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Abstract

Large Language Models (LLMs) have suc-001
ceeded remarkably in understanding long-002
form contents. However, exploring their capa-003
bility for generating long-form contents, such004
as reports and articles, has been relatively un-005
explored and inadequately assessed by existing006
benchmarks. The prevalent evaluation methods,007
which predominantly rely on crowdsourcing,008
are recognized for their labor-intensive nature009
and lack of efficiency, whereas automated met-010
rics, such as the ROUGE score, demonstrate011
discordance with human judgment criteria. In012
this paper, we propose PROXYQA, an inno-013
vative framework dedicated to assessing long-014
text generation. PROXYQA comprises in-depth015
human-curated meta-questions spanning vari-016
ous domains, each accompanied by specific017
proxy-questions with pre-annotated answers.018
LLMs are tasked to generate extensive con-019
tent in response to these meta-questions, by en-020
gaging an evaluator and incorporating the gen-021
erated texts as contextual background, PROX-022
YQA assesses the generated content’s quality023
through the evaluator’s accuracy in address-024
ing the proxy-questions. We examine multiple025
LLMs, emphasizing PROXYQA’s demanding026
nature as a high-quality assessment tool. Hu-027
man evaluation demonstrates that the proxy-028
question method is notably self-consistent and029
aligns closely with human evaluative standards.030
The dataset and leaderboard will be publicly031
available.032

1 Introduction033

Recent Large Language Models (LLMs) have made034

significant advancements (Brown et al., 2020; Tou-035

vron et al., 2023a,b; OpenAI, 2022a, 2023b). GPU036

technology innovations and memory-efficient atten-037

tion mechanisms (Dao et al., 2022; Dao, 2023) have038

further enabled LLMs to model context sequences039

spanning tens of thousands of tokens (Anthropic,040

2023; OpenAI, 2023c), paving the way for sophis-041

ticated applications such as analyzing complex sci-042

Meta Question: Please 
introduce some of the highest-
grossing media franchises in 
detail.
 

Proxy Question #n: 
True or False: Star Wars has been 
expanded into various 
films and other media, 
including television series, video 
games, and comic books.

TrueGold: True
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Figure 1: Prior efforts assess generated content by
matching it with references through human evaluation or
automated metrics. PROXYQA evaluates the knowledge
coverage and informativeness by checking if generated
contents contain sufficient information to answer a set
of proxy questions.

entific essays and generating detailed reports. As 043

long-context LLMs evolve, several benchmarks 044

have emerged to evaluate their ability to handle 045

extensive contexts (Shaham et al., 2023; Bai et al., 046

2023; An et al., 2023; Zhang et al., 2023). However, 047

these assessments primarily focus on LLMs’ com- 048

prehension of lengthy passages, using automated 049

metrics to measure performance. This leaves a sig- 050

nificant gap in understanding LLMs’ proficiency 051

in generating long-form texts, an essential aspect 052

that requires further investigation. 053

One primary roadblock to understanding LLMs’ 054

capability to generate long-form texts is the lack 055

of competent evaluation methods. Current meth- 056

ods, often involving a combination of automated 057

metrics and crowdsourced annotations, leave much 058
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to be desired (Xu et al., 2023). For instance, auto-059

mated metrics that use word-level string (Lin, 2004)060

or meaning representation matching (Yuan et al.,061

2021) rely on gold references, which unfortunately062

do not exist for many generation tasks, such as063

reports or essay writing. Furthermore, these auto-064

mated metrics are inadequate for reliably assessing065

long-form content due to the considerable and un-066

structured space of potential outputs (Celikyilmaz067

et al., 2020; Krishna et al., 2021). Human evalua-068

tion has its own set of issues too. Crowdsourced069

workers may lack the necessary expertise for evalu-070

ating knowledge-rich content, and domain experts’071

subjective preferences could result in inconsistent072

evaluations (Xu et al., 2023). While recent studies073

explored using LLMs for evaluation (Chiang and074

Lee, 2023; Liu et al., 2023), LLMs have been found075

to lack the most current information required for076

precise verification. Moreover, their assessments077

have been observed to be inconsistent (Shen et al.,078

2023). There is a clear need for more robust and079

precise evaluation methods.080

To address this issue, we introduce PROXYQA,081

a benchmark comprising human-curated meta-082

questions covering a wide range of subjects, from083

computer science to history. These meta-questions084

require domain expertise and up-to-date knowl-085

edge, prompting LLMs to generate detailed and086

comprehensive responses. To assess knowledge087

coverage and informativeness, we pair each meta-088

question with a series of proxy-questions and an-089

swers that capture its essential points. As illus-090

trated in Figure 1, PROXYQA uses an evaluator091

to answer proxy-questions based on the long-form092

content produced by LLMs, rather than comparing093

the output to a reference. If the generated con-094

tent is sufficiently detailed and accurate, it should095

equip the evaluator with enough information to096

thoroughly answer all associated proxy-questions.097

PROXYQA offers several benefits. By employ-098

ing proxy questions and an evaluator, it elimi-099

nates the need for direct comparison against a100

single gold reference, enabling a more accessible101

and subjective evaluation. Using this approach al-102

lows evaluators without specific domain knowledge103

to assess content. Additionally, unlike previous104

datasets compiled from online sources (Nguyen105

et al., 2016; Fan et al., 2019a) that potentially lead-106

ing to data contamination (Sainz et al., 2023), all107

the proxy-questions and answers are invisible to108

public, thereby preventing data leakage. We apply109

PROXYQA to extensively test different LLMs (Tou-110

vron et al., 2023a,b; Taori et al., 2023; Chiang and 111

Lee, 2023; OpenAI, 2022a, 2023b), including the 112

LLMs that enhanced iterative reasoning (Yao et al., 113

2023a) and retrieval augmentation (Bing, 2023; 114

Gemini, 2023). A systematic human evaluation 115

demonstrates that PROXYQA offers a highly con- 116

sistent evaluation scope, surpassing inter-human 117

agreement rates while maintaining strong corre- 118

lations with the majority preferences of humans. 119

120

2 Related Work 121

2.1 Long-Form Text Generation 122

Significant strides have been made in long-form 123

text generation, particularly in story genera- 124

tion (Fan et al., 2019b; Xu et al., 2020), paragraph 125

completion (Kang and Hovy, 2020), long-term 126

conversation (Xu et al., 2022) and article gener- 127

ation (Hua and Wang, 2020; Hu et al., 2022). A 128

closely related field is long-form question answer- 129

ing (Fan et al., 2019a; Dasigi et al., 2021; Stelmakh 130

et al., 2022; Lee et al., 2023), which involves gen- 131

erating detailed responses to complex information- 132

seeking questions. ELI5 (Fan et al., 2019a) was 133

a pioneer dataset for generating explanatory para- 134

graphs in response to open-ended questions, utiliz- 135

ing answers from Reddit. QASPER (Dasigi et al., 136

2021) and QASA (Lee et al., 2023) extend gen- 137

eral factoid questions to the domain of scientific 138

literature. Evaluating answers on these datasets 139

relies on comparing the generated texts with the 140

provided single reference. However, open-ended 141

questions can be answered in myriad different ways. 142

ASQA (Stelmakh et al., 2022) also introduces a set 143

of disambiguated questions from AmbigQA (Min 144

et al., 2023) for evaluating ambiguous questions. 145

They assume that long-form answers to ambiguous 146

questions should resolve ambiguity. In contrast, 147

ProxyQA aims to gauge the informativeness and 148

comprehensiveness of long-form answers, without 149

being confined solely to ambiguous questions. 150

2.2 Text Generation Evaluation 151

Automated metrics such as surface form match- 152

ing (Lin, 2004; Banerjee and Lavie, 2005) and se- 153

mantic representation comparison (Zhang et al., 154

2020; Yuan et al., 2021), face challenges with long- 155

form content due to their inability to handle the di- 156

versity of the potential outputs (Celikyilmaz et al., 157

2020; Krishna et al., 2021). They often do not align 158

with human judgment (Xu et al., 2023). Attempts 159
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AI
… introduce these normalization 
algorithm in detail.

