. 3563–3578. Association for Computational Linguistics,
2024. doi: 10.18653/V1/2024.FINDINGS-ACL.212. URL https://doi.org/10.18653/
v1/2024.findings-acl.212.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
with chain-of-thought for large language models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 1330–1350. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024.ACL-LONG.73. URL https://doi.org/10.18653/v1/2024.
acl-long.73.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs, 2019.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards re-
vealing the mystery behind chain of thought: A theoretical perspective. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html.

Hang Gao, Chenhao Zhang, Tie Wang, Junsuo Zhao, Fengge Wu, Changwen Zheng, and Huap-
ing Liu. Learn to think: Bootstrapping LLM reasoning capability through graph represen-
tation learning. CoRR, abs/2505.06321, 2025. doi: 10.48550/ARXIV.2505.06321. URL
https://doi.org/10.48550/arXiv.2505.06321.

Cobus Greyling. A benchmark for verifying chain-of-thought. https://cobusgreyling.
medium.com/a-benchmark-for-verifying-chain-of-thought-904db5ebeefa,
Feb 2024.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, Zhen Wang, and Zhiting Hu. LLM reasoners: New evaluation, li-
brary, and analysis of step-by-step reasoning with large language models. CoRR, abs/2404.05221,
2024. doi: 10.48550/ARXIV.2404.05221. URL https://doi.org/10.48550/arXiv.
2404.05221.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
In 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023, pp. 1049–
1065. Association for Computational Linguistics (ACL), 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.
doi: 10.48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.
06825.

Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhui Wang, Jianhan
Jin, Claire Guo, Shen Yan, Bo Zhang, Chaoyou Fu, Peng Gao, and Hongsheng Li. Mme-cot:
Benchmarking chain-of-thought in large multimodal models for reasoning quality, robustness,
and efficiency. CoRR, abs/2502.09621, 2025. doi: 10.48550/ARXIV.2502.09621. URL https:
//doi.org/10.48550/arXiv.2502.09621.

12

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.18653/v1/2024.acl-long.73
http://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2505.06321
https://cobusgreyling.medium.com/a-benchmark-for-verifying-chain-of-thought-904db5ebeefa
https://cobusgreyling.medium.com/a-benchmark-for-verifying-chain-of-thought-904db5ebeefa
https://doi.org/10.48550/arXiv.2404.05221
https://doi.org/10.48550/arXiv.2404.05221
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2502.09621
https://doi.org/10.48550/arXiv.2502.09621


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
H1eA7AEtvS.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
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Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Baldridge, Jason Grossman, Jason Rute,
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A USAGE OF LARGE LANGUAGE MODEL

In our paper, we used LLMs to assist with polishing the writing, including correcting grammatical
errors and making the sentences more consistent with academic English writing conventions.

B EXTENDED RELATED WORKS

B.1 LARGE LANGUAGE MODELS

Since the introduction of the Transformer architecture (Vaswani et al., 2017), LLMs have under-
gone rapid and transformative development. The Transformer, with its self-attention mechanism
and strong parallelism capabilities, quickly became the foundational architecture for modern neural
language models, setting a universal paradigm for subsequent designs.

Based on this architecture, OpenAI released the initial versions of the GPT series in 2018 (Radford,
2018), leveraging autoregressive language modeling to achieve notable performance in text gen-
eration. This was followed by GPT-2 (Radford et al., 2019), which significantly expanded model
capacity and demonstrated strong generalization across diverse tasks. GPT-3, introduced in 2020
(Brown et al., 2020), scaled to 175 billion parameters and marked a major leap in LLM capabilities.
GPT-3.5 further optimized inference efficiency and improved contextual understanding, especially
in dialogue-oriented tasks. GPT-4 (OpenAI, 2023a) introduced substantial advances in logical rea-
soning, knowledge integration, and alignment with human values, enabling its application to more
complex and multi-modal tasks. The most recent iteration, GPT-4o, focuses on enhancing safety, ro-
bustness, and ethical alignment, making it particularly well-suited for high-stakes decision-making
scenarios.

In parallel with the GPT lineage, BERT (Devlin et al., 2019) was introduced in 2019, pioneer-
ing bidirectional contextual learning through masked language modeling (MLM), which marked a
departure from the limitations of unidirectional models. Building on BERT, numerous improved
variants have been proposed: RoBERTa (Liu et al., 2019) removed the next sentence prediction ob-
jective and used more extensive pretraining data; ALBERT (Lan et al., 2020) introduced parameter
sharing and factorized embedding layers to reduce redundancy; BERTweet (Nguyen et al., 2020)
targeted social media text processing; and BigBird (Zaheer et al., 2020) employed sparse attention
mechanisms to effectively handle longer input sequences.

More recently, a wave of novel LLMs has emerged, further diversifying the research landscape.
Meta’s LLaMA series (Touvron et al., 2023; Rozière et al., 2023; AI, 2024) has contributed signifi-
cantly to the development of efficient, open-source, and lightweight models. Subsequently, LLaMA
4 was introduced as an open-source large language model series featuring a Mixture-of-Experts ar-
chitecture, native multimodal capabilities, industry-leading extended context length, and enhanced
multilingual support, achieving significant breakthroughs in both performance and efficiency (Meta,
2025). Meanwhile, Anthropic’s Claude series (Anthropic, 2023b;a; 2024) emphasizes model align-
ment, safety, and controllability, proposing new mechanisms for responsible AI deployment. In
addition, several other notable models have been introduced in recent years, including Google’s
Gemini (Anil et al., 2023), Alibaba’s Tongyi Qianwen (Yang et al., 2024), Baidu’s ERNIE (Sun
et al., 2021), Amazon Nova(AGI et al., 2025), Mistral (Jiang et al., 2023), Falcon (Penedo et al.,
2023), and PaLM (Chowdhery et al., 2023). Each of these models introduces distinct innovations
in architectural design, code generation, multilingual capability, training efficiency, or open-access
availability, collectively advancing the capabilities and diversity of the LLM ecosystem.

