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Abstract
Multilayer matrix factorization (MMF) has re-
cently emerged as a generalized model of, and
potentially a more expressive approach than, the
classic matrix factorization. This paper considers
MMF under a probabilistic formulation, and our
focus is on inference methods under variational
inference. The challenge in this context lies in
determining a variational process that leads to a
computationally efficient and accurate approxima-
tion of the maximum likelihood inference. One
well-known example is the variational autoen-
coder (VAE), which uses neural networks for the
variational process. In this work, we take insight
from variational diffusion models in the context
of generative models to develop variational infer-
ence for MMF. We propose a dimension-reducing
diffusion process that results in a new way to
interact with the layered structures of the MMF
model. Experimental results demonstrate that the
proposed diffusion variational inference method
leads to improved performance scores compared
to several existing methods, including the VAE.

1. Introduction
Over decades, matrix factorization (MF) methods have
played a crucial role in a wide variety of problems such
as dimensionality reduction, low-dimension representation
learning, blind source separation (Hyvärinen et al., 2023),
hyperspectral unmixing (Ma et al., 2013), topic model-
ing (Arora et al., 2012), community detection (Yang &
Leskovec, 2013), to name a few. The broad interest of

1Department of Electronic Engineering, the Chinese Univer-
sity of Hong Kong, Hong Kong SAR of China 2Department
of Computer Science and Engineering, the Chinese Univer-
sity of Hong Kong, Hong Kong SAR of China. Cor-
respondence to: Junbin Liu <liujunbin@link.cuhk.edu.hk>,
Farzan Farnia <farnia@cse.cuhk.edu.hk>, Wing-Kin Ma
<wkma@ee.cuhk.edu.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

researchers in this subject has led to both diverse and sub-
stantial developments. In particular, we have seen different
ways to exploit the hidden structures of the underlying ma-
trix factors, such as statistical independence, sparsity, and
non-negativity. Some of such methods are equipped with
desirable results such as identifiability guarantees—that is,
the guarantees of identifying the underlying ground-truth
factors—which are essential in applications such as blind
source separation; see, e.g., (Gillis, 2020; Khemakhem et al.,
2020; Wu et al., 2021) and the references therein. MF is in-
timately linked with the notion of learning low-dimensional
structures from higher-dimensional data. It is closely related
to latent-variable component analysis such as independent
component analysis (ICA).

More recently, there has been interest in multilayer, and
possibly nonlinear, MF (Trigeorgis et al., 2016; Zhao et al.,
2017; Xue et al., 2017; Fan, 2021; De Handschutter & Gillis,
2023). Multilayer MF (MMF) is a more general model
than the (two-factor) MF model, and it is anticipated that
MMF should provide more powerful results. It was empiri-
cally shown that MMF can extract meaningful hierarchical
features from data, which offers new insights in applica-
tions such as clustering; see, e.g., (Trigeorgis et al., 2016;
De Handschutter et al., 2021) and the references therein.
MMF is also related to nonlinear latent-variable component
analysis (Khemakhem et al., 2020). In particular, if the
nonlinear system is modeled by a neural network, we can
see it as a multilayer system.

One powerful approach to MF or MMF is to formulate the
factorization model as a latent-variable model and treat the
factorization problem as a probabilistic inference problem.
In this direction, variational inference (VI) has been found
to be promising in providing a practical way to handle com-
plex models (Rezende et al., 2014; Ranganath et al., 2015).
In particular, for MMF, variational autoencoders (VAEs)
appear to be the only available solution in the literature so
far; see (Khemakhem et al., 2020) and also (Li et al., 2024).

Lately, diffusion models (DMs) (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Luo, 2022) have caught
tremendous attention in the context of generative models.
They have been found to provide competitive performance
in various generation tasks. There are several ways to derive
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and understand DMs: We can consider stochastic differen-
tial equations, seeking to reverse a diffusion process (Song
et al., 2021); DMs can also be seen as an outcome of denois-
ing score matching and Langevin dynamics for learning the
data distribution and generating data (Song & Ermon, 2019).
DMs can also be derived by formulating a latent-variable
model and then by performing a specific (diffusion) type
of VI (Ho et al., 2020; Kingma et al., 2021)—we are most
attracted by this interpretation. Given the success of DMs,
we consider this question: Can we take the VI in DMs and
apply it to MMF?

