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Abstract

Large reasoning models (LRMs) achieve strong reasoning performance by emitting
long chains of thought. Yet, these verbose traces slow down inference and often
drift into unnecessary detail, known as the overthinking phenomenon. To better
understand LRMs’ behavior, we systematically analyze the token-level misalign-
ment between reasoning and non-reasoning models. While it is expected that their
primary difference lies in the stylistic “thinking cues”, LRMs uniquely exhibit
two pivotal, previously under-explored phenomena: a Global Misalignment Re-
bound, where their divergence from non-reasoning models persists or even grows
as response length increases, and more critically, a Local Misalignment Diminish,
where the misalignment concentrates at the “thinking cues” each sentence starts
with but rapidly declines in the remaining of the sentence. Motivated by the Local
Misalignment Diminish, we propose FoReal-Decoding, a collaborative fast-slow
thinking decoding method for cost-quality trade-off. In FoReal.-Decoding, a Lead-
ing model leads the first few tokens for each sentence, and then a weaker draft
model completes the following tokens to the end of each sentence.

1 Introduction

Reasoning has become a pivotal capability of large language models (LLMs), driving rapid progress in
mathematical problem solving, code generation, and commonsense question answering [22} 133} 2| 164,
635]]. Contemporary Large Reasoning Models (LRMs) such as OpenAl’s GPT-o1 [47] and the open-
source DeepSeek-R1 [16] demonstrate this trend by producing explicit long chains of thought (CoT)
[66] that markedly improve performance on challenging tasks in mathematics [70,69]], programming
[41], and other complex domains. These deeper, longer, and more precise reasoning trajectories are
cultivated by reinforcement-learning-based optimization [[16] or supervised fine-tuning on expert
demonstrations [74} 146} 32], representing advanced “slow-thinking” patterns [24} 133, [37]. Although
these slow-thinking LRMs showcase impressive reasoning skills, communities are increasingly
concerned about the efficiency and fidelity of their often-lengthy chains of thought, a phenomenon
known as “overthinking” [[12, [18]], where excessive computational resources are allocated for simple
problems with minimal benefit.

To alleviate overthinking and improve efficiency, a series of methods has been proposed [[75 157, [1}
6814501211155 1541 1764 19,71} 15141561 161} 167]]. Most of these, however, require further post-training or
manipulate the LRM’s distribution itself, adding complexity or computational overhead. Motivated
by Speculative Decoding [26] and the distinctions between fast and slow thinking, we ask: Is it
possible to design a collaborative, training-free decoding method that mixes fast and slow thinking
models to effectively trade-off quality and efficiency?

To answer this and develop such a method, we first seek to pinpoint what truly differentiates strong
reasoning models from standard instruction-following LLMs at the token level. For instruction-
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Figure 1: Left: An example comparing the token distribution alignment between DeepSeek-R1-Distill-
QOwen-32B and Qwen2.5-1.5B-Instruct, qualitatively showing that the misaligned tokens (colored
in red) are related to thinking patterns, and probably appear at the start of sentences. Right: The
WordCloud of the misaligned tokens calculated on a mix of math datasets, quantitatively showing the
high-frequency misaligned tokens like “wait”, “perhaps”, “maybe”, “let”, and “alternatively”.
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following models, LIMA [77] proposes the “superficial alignment” hypothesis, in which it shows that
most of the knowledge has been learned in the pretraining and only a small amount of data is needed
for alignment. Although a line of work tries to use various methods for data selection on either
instruction-following [9} 351 142} 134]] or reasoning [46, [74]] capabilities, [40]] verifies this hypothesis
from token-level analysis between the base model and the aligned model.

Leveraging the diagnostic framework of [40], our systematic analysis of misalignhment across various
model types (large reasoning, small reasoning, instruction-following, and pretrained base model)
reveals critical insights. We observe a “superficial alignment” phenomenon similar to [40], where
misaligned tokens are predominantly stylistic (e.g., “Hmmm”, “Wait”, “Let me check”) rather than
content-specific, often related to explicit thinking patterns. More strikingly, while previous work
showed that misalignment between instruction-following and base models diminishes with longer
context, we find this does not hold for reasoning models. Instead, we identify a Global Misalignment
Rebound, where overall misalignment between reasoning and non-reasoning models can slightly
grow with response length, suggesting that increasing the length cannot reduce the misalignment.
This indicates that the reasoning abilities are not as superficial as instruction-following. Crucially,
despite this global trend, we uncover a corresponding Local Misalignment Diminish phenomenon:
most token misalignments occur at the beginning of each sentence, then rapidly decrease until the next
sentence starts. These findings reveal a novel periodical, sentence-level misalignment diminishing
pattern unique to LRMs, driven by thinking-pattern indicators concentrated at sentence openings,
shedding light on a better understanding of token-level divergences of these two types of models.

Based on this core insight that the reasoning pattern of LRMs is often front-loaded in each sentence,
we hypothesize that strategic, limited intervention by a strong LRM can guide a weaker model,
balancing reasoning quality with efficiency. To this end, we propose Follow the Reasoning Leader
(FoReaL-Decoding), an efficient collaborative decoding method. In FoReal.-Decoding, a strong
Leading model generates the initial few tokens of each sentence (capturing the potentially misaligned
“thinking cues”), after which a weaker Draft model completes the sentence. To further mitigate
potential overthinking from the Leading model (e.g., endlessly generating “Wait”), we introduce
a stochastic binary gate that controls whether the Leading model intervenes on a given sentence.
These two control knobs, lead token count and lead probability, allow FoReal.-Decoding to smoothly
interpolate between the Draft and Leading models, offering strong controllability over the cost-quality
spectrum.

2 Token Distributions of Reasoning vs. Non-Reasoning Models

Large-scale reasoning models (LRMs) often outperform smaller instruction-tuned models on complex
reasoning-heavy tasks, yet how their generation behavior differs from instruction models within
the same model family remains unclear. [40] proposes an analytical method through the lens of
token-distribution shifts and finds that alignments between instruction-following and base pretrained
models are often superficial. This phenomenon is supported by nearly identical decoded tokens



in the majority of token positions under the same input contexts, with distribution shifts occurring
mainly with stylistic tokens like discourse markers. However, the critical question remains: “Does
this superficial alignment finding on instruction-following LLMs still hold for today’s capable LRMs?”
Thus, our work systematically investigates token misalignment across various model combinations
involving LRMs.