B.2 PROMPT ENGINEERING

With the widespread deployment of LLMs, their capabilities in natural language understanding and
generation have continued to surpass expectations. However, effectively guiding these models to
produce accurate, logically coherent, and structurally consistent outputs remains a key challenge.
Prompt Engineering has emerged as a critical solution to this issue and has rapidly evolved in recent
years, forming a systematic framework encompassing strategies such as reasoning enhancement,
hallucination mitigation, structured task adaptation, and interactive optimization.
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To improve the reasoning capabilities of LLMs, researchers initially proposed the Chain of
Thought (CoT) approach, which significantly enhances the model’s deductive reasoning in complex
tasks—such as mathematical problem solving and textual inference—by prompting it to generate
explicit intermediate reasoning steps (Wei et al., 2022a). Building upon this foundation, methods
such as Program of Thoughts (PoT) and Structured Chain-of-Thought (SCoT) further modularize
the reasoning process, making them particularly effective for code generation, logic programming,
and multi-stage computation tasks (Chen et al., 2023; Li et al., 2023b). Additionally, techniques like
Flow Engineering have been proposed to improve the semantic consistency and execution fidelity of
code-related prompts, thereby expanding the design space for structured prompt generation (Ridnik
et al., 2024).

Hallucination mitigation constitutes another central focus of prompt engineering. Classical ap-
proaches such as Retrieval-Augmented Generation (RAG) integrate external knowledge sources into
the generation process, providing factual grounding and improving the factual accuracy of model
outputs from the outset (Lewis et al., 2020). Meanwhile, post-hoc verification methods—such as
Chain-of-Verification (CoVe), Chain-of-Note (CoN), and Chain-of-Knowledge (CoK)—introduce
layered review mechanisms, filtering out false or inconsistent content through multi-stage valida-
tion, citation checking, and cross-examination (Dhuliawala et al., 2024; Yu et al., 2023).

As LLMs are increasingly deployed in open-domain environments, enhancing their interactivity and
understanding of user intent has become a key extension of prompt engineering. Interactive Ques-
tion Answering (Interactive QA) frameworks allow models to obtain real-time feedback through
multi-turn dialogue, enabling dynamic adjustment of responses (Yao et al., 2023c; Masson et al.,
2024). Concurrently, research has focused on the automation and personalization of prompt selec-
tion processes—for example, through techniques that match prompt templates to task-specific con-
texts (Zhou et al., 2023a)—as well as on modeling user intent for tasks involving emotion control
and stylistic adaptation (Diao et al., 2024; Li et al., 2023a).

Currently, prompt engineering is undergoing a transition from empirically driven practices to a
more theory-guided scientific paradigm. Scholars have proposed systematic frameworks that inte-
grate diverse prompting techniques (Schulhoff et al., 2025), while also exploring human-in-the-loop
methodologies to enable more controllable and robust generation systems (Shah, 2025). Moreover,
emerging methods such as Self-Rewarding Language Models and LLM-Augmented LLMs aim to
build prompt learning systems that possess self-evaluation and cooperative expansion capabilities,
signaling a broader shift toward modular, self-optimizing prompt engineering paradigms (Yuan et al.,
2025; Bansal et al., 2024).

B.3 REASONING WITHIN PROMPTING

Recent research has increasingly focused on designing logically consistent prompts that improve
reasoning performance, enabling LLMs to tackle complex tasks more effectively. Following the
Chain-of-Thought (CoT) framework (Wei et al., 2022a), Auto-CoT (Zhang et al., 2023) introduces
an automated pipeline that samples diverse problems and utilizes zero-shot CoT outputs, followed
by post-processing to filter and optimize reasoning chains. LogiCoT (Zhao et al., 2024) integrates
the principle of Reductio ad Absurdum from symbolic logic to iteratively verify and correct the
reasoning process, thereby reinforcing logical rigor.

In parallel, Prompt Sketching (Beurer-Kellner et al., 2024) proposes a structured prompt template
to steer the model’s reasoning within a predefined format, achieving more controllable logical path-
ways. Compositional Chain-of-Thought (CCoT) (Mitra et al., 2024) further extends the CoT frame-
work to multi-modal scenarios, promoting cross-modal reasoning. Other studies (Feng et al., 2023)
have also explored the theoretical and empirical performance of CoT on mathematical reasoning
tasks. To improve output robustness, the Reasoning-Aware Self-Consistency (RASC) framework
(Wan et al., 2025) augments traditional self-consistency mechanisms with a dynamic evaluation of
the coherence between each reasoning trace and its final answer. By integrating score-driven stop-
ping strategies and weighted voting, RASC not only reduces sampling cost by approximately 70%
but also improves predictive accuracy and reasoning fidelity.

Beyond linear reasoning chains, recent efforts have explored more complex topological representa-
tions of thought to enhance LLMs’ logical modeling capabilities. The Tree of Thoughts (ToT) (Yao
et al., 2023b) introduces a branching structure that enables models to search and evaluate multiple
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reasoning paths. The Graph of Thoughts (GoT) (Besta et al., 2024a) models reasoning as a graph-
based process, well-suited for complex, multi-step, and multi-source reasoning tasks. Similarly,
Graph-of-Thought Reasoning (GoTR) (Yao et al., 2024) explicitly encodes inter-node relationships
within reasoning paths, particularly effective for integrating heterogeneous information in multi-
modal contexts. Building on these, Enhancing Graph of Thoughts (EGoT) (Shin & Kim, 2025)
further optimizes the design of inference paths within graph structures, enhancing both reasoning
efficiency and consistency for complex tasks.

Additionally, several studies have proposed structurally organized reasoning paradigms. Thread of
Thought (ThoT) (Zhou et al., 2023b) advocates decomposing complex problems into hierarchical
and sequential “threads of thought” to facilitate more systematic reasoning. Meanwhile, Algorithm
of Thoughts (AoT) (Sel et al., 2024) embeds algorithmic reasoning structures into the prompt con-
text, guiding the model to emulate procedural execution. This strategy leverages the recursive dy-
namics of LLMs, enabling the construction and exploration of sophisticated reasoning paths with
minimal interaction.