So far, and to our best knowledge, DM-based VI has not
been considered for MMF. And DM-based VI cannot be
directly applied to MMF. This is because the current DMs
assume equal dimensions with the latent variables, while
MMF has unequal latent-variable dimensions. In this paper,
we explore the application of DM-based VI to MMF. We
will propose a dimension-reducing (DR) variational diffu-
sion model. The distinct characteristic is that we associate
each layer of the DM with a layer of the MMF model, and
we seek to use light-weight methods to deal with each layer.
This is different from DMs and hierarchical VAEs (Ran-
ganath et al., 2016; Sønderby et al., 2016; Vahdat & Kautz,
2020) for generative models, which would employ deep neu-
ral networks at each layer. From the proposed DR diffusion
model, we will derive a VI scheme. Numerical results will
be provided to demonstrate the performance of the proposed
DR diffusion VI (DRD-VI).

It is worth noting that, in the context of generative models,
there are studies that consider dimensionality reduction for
diffusion models. In (Rombach et al., 2022; Wang et al.,
2023), the authors apply dimensionality reduction before
the diffusion model. In (Jing et al., 2022; Zhang et al.,
2023), the authors concatenate multiple diffusion models,
and at each stage dimensionality reduction is applied. In the
aforementioned studies, dimensionality reduction is done
outside of the diffusion process. Our study differs in that we
embed dimensionality reduction inside the diffusion model.

In addition it is interesting to have a comparison with the
hierarchical VAE (HVAE) approach (Sønderby et al., 2016),
which, similar to the DM, is also capable of interacting with
the layered structures of the model. The HVAE was not
considered in the context of MMF, to the best of our knowl-
edge, although in principle it is possible to do so. As noted
earlier, the HVAE employs a deep network for each layer
of the variation process. While this makes the variational
process more powerful, it also makes the HVAE more dif-
ficult to train. Moreover, it was argued that the stochastic
approximation in the HVAE may have larger variance as the
number of layers is larger (Luo, 2022). In comparison, our
proposed DRD-VI adopts light-weight operations at each
layer of the variational process, which in turn makes the

training easier. This is an advantage that has been noted in
the context of generative models; see (Luo, 2022).

2. Background
2.1. Multilayer Matrix Factorization

Consider the following problem. Let y ∈ RM denote a data
point. It is modeled to follow a generative model

y = fθ(z) + v, (1)

where fθ : RN → RM is a function parameterized by θ,
z ∈ RN is the latent variable associated with y, whose
dimension N is assumed to be less than the data dimension
M ; v is noise and is modeled as v ∼ N (0, σ2I). Let
{y1,y2, . . . ,yL} be a given set of data points that follow
the model in (1) and are independently distributed. Our goal
is to estimate θ from {y1, . . . ,yL} and then to estimate the
latent variable zn of each yn.

If fθ takes a linear form fθ(z) = Az, with θ = {A},
then the problem can be seen as a matrix factorization
problem. In particular, by letting Y = [y1, . . . ,yL] and
z = [z1, . . . ,zL], the problem is essentially to recover A
and Z from Y such that Y ≈ AZ. In recent years, we
have seen interest in multilayer matrix factorization (MMF),
which considers

fθ(z) = A1A2 . . .ATz, θ = {A1,A2, . . . ,AT },

and leads to a multilayer factorization Y ≈ A1 . . .ATZ.
In MMF, we would impose structures at each layer. Let
xt = At+1...ATz. In non-negative MMF, we constrain
xt ≥ 0 (as well as z ≥ 0) (Trigeorgis et al., 2016). Such
MMF was numerically demonstrated to provide meaningful
results in learning attribute representations of images. We
have also seen interest in the following model:

fθ(z) = ρ(A1ρ(A2ρ(. . . ρ(ATz) . . . ))), (2)

where ρ is a component-wise nonlinear activation function.
The function ρ is used to impose structures at each layer;
e.g., if ρ is a ReLU function, we enforce non-negativity
with each layer’s output. The model in (2) can be viewed
as a neural network, modeling a nonlinear relationship be-
tween y and z. In this sense, we are also dealing with a
nonlinear latent-variable component analysis problem; see,
e.g., (Khemakhem et al., 2020). Additionally, it was argued
that nonlinear factorization fθ(z) = ρ(Az) provides an
effective model for low-dimensional embedding of high-
dimensional data (Saul, 2022).

2.2. Variational Inference for MMF

We consider a probabilistic framework for MMF. Consider
the generative model in (1) and (2). Assume that the la-
tent variable z follows a known distribution p(z), called
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the latent prior. For example, in independent component
analysis (ICA) the latent prior is chosen as a component-
wise independent and non-Gaussian distribution. In simplex
component analysis (SCA) (Wu et al., 2021), an important
type of non-negative matrix factorization, the latent prior
may be chosen as a simplex uniform distribution

p(z) = 1∆(z)/Z, (3)

where ∆ = {z ∈ RN | z ≥ 0,1⊤z = 1} is a unit simplex;
1X is an indicator function (1X (x) = 1 if x ∈ X and
1X (x) = 0 if x /∈ X ); Z is a normalizing constant. We can
also consider a non-negative bounded uniform distribution

p(z) = 1[0,1]N (z) (4)

for non-negative matrix factorization. The distribution of
the data point y can be expressed as

pθ(y) =

∫
pθ(y|z)p(z)dz = Ep(z)[pθ(y|z)], (5)

where pθ(y|z) = N (y; fθ(z), σ
2I).