… analyze and explain these 
positional encoding algorithms.

… explain why is it significant in 
NLP?

Game What exactly is a First-person shooter (FPS) 
game, could you generate a detailed report 
about it?

Technology
… introduce the H100 GPU and 
compare it with TPU-V5e in 
detail.

…compare the VR headset from 
some of the biggest tech 
companies. 

Music
Who are the best-selling 
music artists of all time? 
And what are their genres?

Economics
What impact do mega sports 
events (like the Olympics or 
World Cup) have on host cities 
economically?

Film
Which countries hold 
the record in the Best 
International Feature 
Film category at the 
Oscars as of 2022?

History
Introduce the countries that involved in 1st 
and 2nd Industrial Revolutions  and list the 
major inventions.

Compare the two world wars in terms of 
the scale, duration, weapon, and involved 
countries.

Sports
Is it possible for human to finish the 
marathon within 2 hours and 1 minute? 
Who is holding the record?

Introduce European Championship and 
World Cup in detail.

What is the Grand Slam? please tell the 
details about it.

Others Introduce the hottest chili pepper, how it is bred?
Introduce the top 3 most priced paintings and their artists.

33%

7%

5%

4%

15%

5% 10%
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4%

Figure 2: Meta-questions in PROXYQA cover various domains, such as AI research, historical event investigations,
sports and entertainment analysis, and more.

to use LLMs for evaluation (Chiang and Lee, 2023;160

Liu et al., 2023) are hindered by their limited ac-161

cess to current information and inconsistency in162

performance (Shen et al., 2023). Evaluators also163

have difficulties, particularly if they lack expertise,164

which can impair their judgment on key dimen-165

sions like informativeness and factuality (Gillick166

and Liu, 2010; Iskender et al., 2020). Strategies167

to enhance human evaluations include A/B test-168

ing, as seen with HURDLES (Krishna et al., 2021)169

and WebGPT (Nakano et al., 2021), with the latter170

demonstrating that providing evidence helps anno-171

tators make more informed decisions. The list of172

proxy questions in PROXYQA can be viewed as173

evidence to assist the evaluator in making decisions.174

While some research focused on coherence (Goyal175

et al., 2022; Jiang et al., 2022; Deng et al., 2022)176

and factuality (Goyal and Durrett, 2020; Laban177

et al., 2022; Min et al., 2023) in related tasks like178

summarization, our work emphasizes informative-179

ness and coverage.180

3 A Long-form Generation Benchmark181

An alternative framework for evaluating long-form182

text generation is created. 100 meta-questions are183

annotated to prompt LLMs to generate detailed and184

informative responses, which cover subjects in ar-185

tificial intelligence (AI) research, historical event186

investigations, sports and entertainment event anal-187

ysis. The topic distribution is shown in Figure 2.188

Each meta-question accompanies various proxy-189

questions with annotated answers, which are in-190

visible to the LLMs to be tested. To proxy the191

objective evaluation of the generated contents to192

subjective metrics, we adopt an evaluator that takes193

the generated contents as contextual background194

and answers the proxy-questions. We assume that195

only if the contextual background is informative196

and comprehensive, can the proxy-questions be 197

well-addressed by the evaluator. Therefore, the 198

quality of the generated contents is reflected in the 199

evaluator’s accuracy on the proxy-questions. 200

3.1 Creating the Meta-questions 201

Meta-questions were manually raised by five expe- 202

rienced researchers, who were instructed to initiate 203

meta-questions in areas with which they were most 204

familiar or had a keen interest. Besides the most- 205

concerned topics such as AI research, sports and 206

gaming, less popular domains such as infrastruc- 207

ture and agriculture are also included. We focus on 208

questions that are aligned with real-life scenarios 209

and should be well-addressable in reports or arti- 210

cles. For instance, a pertinent question within the 211

Computer Science domain could be: “Could you 212

elaborate on the development of Model Parallelism 213

and Pipeline Parallelism, detailing key milestones 214

and contributions?” This meta-question aligns with 215

interests in parallel computing techniques. In con- 216

trast, questions of the sort “Did Aristotle use a 217

laptop?” from StrategyQA (Geva et al., 2021) are 218

omitted due to their lack of occurrence in realistic 219

settings. 220

Difficulty of Meta-question Meta-questions can 221

be classified into two levels of difficulty: easy and 222

hard. Easy questions can be sufficiently answered 223

using only information from Wikipedia, while hard 224

questions demand the integration of Wikipedia con- 225

tent with insights derived from a wider range of 226

open-domain knowledge sources to formulate a 227

comprehensive response. Generally, most LLMs 228

can effectively address easy questions given their 229

extensive training on Wikipedia corpora. Con- 230

versely, hard questions pose a challenge to the mod- 231

els’ ability to acquire information beyond the com- 232
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monly used pre-training data, necessitating access233