B.4 BENCHMARKING LLM REASONING

In recent years, research on the reasoning abilities of LLMs has been growing rapidly. As a re-
sult, evaluating the reasoning capabilities of LLMs has become a hot topic in research. MMLU
(Hendrycks et al., 2021) provides a large-scale multi-task language understanding benchmark that
covers tasks from 57 different domains. Similarly, BIG-bench (Srivastava et al., 2022) includes
over 204 diverse tasks aimed at comprehensively testing the model’s abilities. HELM (Liang et al.,
2022) emphasizes a holistic perspective on model evaluation, looking at both the scenarios and the
metrics to gain a thorough understanding of a model’s capabilities. MT-Bench (Zheng et al., 2023)
is a multi-turn dialogue reasoning benchmark that focuses on the reasoning abilities in multi-turn
dialogue scenarios. OpenAI Evals (OpenAI, 2023b) is a general evaluation framework designed
to facilitate the development and sharing of evaluation benchmarks for LLMs by the community.
For reasoning evaluation, BBH (Suzgun et al., 2022) is a set of the 23 most challenging sub-tasks
from BIG-bench, specifically assessing models’ performance on complex reasoning tasks. GSM8K
(Cobbe et al., 2021) is a dataset containing 8,500 elementary school math application problems,
used to evaluate the model’s mathematical reasoning abilities. The MATH (Hendrycks et al., 2021)
dataset includes 12,500 high school math competition questions, primarily testing the model’s rea-
soning abilities on advanced math problems. ARC (Clark et al., 2018) is a dataset designed to eval-
uate LLMs’ abilities in scientific question answering and common-sense reasoning. DROP (Dua
et al., 2019) is a reading comprehension dataset used to assess LLMs’ abilities in discrete reasoning.
ReClor (Yu et al., 2020) focuses on evaluating LLMs’ abilities in logical reasoning. MME-CoT
(Jiang et al., 2025) is a benchmark specifically designed to evaluate CoT reasoning performance
in large multimodal models (LMMs). REVEAL (Greyling, 2024) is a benchmark for verifying the
correctness of CoT reasoning chains.

C DETAILS CONCERNING CONSTRUCTION PHASE

As described in the main text, in our framework, users only need to prepare a single configuration
file to complete the relevant setup. The structure and content of this configuration file are detailed
below.

The configuration file primarily consists of three parts: basic Information, decision rules, and rea-
soning rules.

Basic Information. This section covers general settings related to the underlying LLM, specifi-
cally including:

• LLM Base Model Information: Specifies the LLM API or the locally deployed LLM
model to be used. The corresponding JSON object is as follows:

1 "llm_base_model": {
2 "model_type": "local",
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3 "model_config_file_path": "/model/Llama-3-8B-
Instruct/config.py"

4 }

Here, model type constrains whether the model used is a local model or an API call.
local represents the use of a local model, and api represents using an online LLM API.
The model config file path points to the LLM configuration file.

• Maximum Token Count: Sets the maximum number of tokens available for task execu-
tion. The corresponding JSON object is as follows:

1 "token_limits": {
2 "max_token_count": 4096
3 }

max token count refers to the maximum number of tokens allowed; exceeding this
count will terminate the inference process.

• Maximum Node Count: Limits the maximum number of nodes allowed during the task
execution process. The corresponding JSON object is as follows:

1 "structure_limits": {
2 "max_node_count": 500
3 }

Here, max node count refers to the maximum number of nodes allowed; exceeding this
count will also terminate the inference process.

Decision Rule. This rule is used to determine how to decide the next operation given a specific
node, specifically including:

• Stop Judgment: Defines the conditions under which the LLM’s reasoning process should
be terminated. The corresponding JSON object is as follows:

1 "stop_judgment": {
2 "condition": "Based on the information from the

current node or the parent node, it is no longer
possible to derive a calculation result of Game of 24,
or the reasoning has entered a cycle."

3 }

• Answer Judgment: Specifies the conditions under which the content of the current node
can be output as the final answer. The corresponding JSON object is as follows:

1 "answer_judgment": {
2 "condition": "The current method can calculate and

obtain 24."
3 }

Reasoning Rules. Define the generation and connection rules to be followed if a node requires
further expansion in reasoning. Each rule specifically includes:

• Topological Judgment: Includes the topological conditions that a node must satisfy for
this rule to apply, such as the distance to the root node, node in-degree, the required sub-
graph structure, and a corresponding textual description. The corresponding JSON object
is as follows:

1 "topological_judgment": {
2 "distance_from_root": [1,3],
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3 "allowed_in_degree": [1,3],
4 "allowed_out_degree": [0,3],
5 "required_subgraph_structure": "It needs to have

descendant nodes with a distance greater than 2."
6 }

max distance from root constrains the range of the distance from the current node to
the root node. [1,3] represents the nodes that satisfy the current rule, where the distance
to the root node (i.e., the shortest path to the root node) is between 1 and 3. If no such con-
straint is applied, the value is [-1,-1]. allowed in degree represents the allowed
in-degree of the current node. Similarly, if there is no restriction, the value is [-1,-1].
allowed out degree follows the same logic. required subgraph structure
represents the textual description of other possible graph structures required, which will be
evaluated using the LLM for graph structure determination. If there is no restriction, the
value is N/A.

• Semantic Judgment: Describes in textual form the semantic features that an applicable
node should possess. The corresponding JSON object is as follows:

1 "semantic_judgment": {
2 "description": "Contain information about AI

technology."
3 }

The description provides the semantic features that are used to determine whether this
rule should be applied.