We want to estimate θ from a given dataset {y1, . . . ,yL}.
We pursue maximum-likelihood (ML) estimation. Let

L(θ;y) = log pθ(y),

denote the log-likelihood function for y. ML estimation
determines θ by solving

max
θ

L∑
n=1

L(θ;yn).

The challenge with the ML estimation problem above is that
the log-likelihood L(θ;y) has no known tractable expres-
sion in general; this is because (5) is a multi-dimensional
integral that has no closed-form or explicit equation in gen-
eral. One can approximate (5) by a stochastic (Monte Carlo
sampling) approximation method, but such methods were
often found to be computationally inefficient in practice.

Recent research has considered variational inference (VI),
together with stochastic approximation, as a more practical
way to approximate the log-likelihood function. Let qϕ(z|y)
be some distribution function with parameter ϕ, which will
be called the variational distribution in the sequel. Consider
the Jensen inequality

L(θ;y) ≥ L̂(θ,ϕ;y) = Eqϕ(z|y)

[
log

pθ(y|z)p(z)
qϕ(z|y)

]
.

The function L̂ is called the evidence lower bound (ELBO).
The idea is to choose a qϕ such that L̂ would be compu-
tationally efficient to compute or approximate. We also

hope that the choice of qϕ would lead to a small gap be-
tween L and L̂, and thereby a good approximation of the
log-likelihood function.

Take the famous variational autoencoder (VAE) as an ex-
ample. The latent prior is Gaussian, specifically, p(z) =
N (z;0, I). The variational distribution is chosen as
qϕ(z|y) = N (z;µϕ(y),Diag(σ2

ϕ(y))), where µϕ and
σϕ are neural networks with parameter ϕ. By the parame-
terization trick (see (Kingma & Welling, 2013) for details),
it was found that L̂ can be efficiently handled by stochastic
approximation. This VAE approach has been employed in
ICA and SCA (Khemakhem et al., 2020; Li et al., 2024).

Let us write down the VI problem:

max
θ,ϕ

1

L

L∑
n=1

L̂(θ,ϕ;yn).

Note that the variational model parameter ϕ is also opti-
mized for best ELBO approximation given the structure of
qϕ. Additionally, we should mention the estimation of the
latent variables once (θ,ϕ) is obtained from the VI problem.
Consider the minimum mean square error (MMSE) estimate
ẑn = Epθ(z|yn)

[z]. There is no known tractable equation
for pθ(z|y). The variational distribution qϕ(z|y) can be
seen as an approximation of pθ(z|y) because the ELBO
attains equality if and only if qϕ(z|y) = pθ(z|y). This
leads us to employ

ẑn = Eqϕ(z|yn)
[z]. (6)

3. Dimension-Reducing Diffusion VI for MMF
Our endeavor is to take insight from variational diffusion
models (Ho et al., 2020; Kingma et al., 2021) to develop an
alternative VI scheme for MMF.

3.1. Generative Model

The generative model we consider is a modification of that
in Section 2.1. Denote

x0 = y, xT = z.

The generation of the data point x0 from the latent variable
xT follows a Markov process

xt−1 = ft,θ(xt) + vt, t = T, T − 1, . . . , 1,

where xt ∈ Rdt is the latent variable at layer t;

ft,θ(xt) =


ρ(A1x1), t = 1 (7a)
Btxt +Ctρ(Atxt), 2 ≤ t ≤ T − 1; (7b)
ATxT , t = T (7c)

vt ∼ N (0,Σt) represents the modeling error at layer t− 1
for t ≥ 2 and noise for t = 1. The base latent variable xT
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is distributed according to a given latent prior p(xT ), such
as (3) and (4). The model parameter θ contains all the At’s,
Bt’s, Ct’s, and Σt’s.

Some justification should be provided for the model of ft,θ .
Eq. (7b) has a more general structure than its counterpart
in (2), which basically considers ft,θ = ρ(Atxt). The
merit will be clear as we proceed to diffusion VI. Eq. (7c)
has no activation function ρ. This is to facilitate our VI
development which will be described later. Taking out ρ
does not pose an issue: If AT = I and ΣT ≃ 0, then
xT−1 ≃ xT and xT−2 ≃ fT−1,θ(xT ) + vT−1. As a key
assumption, we assume that the dimension of xt is gradually
decreasing:

M = d0 ≥ d1 ≥ d2 ≥ . . . ≥ dT = N.