to specialized private corpora, web searches, or234

document retrieval for a comprehensive response.235

For more details, please refer to Appendix A.8.236

3.2 Annotation of Proxy-Question237

The evaluation of the generated reports is prox-238

ied to the evaluator’s accuracy on proxy-questions.239

Experts are tasked with identifying the pivotal con-240

tent that a satisfactory answer to a meta-question241

must contain. Then they craft a series of proxy-242

questions that probe these identified key points.243

For instance, regarding the example of model par-244

allelism and pipeline parallelism mentioned in Sec-245

tion 3.1, a thorough answer should incorporate246

in-depth information about Gpipe (Huang et al.,247

2019), Megatron (Shoeybi et al., 2019), and other248

pertinent subjects. Therefore, annotators develop249

proxy-questions that specifically focus on Gpipe,250

Megatron and other related topics. As our destina-251

tion is not to stress-test the evaluator but to quantify252

the quality of the generated contents, we present253

straightforward and concise proxy-questions, delib-254

erately avoiding multi-hop and complex reasoning255

queries. Each annotated response is provided in a256

boolean format, ensuring that evaluators can effort-257

lessly answer these proxy-questions, given a suffi-258

ciently high-quality generated context. Conversely,259

if an evaluator struggles to address these simple260

proxy-questions based on the provided context, it261

indicates a significant deficiency in the generated262

context, with crucial information being absent.263

3.3 Quality Assurance264

The meta-question and its corresponding proxy-265

questions were annotated and quality-checked iter-266

atively. During the annotation, we excluded three267

meta-questions that were offensive, politically sen-268

sitive, ethically concerning, or not safe for work269

(NSFW). Meta-questions that have been previously270

posted and well-addressed on relevant forums are271

replaced. This ensures that LLMs cannot gener-272

ate answers by directly copying content from these273

platforms, therefore preserving the integrity of our274

dataset. As the foundation of the evaluation in275

PROXYQA, proxy-questions are curated through276

a multi-round annotation process, where experts277

iteratively exchange the meta-questions while sup-278

plementing and verifying proxy-questions anno-279

tated by the others. Each meta-question is thus280

repeatedly given to different experts to label differ-281

ent proxy-questions, until a consensus is reached282

that all experts agree that the points covered by 283

the proxy-questions are sufficiently comprehen- 284

sive. Such an alternate labeling process ensures 285

a multi-perspective rubric, leading to an experts- 286

consolidated benchmark. After the iterative anno- 287

tation, each meta-question is coupled with 15.5 288

proxy-questions on average, we then measure the 289

inter-annotator agreement of PROXYQA. We ran- 290

domly extracted a subset of 50 proxy-questions 291

and tasked the annotators to re-annotate them. Fol- 292

lowing the Kazemi et al. (2021), the Randolph’s 293

free-marginal multi-rater κ (Randolph, 2010), an 294

alternative to Fleiss’ κ are measured. PROXYQA 295

achieves κ = 0.936 thanks for the introduction of 296

the iterative annotation process. Additionally, it 297

is worth noting that real-world knowledge evolves 298

over time. Therefore, to ensure the quality of PRX- 299

OYQA, our experts are required to review and up- 300

date proxy-questions periodically, as detailed in the 301

Appendix A.9. 302

3.4 Evaluators 303

To ensure the generated contents such as markdown 304

tables and math formulas can be well encoded, 305

GPT-4 and its variant, GPT-4-Turbo (GPT-4-1106- 306

Preview), are utilized as evaluators. Instead of ap- 307

plying retrieval augmented generation, evaluators 308

are required to read the generated contents and an- 309

swer the proxy-questions. We prompt the evaluator 310

to formulate answers to the proxy-questions strictly 311

from the information presented within the contex- 312

tual background. Evaluator’s accuracy can be high 313

only if the generated contextual background is in- 314

formative and comprehensive enough. The objec- 315

tive assessment of these reports is subsequently 316

anchored to the precision of the GPT evaluator. 317

Moreover, we ensemble the evaluation results from 318

GPT-4 and GPT-4-Turbo to reinforce the reliability 319

and robustness of the assessment. 320

4 Experiments 321

4.1 Setup 322

Assessment and Models To measure LLMs’ per- 323

formance on PROXYQA, we compute the accu- 324

racy of the proxy-questions across easy and hard 325

splits. Open-sourced LLMs such as LLaMA and its 326

instruction-finetuned variants are tested. We also 327

evaluated closed-sourced LLMs (e.g. GPT) and 328

web-augmented LLMs, including Bard (Gemini 329

Pro) (Gemini, 2023) and New Bing (Bing, 2023). 330

Details of all the tested models are in the Ap- 331
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GPT-4 GPT-4-Turbo Ensemble
Easy Hard avg. Easy Hard avg. Easy Hard avg.

Base LLaMA
LLaMA-7B 5.25 0.68 3.05 5.89 1.23 3.64 5.57 0.96 3.34
LLaMA2-7B 4.74 0.55 2.72 5.38 0.55 3.04 5.06 0.55 2.88
LLaMA2-13B 6.15 1.65 3.97 6.91 1.37 4.24 6.53 1.51 4.11

Instruction-Finetuned LLaMA
Alpaca-7B 12.42 5.62 9.14 14.60 9.33 12.05 13.51 7.48 10.60
Vicuna-13B 19.85 17.15 18.54 22.66 21.26 21.99 21.25 19.20 20.26
LLaMA2-7B-Chat 21.25 16.74 19.07 20.23 18.11 19.20 20.74 17.42 19.14
LLaMA2-13B-Chat 21.13 16.87 19.07 22.02 17.42 19.80 21.57 17.15 19.44

GPT APIs
GPT-3.5-Turbo 25.61 21.40 23.57 26.12 22.36 24.30 25.87 22.97 23.94
GPT-4 30.35 23.05 26.82 30.35 23.55 27.55 30.35 23.80 27.19
GPT-4-Turbo 35.21 31.69 33.50 34.83 33.88 34.37 35.02 32.78 33.94

Web-Augmented LLMs
ReAct (GPT-4) 20.74 13.72 17.35 20.49 13.17 16.95 20.61 13.44 17.15
ReAct (GPT-4-Turbo) 23.94 18.11 21.13 23.56 18.79 21.26 23.75 18.45 21.19
Bard (Gemini Pro) 26.63 22.22 24.50 25.48 25.51 25.50 25.06 23.87 25.00
New Bing (Creative Mode) 39.56 37.72 38.67 40.33 39.78 40.06 39.95 38.75 39.37

Table 1: Evaluation of various LLMs’ knowledge coverage and informativeness on PROXYQA, accuracy on the
easy and hard splits are reported.

pendix A.3. Each LLM is prompted with “Write a332

well-structured and extensive report to answer the333

question: [META-QUESTION]” under the setting334

of zero-shot evaluation. The max decoding length335

of open-sourced and closed-sourced LLMs is set to336

their reported maximum length. All the other hy-337

perparameters of decoding strategies are the same338

as their reported settings in the original paper or339

API documentation.340

Setting of the Evaluator We feed GPT-4 and341

GPT-4-Turbo with the prompt shown in Ap-342

pendix A.5. Both evaluators used the same decod-343

ing strategy with top_p=1, max_tokens=10, and344

frequency_penalty=0. Each evaluator only pro-345

cesses one sub-questions at a time. We calculate346

the evaluator’s average accuracy to represent the347

generated content’s overall quality.348

Research Questions To carry out an in-depth349

investigation of long-form content generation and350

the effectiveness of our proposed PROXYQA, the351

following research questions are naturally raised:352

RQ1. How do open-sourced LLMs compare to353

proprietary models’ ability to generate extensive354

reports or articles? (Section 4.2)355

RQ2. How well do the modern LLMs grasp the356

knowledge with different difficulty levels? (Sec-357

tion 4.3)358

RQ3. How do LLMs perform in generating long359

content from different domains? (Section 4.4)360

RQ4. How does the iterative and alternate annota-361

tion of proxy-questions affect the performance of 362

the LLMs? (Section 4.5) 363

RQ5. Does PROXYQA give higher ratings for gen- 364

erated content with longer length? (Section 4.6) 365

4.2 Main Results 366

The ability of open-sourced LLMs to generate com- 367

prehensive and extensive content is far behind the 368

proprietary models. As shown in Table 1, the base 369

versions of the LLaMAs series demonstrate a lim- 370

ited capacity to produce long-form content. How- 371

ever, notable enhancements are achieved through 372

instruction-based supervised fine-tuning (SFT), as 373

the Vicuna-13B and LLaMA2-13B-Chat transcend 374

most other open-sourced models, evidencing their 375

superior capability in delivering acceptable con- 376

tent. However, compared to the proprietary models, 377

the open-source LLMs far lag behind GPT models. 378

Even the GPT-3.5-Turbo outperforms the entire 379

suite of open-source LLMs by a significant margin, 380

and GPT-4-Turbo maintains a substantial lead. This 381

underscores the considerable gap that open-source 382

LLMs must bridge to match the performance of 383

their proprietary counterparts. 384

4.3 Results on Different Levels of Difficulty 385

Well-pretrained LLMs surpass others on all fronts 386

but struggle with hard questions, while well- 387

designed retrieval-augmented generation (RAG) 388

significantly make up the shortcoming. Table 1 389

illustrates a pronounced decline in performance 390

among most large language models (LLMs) on the 391
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Llama2-Chat-13B New Bing Vicuna-13B

Figure 3: Performance of LLMs on different domains.

more challenging subset of questions, which can-392

not be well-solved solely with information from393

Wikipedia. Notably, even the powerful GPT-4 ex-394

hibits a marked decrease in efficacy(6.55 ↓). In395

contrast, equipped with the GPT-4 with a search396

engine and well-designed searching strategy, New397

Bing Creative Mode performs more robustly than398

other LLMs, exhibiting a comparatively minor per-399

formance loss( 39.95 →38.75). However, RAG is400

not a one-size-fits-all solution, as the GPT-4 model401

equipped with the ReAct falls short of generating402

comprehensive content. This is attributed to the403

fact that ReAct repurposes the GPT into a role404

more akin to planner and executor, constraining its405

capacity as a parametric knowledge base.406

4.4 Domain407

Proprietary LLMs overwhelmingly outperform408

other competitors in all domains. The advantage is409

further extended by integrating the search engine.410

Figure 3 shows that the GPT-4-Turbo surpasses the411

open-sourced LLMs in all aspects. However, it is412

worth noting that in some domains, such as mu-413

sic and economics, the gap between open-source414

models and GPT-4-Turbo is very small, but open-415

sourced LLMs are biased and inadequate to cover416

all domains. Training LLMs that excel at multiple417

domains remains sufficient exploration.418

4.5 Impact of Alternate Annotation419

Despite the impressive performance, proprietary420

LLMs are still unable to cater to the preferences of421

every individual. Figure 4 compares the LLMs’422

performance on expert-consolidated and single-423

expert-focused subsets. As the iterative verification424

and supplementation of proxy-questions proceed,425

LLaMA-7B
LLaMA-13B

ReAct(GPT4)