• Gsub Structure: Specifies the composition of the generated set of child nodesCh(v) and its
related set of parent nodes Pa(Ch(v)). If multiple nodes are generated using a single round
of LLM interaction, the system will first generate one node. This node is then split based on
predefined separation identifiers, and the associations between nodes are determined with
the aid of the LLM to construct the edge structure. The corresponding JSON object is as
follows:

1 "G_sub_structure": {
2 "child_nodes": {
3 "strategy": "single_round_multi_node",
4 "num_of_child_nodes": 1
5 },
6 "parent_nodes": {
7 "shortest_path_to_root": "include",
8 "sibling_node": "include",
9 "search_prompt": "N/A"

10 }
11 }

In child nodes, the value of strategy can be either single round multi node
or single round single node, which indicates whether a single round of LLM in-
teraction generates all child nodes or just a single child node. num of child nodes
defines the number of child nodes to be generated. If single round multi node is
selected, this value remains 1, and the framework itself will handle the splitting of child
nodes in subsequent steps.
In parent nodes, shortest path to root represents all the nodes in the shortest
path from the current node to the root node. sibling node indicates whether sibling
nodes are included, with options include and exclude. If search prompt is N/A,
no search is conducted; otherwise, the parent nodes are searched according to the content
of search prompt.

• Reasoning Prompt: Provides the specific prompt text used.

Note that multiple reasoning rules will be defined, and for any given node requiring further reason-
ing, exactly one rule applies.
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To provide a concrete example, we present the corresponding configuration file for the running
example in Section 3.4. The content of this configuration file is shown below:

1 {
2 "framework": "ToT for Game of 24",
3 "configuration": {
4 "basic_information": {
5 "llm_base_model": {
6 "model_type": "local",
7 "model_config_file_path": "/model/Llama-3-8B-Instruct/

config.py"
8 },
9 "token_limits": {

10 "max_token_count": 4096
11 },
12 "structure_limits": {
13 "max_node_count": 500
14 }
15 },
16 "decision_rules": {
17 "stop_judgment": {
18 "condition": "Based on the information from the current

node or the parent node, it is no longer possible to derive a
calculation result of Game of 24, or the reasoning has entered
a cycle."

19 },
20 "answer_judgment": {
21 "condition": "The current method can calculate and obtain

24."
22 }
23 },
24 "reasoning_rules": [
25 {
26 "rule_id": "rule_for_root",
27 "topological_judgment": {
28 "max_distance_from_root": [0,0],
29 "allowed_in_degree_range": [-1,-1],
30 "required_subgraph_structure": "N/A"
31 },
32 "semantic_judgment": {
33 "description": "N/A"
34 },
35 "G_sub_structure": {
36 "child_nodes": {
37 "strategy": "single_round_multi_node",
38 "num_of_child_nodes": 1
39 },
40 "parent_nodes": {
41 "shortest_path_to_root": "include",
42 "sibling_node": "exclude",
43 "search_prompt": "N/A"
44 }
45 },
46 "reasoning_prompt": {
47 "prompt_text": "You are a Game of 24 game expert. Please

solve the given problem, provide 3 different reasoning nodes.
Consider the most effective solving strategies. Note that
each approach should only advance one step, meaning only
compute one additional number. The current computed number
pool is: [ ]. Add two numbers to this pool. Output only the
combinations. Follow the format: option: [ ], updated number
pool: [ ]. Do not output any other content."

48 }
49 },
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50 {
51 "rule_id": "rule_backtrack",
52 "topological_judgment": {
53 "max_distance_from_root": [-1,-1],
54 "allowed_in_degree_range": [-1,-1]],
55 "required_subgraph_structure": "N/A"
56 },
57 "semantic_judgment": {
58 "description": "N/A"
59 },
60 "G_sub_structure": {
61 "child_nodes": {
62 "strategy": "single_round_multi_node",
63 "num_of_child_nodes": 1
64 },
65 "parent_nodes": {
66 "shortest_path_to_root": "include",
67 "sibling_node": "exclude",
68 "search_prompt": "N/A"
69 }
70 },
71 "reasoning_prompt": {
72 "prompt_text": "You are a Game of 24 game expert. Please

solve the given problem, provide 2 different reasoning nodes.
Solve the problem from the parent node of the current node.
Consider the most effective solving strategies. Note that each
approach should only advance one step, meaning only compute
one additional number. The current computed number pool is: [
]. Add two numbers to this pool. Output only the combinations.
Follow the format: option: [ ], updated number pool: [ ]. Do
not output any other content."

73 }
74 },
75 {
76 "rule_id": "rule_default",
77 "topological_judgment": {
78 "max_distance_from_root": [-1,-1],
79 "allowed_in_degree_range": [-1,-1],
80 "required_subgraph_structure": "N/A"
81 },
82 "semantic_judgment": {
83 "semantic_description": "N/A"
84 },
85 "G_sub_structure": {
86 "child_nodes": {
87 "strategy": "single_round_multi_node",
88 "num_of_child_nodes": 1
89 },
90 "parent_nodes": {
91 "shortest_path_to_root": "include",
92 "sibling_node": "exclude",
93 "search_prompt": "N/A"
94 }
95 },
96 "reasoning_prompt": {
97 "prompt_text": "You are a Game of 24 game expert. Please

solve the given problem, provide 2 different reasoning nodes.
Consider the most effective solving strategies. Note that
each approach should only advance one step, meaning only
compute one additional number. The current computed number
pool is: [ ]. Add two numbers to this pool. Output only the
combinations. Follow the format: option: [ ], updated number
pool: [ ]. Do not output any other content."

98 }
99 }

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

100 ]
101 }
102 }

D PROOF OF PROPOSITION 1

Proposition 1 Kernel matrix K
(h)
RGWL of K(h)

RGWL(·, ·) is positive semi-definite (p.s.d.).

Proof. According to the proposition, for c ∈ Rn, we have:
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ψ̃(i) (ρ (τ(Gj)))

)〉

+ λiλj

h∑
i=1

〈
η
(
ψ̃(i) (ρ (Gi))

)
, η

(
ψ̃(i) (ρ (Gj))

)〉)
, (6)

where λi denotes the very value of λ according to Gi and Gj . As ρ(·) only modifiy graph

node features into labels,
〈
η
(
ψ̃(i) (ρ (τ(Gi)))

)
, η

(
ψ̃(i) (ρ (τ(Gj)))

)〉
can be denoted as the

inner product of certain vector αi and αj , αi ∈ Nh
0 and αj ∈ Nh

0 . Similarly, we denote〈
η
(
ψ̃(i) (ρ (Gi))

)
, η

(
ψ̃(i) (ρ (Gj))

)〉
as the inner product of βi and βj , βi ∈ Nh

0 and βj ∈ Nh
0 .