3.2. Dimension-Reducing Diffusion Model

Now we describe our proposed diffusion variational process.
Consider the following process as our chosen variational
process:

xt =
√
atU

⊤
t xt−1 +

√
1− atet, t = 1, ..., T − 1, (8a)

xT ∼ qγ(xT |xT−1), (8b)

where 0 < at < 1; et ∼ N (0, I) and the et’s are indepen-
dent; U t ∈ Rdt−1×dt is semi-orthogonal; qγ(xT |xT−1) is
latent-prior-dependent. In SCA (cf. (3)), we may choose
qγ(xT |xT−1) as a Dirichlet distribution

qγ(xT |xT−1) = Dir(xT ;αγ(xT−1)),

where Dir(x;α) denotes a Dirichlet distribution with pa-
rameter α; αγ is a neural network with parameter γ. For
the non-negative latent prior in (4), we may choose qγ as
a Beta distribution. For ICA, we may choose a Gaussian
distribution in the same way as that of the VAE (cf. Section
2.2). The selection criteria of qγ(xT |xT−1) are that (i) the
support of qγ(xT |xT−1) is the same as that of the latent
prior p(xT ); and that (ii) it has analytical expressions with
its mean, covariance, and entropy. Table 3 in Appendix A.5
shows some examples. The variational model parameter ϕ
contains all the at’s, U t’s, and γ.

It is important to note that if d0 = · · · = dT and U t = I ,
(8a) is exactly the diffusion model in the context of genera-
tive models. To the best of our knowledge, the dimension-
reducing diffusion model in (8a) has not been considered
before. The objective is not only to gradually add noise to
the data point x0—a key part with the previous diffusion
models—but also to gradually reduce the dimension. The
dimension reduction feature is particularly relevant to MMF
or the low-dimensional representation of high-dimensional
data.

3.3. Dimension-Reducing Diffusion VI

Let us examine the ELBO under the above model. We have:

pθ(x0:T ) = pθ(x0|x1) · · · pθ(xT−1|xT )p(xT ), (9a)
qϕ(x1:T |x0) = qϕ(xT |xT−1) · · · qϕ(x1|x0), (9b)

where

pθ(xt−1|xt) = N (xt−1; ft,θ(xt),Σt), (10)

qϕ(xt|xt−1) = N (xt;
√
atU

⊤
t xt−1, (1− at)I),

for t ≤ T − 1. When applying (9a) and (9b) to the ELBO

L̂(θ,ϕ;x0) = Eqϕ(x1:T |x0)

[
log

pθ(x0:T )

qϕ(x1:T |x0)

]
, (11)

it is natural to match pθ(xt−1|xt) and qϕ(xt|xt−1) and
then to derive a multilayer ELBO expression; this is exactly
what hierarchical VAEs do; see, e.g., Section 2.3 in (Luo,
2022). But this is not what diffusion VI does. It considers
this alternative expression of qϕ(x1:T |x0):

qϕ(x1:T |x0) = qϕ(xT |x0)

T∏
t=2

qϕ(xt−1|xt,x0), (12)

which is obtained by applying qϕ(xt|xt−1) =
qϕ(xt|xt−1,x0) and qϕ(xt|xt−1,x0)qϕ(xt−1|x0) =
qϕ(xt−1|xt,x0)qϕ(xt|x0) to (9b). With (12), we can
express L̂ as

L̂(θ,ϕ;x0) =

T∑
t=1

L̂t(θ,ϕ;x0), (13)

where
L̂1 = Eqϕ(x1|x0) [log pθ (x0|x1)] , (14)

L̂t = Eqϕ(xt−1|xt,x0)

[
log

pθ(xt−1|xt)

qϕ(xt−1|xt,x0)

]
(15)

for 2 ≤ t ≤ T − 1, and

L̂T = Eqϕ(xT−1|xT ,x0)

[
log

p(xT )pθ(xT−1|xT )

qϕ(xT−1|xT ,x0)

]
.

(16)
In the following, we will deal with each L̂t.