Vicuna-13B
ReAct(GPT4-turbo)

Bard
🥉GPT4

🥈GPT4-turbo

🏅New Bing

LLaMA2-13B-Chat

Expert-Consolidated

Si
ng

le
-E
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er

t C
on

ce
rn
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Figure 4: Performance difference on the experts-
consolidated and single-expert-focused set.

the performance of all models decreases, suggest- 426

ing that LLMs cannot cater to every individual’s 427

preferences. Remarkably, New Bing outperforms 428

all other baselines by a considerable margin, no 429

matter the sub-split where only a single expert is 430

involved or on the complete expert-consolidated 431

set. However, despite the impressive performance, 432

significant degradation could be observed. This 433

suggests that the multi-perspective evaluation crite- 434

ria in PROXYQA pose critical challenges to LLMs. 435

4.6 Generation Length 436

Improving the readability and informativeness of 437

generated content within limited token budgets re- 438

mains an area for systematic exploration. The av- 439

erage generation lengths are presented in Table 2. 440

It is essential to emphasize that the degree of in- 441

formativeness and comprehensiveness is not pro- 442

portional to the length of the generated content. 443

Specifically, LLaMA2-13B generates lengthy con- 444

tent, yet it exhibits the lowest quality in generating 445

contextual background on PROXYQA. In contrast, 446

GPT-4-Turbo produces concise content while con- 447

veying extensive and comprehensive information. 448

Moreover, when GPT-4 is incorporated with the 449

search engine, the New Bing Creative Mode yields 450

highly informative and in-depth content, signifi- 451

cantly surpassing all other baseline models with an 452

acceptable increase in generation length. 453

5 Analysis 454

5.1 Win Rate 455

We study the pairwise win rate among various 456

LLMs evaluated by PROXYQA and compare the 457

results with human evaluation to validate the effec- 458

tiveness of PROXYQA. 459
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Avg. Len. Acc.
LLaMA2-13B 1906.87 4.11
LLaMA2-13B-Chat 869.42 19.44
Vicuna-13B 727.84 20.26

GPT-3.5-Turbo 823.32 23.94
GPT-4 744.00 27.19
GPT-4-Turbo 1029.47 33.94

ReAct (GPT-4-Turbo) 355.80 21.19
Bard (Gemini Pro) 922.83 25.00
New Bing (Creative) 1167.65 39.37

Table 2: Average word count of the generated reports.

Setup Five well-educated postgraduate students460

are engaged; all have not participated in annotat-461

ing the meta and proxy-questions of PROXYQA;462

they are required to score and rank the randomly463

sampled reports generated by different LLMs. The464

scoring guideline is shown in Appendix A.4. We465

sampled ten meta-questions from PROXYQA and466

employed four LLMs to generate comprehensive467

reports. As a further comparison, we also fol-468

low the settings in MT-Bench (Zheng et al., 2023)469

that adopt LLM-as-judges, which directly rate the470

generated report based on the scoring guideline.471

Similarly, we utilize GPT-Seperate (GPT-S), which472

evaluates a single report at a time, and GPT-Batch473

(GPT-B), which evaluates and compares multiple474

reports simultaneously, to score and rank each re-475

port. Given that five human evaluators are involved476

in the comparison, we ensure fairness and robust-477

ness by requiring GPT-S, GPT-B, and our proposed478

PROXYQA to evaluate each report five times. We479

then calculate the average win rate based on the480

pairwise comparison.481

Result GPT-as-judges over-confident on the con-482

tents generated by GPT models, while ProxyQA’s483

choice is highly correlated with humans. As shown484

in Figure 5, majority of the evaluation results highly485

correlated with the human’s choices. Specifically,486

evaluators generally recognize the quality of the487

reports generated by GPT-4-Turbo and New Bing,488

i.e., their win rates are much higher than those of489

Vicuna and Llama2-Chat. It is worth noting, how-490

ever, that GPT-S and GPT-B exhibit overconfidence491

in the quality of the reports generated by GPT-4-492

Turbo compared to New Bing. In contrast, both493

human evaluators and ProxyQA exhibit a prefer-494

ence for New Bing over GPT-4-Turbo. This out-495

come attests to the effectiveness of ProxyQA and496

demonstrates the correlation between ProxyQA and497

human evaluation.498

GPT-4-turbo LLama2-Chat New Bing

7.33%

86.19%

24.28%

23.89%

90.00%

3.33%

92.67% 76.11% 96.67%

23.81% 10.00%

85.72%

Vicuna-13B

New Bing

LLama2-Chat

10.00%

39.44%

15.23%

30.16%

80.00%

21.11%

90.00% 69.84% 78.89%

60.56% 20.00%

84.77%

GPT-4-turbo LLama2-Chat New Bing

Vicuna-13B

New Bing

0.00%

35.65%

0%

13.21%

93.33%

3.33%

100% 86.79% 96.67%

64.35% 6.67%

100%
LLama2-Chat

0.00%

84.00%

12.00%

10.00%

96.67%

0.00%

100% 90.00% 100%

26.00% 3.33%

88.00%

Human Evaluation GPT-S Evaluation

GPT-4-turbo LLama2-Chat New Bing GPT-4-turbo LLama2-Chat New Bing

ProxyQA EvaluationGPT-B Evaluation

Figure 5: Comparison of win rate of various evaluation
methods. GPT-evaluators are highly overconfident in
the results produced by GPT-4-Turbo, while PROXYQA
significantly correlated with human preference.

5.2 Agreement Evaluation 499

To thoroughly examine the consistency of PROX- 500

YQA and the correlation against human evaluation 501

criteria, we investigate the agreement rate of hu- 502

man assessment and PROXYQA. Two categories 503

of agreement rates are explored. Similar to MT- 504

Bench (Zheng et al., 2023), to effectively gauge 505

the consistency of our proposed PROXYQA, we 506

assess the self-agreement rate, which calculates the 507

inter-evaluator agreement rate. Furthermore, we 508

establish that the evaluation method proposed in 509

the PROXYQA exhibits a strong correlation with 510

human judgment by determining the agreement 511

rate between human evaluations, referred to as the 512

human agreement rate. We employ GPT-Seperate 513

and GPT-Batch, as discussed in section 5.1, for 514

comparison purposes. 515

Setup Following the settings in section 5.1, 20 re- 516

ports generated by GPT-4-Turbo and New Bing are 517

evaluated and compared by experts that have not 518

participated in the annotation of PROXYQA. We 519

analyze the agreement between different evaluation 520

methods and human evaluations. 521

Self-agreement Given a pair of meta-question 522

and its corresponding generated report, each eval- 523

uation method is required to score and vote the 524

preferred reports n times. Let V = {v1, . . . , vn} 525

be the set of voting results, then the self-agreement 526

rate is calculated as: 527

7



Self G2G G2M M2G
GPT-S 48.65 45.49 47.62 30.00
GPT-B 51.17 43.86 36.66 36.66
ProxyQA 88.00 66.00 63.33 66.19
Human 52.19 - - -

Table 3: Agreement between each evaluation method
and human evaluation. Self-agreement is also reported.