In the analysis, the aligned positions are defined as those token steps where the Draft model, when
conditioned on the Leading model’s history, would greedily generate exactly the same token as the
Leading model, which means that the two models have the same most probable behavior under the
same context, indicating the alignment.

Qualitative Analysis on Misaligned Tokens.
Figure (left) ShOWS a qualitative example (trun' 1.0, —— R1-Distill-Qwen-32B -> Qwen2.5-1.5B-Instruct
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perceived that the misaligned tokens are mostly
stylistic tokens related to thinking patterns, and
the beginning of each sentence has a larger prob- 04
ability of being misaligned. To further quantita-
tively investigate what exactly these misaligned
tokens are, we extract all the misaligned tokens
from the mix of AIME24, AMC23, GPQA, and
MATH datasets, count their frequencies, and
generate the corresponding WordCloud shown
in Figure E] (rlght) From the WordCIOud, it is [ 10 20 30 a0 50
observed that most of the high-frequency mis- Token position within sentence (Local

aligned tokens are related to thinking patterns of
LRMs, like “wait”, “perhaps”, “maybe”, “let”,
and “alternatively”, which shows a similar but
different superficial phenomenon than previous
instruction-following LLMs: While misalign-
ment in both types of models is primarily stylis-
tic rather than content-based, those in LRMs are
distinctively characterized by tokens reflecting

Local Misalignment Diminish for LRM
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Figure 2: Top: Response-level misalignment
changes with response length. Bottom: sentence-
level misalignment changes with response length.
The y-axis represents the average misalignment
rate at each token position, the x-axis represents
the token position within the whole response or
sentence. We reveal the novel Global Misalign-
ment Rebound and Local Misalignment Diminish

their overt reasoning or self-correction patterns.
Thus, our qualitative exploration reveals that
LRM misalignment is characterized by stylistic

phenomenon that only occurs on current LRMs,
shown as the blue, , and lines of the
upper figure. This phenomenon does not hold for

“thinking cues” concentrated at sentence begin-
nings, prompting a more detailed quantitative
analysis of their underlying distribution patterns.

Global Misalignment Rebound. Existing analysis on token distribution shifts between instruct
and base models has identified that such shifts will gradually diminish over time during the decoding
process due to the more comprehensive context given, as shown in Figure 2] (upper, red line). In the
figure, the y-axis represents the average misalignment rate at each token position, while the x-axis
represents the token position within the whole response (upper panel) or sentence (lower panel). As
shown, the red line, representing misalignment between the instruct model and base model, decreases
and remains at a low rate. This implies that providing longer context can gradually compensate for
the misalignment between instruct and base models.

the previous alignment between the instruction-
following and base models, shown in the red line.

However, this response-level misalignment diminishing phenomenon does not strictly hold for
LRMs. As illustrated in Figure [2] (upper), lines corresponding to LRM as the Leading model exhibit
different behaviors. When the Draft models are instruct (blue line) or base (orange line) models, the
misalignment rates initially decrease dramatically to around 0.2, then rebound and persist around
0.3. In contrast, the green line, representing misalignment between large and small reasoning



models (which belong to the same family and are trained on similar data), shows consistently low
misalignment from the beginning, indicating a distinct trend. We term the observed persistent or
rebounding divergence between LRMs and non-reasoning models the Global Misalignment Rebound
phenomenon. This phenomenon, characteristic of LRM comparisons with non-reasoning models,
is mainly caused by LRMs continuously generating thinking patterns at the beginning of sentences,
partly to prevent premature conclusion of the generation process. This finding demonstrates that
merely extending context length is insufficient to resolve the misalignment between reasoning and non-
reasoning models, indicating that reasoning capability is not as superficial as instruction-following.

Local Misalignment Diminish. It is uncommon that a longer context does not benefit the alignment.
Thus, to further understand this behavior, we conduct the sentence-level analysis by calculating the
token misalignment rate at each sentence-level position. In the response, sentences can be separated
by periods, question marks, exclamation marks, and the newline symbol. Specifically, for any position
x, we first collect every sentence that is at least « tokens long. Mark the x-th token in each of those
sentences as 1 if it is misaligned and 0 if it is aligned. The average of these 0-1 indicators across all
selected sentences is the misalignment rate for position .

As shown in Figure E] (lower), for the red line, there is no obvious misalignment decrease that can be
observed. It means that between the instruct and the base model, the misalignment occurs relatively
evenly across the whole sentence. On the contrary, for LRM-involved model combinations, the
blue, orange, and green lines, the misalignment rates drop dramatically at the first several tokens,
e.g., from 0.4 to 0.15, and then keep diminishing, indicating a totally different behavior. Thus, we
term this phenomenon the Local Misalignment Diminish phenomenon for reasoning models. These
findings reveal a novel periodical, sentence-level misalignment diminish pattern unique to LRMs,
driven by thinking-pattern indicators concentrated at sentence openings, shedding light on a better
understanding of token-level divergences of these two types of models.

Findings. From this section, several key findings can be concluded:

e LRM misalignment with non-reasoning models, while largely superficial and characterized by
stylistic “thinking cues”, uniquely exhibits a Global Misalignment Rebound. Unlike instruct
models that increasingly align with more context, token divergence at the response level can persist
or even grow, underscoring deeper, ingrained differences in their generative behavior.

* LRMs distinctively display a Local Misalignment Diminish. This manifests as a novel, periodical
sentence-level pattern where high misalignment, driven by “thinking cues” concentrated at sentence
beginnings, rapidly decreases as the sentence progresses. This predictable intra-sentence dynamic
is a crucial insight for developing LRM-guided decoding and understanding LRM patterns.

3 FoReal.-Decoding

Motivated by the above token divergence analysis, we propose a collaborative fast-slow thinking
decoding method for cost-quality Trade-off, Follow the Reasoning Leader (FoReal-Decoding),
a plug-and-play training-free method that mixes the strength of a slow but highly capable large
reasoning model with the speed of a small model. The central idea is to let the strong, large (Leading)
model lead at the beginning of sentences, and allow the weaker, small (Draft) model to complete the
rest of the tokens. This decoding algorithm is of strong controllability, which can smoothly transfer
into the Leading model only or downgrade to the Draft model only, by controlling the probability and
the number of tokens to lead. Details can be found in the Appendix.