3.3.1. LAYER–1 TERM L̂1

First, consider (14). Denote ∥x∥2Σ = x⊤Σ−1x. It can be
shown that

−L̂1 ∝ 1

2

(
Eqϕ(x1|x0)

[
∥x0 − ρ(A1x1)∥2Σ1

]
+ log |Σ1|

)
︸ ︷︷ ︸

r1(θ,ϕ;x0)

(17)
and that qϕ(x1|x0) = N (x1;

√
a1U

⊤
1 x0, (1−a1)I). This

term can be readily handled by stochastic approximation.
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3.3.2. LAYER–t TERM L̂t, 2 ≤ t ≤ T − 1

Second, consider (15). As a key result in diffusion models,
qϕ(xt−1,xt|x0) has an analytical expression. It can be
shown that, for 2 ≤ t ≤ T − 1,

q(xt−1|xt,x0) = N (xt−1;µt,ϕ(xt,x0),Ψt,ϕ), (18)

where

µt,ϕ =

√
at(1− āt−1)

1− āt
U txt +

√
āt−1Ū

⊤
t−1x0

+

√
āt−1(āt − at)

1− āt
U tU

⊤
t Ū

⊤
t−1x0;

(19)

Ψt,ϕ = (1− āt−1)

(
I − at − āt

1− āt
U tU

⊤
t

)
; (20)

Ū t = U1U2...U t; āt = a1a2...at. This result is shown by
using the fact that q(xt−1,xt|x0) is Gaussian (for 2 ≤ t ≤
T − 1). The derivations of (18) are relegated to Appendix
A.1. Eq. (18) leads to a simplified result for L̂t. From (15)
we can write

−L̂t = Eqϕ(xt|x0) [DKL (qϕ(xt−1|xt,x0)||pθ(xt−1|xt))]︸ ︷︷ ︸
:=Dt(xt;x0)

,

(21)
where DKL(q||p) =

∫
q(x) log (q(x)/p(x)) dx is the Kull-

back–Leibler (KL) divergence of two distributions p and
q. Let Sd

+ and Sd
++ denote the sets of all symmetric pos-

itive semidefinite and positive definite matrices in Rd×d,
respectively. Consider the following lemma.

Lemma 3.1. Let µ1, µ2 ∈ Rd, Σ1, Σ2 ∈ Sd
++, Ψ ∈

Sd
+. Let p(x) = N (x;µ1,Σ1) and q(x) = N (x;µ2,Σ2).

Consider

f (Σ1) = DKL(q||p) + tr
(
Σ−1

1 Ψ
)
.

It holds that

min
Σ1∈Sd

++

f (Σ1) =
1

2
log
∣∣∣I +Σ

−1/2
2 (W +Ψ)Σ

−1/2
2

∣∣∣ ,
where W = (µ2 −µ1)(µ2 −µ1)

⊤, and the solution to the
above problem is Σ⋆

1 = Σ2 +W +Ψ.

The proof is provided in Appendix A.2. By applying
Lemma 3.1 to Dt, and noting that pθ(xt−1|x) in (10) and
qϕ(xt−1|xt,x0) in (18) are Gaussian, we obtain

min
Σt∈Sd

++

Dt =
1

2
log
(
1 +

∥∥ft,θ(xt)− µt,ϕ(xt,x0)
∥∥2
Ψt,ϕ

)
;

we have used |I + AB| = |I + BA| to get the above
equation. To facilitate the VI, we apply an approximation

min
Σt∈Sd

++

Dt ≤
1

2

∥∥ft,θ(xt)− µt,ϕ(xt,x0)
∥∥2
Ψt,ϕ

:= r̃t,

which is due to log(x) ≤ x− 1 for x > 0; this approxima-
tion is good if r̃t is small.

The above derivations show that VI intends to match
ft,θ(xt) and µt,ϕ(xt,x0). This motivates us to fix Bt

and Ct in (7b) such that the structure of ft,θ(xt) matches
that of µt,ϕ(xt,x0) in (19). Specifically,

Bt =

√
at(1− āt−1)

1− āt
U t,

Ct =

√
āt−1(āt − at)

1− āt
U tU

⊤
t +

√
āt−1I.

(22)

With this choice, r̃t is simplified to

r̃t =
1

2

∥∥∥Ct

(
Ū

⊤
t−1x0 − ρ(Atxt)

)∥∥∥2
Ψt,ϕ

. (23)

In fact, r̃t can be further simplified to

r̃t =
āt−1

2(1− āt−1)

∥∥∥Ū⊤
t−1x0 − ρ(Atxt)

∥∥∥2
2

+
āt

2(āt − 1)

∥∥∥U⊤
t

(
Ū

⊤
t−1x0 − ρ(Atxt)

)∥∥∥2
2
.

(24)

We relegate the derivation to Appendix A.3. This gives the
following result

max
Bt,Ct,Σt

L̂t ≥ −Eqϕ(xt|x0)[r̃t(xt;x0)]︸ ︷︷ ︸
:=rt(θ,ϕ; x0)

. (25)

Note that qϕ(xt|x0) = N (xt;
√
ātŪ

⊤
t x0, (1− āt)I); this

can be derived from qϕ(xt|xt−1). The function rt can be
readily handled by stochastic approximation.

3.3.3. SOME INSIGHT

Let us pause a moment and try to get some intuitive insight.
Eq. (25) suggests that VI intends to approximate

Ū
⊤
t−1x0 ≈ ρ(Atxt).