Rself ≜
1

C2
n

n∑
i=1

n∑
j=i+1

1{vi = vj} (1)528

Where 1{·} denote the indicator function. The529

self-agreement rate, denoted as Rself , quantifies530

the consistency of an evaluation method.531

Human-agreement The calculation is divided532

into Majority-to-Group (M2G), Group-to-Majority533

(G2M) and Group-to-Group (G2G). The RM2G534

quantifies the proportion of the majority vote of535

a specific evaluation method in concordance with536

the overall votes of human evaluation. Conversely,537

RG2M calculates the proportion of overall votes of538

an evaluation method that concur with the majority539

vote of humans, indicating how well the evaluation540

criteria are aligned with the majority opinion of hu-541

mans. RG2G provides a view of the overall agree-542

ment between an evaluation method and the human.543

Let Ve = {e1, . . . , en}, Vh = {h1, . . . , hn} repre-544

sent the set of the voting results of an evaluation545

method and human, respectively. The majority vote546

of a set is represented as M(·). Then, the agree-547

ment is calculated as:548

RM2G ≜
1

n

n∑
i=1

1{hi =M(Ve)} (2)549

RG2M ≜
1

n

n∑
i=1

1{ei =M(Vh)} (3)550

RG2G ≜
1

n2

n∑
i=1

n∑
j=1

1{ei = hj} (4)551

Results Human preference varies from individ-552

ual to individual, while ProxyQA shows firm con-553

sistency and is highly correlated to the majority of554

humans. Table 3 illustrates that PROXYQA offers a555

highly consistent metric for evaluating long content556

generation. Furthermore, PROXYQA strongly cor-557

relates with the majority opinion of human evalua-558

tors, thereby emphasizing its efficacy in validating559

long-form content. Notably, the subjective pref-560

erences of human experts vary, as the agreement561

rate reaches only 52.19%, leading to relatively in- 562

consistent evaluations, which is consistent with the 563

findings of Xu et al. (2023). In contrast, PROXYQA 564

achieves an 88.00% agreement rate, indicating its 565

potential as a highly consistent performance indi- 566

cator. Moreover, when evaluating the consensus 567

between different evaluation methods and the ma- 568

jority opinion of human experts, both GPT-S and 569

GPT-B are contrary to human preference. GPT-as- 570

judges is overconfident in the reports generated by 571

GPT-4-Turbo, which becomes even more extreme 572

when evaluating with GPT-B. However, the criteria 573

of PROXYQA significantly align with the major- 574

ity opinion of human experts, surpassing GPT-as- 575

judges in all human-agreement rates with a sub- 576

stantial margin and attaining 66.19% and 63.33% 577

M2G and G2M agreement rate respectively. These 578

findings provide robust evidence that the proposed 579

PROXYQA can effectively and reliably assess the 580

capabilities of LLMs in generating long-form con- 581

tent. 582

5.3 Validation of the GPT Evaluator 583

We validated the accuracy of our proxy-evaluator. 584

Given the reports generated by GPT-4-Turbo, New 585

Bing, Vicuna-13B, and LLama2-Chat, 100 proxy- 586

questions and the boolean answer generated by 587

the GPT-4 evaluator are sampled. Five human 588

experts involved in the annotation of the proxy- 589

questions are required to validate the evaluator’s 590

accuracy and determine whether the answers to the 591

proxy-questions are strictly from the information 592

presented within the generated content. The GPT-4 593

evaluator reaches a 91% accuracy rate, demonstrat- 594

ing its capability as a reliable evaluator. 595

6 Conclusion 596

In this work, we introduce PROXYQA, a frame- 597

work designed to evaluate LLMs’ ability to gen- 598

erate long-form text. Unlike traditional methods 599

that rely on a direct comparison with a reference 600

text, by employing an evaluator to use the infor- 601

mation provided in the LLM-generated text to an- 602

swer proxy-questions, the framework assesses the 603

LLMs’ ability without fixed references or crowd- 604

source workers. By mitigating concerns over data 605

contamination and ensuring the relevance and fresh- 606

ness of evaluation content, PROXYQA enhances 607

our understanding of LLMs and drives innovation 608

towards developing long-form generation methods 609

with LLMs. 610
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7 Limitation611

In this study, PROXYQA mainly focuses on evalu-612

ating the informative and knowledge coverage of613

the generated texts. However, multiple key dimen-614

sions such as factuality (Min et al., 2023), veri-615

fiability (Liu et al., 2023), and coherency (Deng616

et al., 2022) should be considered for long-form617

content generation. For instance, proxy questions618

cannot measure hallucination in long-form content,619

a critical issue for a long-form generation. On the620

other hand, each meta-question is annotated by five621

experts, but they cannot cover potentially all the622

proxy-questions. More advanced methods that con-623

sider these issues will be developed in future work.624

Ethical Considerations625

To avoid potential ethical issues, we carefully626

checked all questions in multiple aspects, as dis-627

cussed in Section 3.3. We try to guarantee that628

all samples do not involve any offensive, gender-629

biased, or political content, and any other ethical630

issues. The source code will be released with in-631

structions to support correct use.632
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A Appendix 1038

A.1 Advancements in Long-Context LLMs 1039

As LLMs gain global traction, their ability to 1040

adeptly process extensive sequences—such as pro- 1041

tracted conversation histories or intricate scientific 1042

documents—becomes increasingly significant. Re- 1043

cent years have witnessed the emergence of LLMs 1044

capable of managing long context windows, a 1045

feat made possible by the advent of more pow- 1046

erful GPUs with expanded memory capacities, 1047

along with innovations in memory-efficient atten- 1048

tion mechanisms (Dao et al., 2022; Dao, 2023). 1049
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Historically, the context window size for models1050