4 Conclusion

Our systematic token-level analysis comparing Large Reasoning Models (LRMs) with non-reasoning
models has uncovered two pivotal, previously under-explored divergence phenomena. First, we
identified a Global Misalignment Rebound, where LRM token divergence from non-reasoning
models can unexpectedly persist or even increase over entire responses, underscoring deep-seated
generative differences not easily bridged by extended context. Second, and critically for our method,
we characterized the Local Misalignment Diminish: a novel, periodical sentence-level pattern
wherein LRM-specific stylistic “thinking cues” cause high token divergence at the very beginning of
sentences, after which this misalignment rapidly decreases within the sentence.
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A FoReal.-Decoding

Motivated by the above token divergence analysis, we propose a collaborative fast-slow thinking
decoding method for cost-quality Trade-off, Follow the Reasoning Leader (FoReal-Decoding),
a plug-and-play training-free method that mixes the strength of a slow but highly capable large
reasoning model with the speed of a small model. The central idea is to let the strong, large (Leading)
model lead at the beginning of sentences, and allow the weaker, small (Draft) model to complete the
rest of the tokens. This decoding algorithm is of strong controllability, which can smoothly transfer
into the Leading model only or downgrade to the Draft model only, by controlling the probability and
the number of tokens to lead.

Preliminaries. The two control knobs that govern the trade-off between cost and quality:

1. Required lead count n € N: the minimum number of tokens the Leading model generates before
yielding control to the Draft model.

2. Lead probability p € [0, 1]: probability that a sentence is led by the Leading model.

When p = 0, the decoding system degenerates to pure Draft model decoding; when p = 1 and n
exceeds the sentence length, it transfers to Leading model decoding. Intermediate settings form a
continuity of compute—accuracy trade-offs.

In addition, let ¢ € N represent the global token index in the response, and s € N represent the
sentence index. g; ~ Bernoulli(p) represents the sentence-level gate to decide what model to start
the sentence s: the sentence will be led by the Leading model if g; = 1. 7, represents the global
position of the first token in s. s(¢) = max{s : 7, < t} is the function that maps the token ¢ to the
sentence index that ¢ belongs to. Ay =t — 7,(;) + 1 is the local position of token ¢ within its sentence.

Intra-Sentence Lead Within a sentence s, the generation of each token at position ¢ is governed by
the token-level policy,

ey

L gany=1A[M<nVvit<HI],
Ty =
D otherwise.

gs(+) = 1 represents this sentence s(t) should be led by the Leading model, decided by the gate. L
and D represent the Leading model and Draft model, respectively. \; < n represents the index of
this token within this sentence that is smaller than the required lead count 7, thus should be generated
by the Leading model. H is the first token index within s where the top-1 token generated by the
Draft model matches that of the Leading model for k consecutive steps:

HM = min{t : s(t) = s, \y > n, by =k}, )
where h, represents the number of consecutive hits within the max sliding window of k:

k—1
Z O¢—i, Op= 1{arg maxPD( |c;) = arg n\l)axPL( |ct)} 3)
1=0 ye

Put it simply, for each sentence, if the Bernoulli gate decides to let Py, lead the sentence with the
probability p, P, will generate the first n tokens. Then, Pp begins the generation process as well,
with the purpose of measuring the alignment between the two models. When the top-1 predictions
of these two models aligned with each other for k times, the generation process is yielded to Pp,
otherwise, P, generates the whole sentence. On the contrary, if the gate decides not to let Py, lead,
then the whole sentence will be completely generated by Pp.

Sentence-level likelihood. For sentence s with token span Yy = (y.,...,¥r,,,—1) and length L,
the conditional likelihood under FoReal.-Decoding is:

Peo(Ys | 95) H e i(Urati | Crti), )
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Table 1: Comparisons of Accuracy and Efficiency (TFLOPs) of FoReal.-Decoding on commonly
used reasoning-heavy math problem tasks. To further show the wide trade-off scopes of our method,
we provide some different configurations as the control. The results of Speculative Thinking are the
reported results. The accuracies are better with higher (1) values, while the TFLOPs are better with
lower (J) values. The accuracies on each line are compared with the Draft model, and the TFLOPs
are compared with the Leading models: better values are colored in green, otherwise red.

Model AIME24 GPQA-D MATHS500 AMC23
Method Config ACC (%)t TFLOPs| ACC(%)t TFLOPs| ACC(%)T TFLOPs| ACC (%)t TFLOPs|
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
DeepSeek-R1-Distill-Qwen-1.5B 233 2.86 222 1.13 81.4 1.14 65.0 2.51
Speculative Thinking 322 5.75 41.9 2.62 89.4 1.51 80.0 3.31
FoReal-Decoding n=15,p=0.4 333 z100)  5.60 (-10.12)  43.3 ¢21.1) 2.47 (-5.62) 90.2 (+8.8) 1.43 (-2.88) 80.0 (+15.0) 2.91 (-4.63)
FoRealL-Decoding n=15,p=0.6 50.0 +26.7) 6.77 (-8.95) 48.2 (+26.0) 4.50 (-3.59) 91.4 (+10.0) 2.40 (-1.26) 80.0 (+15.0) 3.99 (-3.55)
FoRealL-Decoding n=15,p=0.8  50.0 (+26.7) 8.47 (-725) 54.6 (+32.4) 4.69 (-3.40) 93.4 (+12.0) 2.70 (-1.43) 90.0 (+25.0) 5.37 217
FoReal-Decoding n=15,p=1.0 66.7 (+43.4) 9.16 (-6.56) 56.6 (+34.4) 6.21 (-1.88) 93.2 (+11.8) 3.14 (-0.99) 92.5 (+27.5) 5.28 (-2.26)
FoReaL-Decoding n=25,p=0.8  53.3 ¢+30.0) 10.95 4779  57.1 (+34.9) 5.65 (-2.44) 92.6 (+11.2) 3.13 (-1.00) 92.5 (+27.5) 4.99 (-2.55)
FoReal-Decoding n=25,p=1.0  66.7 (+43.4)  10.54 (5.18)  57.6 (+35.4) 6.68 (-1.41) 94.5 +13.1) 3.50 -0.63) 95.0 (+30.0) 5.66 (-1.88)
DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
Qwen2.5-1.5B-Instruct 0.0 0.12 23.7 0.12 49.2 0.09 15.0 0.10
FoRealL-Decoding n=15,p=0.8  20.0 (+20.0) 9.05 (-6.67) 38.4 (+14.7) 5.63 (-2.46) 76.2 (+27.0) 2.85 (-1.28) 65.0 (+50.0) 5.22 (232
FoRealL-Decoding n=15,p=1.0 20.0 (+20.0) 11.19 (-4.53) 47.5 (+23.8) 5.86 (-2.23) 85.9 +36.7) 3.28 (-0.85) 85.0 (-70.0) 6.15 (-1.39)
FoRealL-Decoding n=25,p=0.8  36.7 (+36.7) 9.58 (-6.14) 45.0 (+21.3) 4.37 (-3.72) 82.0 (+32.8) 2.52 (-1.61) T72.5 (+51.5) 4.65 (-2.89)
FoReal-Decoding n=25,p=1.0  40.0 4000  11.00 (472)  57.1 +33.4) 6.27 (-1582) 90.8 (+2.3) 3.36 -0.77) 92.5 (-77.5) 6.88 (-0.66)
DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 233 2.86 222 1.13 81.4 1.14 65.0 2.51
Qwen2.5-7B-Instruct 6.7 0.95 38.4 0.89 76.0 0.61 52.5 0.75
Speculative Thinking 6.7 4.93 31.8 6.73 74.8 2.04 55.0 4.97
FoReal-Decoding n=15,p=0.8 16.7 (+10.0) 2.05 0.81) 34.3 (4.1) 1.07 (-0.06) 76.4 (+0.4) 0.57 057 57.5 +5.0) 1.08 (-1.43)
FoRealL-Decoding n=15,p=1.0 16.7 (+10.0) 6.47 (+3.61) 29.8 (-8.6) 3.08 (+1.95) 79.6 (+3.6) 1.42 (+0.28) 52.5 (+0.0) 3.35 (+0.84)
FoReal-Decoding n=25,p=0.8  20.0 +13.3) 1.57 (129 33.3 50y 0.80 (-0.33) 78.6 (+2.6) 0.55 (-0.59) 65.0 (+12.5) 1.76 -0.75)
FoReaL-Decoding n=25,p=1.0 23.3 +16.6)  3.18 :032) 29.3 (0. 2.53 (+1.40) 79.2 432) 1.04 0.10) 65.0 (+12.5) 1.66 (035