In particular, the left-hand side is a dimension-reduced x0

(Ū t−1 is semi-orthogonal) while the right-hand side is a
nonlinear low-dimension representation. Take the case of
ρ being a ReLU function as an example. We may want the
dimension-reduced data point to be non-negative and pos-
sess a latent lower-dimensional structure. And this gradually
happens from layer 1 to layer T .

3.3.4. LAYER–T TERM L̂T

Third, consider (16). If qγ(xT |xT−1) takes a Gaussian
form, then (16) may be handled in a similar way as in Sec-
tion 3.3.2. If not, more work needs to be done; particularly,
the key result in (18) no longer applies. Our derivations are
as follows. We can decompose (16) as

−L̂T ∝ r̃T (θ,ϕ;x0) + rT+1(θ,ϕ;x0), (26)
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where

r̃T =Eqϕ(xT−1|x0)[řT (θ,ϕ,xT−1;x0)

− log qϕ(xT−1|x0)];
(27)

řT = Eqγ(xT |xT−1) [log pθ (xT−1|xT )] ;

rT+1 = Eqϕ(xT−1|x0) [H(qγ(xT |xT−1))] ; (28)

H(p(x)) =
∫
p(x) log p(x)dx denotes the negative en-

tropy of p(x). Also note that

qϕ(xT−1|x0) = N (xT−1;
√
āT−1Ū

⊤
T−1x0, (1−āT−1)I).

It can be shown that

řT = logN
(
xT−1;ATµT,γ(xT−1),ΣT

)
− 1

2
tr
(
Σ−1

T ATΨT,γ(xT−1)A
⊤
T

)
,

(29)

µT,γ(xT−1) = Eqγ(xT |xT−1)[xT ], (30)

ΨT,γ(xT−1) = Covqγ(xT |xT−1)(xT ); (31)

see Appendix A.4. Consider the following lemma.

Lemma 3.2. Consider the same settings in Lemma 3.1,
except that µ1 is changed to µ1(x), which is a function of
x. Let R = Eq(x)

[
(x− µ1(x))(x− µ1(x))

⊤]. Suppose
R+Ψ is positive definite. Then

min
Σ1∈Sd

++

f(Σ1) =
1

2
log |Σ−1/2

2 (R+Ψ)Σ
−1/2
2 |,

and the solution to the above problem is Σ⋆
1 = R+Ψ.

The proof is provided in Appendix A.2. By applying Lemma
3.2 to (27) and (29), we obtain

min
ΣT∈S

dT
++

r̃T =
1

2
log

∣∣∣∣ 1

1− āT−1
(R+G)

∣∣∣∣ , (32)

where

R =Eq(xT−1|x0)[(xT−1 − µT,γ(xT−1))

(xT−1 − µT,γ(xT−1))
⊤],

G = Eq(xT−1|x0)

[
ATΨT,γ(xT−1)A

⊤
T

]
.

We assume that R+G is positive definite, which is a fairly
mild assumption. Eq.(32) looks complicated. To facilitate
VI, we consider

min
ΣT∈S

dT
++

r̃T ≤ 1

2
tr
(

1

1− āT−1
(R+G)

)
− dT

2

∝ 1

2(1− āT−1)

(
Eqϕ(xT−1|x0)

[
∥xT−1 − µT,γ(xT−1)∥22

+ tr
(
ATΨT,γ(xT−1)A

⊤
T

) ])
:= rT (θ,ϕ;x0),

(33)

where we have used log(|A|) ≤ tr(A) − d for A ∈ Sd
++.

As described previously, qγ(xT |xT−1) is chosen such that
µT,γ(xT−1), ΨT,γ(xT−1), and H(qγ(xT |xT−1)) have
analytical expressions. Table 3 in Appendix A.5 gives some
examples. The terms rT and rT+1 can hence be handled by
stochastic approximation.

3.3.5. REMAINING ASPECTS

Let us assemble the components together. The VI problem
is

min
ϕ,θ

1

L

L∑
n=1

T+1∑
t=1

rt(θ,ϕ;yn) + λ

T−1∑
t=1

∥∥∥U⊤
t U t − I

∥∥∥2
F
,

(34)
where the rt’s are given in (17), (25), (33), and (28); a regu-
larization term is added to enforce the semi-orthogonality
of U t’s; λ ≥ 0 is given. Also, θ is modified as θ =
{Σ1,A1, ...,AT }. The latent variable estimate in (6) is
given by

ẑn = Eqϕ(xT |yn)
= Eqϕ(xT−1|yn)

[µT,γ(xT−1)], (35)

where µT,γ(xT−1) is given in (30) and is assumed to have
an analytical expression; Monte Carlo sampling may be
used to compute ẑn. Alternatively, we can consider

ẑn ≈ µT,γ

(
Eqϕ(xT−1|yn)

[xT−1]
)

= µT,γ

(√
āT−1Ū

⊤
T−1yn

)
,

which does not require Monte Carlo sampling.