like GPT-2 encompassed 1024 tokens (Radford1051

et al., 2019), which was then extended to 2048 in1052

GPT-3 (Brown et al., 2020). Modern iterations,1053

such as GPT-4-turbo, boast an impressive 128K to-1054

ken capacity (OpenAI, 2023c), while Claude 2.1 ex-1055

tends this even further to 200K tokens (Anthropic,1056

2023). Nevertheless, scaling the context window1057

during the pretraining phase remains a daunting1058

task as the computational demands surge quadrat-1059

ically with the length of the attention span, and1060

a majority of texts within standard corpora, like1061

Common Crawl, tend to be comparatively brief.1062

A novel approach gaining momentum among1063

researchers is the augmentation of the LLMs’ con-1064

text window through the process of continued train-1065

ing or fine-tuning. For instance, Tworkowski et al.1066

(2023) successfully refined the 3B and 7B OpenL-1067

LaMA checkpoints, employing contrastive training1068

techniques to adeptly handle contexts stretching1069

up to 8K tokens. Similarly, Mohtashami and Jaggi1070

(2023) achieved an expansion of the context length1071

from 4K to 32K for LLaMA 7B by incorporat-1072

ing “landmark tokens” that effectively encapsulate1073

blocks of the existing context. These tokens allow1074

for focused fine-tuning of attention mechanisms,1075

which in turn facilitates the selection of pertinent1076

contextual blocks.1077

Furthermore, Chen et al. (2023) introduced a1078

method known as positional interpolation, to be1079

used with LLMs that incorporate Rotary Position1080

Embeddings (RoPE) as their choice of positional1081

encoding (Su et al., 2021). This technique yielded1082

promising outcomes when applied to LLaMA mod-1083

els ranging from 7B to 65B in size, requiring mini-1084

mal fine-tuning efforts—a mere 1000 optimization1085

steps. A different paradigm, ALiBi (Press et al.,1086

2022), circumvents the necessity of fine-tuning al-1087

together for expanding the context window. By1088

eschewing positional embeddings and instead ap-1089

plying a linear bias to the attention scores—which1090

is proportionate to the distance between tokens—it1091

elegantly adjusts to handle longer contexts.1092

Lastly, the strategy proposed by Ratner et al.1093

(2022) partitions extensive contexts into several1094

sub-windows, employing the same positional em-1095

beddings across them. This innovative reuse of1096

embeddings enables the models to cope with ex-1097

tended contexts without the need for additional fine-1098

tuning. This collective body of work represents the1099

ongoing evolution of strategies to enhance the ca-1100

pabilities of LLMs in accommodating long context1101

sequences, a critical requirement for their effective 1102

deployment in complex, real-world applications. 1103

A.2 Evaluation for Long-Context LLMs 1104

The advent of long-context LLMs has ushered in an 1105

era where evaluating performance over extensive 1106

text sequences is crucial. Benchmarks like Zero- 1107

SCROLLS (Shaham et al., 2023) have emerged to 1108

challenge these models’ understanding of expan- 1109

sive texts in a zero-shot setting. ZeroSCROLLS ex- 1110

tends the foundation laid by the SCROLLS bench- 1111

mark (Shaham et al., 2022)—originally designed 1112

to handle longer texts through fine-tuning—by in- 1113

troducing four new tasks: query-based summariza- 1114

tion, multi-hop question answering, sentiment ag- 1115

gregation, and ordering book chapter summaries. 1116

It distinguishes itself by focusing on zero-shot per- 1117

formance, using simple natural language prompts 1118

and eschewing training data, relying on non-public, 1119

high-quality references. 1120

Another contribution to this domain is Long- 1121

Bench (Bai et al., 2023), a suite of 21 datasets 1122

across 6 categories of tasks such as single- and 1123

multi-document question answering, summariza- 1124

tion, few-shot learning, specific synthetic tasks, and 1125

code completion. What sets LongBench apart is its 1126

uniform format for all datasets, promoting a uni- 1127

fied and automated evaluation process with metrics 1128

like F1 and ROUGE. Bamboo (Dong et al., 2023) 1129

also provides a valuable framework for analyzing 1130

comprehension over lengthy texts, offering a se- 1131

lection of 10 datasets from 5 diverse activities that 1132

range from question answering to hallucination de- 1133

tection, text sorting, language modeling, and code 1134

completion. Bamboo specifically tackles potential 1135

data contamination by exclusively using sources 1136

released no earlier than 2023, maintaining the rele- 1137

vance and contemporaneity of its material. 1138

L-Eval (An et al., 2023) introduces a bifurcated 1139

approach to evaluate LLMs, featuring both closed- 1140

ended and open-ended tasks. Closed-ended tasks 1141

focus on the model’s reasoning and comprehen- 1142

sion skills in a protracted context. In contrast, 1143

its open-ended tasks provide a variety of summa- 1144

rization challenges that require models to synthe- 1145

size information from lengthier documents. In- 1146

finiteBench (Zhang et al., 2023) is tailored to assess 1147

LLMs that process, understand, and infer informa- 1148

tion from contexts that span over 100,000 tokens. 1149

It should be noted that these datasets prioritize the 1150

assessment of long-context understanding, and as 1151

a result, a significant portion of tokens are used as 1152
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inputs for the LLMs rather than outputs.1153

A.3 Baseline Models1154

All the baselines are prompted with “Write a well-1155

structured and extensive report to answer the ques-1156

tion: [META QUESTION]”. We then employ the1157

generated results as the contextual background and1158

force the GPT-4 and GPT-4-turbo to answer the1159

proxy-questions accordingly. Multiple competitive1160

baselines are tested under PROXYQA.1161

Base LLaMA is a set of open-sourced LLMs1162

pretrained on diverse sources spanning multiple1163

domains (Touvron et al., 2023a,b). The pretraining1164

corpora include the June 2022 Wikipedia dumps,1165

which should enable the LLaMA family to ef-1166

fectively address most ‘easy’ meta-questions in1167

PROXYQA. Our experiment evaluates LLaMA-7B,1168

LLaMA2-7B, and LLaMA2-13B.1169

Instruction-Finetuned LLaMA includes Vi-1170

cuna (Chiang et al., 2023), Alpaca (Taori et al.,1171

2023), LLaMA2-Chat (Touvron et al., 2023b).1172

Vicuna is a chat assistant trained by fine-tuning1173

LLaMA on around 70k user-shared conversations1174

collected from ShareGPT (Eccleston, 2022). Sim-1175

ilarly, Alpaca is trained with 52k self-instructed1176

demonstrations adapted text-davinci-003 (Ope-1177

nAI, 2022b). As an extension of base LLaMA2,1178

LLaMA2-Chat is optimized specifically for dia-1179

logue usage of over 1 million instructions.1180

OpenAI APIs includes GPT-3.5-turbo(OpenAI,1181

2023a), GPT-4 and GPT-4-turbo (OpenAI, 2023b).1182

The default decoding configuration is utilized to1183

generate responses, while the maximum decoding1184

length is set as its maximum limitation. Both GPT-1185

3.5-turbo and GPT-4-turbo are of version 1106,1186

while GPT-4 corresponds to GPT-4-0613. The1187

training data for GPT-4-turbo is up-to-date as of1188

April 2023, while the remaining models are trained1189

with data up to September 2021.1190

Web-Augmented LLMs utilize external search1191

APIs are evaluated. Specifically, GPT-4 and GPT-4-1192

turbo are integrated with the Google Search API un-1193

der the configuration of ReAct (Yao et al., 2023b).1194

These models are tasked with processing meta-1195

questions, reasoning through search traces, and1196

extracting relevant content from search results from1197

the internet across multiple turns. The implementa-1198

tion is adopted from LangChain (Chase, 2022). In1199

addition to ReAct, the performance of New Bing1200

(creative mode) (Bing, 2023) and Bard with Gemini 1201

Pro (Gemini, 2023) are also assessed. 1202

A.4 Scoring Guideline for Human Evaluation 1203

and LLM-as-Judges 1204

Scoring Guideline

Please rate the knowledge coverage of the
reports provided, using a scale of 0-5. As-
sess how well the report covers the neces-
sary information related to the question.
Knowledge Coverage Scale:
0 - Nonsense: The report offers no useful
information and is completely irrelevant to
the question.
1 - Poor: The report provides very little
useful information and barely addresses the
question.
2 - Fair: The report offers some useful infor-
mation but lacks depth and detail, leaving
the question partially unanswered.
3 - Average: The report presents a decent
amount of information, addressing the ques-
tion adequately but not exceptionally.
4 - Good: The report provides comprehen-
sive information, covering the question well
with appropriate depth and detail.
5 - Excellent: The report thoroughly cov-
ers all aspects of the question, offering a
high level of detail and leaving no gaps in
knowledge.

1205

A.5 Prompts for tested LLMs and Evaluator 1206

All the tested baselines are prompted with “Write a 1207

well-structured and extensive report to answer the 1208

question: [META QUESTION]”, while the evalua- 1209

tors are prompted with: 1210
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Prompt for Evaluator

Read the provided document and determine
whether the statement below is "True" or
"False". Use only the information in the
text to make your decision. Do not rely on
prior knowledge or information outside of
the given text. If the text does not provide
enough information to make a decision, re-
spond with "Not mentioned".
Format your answer as "True", "False", or
"Not mentioned".
Document: [generated_report]
Statement: [proxy_question]

1211

A.6 Annotation Guideline for Formulating 1212

Meta-Questions and Proxy-questions 1213

The meta-questions should be based on the
topic the experts are most familiar with or
keen on.
Meta-question: The meta-question should
be:
a) Answerable through thorough research.
b) Aligned with real-life scenarios. c) Avoid
of offensive or ethical concerns. d) With-
out an absolute or unique answer. e) Ad-
dressable in long-form reports or articles. f)
Ensure the questions are open-ended, pro-
moting in-depth research and discussion.
Proxy-questions: For each meta-question,
determine the essential proxy-questions that
cover the critical contents of the topic.
proxy-questions should be:
a) Directly related to the meta-question. b)
Comprehensive enough to cover different
angles of the meta-question.
Golden Answer: For each proxy-question,
label the golden answer, which refers to the
most accurate and relevant information.
Steps for Annotation:
a) Choose a topic you are familiar with
or interested in. b) Formulate a meta-
question following the criteria mentioned
above c) Determine the essential proxy-
questions that cover the critical contents of
the topic, as per the guidelines above. d) For
each proxy-question, label the golden an-
swer. e) Review the meta-question, proxy-
questions, and golden answer to ensure they
adhere to the guidelines and criteria pro-
vided. f) Collaborate with your peers to
review and refine the meta-questions and
proxy-questions. Verify and supplement the
proxy-questions in an alternate way.