Therefore, we have:

c⊤K
(h)
RGWLc =

M∑
i=1

M∑
j=1

cicj

(
⟨αi, αj⟩+ λiλj ⟨βi, βj⟩

)

=

M∑
i=1

M∑
j=1

(
cicj ⟨αi, αj⟩

)
+

M∑
i=1

M∑
j=1

(
cicjλiλj ⟨βi, βj⟩

)

=

〈
M∑
i=1

ciαi,

M∑
j=1

cjαj

〉
+

〈
M∑
i=1

ciλiαi,

M∑
j=1

cjλjαj

〉

=

∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

ciαi

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

ciλiαi

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0. (7)

Based on the definition of positive semidefinite matrices, the proposition is proven.

E DETIAIL IMPLEMENTATION OF τ(·) AND ρ(·)

The function τ(·) can be simply identified and obtained from the paths in the graph. Specifically,
we use a graph search algorithm to find all paths from the root to the answer node, and then we save
all the nodes along these paths, along with the corresponding inference content.

ρ(·) characterizes the KNN-based graph node labeling. Initially, a large language model is employed
to describe all relevant ideas in a consistent format. Subsequently, the textual responses associated
with each node are embedded into feature vectors using a language model (Reimers & Gurevych,
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2019). Following this, the Elbow Method (Cui et al., 2020) is applied to cluster the feature vector
sets. The clustering process terminates once the Sum of Squared Errors (SSE) falls below a prede-
fined threshold, denoted as δ, which is treated as a hyperparameter. Nodes within the same cluster
are then assigned the same label. Algorithm 2 demonstrates the procedure formally.

Algorithm 2 KNN-based Graph Node Labeling with Elbow Method for Clustering

1: Input: Graph G and G′ with nodes, large language model LM , predefined threshold δ, feature
embedding language model fLM(·).

2: Output: Node labels
3: 1. Use the large language model to describe all relevant ideas associated with each node v within
G and G′ in a consistent format.

4: 2. Embed the textual responses of each node v into feature vectors using fLM(·).
5: 3. Apply the Elbow Method to cluster the feature vector sets:
6: For each k = 1, 2, . . . , number of nodes:
7: Compute the Sum of Squared Errors (SSE) for each clustering result.
8: Terminate clustering when the SSE falls below the threshold δ.
9: 5. Assign the same label to all nodes within the same cluster.

10: 6. Return the node labels.

F MORE REASONING FRAMEWORK IMPLEMENTATIONS AND WORKFLOWS

In this section, we provide more reasoning examples to better demonstrate TiG. We first present
the configuration file and reasoning process used with the ToT framework on Legal Cases. The
configuration file is as follows:

1 {
2 "framework": "ToT for Legal Case",
3 "configuration": {
4 "basic_information": {
5 "llm_base_model": {
6 "model_type": "local",
7 "model_config_file_path": "/model/gpt-4o/config.py"
8 },
9 "token_limits": {

10 "max_token_count": 4096
11 },
12 "structure_limits": {
13 "max_node_count": 500
14 }
15 },
16

17 "decision_rules": {
18 "stop_judgment": {
19 "condition": "Stop if the current node (or its parent) can

no longer advance the theft vs. fraud distinction, the amount
attribution is already fixed for the active branch, the path
enters a loop (semantic or structural repetition), or the node
repeats previously concluded legal reasoning without adding
new statutory or factual analysis."

20 },
21 "answer_judgment": {
22 "condition": "The path reaches a final legal conclusion,

the reasoning explicitly distinguishes the secret
appropriation phase from the later deceitful transfer, and
clarifies amount attribution for each offense."

23 }
24 },
25

26 "reasoning_rules": [
27
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28 {
29 "rule_id": "rule_for_root",
30 "topological_judgment": {
31 "max_distance_from_root": [0, 0],
32 "allowed_in_degree_range": [0, 0],
33 "allowed_out_degree_range": [1, 3],
34 "required_subgraph_structure": "N/A"
35 },
36 "semantic_judgment": {
37 "description": "Applies only at the root question node

of this case."
38 },
39 "G_sub_structure": {
40 "child_nodes": {
41 "strategy": "single_round_multi_node",
42 "num_of_child_nodes": 1
43 },
44 "parent_nodes": {
45 "shortest_path_to_root": "include",
46 "sibling_node": "exclude",
47 "search_prompt": "N/A"
48 }
49 },
50 "reasoning_prompt": {
51 "prompt_text": "You are a legal expert in Chinese

Criminal Law. Instruction: do not assume fixed statute numbers
. Instead, identify and retrieve the most relevant provisions
of the Criminal Law by analyzing the conduct. Output strictly
in the following format:\n reasoning: (one-sentence
preliminary conclusion)."

52 }
53 },
54

55 {
56 "rule_id": "rule_theft_analysis",
57 "topological_judgment": {
58 "max_distance_from_root": [1, 2],
59 "allowed_in_degree_range": [1, 3],
60 "allowed_out_degree_range": [0, 3],
61 "required_subgraph_structure": "The path to root

includes a node that flagged D1 (theft analysis) as an active
direction."

62 },
63 "semantic_judgment": {
64 "description": "Node focuses on secret taking via

impersonation; evaluates whether conduct fits theft-related
statutory elements (secret appropriation of another's property
)."