4. Numerical Results

Table 1. Hyperspectral images for experiments.

DATASET L dT d0

SAMSON 95× 95 3 156
JASPER 100× 100 4 198
APEX 111× 122 4 285
URBAN 307× 307 6 162

In this section, we test the proposed DRD-VI for MMF with
the latent priors in (3) and (4). For the uniform simplex prior
in (3), the variational distribution qγ(xT |xT−1) is chosen
as a Dirichlet distribution

qγ(xT |xT−1) = Dir(xT ;αγ(xT−1)),

where
αγ(xT−1) = exp(WxT−1)

is a one-layer network, and with γ = W . For the non-
negative bounded uniform prior in (4), the variational distri-
bution is chosen as a Beta distribution

qγ(xT |xT−1) = B(xT ;αγ(xT−1),βγ(xT−1)),
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Table 2. MSE averaged over all EMs (the best MSE among 10 independent trails/standard deviation).

DATASET SISAL PRISM CNNAEU MISICNET VASCA DRD-VI

SAMSON 0.555/0.00 0.646/0.13 0.453/0.08 0.461/0.00 0.401/0.14 0.328/0.00
JASPER 0.516/0.00 0.452/0.15 0.667/0.08 0.518/0.00 0.634/0.05 0.305/0.09
APEX 0.743/0.00 0.645/0.15 0.812/0.06 0.413/0.00 0.633/0.05 0.609/0.02
URBAN 0.796/0.02 0.824/0.12 0.700/0.12 0.955/0.00 0.785/0.03 0.677/0.04

where

αγ = exp(W αxT−1), βγ = exp(W βxT−1), (36)

are one-layer networks, with γ = (W α,W β). The ac-
tivation function ρ is set as the ReLU function. In the
experiments, we constrain Σ1 = σ2I . We adopt the Adam
algorithm (Kingma & Ba, 2015) for optimization.

4.1. Abundance Estimation in Hyperspectral Images

We first apply the proposed DRD-VI, with the uniform
simplex prior (3), to the problem of estimating material
abundance in hyperspectral images. This is a representative
blind inverse problem in geoscience and remote sensing.

We briefly provide the background. In hyperspectral imag-
ing, each image pixel is a d0-dimensional vector capturing
the electromagnetic reflectances of materials across d0 spec-
tral bands, known as spectral signatures or endmembers
(EMs). Due to limited spatial resolution, a single pixel may
contain mixed reflectances from multiple materials. The
proportions of these EMs are modeled by a unit simplex
variable xT ∈ RdT with dT ≪ d0. Without the precise
knowledge of the mixing process, abundance estimation
aims to recover the abundance map XT ∈ RdT×L, where
L is the number of pixels. Here, each column of XT rep-
resents the EMs’ abundance in a single pixel, while each
row shows the spatial distribution of an EM across the im-
age. The task is to retrieve the low-dimensional simplex
structures from the high-dimensional hyperspectral image.

We conduct experiments on four hyperspectral image
datasets as listed in Table 1. We evaluate the mean squared
error (MSE) defined as

MSE(XT ,X
⋆) =

1

dT

dT∑
i=1

∥x̌i − x̌⋆
i ∥2/∥x̌⋆

i ∥2

where X⋆ is the reference ground truth provided by each
dataset; x̌i and x̌⋆

i are the i-th row of XT and X⋆, respec-
tively. We use the Hungarian algorithm (Kuhn, 1955) to
align the rows of XT returned by algorithms with the rows
of X⋆.

The benchmark algorithms are as follows: Simplex identifi-
cation via split augmented Lagrangian (SISAL) (Bioucas-
Dias, 2009); PRobabIlistic SiMplex (PRISM) component

analysis method (Wu et al., 2021); and deep structures, CN-
NAEU1 (Palsson et al., 2020) and MiSiCNet2 (Rasti et al.,
2022). We also consider the VAE method with the log-norm
variational distribution proposed in (Li et al., 2024), termed
VASCA. VASCA employs a linear decoder. To make the
comparison fair, we extend the linear decoder to the nonlin-
ear generative model (2). The dimensions of the nonlinear
decoder are the same as those of DRD-VI.

The experimental settings of DRD-VI, detailed in Appendix
B.1, are consistent for all the tested hyperspectral images.
Each algorithm is executed with 10 random initializations.
Table 2 reports the overall MSE results, while the MSE
contributions from each EM are provided in Appendix B.1.