1214

A.7 Case Study and Error Analysis 1215

Table 4- 9 show the case study of the reports gener- 1216

ated by LLaMA2-13B-Chat, New Bing and GPT- 1217

4-turbo. Although LLaMA2-13B-Chat generates 1218

lengthy contents, very little important information 1219

are contained. Therefore GPT-4 evaluator is unable 1220

to fetch useful information from the generated con- 1221

tents, result in low accuracy on the proxy-questions. 1222

In contrast, both New Bing and GPT-4-turbo gen- 1223

erate more concise results conveyed with essential 1224
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contents. Specifically, critical hallucination can be1225

observed in the output of the LLaMA2-13B-Chat,1226

while none of the contents can be used to answer1227

the proxy-questions. However, New Bing covers1228

as much points as it can, providing a comprehen-1229

sive overview of the given topic, while results of1230

GPT-4-turbo is well-structured and offers detailed1231

and helpful introduction to some of the critical con-1232

tents.1233

A.8 Distribution of the ProxyQA1234

51% of meta-questions are categorized as easy, sig-1235

nifying that they can be addressed utilizing infor-1236

mation solely from Wikipedia. In contrast, 49%1237

of meta-questions are deemed difficult. Moreover,1238

53% of these questions are time-sensitive, as their1239

answers may dynamically alter over time. A repre-1240

sentative example of a time-sensitive question is:1241

"Could you kindly offer a comprehensive overview1242

of the historical development of pre-training in1243

NLP, encompassing notable contributions?"1244

A.9 Maintaince of the Leaderboard1245

Concerning meta-questions of varying difficulty1246

levels, the average accuracy of evaluators will be re-1247

ported for both easy and hard subsets of PROXYQA.1248

In addition, for time-sensitive questions, proxy-1249

questions will be incrementally updated, and the1250

leaderboard will be dynamically adjusted to evalu-1251

ate the LLMs’ possession of current knowledge.1252

The leaderboard is updated on a weekly basis,1253

while the proxy-question of time-sensitive meta-1254

question is incrementally updated on a bi-monthly1255

basis. Each periodic update of proxy-questions will1256

also renew the leaderboard.1257
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Question: Data parallelism, model parallelism, and pipeline parallelism play a vital role in the
training of large-scale language models. What are the representative works and frameworks among
these technologies? Please introduce these technologies and frameworks in detail.

LLaMA2-13B-Chat-Page 1
Introduction:
The training of large-scale language models has become increasingly popular in recent years due to
their wide range of applications in natural language processing (NLP) tasks. However, training such
models can be computationally expensive and time-consuming, especially when dealing with large
datasets. To address this challenge, researchers have proposed various parallelization techniques to
speed up the training process. In this report, we will focus on three key parallelization techniques:
data parallelism, model parallelism, and pipeline parallelism. We will introduce representative
works and frameworks that utilize these techniques and discuss their advantages and limitations.
Data Parallelism:
Data parallelism is a technique that involves dividing the input data into smaller chunks and
processing them in parallel across multiple devices or machines. This technique is particularly
useful for training large-scale language models, as it allows for faster training times and more
efficient use of computational resources.
One of the most popular frameworks for data parallelism is TensorFlow, which is an open-source
machine learning library developed by Google. TensorFlow provides a built-in data parallelism
feature called TensorFlow Estimator, which allows users to parallelize their training processes
across multiple machines. Another popular framework for data parallelism is PyTorch, which
provides a module called PyTorch Distributed that allows users to parallelize their training processes
across multiple devices.
Representative Works:
One of the most influential works in data parallelism for large-scale language models is the
paper "Distributed Training of Deep Neural Networks" by Google researchers (2016). This paper
introduced the concept of using data parallelism to train deep neural networks on large datasets,
and demonstrated the effectiveness of this approach for training large-scale language models.
Another influential work is the paper "Deep Learning with CUDA: General Purpose Training of
Neural Networks on GPU Clusters" by NVIDIA researchers (2017). This paper introduced the
concept of using GPU clusters for training large-scale language models, and demonstrated the
effectiveness of this approach for improving training times and reducing computational costs.
Model Parallelism:
Model parallelism is a technique that involves dividing the model into smaller parts and processing
them in parallel across multiple devices or machines. This technique is particularly useful for
training large-scale language models, as it allows for faster training times and more efficient use of
computational resources.
One of the most popular frameworks for model parallelism is the open-source machine learning
library TensorFlow, which provides a built-in feature called TensorFlow Model Parallelism. This
feature allows users to parallelize their training processes across multiple machines, and has been
used in a number of influential works for training large-scale language models.
Another popular framework for model parallelism is the PyTorch framework, which provides a
module called PyTorch Model Parallel that allows users to parallelize their training processes across
multiple devices.

Table 4: Case study of LLaMA2-13B-Chat
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LLaMA2-13B-Chat-Page 2
Representative Works:
One of the most influential works in model parallelism for large-scale language models is the paper
"Model Parallelism for Training Large-Scale Neural Networks" by Google researchers (2017).
This paper introduced the concept of using model parallelism to train large-scale language models,
and demonstrated the effectiveness of this approach for improving training times and reducing
computational costs.
Pipeline Parallelism:
Another influential work is the paper "Scaling Up Neural Machine Translation with Model Paral-
lelism" by Google researchers (2018). This paper introduced the concept of using model parallelism
to train large-scale neural machine translation models, and demonstrated the effectiveness of this
approach for improving translation quality and reducing computational costs.
Pipeline parallelism is a technique that involves dividing the training process into smaller stages
and processing them in parallel across multiple devices or machines. This technique is particularly
useful for training large-scale language models, as it allows for faster training times and more
efficient use of computational resources.
One of the most popular frameworks for pipeline parallelism is the open-source machine learning
library TensorFlow, which provides a built-in feature called TensorFlow Pipeline Parallelism. This
feature allows users to parallelize their training processes across multiple machines, and has been
used in a number of influential works for training large-scale language models.
Another popular framework for pipeline parallelism is the PyTorch framework, which provides
a module called PyTorch Pipeline that allows users to parallelize their training processes across
multiple devices.
Representative Works:
One of the most influential works in pipeline parallelism for large-scale language models is the
paper "Pipeline Parallelism for Training Large-Scale Neural Networks" by Google researchers
(2018). This paper introduced the concept of using pipeline parallelism to train large-scale language
models, and demonstrated the effectiveness of this approach for improving training times and
reducing computational costs.
Another influential work is the paper "Scaling Up Neural Machine Translation with Pipeline
Parallelism" by Google researchers (2019). This paper introduced the concept of using pipeline par-
allelism to train large-scale neural machine translation models, and demonstrated the effectiveness
of this approach for improving translation quality and reducing computational costs.
Conclusion:
In conclusion, data parallelism, model parallelism, and pipeline parallelism are three key paralleliza-
tion techniques that have played a vital role in the training of large-scale language models. These
techniques have been used in a number of influential works, and have demonstrated the effectiveness
of parallelizing the training process to improve training times and reduce computational costs. As
the field of NLP continues to evolve, it is likely that these parallelization techniques will continue
to play an important role in the training of large-scale language models.

Table 5: Case study of LLaMA2-13B-Chat
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New Bing - Page 1
Hello, this is Bing. I can help you with your question.
Data parallelism, model parallelism, and pipeline parallelism are three types of parallelism methods
that can be used to train large-scale language models efficiently on multiple GPUs or other devices.
Here is a brief introduction of these technologies and some representative works and frameworks
that use them:

• Data parallelism (DP): This is the simplest and most common form of parallelism, where
the same model is replicated on multiple devices, and each device processes a different slice
of the input data. The gradients are then aggregated and synchronized across the devices
to update the model parameters. This method is easy to implement and can scale well with
the number of devices, but it has some limitations, such as requiring large memory to store
the full model and communication overhead for gradient synchronization. Some examples
of frameworks that support data parallelism are PyTorch’s DistributedDataParallel and
TensorFlow’s MirroredStrategy.