Whenever m; = L, the factor draws its probability from the distribution P;, of the Leader model,
otherwise from the Draft model of distribution Pp.

Inter-Sentence Transfer Upon encountering a sentence boundary at the token ¢, i.e., the sentence
is complete, we execute the inter-sentence update by resetting the hit counter and resampling the gate
for the next sentence.

s+ s+1, gs~ Bernoulli(p), h;<+ 0 5)

Comparisons with related methods. In speculative decoding [26]], the final text provably matches
what the large model alone would have produced. However, our FoReaL-Decoding focuses on the
reasoning-heavy scenarios where the responses generated by the LRM itself are not desirable due
to the overthinking. Thus, our method serves as a deliberate mixture of two distributions, aiming at
reducing the overthinking problem of LRMs by inserting the distribution from weaker models, and at
the same time increasing the efficiency. A recent work, RSD [38]], also aims at reducing computation
cost by utilizing speculative decoding. However, it introduces an additional process reward model as
the judge, while our method focuses on utilizing the collaborative models themselves only, thus, it is
largely different from our settings. Another concurrent work, Speculative Thinking [[73]], also shares
similar motivation as ours, in which a “small-writes, large-fixes” mechanism is utilized, which differs
from our “large-leads, small-follows”. Moreover, FoReaL-Decoding provides a smooth transition
from the small to the large model, representing wider trade-off scopes.

B Experiments

B.1 Implementation Details

Models, Datasets, and Setup. To assess the effects of FoReal.-Decoding, extensive experiments are
conducted for different model combinations in the Qwen2.5 family, including reasoning models like
RI-Distill-Qwen-32B [16], RI-Distill-Qwen-1.5B [16]], non-reasoning instruct models like Qwen2.5-
7B-Instruct 58], Qwen2.5-1.5B-Instruct [58]], and base models like Qwen2.5-1.5B [58]. To cover
a wide scope of potential trade-offs, we utilize the reasoning models as the Leading models, while
any of the above types as the Draft models. Moreover, our extensive experiments on the recently
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released Qwen3 [59] series further verify the generalizability of our method. We evaluate our method
on relatively hard, reasoning-heavy math datasets, including AIME2024 [3]], GPQA-Diamond [50],
AMC?23 [4], and MATHS00 [39]]. All experiments were conducted on NVIDIA A100 GPUs (80G),
utilizing the Huggingface Transformers package. During the generation, we follow the recommended
generation configuration from R1-Distill models as temperature=0.6, top_p=0.95, top_k=40 for
all the experiments. During the generation, we always let the Leading model generate the first
paragraph, and we fix the required hits for generation transfer as £ = 5 for all the experiments.

B.2 Main Results

Table[T] presents the comparisons between accuracy and efficiency (TFLOPs) of FoReaL-Decoding
on commonly used reasoning-heavy math problem tasks. We provide some different configurations
as controls to show the wide trade-off scopes of our method. We also present the reported results of
the concurrent work, Speculative Thinking [73]], for better comparison. The accuracies on each line
are compared with the Draft model, and the TFLOPs are compared with the Leading models: better
values are colored in green, otherwise red. We utilize the theoretically estimated TFLOPs as the
efficiency measurement since it takes the generation length into account, different from the estimated
speed. In the main comparison, we focus on 3 collaborative settings. Across four benchmarks,
FoReal-Decoding cuts inference cost by 30 — 55% relative to Leader-only decoding while retaining
86 — 100% of its accuracy. The detailed statistics, including response length and leading ratios on
AIME24, can be found in Table E] for better understanding.