65 },
66 "G_sub_structure": {
67 "child_nodes": {
68 "strategy": "single_round_multi_node",
69 "num_of_child_nodes": 1
70 },
71 "parent_nodes": {
72 "shortest_path_to_root": "include",
73 "sibling_node": "exclude",
74 "search_prompt": "exclude"
75 }
76 },
77 "reasoning_prompt": {
78 "prompt_text": "Advance ONE step on theft analysis for

the secret impersonation/loan-obtaining phase. Identify
relevant statutory elements without assuming specific article
numbers. Map facts to elements: (i) secrecy, (ii)
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appropriation, (iii) object = other's property, (iv) intent to
unlawfully possess. Then produce sub-conclusions depending on
money ownership at the moment of appropriation (bank vs
victim). Output strictly: \n reasoning: (element-wise mapping
in one sentence).\n (No extra text.)"

79 }
80 },
81

82 {
83 "rule_id": "rule_fraud_analysis",
84 "topological_judgment": {
85 "max_distance_from_root": [1, 2],
86 "allowed_in_degree_range": [1, 3],
87 "allowed_out_degree_range": [0, 3],
88 "required_subgraph_structure": "The path to root

includes a node that flagged D2 (fraud analysis) as an active
direction."

89 },
90 "semantic_judgment": {
91 "description": "Node focuses on deceit-induced transfer;

evaluates whether conduct fits fraud-related statutory
elements (obtaining property by deception)."

92 },
93 "G_sub_structure": {
94 "child_nodes": {
95 "strategy": "single_round_multi_node",
96 "num_of_child_nodes": 1
97 },
98 "parent_nodes": {
99 "shortest_path_to_root": "include",

100 "sibling_node": "exclude",
101 "search_prompt": "exclude"
102 }
103 },
104 "reasoning_prompt": {
105 "prompt_text": "Advance ONE step on fraud analysis for

the later inducement/transfer phase. Identify relevant
statutory elements without assuming specific article numbers.
Map facts to elements: (i) false representation/concealment, (
ii) victim's disposal of property, (iii) causal link, (iv)
unlawful possession. Then produce sub-conclusions depending on
the victim's disposal awareness (fully misled vs partially
aware). Output strictly:\n reasoning: (element-wise mapping in
one sentence).\n (No extra text.)"

106 }
107 },
108

109 {
110 "rule_id": "rule_amount_attribution_and_concurrence",
111 "topological_judgment": {
112 "max_distance_from_root": [2, 4],
113 "allowed_in_degree_range": [1, 5],
114 "allowed_out_degree_range": [0, 3],
115 "required_subgraph_structure": "The ancestor chain must

already contain at least one theft-focused node and one fraud-
focused node."

116 },
117 "semantic_judgment": {
118 "description": "Node determines the ownership/

attribution of the loan at each timepoint and whether theft
and fraud should be punished cumulatively."

119 },
120 "G_sub_structure": {
121 "child_nodes": {
122 "strategy": "single_round_single_node",
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123 "num_of_child_nodes": 1
124 },
125 "parent_nodes": {
126 "shortest_path_to_root": "include",
127 "sibling_node": "include",
128 "search_prompt": "Summon the two closest analysis

nodes (theft and fraud) on the shortest path for joint
synthesis."

129 }
130 },
131 "reasoning_prompt": {
132 "prompt_text": "Synthesize the results of theft and

fraud analyses. Decide (i) at impersonation moment the loaned
money is owned by bank or victim, (ii) the later induced
transfer disposes of <victim>'s property by deception, and (
iii) whether the offenses concur and shall be combined for
punishment. Output strictly:\n reasoning: (one-sentence
rationale linking timepoints to ownership) \n (No extra text
.)"

133 }
134 },
135

136 {
137 "rule_id": "rule_finalize",
138 "topological_judgment": {
139 "max_distance_from_root": [2, 6],
140 "allowed_in_degree_range": [1, 10],
141 "allowed_out_degree_range": [0, 1],
142 "required_subgraph_structure": "Upstream nodes already

fixed both: (i) theft elements satisfied for impersonation
stage; (ii) fraud elements satisfied for inducement stage; and
amount attribution coherent."

143 },
144 "semantic_judgment": {
145 "description": "All material elements established."
146 },
147 "G_sub_structure": {
148 "child_nodes": {
149 "strategy": "single_round_single_node",
150 "num_of_child_nodes": 1
151 },
152 "parent_nodes": {
153 "shortest_path_to_root": "include",
154 "sibling_node": "exclude",
155 "search_prompt": "N/A"
156 }
157 },
158 "reasoning_prompt": {
159 "prompt_text": "Issue the final conclusion exactly as

the higher court maintained: theft + fraud, combined
punishment. Also state in one sentence the amount attribution
logic (impersonation stage vs later induced transfer). Output
strictly:\n final: (theft + fraud; sentences combined True)\n
rationale: (one-sentence amount-attribution and concurrence
explanation)\n (No extra text.)"

160 }
161 }
162

163 ]
164 }
165 }
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Next, we present the specific outputs of the model, including textual descriptions of the reasoning
graphs and the content of each reasoning node.

Example Output

Graph structure:

Nodes:
[t=0] :root 0
[t=1] :node 1 node 2 node 3
[t=2] :node 4 node 5 node 6 node 7 node 8 node 9
[t=3] :node 10 node 11 node 12 node 13

Edges:
root 0→ node 1
root 0→ node 2
root 0→ node 3
node 1→ node 4
node 1→ node 5
node 2→ node 6
node 2→ node 7
node 3→ node 8
node 3→ node 9
node 5→ node 10
node 5→ node 11
node 7→ node 12
node 9→ node 13

Terminated nodes:
node 4, node 6, node 8, node 10, node 11, node 12

Answer node:
node 13

Answer path:
root 0→ node 3→ node 9→ node 13

Reasoning Procedure:

[t=1] Nodes:

node 1:
reasoning: Secret impersonation of the victim at the loan stage may constitute theft-related
statutory elements. next check: Ownership of loan funds (bank or victim).
Rule applied: rule for root.
Why proceed: This branch explores theft-related analysis.

node 2:
reasoning: Inducing the victim to transfer funds later may constitute fraud-related statutory
elements.
next check: Victim’s awareness and property disposal.
Rule applied: rule for root.
Why proceed: This branch explores fraud-related analysis.

node 3:
reasoning: Determination of ownership of loan funds is crucial for deciding theft vs. fraud
and concurrence.
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next check: Attribution of property and concurrence rules. Rule applied: rule for root.
Why proceed: This branch explores amount attribution and concurrence.