• Model parallelism (MP): This is a more complex form of parallelism, where the model is split
into smaller parts and distributed across multiple devices, such that each device only stores and
computes a subset of the model parameters. This method can overcome the memory limitation
of data parallelism and enable training very large models that cannot fit on a single device.
However, it also introduces more challenges, such as how to partition the model, how to
minimize the communication cost, and how to balance the workload among the devices. There
are different types of model parallelism, such as tensor parallelism and pipeline parallelism,
which will be explained below. Some examples of frameworks that support model parallelism
are NVIDIA’s Megatron-LM and Microsoft’s DeepSpeed.

• Tensor parallelism (TP): This is a type of model parallelism where each tensor (such as a
weight matrix or an activation vector) is split into smaller chunks along one or more dimensions,
and each chunk is assigned to a different device. For example, a weight matrix of size [m,
n] can be split into [m/k, n/k] chunks, where k is the number of devices, and each device
only stores and computes one chunk. This method can reduce the memory footprint and
communication cost by a factor of k, but it also requires modifying the model architecture and
the computation logic to handle the tensor sharding. Some examples of works that use tensor
parallelism are gShard and Mesh-TensorFlow.

• Pipeline parallelism (PP): This is another type of model parallelism where the model is split
into smaller stages (such as layers or groups of layers) and distributed across multiple devices,
such that each device only stores and computes one stage of the model. For example, a model
with L layers can be split into S stages, where each stage contains L/S layers, and each device
only processes one stage. The input data is then fed into the first device, and the output of
each device is passed to the next device in a pipelined fashion. This method can also reduce
the memory footprint and communication cost by a factor of S, but it also requires careful
scheduling and synchronization of the pipeline stages to maximize the throughput and avoid
idle periods. Some examples of works that use pipeline parallelism are PipeDream, GPipe,
and PipeEdge.

Table 6: Case study of New Bing
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New Bing - Page 2
These parallelism methods can be combined in different ways to achieve higher efficiency and
scalability. For example, one can use data parallelism and tensor parallelism together to train a large
model on a large number of devices, as done in Megatron-LM. Alternatively, one can use data
parallelism and pipeline parallelism together to train a deep model with high throughput, as done in
GPipe. Furthermore, one can use tensor parallelism and pipeline parallelism together to train a
very large and deep model with low memory and communication cost, as done in DeepSpeed.
I hope this helps you understand the basics of parallelism methods for large-scale language model
training. If you want to learn more, you can check out the links I provided or search for more
resources on Bing. Have a nice day!

(1) Model Parallelism - Hugging Face. https://huggingface.co/docs/transformers/v4.15.0/parallelism.

(2) undefined. https://github.com/nvidia/megatron-lm.

(3) Efficient Large-Scale Language Model Training on GPU Clusters - arXiv.org.
https://arxiv.org/pdf/2104.04473v2.

(4) PipeEdge: Pipeline Parallelism for Large-Scale Model Inference on . . . .
https://ieeexplore.ieee.org/document/9996638.

(5) Efficient Large-Scale Language Model Training on GPU Clusters - arXiv.org.
https://arxiv.org/pdf/2104.04473v2.

(6) Optimizing Distributed Training on Frontier for Large Language Models.
https://arxiv.org/html/2312.12705v2.

(7) Abstract arXiv:2102.07988v2 [cs.LG] 28 Sep 2021. https://arxiv.org/pdf/2102.07988.pdf.

Table 7: Case study of New Bing
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A.10 Introduction
The training of large-scale language models, such as GPT-3, BERT, and T5, requires significant
computational resources due to the vast number of parameters and the size of the datasets involved.
To address this challenge, parallelism techniques have been developed to distribute the compu-
tational workload across multiple processors or machines. The three main types of parallelism
used in training large-scale language models are data parallelism, model parallelism, and pipeline
parallelism. This report provides an in-depth look at these technologies and their representative
works and frameworks.

A.11 Data Parallelism
A.11.1 Definition and Overview
Data parallelism involves splitting the training data across multiple processors or devices, with each
processor holding a complete copy of the model. Each processor computes the gradients based on
its subset of the data, and the gradients are then aggregated to update the model parameters.

A.11.2 Representative Works and Frameworks
• Horovod: Developed by Uber, Horovod is a distributed training framework that uses data

parallelism. It is designed to work with TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod simplifies the process of scaling out deep learning models by providing efficient
gradient aggregation.

• PyTorch Distributed Data Parallel (DDP): PyTorch’s DDP module allows for easy data par-
allelism implementation. It wraps the model during training and manages gradient averaging
and synchronization across multiple GPUs.

• TensorFlow’s tf.distribute.Strategy: TensorFlow offers several strategies for distributed
training, including MirroredStrategy for data parallelism. It synchronizes training across
multiple GPUs by replicating the model on each device and managing gradient updates.

A.12 Model Parallelism
A.12.1 Definition and Overview
Model parallelism involves splitting the model itself across multiple processors or devices. Each
processor is responsible for a portion of the model’s layers or parameters. This technique is
particularly useful for models that are too large to fit into the memory of a single device.

A.12.2 Representative Works and Frameworks
• GPipe: Developed by Google, GPipe is a library for efficiently training large-scale neural

networks using model parallelism. It partitions the model into different segments and pipelines
the execution across multiple accelerators.

• Megatron-LM: Created by NVIDIA, Megatron-LM is a framework designed to train
transformer-based models using model parallelism. It splits the model’s layers across multiple
GPUs, allowing for the training of models with billions of parameters.

• Mesh-TensorFlow: This is a language for distributed deep learning, developed by Google,
that allows for easy implementation of model parallelism. It provides a simple API to distribute
the model’s computation across a mesh of processors.

Table 8: Case study of GPT-4-turbo
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A.13 Pipeline Parallelism
A.13.1 Definition and Overview
Pipeline parallelism combines elements of both data and model parallelism. The model is split
across multiple processors, and the training data is also split into micro-batches. Each processor
works on a different micro-batch and passes its output to the next processor in the pipeline.

A.13.2 Representative Works and Frameworks
• GPipe: While GPipe is primarily associated with model parallelism, it also incorporates

aspects of pipeline parallelism by pipelining the execution of micro-batches across different
model partitions.

• DeepSpeed: Developed by Microsoft, DeepSpeed is a deep learning optimization library that
provides a pipeline parallelism implementation called ZeRO-DP. It is designed to optimize
memory usage and improve scalability when training large models.

• FairScale: An extension of PyTorch, FairScale includes several features for distributed
training, including pipeline parallelism. It allows for the efficient training of large models by
partitioning the workload across multiple GPUs.

A.14 Conclusion
Data parallelism, model parallelism, and pipeline parallelism are essential techniques for train-
ing large-scale language models. Each technique addresses different challenges associated with
the size of the model and the dataset. Frameworks like Horovod, PyTorch DDP, TensorFlow’s
tf.distribute.Strategy, GPipe, Megatron-LM, Mesh-TensorFlow, DeepSpeed, and FairScale
provide the necessary tools for implementing these parallelism strategies effectively.
As the demand for larger and more complex models continues to grow, these parallelism techniques
and frameworks will play a crucial role in enabling the development of next-generation AI systems.
Researchers and practitioners must carefully choose the appropriate parallelism strategy based
on the specific requirements of their models and the available computational resources. With
ongoing advancements in distributed computing and parallel processing, we can expect to see
further improvements in the efficiency and scalability of large-scale language model training.

Table 9: Case study of GPT-4-turbo
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