RI-Distill-Qwen-32B for Leading, RI-Distill- Table 2: The detailed results of different collabora-
QOwen-1.5B for Draft. This collaborative set- tive settings on AIME. Length represents the aver-
ting yields the highest accuracies for all of aged response length, Ratio represents the average
the math reasoning datasets. In this setting, ratio of tokens decoded by using the Leading model,
the larger 32B reasoning model takes charge for each task. Additional configuration that uses base
of the leading of the sentences, while the model for Draft is included.

smaller 1.5B reasoning model needs to com-

plete the remaining sentence. In this setting, Model AIME24
. il Method Confi; ACC (%) Length Rati TFLOPs
both models have the reasoning capabilities, ctho ___ o (%) Length Ratio °
b t F()ReaL-DeCOdin 1n’1 11C1tl separates the DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
u R g P A Y se€p FoReaL-Decoding n=15, p=0.4 333 11876 0272 5.60
generation of each sentence into two phases  FoReal-Decoding n=15,p=0.6 500 10934 0401 677

; . : FoReaL-Decoding n=15 p=08 500 11532 0527 847
and yields the less informative Draft phase t0  poreal Decoding n=15. p—1.0 667 10617 0666  9.16

1 FoReal-Decoding  n=25, p=0.8 53.3 12081  0.676 10.95
the smaller model for better efﬁClenCy. As FoReal-Decoding n=25, p=1.0 66.7 11116  0.683 10.54

shown in the table, all our results obtain better DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
performances compared with the Draft model = “ForeaL-Decoding n=15, p—0.8 200 12584 0571 905

: : : : FoReaL-Decoding n=15, p=1.0 20.0 14188  0.588 11.19

and efﬁClenCICS Compared Wlth the Lead.lng FoReal-Decoding n=25, p=0.8 36.7 11575  0.710 9.58

model, and also exceed Speculatwe Think- FoReaL-Decoding  n=25, p=1.0 40.0 11239 0813 11.00
ing, indicating the Capablllty Of our methods. DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B (Base)

FoReal-Decoding n=15, p=0.8 233 12224 0.547 9.56

Moreover, on all of the tasks except GPQA- FoReaL-Decoding n=15, p=1.0  20.0 12107 0.664 1039

D, FoReal.-Decoding reaches similar or even  “peepSeck-R1-Distill-Qwen-1.5 + Qwen2.5-7B-Instruct

slightly higher performances than the 32B  FoReaL-Decoding n=15,p=08 167 4120 0545  2.05
- - FoReal-Decoding n=15,p=1.0 167 14132 0651 647

Leading model with fewer TFLOPs, (—6.56 FoReal-Decoding n=25, p=0.8  20.0 4474 0693 157

on AIME24, —0.63 on MATH500, and —1.88 _FoReal-Decoding n=25,p=1.0 233 11436 0841 3.8

on AMCO).

R1-Distill-Qwen-32B for Leading, Qwen2.5-1.5B-Instruct for Draft. This setting represents a direct
mixture of a large reasoning model and a small non-reasoning model. As shown in the table, the
1.5B instruct model performs badly on the given difficult math problems. The use of a stronger
reasoning model for leading largely improves the accuracy, although with more computation required.
The response lengths are largely shorter than R/-Distill-Qwen-1.5B, representing an alleviation of
overthinking. Compared with using another small reasoning model for Draft, utilizing the instruction
model leads to suboptimal performance. To understand this phenomenon, further experiments are
conducted where the base pretrained model Qwen2.5-1.5B is utilized as the Draft model. As shown
in Table 2| the accuracies, response lengths, and TFLOPs are almost identical compared with using
base and instruct models, which means the previous instruction-aligned process does not benefit the
current reasoning settings.
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R1-Distill-Qwen-32B + R1-Distill-Qwen-1.5B R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
Accuracy (%) TFLOPS Accuracy (%) TFLOPS

60

50

30

20

AMC n=5  —e— AMC n=25
AMC n=15 —e— AMC n=e

Figure 4: Effects of lead count and lead probability on AIME24 and AMC23 datasets, based on 2
collaborative configurations. FoReal.-Decoding provides a smooth cost-quality trade-off, making the
transition from the weak Draft model to the strong Leading model smooth and controllable.

AAMC23 TFLOPS vs. Accuracy

RI-Distill-Qwen-1.5B for Leading, Qwen?2.5- AIME2A TFLOPS ve. Accuracy :
7B-Instruct for Draft. Different from the above S = e
settings, in which a strong but large reasoning -
model is used as the Leading model, this setting
considers a different and most efficient scenario, e
utilizing a small reasoning model for leading  w|:"* " I s ®1: . C o
and a slightly larger instruct model for Draft. In e
this setting, the efficiencies are reduced to an e e
extremely low level, even faster than directly Figure 3: The trade-off curves between accuracy
utilizing the small reasoning models. As shown and TFLOPs. Blue markers correspond to FoRealL-
in Table@ FoReal.-Decoding largely reduces Decoding variants, red circles denote the corre-
the length required for the problem, thus largely sponding LRMs, and the dashed line is the empir-
reducing the computation required. On AIME24  jcally computed Pareto frontier. On both bench-
and AMC23, our method reaches the same accu- marks, every LRM point is Pareto dominated.
racy as the Leading model with similar or less

computation. On GPQA, our method reaches

an intermediate accuracy, since the abnormal situation where a non-reasoning model has better
performance than the reasoning model.

Estimation of TFLOPs. Empirical latency depends on vendor-specific kernel fusion and memory
layouts, so a timing measured on one backend may not transfer to another. Counting floating-point
operations (FLOPs) provides a hardware-agnostic yardstick that isolates algorithmic differences. The
performance figures we report are presented in TeraFLOPs (TFLOPs), where one TFLOP equals
102 FLOPs. Typically, the generation process proceeds in two modes, prefill and decode. Prefill
processes the full prompt of length s once without any KV cache, and decode autoregressively emits
output tokens while re-using cached keys and values. When GPU memory is sufficient, profiling
shows that producing multiple tokens during the prefix phase costs almost the same as decoding a
single token. Therefore, we upper-bound the prefix cost by the single-token decode cost. For the
TFLOPs values cited in our results, we calculate the precise total FLOPs using the detailed formulas
presented in Appendix A.1. This calculation methodology is based on [13}20], and the resulting total
FLOPs are then converted to TFLOPs for reporting.