[t=2] Nodes:

node 4 (terminated False):
reasoning: If loan funds are considered victim-owned, appropriation = theft True element
mapping.
branch: victim-owned
next check: N/A
Rule applied: rule theft analysis.
Termination reason: No further statutory issues to check once victim-ownership path is ex-
hausted. Marked False (terminated).

node 5:
reasoning: If loan funds are considered bank-owned, appropriation analysis continues.
branch: bank-owned
next check: Further confirmation of ownership and appropriation.
Rule applied: rule theft analysis.
Why proceed: Ownership requires deeper analysis, not terminated.

node 6 (terminated False):
reasoning: If the victim is fully deceived and disposes of property, fraud-related elements are
satisfied. branch: fully-misled next check: N/A Rule applied: rule fraud analysis. Termina-
tion reason: Complete satisfaction of fraud elements. Marked False.

node 7:
reasoning: If the victim is partially aware but still induced to transfer funds, fraud requires
concurrence analysis.
branch: partially-aware
next check: Offense concurrence and attribution.
Rule applied: rule fraud analysis.
Why proceed: Requires deeper concurrence analysis.

node 8 (terminated False):
reasoning: If loan funds entirely belong to the victim, only theft is applicable.
conclusion: single offense False
next check: N/A
Rule applied: rule amount attribution and concurrence.
Termination reason: This conclusion contradicts the higher court (single offense). Termi-
nated False.

node 9:
reasoning: If loan funds initially belong to the bank, later deceitful transfer is fraud, leading
to combined punishment.
conclusion: pending final check
next check: Final concurrence confirmation.
Rule applied: rule amount attribution and concurrence (from config).
Why proceed: This aligns with the higher court’s reasoning, must continue.

[t=3] Nodes:

node 10 (terminated False):
reasoning: Bank retains ownership; impersonation = theft.
conclusion: theft established True
next check: N/A
Rule applied: rule theft analysis.
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Termination reason: Stopped at theft-only branch, contradicts combined judgment → False.

node 11 (terminated False):
reasoning: Loan as debt only, not property; theft not established.
conclusion: theft not False
next check: N/A
Rule applied: rule theft analysis.
Termination reason: Theft elements negated → branch ends False.

node 12 (terminated False):
reasoning: Victim partially aware, inducement insufficient → fraud weakened.
conclusion: fraud not False
next check: N/A
Rule applied: rule fraud analysis (from config).
Termination reason: Fraud elements not fully satisfied → branch ends False.

node 13 (True final answer):
final: theft + fraud; sentences combined True
rationale: At impersonation stage, appropriation = theft against bank’s property; at induce-
ment stage, transfer = fraud against victim’s property; ownership attribution supports two
offenses in concurrence.
Rule applied: rule finalize (from config).
Why valid: Matches higher court judgment; distinguishes phases and attributes amounts
correctly → True

Next, we present an example using the GoT framework on College Entrance Examination Questions.
The configuration file is as follows:

1 {
2 "framework": "GoT for College Entrance Examination Question",
3 "configuration": {
4 "basic_information": {
5 "llm_base_model": {
6 "model_type": "local",
7 "model_config_file_path": "/model/gpt-4o/config.py"
8 },
9 "token_limits": {

10 "max_token_count": 4096
11 },
12 "structure_limits": {
13 "max_node_count": 500
14 }
15 },
16

17 "decision_rules": {
18 "stop_judgment": {
19 "condition": "Stop if the current node (or its parent)

cannot further advance the mathematical reasoning, the branch
yields contradictions, or all solution cases are exhausted."

20 },
21 "answer_judgment": {
22 "condition": "The path reaches a final conclusion

consistent with the expected solution form (numeric range,
interval, or multiple-choice)."

23 }
24 },
25

26 "reasoning_rules": [
27

28 {
29 "rule_id": "rule_for_root",
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30 "topological_judgment": {
31 "max_distance_from_root": [0, 0],
32 "allowed_in_degree_range": [0, 0],
33 "allowed_out_degree_range": [1, 3],
34 "required_subgraph_structure": "N/A"
35 },
36 "semantic_judgment": {
37 "description": "Root node: classifies the math problem

and generates initial reasoning directions."
38 },
39 "G_sub_structure": {
40 "child_nodes": {
41 "strategy": "single_round_multi_node",
42 "num_of_child_nodes": 3
43 },
44 "parent_nodes": {
45 "shortest_path_to_root": "include",
46 "sibling_node": "exclude",
47 "search_prompt": "N/A"
48 }
49 },
50 "reasoning_prompt": {
51 "prompt_text": "You are a math expert. Generate high-

level reasoning direction advancing ONE step: Output strictly:
\n reasoning: (one-sentence preliminary step)."

52

53 }
54 },
55

56 {
57 "rule_id": "rule_equation_analysis",
58 "topological_judgment": {
59 "max_distance_from_root": [1, 3],
60 "allowed_in_degree_range": [1, 3],
61 "allowed_out_degree_range": [0, 3],
62 "required_subgraph_structure": "The path to root

includes a node flagged D1."
63 },
64 "semantic_judgment": {
65 "description": "Analyzes quadratic equations (

discriminant, factorization, or root conditions)."
66 },
67 "G_sub_structure": {
68 "child_nodes": {
69 "strategy": "single_round_multi_node",
70 "num_of_child_nodes": 2
71 },
72 "parent_nodes": {
73 "shortest_path_to_root": "include",
74 "sibling_node": "exclude",
75 "search_prompt": "Retrieve ancestor node introducing

equation analysis."
76 }
77 },
78 "reasoning_prompt": {
79 "prompt_text": "Advance ONE step in equation/roots

analysis. Output strictly:\n reasoning: (root/condition
analysis in one sentence)."