B.3 Effects of Lead Count and Lead Probability

Figure [] sweeps the two hyperparameters that govern the controllability of FoReaL-Decoding,
lead count n and lead probability p on AIME24 and AMC23 datasets, based on 2 collaborative
configurations, DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-
RI-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct, representing the high-performance and high-efficiency
settings, respectively. For each model combination, we run experiments on n € {5, 15,25, +0c0},p €
{0,0.2,0.4,0.6,0.8,1.0}. When p = 0, FoReaL-Decoding utilizes the Draft model only, and utilizes
the Leading model only when p = 1 and n = +o00. According to the figure, FoReal.-Decoding
provides a smooth cost-quality trade-off, making the transition from the weak Draft model to the
strong Leading model smooth and controllable. For any fixed n, increasing the probability p of the
Leader intervention shifts the operating point up and to the right: accuracy rises while TFLOPs grow
almost linearly. The resulting curve is smooth, allowing practitioners to trade latency for quality
by adjusting (n,p). The jump from n = 5 to n = 15 yields large accuracy gains at a modest cost
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increase. Further enlarging the Leader count (n > 25) adds little accuracy yet inflates compute up a
lot, indicating that sentence-level guidance already captures most of the benefit of slow reasoning. A
sweet spot is around (n,p) = (15,0.6).

B.4 Trade-Off Curves

Figure [3| plots the trade-off curves between accuracy and TFLOPs for every (n,p) configuration
tested on AIME24 (left) and AMC23 (right), according to the experiment scopes from the above
section. Blue markers correspond to FoRealL.-Decoding variants, red circles denote the corresponding
LRMs, and the dashed line is the empirically computed Pareto frontier. On both benchmarks, every
LRM point is Pareto dominated: an alternative FoReal.-Decoding setting always achieves higher
accuracy at lower cost. Moreover, we find that the frontier rises sharply between 0.5 and 2 TFLOPs,
as each additional TFLOP yields 10-15 percentage points of accuracy. However, beyond ~5 TFLOPs,
the curve flattens; extra compute buys only marginal improvements up to the ceiling.

B.5 Results on Qwen3 Families

To further Verify the effectiveness and gener- Table 3: The detailed results of QWCH3 series mod-
alizability of FoReal.-Decoding, additional ex- els on AIME. FoReal.-Decoding shows promising
periments are conducted on the Qwen3 series Pperformance in this additional family.
of models, including Qwen3-32B, Qwen3-1.7B,
d 3-0.6B, due to the various sizes of Modd A
and Qwen v.05, due to tt 1 Method Config  ACC(%) Length Ratio TFLOPs
models provided in the family. Specifically, we g vodels
utilize the reasoning modes for these models Qwen3-32B _ 766 13275 - 15.75
: Qwen3-1.7B - 40.0 14990 - 2.81
and .follow exactly the same generation copﬁg— Owen3-0,6B - 33 1ss0 14
uration for our main experiments. The detailed ~Qwen3-328 + Qwen3-1.78
experimental results are shown in Table 3] AS ForeaL-Decoding n=15, p=0.4 600 14840 0272 7.0
: : FoReaL-Decoding n=15, p=0.6 73.3 14110 0412 8.83
ShOWI'l m the table, FoRealL-Decoding shows FoReaL-Decoding =15, p=0.8  73.3 15081 0536  11.43
promising performances on both OQwen3-32B  ~Quwen3-32B + Qwen3-0.68
+ Qwen3-1.7B and Qwen3-32B + Qwen3-0.6B  FoReaL-Decoding n=15, p=0.4 367 17782 0281 744
ﬁ : F th f ﬁ t FoReal-Decoding n=15, p=0.6 63.0 14279 0410 8.18
configurations. For the former configuration,  goreal-Decoding n=15, p=0.8  60.0 15478 0560 1101
FoReal.-Decoding reaches a similar accuracy

(73.3% to 76.6%) with approximately half of the TFLOPs (8.83 to 15.75).

C Pseudo Code

The pseudo code of our FoReal.-Decoding is provided below, all the variables are kept the same as in
the main context.

D FLOPs Calculation

The calculation of Floating Point Operations (FLOPs) for the prefill and decoding stages is based on
the methodology from [13}|20]]. These calculations assume a batch size of 1.

The variables involved are defined as:

* s: Represents the sequence length.

— For the prefill stage (FLOPS e (5)), s is the length of the input prompt, denoted as p;.

— For the decode stage (FLOPSgecode (S)), s is the current length of the context (prompt +
tokens generated so far) that the model attends to via its Key-Value (KV) cache.

h: The hidden size of the model.
 I’: The intermediate size of the feed-forward network (FFN).

* n: The number of attention heads.
 p;: The length of the initial problem prompt.

* d;: The number of tokens to be generated in the solution.

It is noted that the hidden size h relates to the number of attention heads n and the size of each
attention head d by h = n - d.
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Algorithm 1: FoReal.-Decoding

Input: Leading model Py, Draft model Pp, lead count n, lead probability p, hit threshold k,
input prompt ¢, max new tokens MAX_LEN

Output: Generated tokens y

vy [, h<0,A<0;

c+q; // Initial context

g+ 1; // Initialize gate

while len(y) < MAX_LEN do

if is_sentence_boundary(y|—1]) then

g ~ Bernoulli(p) ; // Sample gate for new sentence
h+0; // Reset hit counter
A<0; // Reset position in sentence
A A+1; // Increment position in sentence

// Generate next token

ifg=1and (A <norh < k) then

|t < sample(PL(:|c)) ; // Use Leading model
else

|t < sample(Pp(-c)); // Use Draft model

// Check alignment when approaching transition point
if g =1and \ > n — k then
if top-1(Pp(-|c)) = top-1(Pr(+|c)) then
h<+ h+1;
else
L h < 0;

y.append(¢);
¢ « concat(c, t) ; // Update context
if t € EOS_tokens then

L break;

return y;

The FLOPs for the prefill stage, which processes the initial input prompt of length s = py, is given by
Equation [6}
FLOPSyefi (s) = 8sh? + 16sh + 4s*h + 4s°n + 6shh’ + 2sh’ (©6)

The FLOPs for the decode stage, which generates a single token when the current KV cache has a
length of s, is given by Equation[7}

FLOPSyecode(s) = 8h2 + 16k + 4sh + 4sn + 6hh + 21/ 7

The total FLOPs to generate d; tokens from a prompt of length p; combines the prefill cost for the
prompt and the sum of decode costs for each generated token, as shown in Equation 8}

d;—1
FLOPS a1 = FLOPSprefin(p1) + ) FLOPSuccode(p1 + 1) ®)
i=0
In this formula, for the i-th token being generated (0-indexed), the argument to FLOPSgecoge 1S p; + 1,
representing the sequence length in the KV cache at that generation step.

E Related Works

E.1 Large Reasoning Models

Recent advances in large language models (LLMs) have spurred a surge of work aimed at strengthen-
ing their reasoning abilities [2} 5, [10]. Core reasoning skills are already instilled during pre-training,
where models absorb commonsense and mathematical patterns from vast text corpora [60, 47]. Re-
searchers have therefore concentrated on post-training techniques to further polish these skills. One
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prominent direction employs reinforcement learning to nudge models toward more effective chains
of thought 152} [70L [15L162]]. Another line shows that carefully curated instruction-tuning data can
likewise deliver sizable gains in reasoning accuracy [74} 46, (63].

Despite the impressive benchmark scores of recent Reasoning Language Models, several studies
have begun to probe the quality and efficiency of the reasoning they generate. [69] conduct a
broad assessment and reveal substantial redundancy in many model-produced solutions. Follow-up
investigations [12, [14} 48144} |18|] underscore an “overthinking” phenomenon, whereby models craft
unduly verbose derivations even for simple problems. Capitalizing on this trait, [25] demonstrate
a slowdown attack: small input perturbations can trigger excessive reasoning, markedly degrading
inference speed.

To alleviate overthinking and improve efficiency for reasoning models, a series of efficient reasoning
methods has been proposed. For example, [75} 157, [1} 68, 45]] utilize model-based methods that
either add further constraints on RL rewards or SFT on diverse lengths of CoTs, [21} 55} 154} [76]
utilize latent-space reasoning methods that transfer the massive tokens into the embedding space,
[19, [71) 51] utilize the prompt-based methods, [56} 61} 167]] utilize the sampling methods. Most of
these methods either require further post-training or manipulating the distribution of LRM itself.

E.2 Alignment and Token Pattern Analysis

A key empirical foundation for LLM Alignment is LIMA [77]], which demonstrated that just 1,000
carefully curated instruction—response pairs are already enough for LLM alignment, crystallizing
the “superficial alignment” hypothesis. While a line of work directly follows the hypotheses by
introducing data selection or alignment methods [9} 35} 30, 129} [17, 128} |6} 142} 134} 311 [32}, [72]], there
are also works that try to further investigate this phenomenon.

[40]] provides a comprehensive token-level evidence by comparing the top-k token distributions
of base models and their chat-tuned counterparts. The authors show that almost all divergence
concentrates on discourse markers, politeness phrases, and safety disclaimers, while core content
tokens remain unchanged. [11] dissects which prompt-level cues are sufficient (and which are not)
for alignment, showing that reasoning gaps emerge precisely where superficial patterns end. The
debate has sparked push-back as well: [49] demonstrates systematic performance gains when the
amount of post-training data scales up, arguing that some deeper representational changes do accrue
beyond mere style. Researchers are also probing where superficial signals live: [27] argues that data
curation, not extra optimization steps, is the primary lever: filtering for safety disclaimers yields
larger alignment jumps than adding thousands of generic examples. Together, these works paint
a nuanced picture: much of the alignment gap after pre-training is indeed “superficial”, residing
in a narrow band of stylistic tokens that can be manipulated through tiny prompts, judicious data
selection. However, in this paper, we show that the reasoning capabilities might not be as superficial
as previous findings.

E.3 Speculative Decoding and Collaborative Decoding

Speculative decoding, inaugurated by [26], uses a small “draft” model to propose several tokens that
the large “target” model then verifies in one batch, yielding 2-3x latency reductions with provably
identical output distributions. Follow-up work, such as [8] extends the idea to 70 B-parameter models
and confirms similar speed-ups, while [7]] replaces the external draft model with extra decoding heads
to remove system complexity System-level schedulers like [43]] dynamically adapt draft length to
traffic conditions and push end-to-end gains beyond 3x in production settings.

Collaborative decoding improves text quality by letting multiple models cooperate during generation.
[36] runs a weak “amateur” model alongside a strong “expert” and selects tokens that maximize
their likelihood gap, sharply reducing repetition and incoherence without retraining. [23]] introduces
a critical-token strategy that switches to the pretrained base model whenever factual precision is
needed, cutting hallucinations in instruction-tuned LLMs. At an even finer grain, [S3] treats “who
should emit the next token” as a latent variable, enabling on-the-fly delegation between a generalist
LLM and domain specialists and outperforming any single model on cross-domain tasks.
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For the recent models with strong reasoning capabilities, several recent works [38}, [73]] based on
speculative decoding have also been released, which we have introduced in the main method section.
Our FoReal-Decoding provides a different method with a better trade-off scope.

F Detailed Results

Table @ and Table [3]show the detailed results of different settings of our method.

Table 4: The detailed results of different collaborative settings on AIME24, GPQA-D, MATHS500,
and AMC23, including length and ratio.

Model AIME24 GPQA-D MATH500 AMC23

Method Config ~ ACC(%) Length Ratio TFLOPs ACC(%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs ACC(%) Length Ratio TFLOPs
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B

DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 233 18021 - 2.86 22 8696 - 113 81.4 6704 - 114 65.0 13311 - 251
FoReaL-Decoding 4 333 11876 0272 5.60 433 5841 0294 247 90.2 3402 0312 145 80.0 6043 0304 291
FoReaL-Decoding 6 500 10934 0401 677 48.2 7007 0431 450 91.4 3995 0452 240 80.0 6460 0429  3.99
FoReaL-Decoding 8 500 11532 0527 847 54.6 6110 0570  4.69 93.4 3658 059 270 90.0 7037 0571 537
FoReaL-Decoding 0 667 10617 0666  9.16 56.6 6796 0692 621 93.2 3655 0726 314 92.5 5942 0708 528
FoReaL-Decoding  n=25, p=0.8 533 12081 0676  10.95 57.7 6223 0702 565 92.6 3585 0719 313 92.5 5529 0710 499
FoReaL-Decoding n=25, p=1.0 667 11116 0.683  10.54 57.6 6065 0882  6.68 94.5 3403 0890  3.50 95.0 5422 0872 566
DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct

DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
Qwen2.5-1.5B-Instruct 0.0 998 - 0.12 237 923 - 0.12 49.2 747 - 0.09 15.0 818 - 0.10
FoReaL-Decoding  n=15, p=0.8  20.0 12584 0571  9.05 415 7013 0587 563 76.2 3792 0614 285 65.0 7629 0514 522
FoReaL-Decoding 20.0 14188 0588 1119 41.5 6294 0737 586 85.9 3894 0750  3.28 65.0 7673 0707 615
FoReaL-Decoding 36.7 11575 0710  9.58 56.7 4718 0719 437 82.0 3025 0729 252 72.5 5415 0649 465
FoReaL-Decoding 40.0 11239 0813  11.00 57.1 5944 0887 627 90.8 3403 0894 336 92.5 6989 0867  6.88
DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct

DeepSeek-R1-Distill-Qwen-1.5B 233 18021 - 2.86 222 8696 - L13 81.4 6704 - 114 65.0 13311 - 251
Qwen2.5-7B-Instruct 6.7 1243 - 0.95 384 1054 - 0.89 76.0 773 - 0.61 52.5 994 - 0.75
FoReaL-Decoding 16.7 4120 0545 205 343 2130 0602 107 76.4 1341 0634 057 57.5 2515 0580 108
FoReaL-Decoding 16.7 14132 0651 647 29.8 7913 0703  3.08 79.6 3480 0735 142 52.5 7330 0686 335
FoReaL-Decoding 20.0 4474 0693 157 33.1 1801 0718  0.80 78.6 1498 0736 055 65.0 3778 0683 176
FoReaL-Decoding 233 11436 0841  3.18 293 6800 0863 253 79.2 3586 0891  1.04 60.0 5721 0865 1.6
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Table 5: The detailed results of different collaborative settings on AIME24 and AMC23, including
length and ratio.

Model AIME24 AMC23
Method Config ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 65.0 13311 - 2.51
FoReal-Decoding  n=>5, p=0.2 23.3 12926  0.076 347 71.5 5634  0.089 1.39
FoReal-Decoding n=>5, p=0.4 26.7 11590 0.145 3.92 80.0 6549 0.157 2.18
FoRealL-Decoding  n=>5, p=0.6 36.7 11560  0.202 4.81 80.0 7081 0.228 2.95
FoReal-Decoding  n=>5, p=0.8 433 11907  0.270 5.82 82.5 6399  0.294 3.29
FoReal-Decoding  n=>5, p=1.0 50.0 13750  0.328 7.82 85.0 6916  0.355 3.86
FoReal-Decoding n=15, p=0.2 26.7 12457  0.138 4.03 70.0 6680  0.154 2.05
FoReal-Decoding n=15, p=0.4 333 11876  0.272 5.60 80.0 6043  0.303 291
FoReal-Decoding n=15, p=0.6 50.0 10934  0.401 6.77 80.0 6460  0.429 3.99
FoReal-Decoding n=15, p=0.8 50.0 11532 0.527 8.47 90.0 7037  0.571 5.37
FoReal-Decoding n=15, p=1.0 66.7 10617  0.666 9.16 92.5 5942 0.708 5.28
FoRealL-Decoding n=25, p=0.2 36.7 10805 0.178 3.88 71.5 6798 0.193 232
FoReal-Decoding n=25, p=0.4 333 11428  0.347 6.30 80.0 5929  0.362 3.17
FoReal-Decoding n=25, p=0.6 50.0 10816  0.515 7.71 90.0 6169  0.537 4.49
FoReal-Decoding n=25, p=0.8 53.3 12081  0.675 10.95 92.5 5529  0.710 4.99
FoReal-Decoding n=25, p=1.0 66.7 11117 0.683 10.54 95.0 5422 0.872 5.66
FoReal-Decoding n=o0, p=0.2 30.0 12241 0.204 4.84 75.0 6502  0.216 243
FoReal-Decoding n=o0, p=0.4 46.7 11906  0.417 7.37 85.0 6719  0.423 4.07
FoReal-Decoding n=o0, p=0.6 50.0 11515  0.605 9.69 92.5 5671 0.607 4.42
FoRealL-Decoding n=00, p=0.8 60.0 10538  0.798 10.83 92.5 5925  0.797 5.87
FoReal-Decoding n=o0, p=1.0 66.7 13035  1.000 15.72 95.0 6244 1.000 7.54
DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 65.0 13311 - 2.51
Qwen?2.5-7B-Instruct 6.7 1243 - 0.95 52.5 994 - 0.75
FoReal-Decoding n=>5, p=0.2 10.0 1047 0.170 0.73 50.0 923 0.179 0.64
FoRealL-Decoding n=>5, p=0.4 10.0 1381 0.230 0.91 55.0 1065  0.244 0.69
FoReal-Decoding  n=>5, p=0.6 133 2377  0.306 1.61 62.5 2574 0.302 1.97
FoReal-Decoding  n=>5, p=0.8 13.3 4203  0.345 2.87 47.5 2897  0.373 1.83
FoReal-Decoding n=5, p=1.0 16.7 7236 0.382 4.45 50.0 5614  0.428 3.24
FoReal-Decoding n=15, p=0.2 33 1936 0.208 1.38 47.5 985 0.224 0.65
FoReal-Decoding n=15, p=0.4 16.7 1189  0.339 0.70 45.0 1055  0.360 0.61
FoReal-Decoding n=15, p=0.6 16.7 1793 0.455 0.92 52.5 1307  0.482 0.65
FoReal-Decoding n=15, p=0.8 16.7 4120 0.545 2.05 57.5 2515 0.580 1.08
FoReal-Decoding n=15, p=1.0 16.7 14132 0.651 6.47 52.5 7330  0.686 3.35
FoReal-Decoding n=25, p=0.2 133 1243 0.249 0.80 50.0 958 0.231 0.62
FoReal-Decoding n=25, p=0.4 20.0 1317  0.389 0.73 42.5 1077  0.405 0.59
FoReal-Decoding n=25, p=0.6 16.7 1743 0.536 0.79 57.5 2047 0.560 1.14
FoRealL-Decoding n=25, p=0.8 20.0 4474 0.693 1.57 65.0 3778 0.683 1.76
FoReal-Decoding n=25, p=1.0 23.3 11436 0.841 3.18 65.0 5721 0.865 1.66
FoReal-Decoding n=o0, p=0.2 13.3 1072 0.260 0.69 50.0 986 0.290 0.61
FoReal-Decoding n=o0, p=0.4 6.7 1276 0.420 0.68 42.5 1140  0.467 0.56
FoReal-Decoding n=o0, p=0.6 10.0 1914 0.614 0.78 57.5 1324  0.618 0.53
FoReal-Decoding n=o0, p=0.8 23.3 4244 0.788 1.26 65.0 2854  0.817 0.79
FoReal.-Decoding n=o0, p=1.0 23.3 18021  1.000 2.86 65.0 13311  1.000 2.51
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