80 }
81 },
82

83 {
84 "rule_id": "rule_set_operations",
85 "topological_judgment": {
86 "max_distance_from_root": [1, 3],
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87 "allowed_in_degree_range": [1, 3],
88 "allowed_out_degree_range": [0, 3],
89 "required_subgraph_structure": "The path to root

includes a node flagged D2."
90 },
91 "semantic_judgment": {
92 "description": "Analyzes subset and inclusion relations

between sets."
93 },
94 "G_sub_structure": {
95 "child_nodes": {
96 "strategy": "single_round_multi_node",
97 "num_of_child_nodes": 2
98 },
99 "parent_nodes": {

100 "shortest_path_to_root": "include",
101 "sibling_node": "exclude",
102 "search_prompt": "Retrieve ancestor node introducing

set operation analysis."
103 }
104 },
105 "reasoning_prompt": {
106 "prompt_text": "Advance ONE step in analysis. Output

strictly:\n reasoning: (analysis). "
107 }
108 },
109

110 {
111 "rule_id": "rule_backtrack",
112 "topological_judgment": {
113 "max_distance_from_root": [-1, -1],
114 "allowed_in_degree_range": [1, 10],
115 "allowed_out_degree_range": [0, 2],
116 "required_subgraph_structure": "N/A"
117 },
118 "semantic_judgment": {
119 "description": "The branch stalls or contradicts."
120 },
121 "G_sub_structure": {
122 "child_nodes": {
123 "strategy": "single_round_single_node",
124 "num_of_child_nodes": 1
125 },
126 "parent_nodes": {
127 "shortest_path_to_root": "include",
128 "sibling_node": "exclude",
129 "search_prompt": "Find the closest ancestor

introducing the conflicting assumption."
130 }
131 },
132 "reasoning_prompt": {
133 "prompt_text": "Backtrack ONE step to the nearest

ancestor with a wrong or incomplete assumption. Propose a
minimally revised condition. Output strictly:\n reasoning: (
short fix)."

134 }
135 },
136

137 {
138 "rule_id": "rule_finalize",
139 "topological_judgment": {
140 "max_distance_from_root": [2, 6],
141 "allowed_in_degree_range": [1, 10],
142 "allowed_out_degree_range": [0, 1],
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143 "required_subgraph_structure": "Upstream nodes already
fixed both: (i) equation root conditions, (ii) set-inclusion
conditions."

144 },
145 "semantic_judgment": {
146 "description": "All relevant conditions are satisfied;

issue the final solution."
147 },
148 "G_sub_structure": {
149 "child_nodes": {
150 "strategy": "single_round_single_node",
151 "num_of_child_nodes": 1
152 },
153 "parent_nodes": {
154 "shortest_path_to_root": "include",
155 "sibling_node": "exclude",
156 "search_prompt": "N/A"
157 }
158 },
159 "reasoning_prompt": {
160 "prompt_text": "Issue the final answer strictly in the

problem's required format. Output strictly:\n final: (answer)
\n rationale: (one-sentence justification) \n (No extra text.)
"

161 }
162 }
163

164 ]
165 }
166 }

Next, we present the specific outputs of the model, including textual descriptions of the reasoning
graphs and the content of each reasoning node.

Example Output

Graph structure:

Nodes:
[t=0] :root 0
[t=1] :node 1 node 2 node 3
[t=2] :node 4 node 5 node 6 node 7
[t=3] :node 8 node 9 node 10

Edges:
root 0→ node 1
root 0→ node 2
root 0→ node 3
node 2→ node 4
node 2→ node 5
node 3→ node 8
node 8→ node 3 (backtracking)
node 3→ node 9
node 4→ node 8
node 5→ node 9
node 7→ node 10

Terminated nodes:
node 1, node 8, node 9
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1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
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1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
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Answer node:
node 10

Answer path:
root 0→ node 3→ node 7→ node 10

Reasoning Procedure:

node 1 (terminated False):
reasoning: Solve roots of A and B; check discriminant of B.
next check: Whether roots of B lie inside {1, 2}.
Rule applied: rule for root.
Termination reason: Incomplete, does not yet impose subset condition → False.

node 2:
reasoning: For the condition A ∪B = A, require B ⊆ A.
next check: Compare roots of B with elements of A.
Rule applied: rule for root.
Why proceed: Core set-inclusion condition.

node 3:
reasoning: Consistency check: verify parameter a effect on roots of B.
next check: Analyze a values to ensure B ⊆ A.
Rule applied: rule for root.
Why proceed: Directly links to final inclusion condition.

node 4:
reasoning: Roots of B: x = 1 and x = a− 1.
branch: case1: both roots in A — case2: one root outside A
next check: Whether a− 1 ∈ {1, 2}.
Rule applied: rule equation analysis.

node 8 (terminated False):
reasoning: If a− 1 /∈ {1, 2}, then B contains elements not in A.
conclusion: False
Rule applied: rule equation analysis.
Termination reason: Contradicts requirement B ⊆ A → False.

node 5:
reasoning: Require a− 1 equals 1 or 2, so a = 2 or a = 3.
branch: case1: a = 2 — case2: a = 3
next check: Check consistency with discriminant.
Rule applied: rule set operations.

node 9 (terminated False):
reasoning: If a = 3, discriminant fails, contradiction.
conclusion: False
Rule applied: rule set operations.
Termination reason: Inconsistent with quadratic constraints → False.

node 6 (backtrack):
reasoning: Reconsider condition a− 1 ∈ {1, 2}. Correct range: 1 ≤ a ≤ 2.
backtrack to: node 3
next check: Re-evaluate subset condition with corrected parameter range.
Rule applied: rule backtrack.

node 7:
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1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
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1965
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1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
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reasoning: Within 1 ≤ a ≤ 2, roots of B are in {1, 2}, so B ⊆ A.
conclusion: supports condition
next check: Finalize answer.
Rule applied: rule set operations.

node 10 (True final answer):
final: 1 ≤ a ≤ 2
rationale: Within 1 ≤ a ≤ 2, B ⊆ A holds, hence A ∪B = A.
Rule applied: rule finalize.
Why valid: Matches expected answer → True
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