Fig. 1 presents the estimated abundance map corresponding
to the hyperspectral image Jasper. The abundance map
results for other images are provided in Appendix B.1.

The results demonstrate that DRD-VI performs compet-
itively, surpassing the state-of-the-art deep structures on
some datasets and consistently outperforming VASCA.

4.2. Low-Dimensional Representation Learning

In this subsection, we consider DRD-VI with the non-
negative bounded uniform prior in (4). We compare DRD-
VI with other state-of-the-art MMF methods following prior
work on MMF (e.g., (Trigeorgis et al., 2016)) that evaluates
MMF methods by analyzing the learned low-dimensional
representations. Specifically, given a data matrix X0 with
columns as i.i.d. samples, we apply clustering algorithms
such as K-means to the low-dimensional representation ma-
trix XT produced by MF and MMF methods. The clus-
tering results are evaluated using three standard metrics:
adjusted rand index (ARI) (Hubert & Arabie, 1985), accu-
racy (Acc), and normalized mutual information (NMI) (Cai
et al., 2005). Higher values of the three metrics indicate
better performance, with a maximum of 1. It is believed
that higher clustering performance indicates better-learned
low-dimensional representations.

The benchmark algorithms are as follows: the one-layer
semi-nonnegative matrix factorization (SNMF)3(Ding et al.,

1Codes for CNNAEU.
2Codes for MiSiCNet.
3Codes for SNMF.
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Figure 1. Estimated abundances for the hyperspectral image Jasper.

Figure 2. Performance comparison of the MF and MMF methods across the six datasets. The latent space dimensions equal 16 for gray
image datasets and 16× 3 for color ones.

2008), layer-centric deep matrix factorization (LC-DMF)
(De Handschutter & Gillis, 2023), deep matrix factoriza-
tion (DMF)4 (Fan & Cheng, 2018), deep semi-nonnegative
matrix factorization (Deep Semi-NMF)5(Trigeorgis et al.,
2016), and deep autoencoder-like nonnegative matrix factor-
ization (DANMF)6 (Ye et al., 2018). In the experiments, the
model dimensions for the MMF methods and the dimension
of the base latent variable for all methods are identical. We
test the methods on six datasets: a freely available version

4Codes for DMF.
5Codes for Deep Semi-NMF.
6Codes for DANMF.

of CMU PIE (Sim et al., 2002), Caltech 101 Silhouettes7,
Fashion MNIST(Xiao, 2017), GTSRB(Houben et al., 2013),
DTD(Cimpoi et al., 2014), and Oxford-IIIT Pet (Parkhi
et al., 2012). Descriptions of the datasets and details of the
experimental setups are provided in Appendix B.2.

The MF and MMF methods are applied to each dataset with
10 independent random initializations. For each trial, K-
means clustering is performed on the learned representations
with 50 independent random initializations, and the best
clustering is recorded. The best results among the 10 trials
are shown in Fig. 2. DRD-VI generally performs well and is

7Source of Caltech 101 Silhouettes.
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comparable to, or in some cases outperforms, other state-of-
the-art MMF methods. Due to space limitations, additional
experimental results, including specific metric values and
the effects of varying latent space dimensions, are provided
in Appendix B.2.

5. Conclusion
This paper considered the application of diffusion model
(DM)-based VI for MMF. We expanded on the idea of the
existing variational DM, which assumes equal dimension
with the latent variables, to propose a dimension-reducing
variational DM for MMF. Each layer of the DM is associ-
ated with a layer of the MMF model, the latter of which
can be seen as a shallow one-layer network (rather than
a deep network in DMs for generative models). DMs are
known to have the benefit of simple VI, and we turned that
benefit to build a per-layer light-weight scheme for the VI
of MMF. Experimental results showed that our proposed
dimension-reducing DM-based VI scheme yields promising
performance, suggesting the potential of variational DMs
for MMF.
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A. Derivations and Proofs
A.1. Derivation of (18)

Using Bayes’ rule, we have

log q(xt−1|xt,x0) = log
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)

= log
N (xt;

√
atU

⊤
t xt−1, (1− at)I)N

(
xt−1;

√
āt−1Ū

⊤
t−1x0, (1− āt−1) I

)
N
(
xt;

√
ātŪ

⊤
t x0, (1− āt) I

)
=− 1

2

(
atx

⊤
t−1U tU

⊤
t xt−1 − 2

√
atx

⊤
t−1U txt

1− at
+

x⊤
t−1xt−1 − 2

√
āt−1x

⊤
t−1Ū

⊤
t−1x0

1− āt−1

)
+ constant

=− 1

2
x⊤
t−1

(
at

1− at
U tU

⊤
t +

1

1− āt
I

)
xt−1 + x⊤

t−1

( √
at

1− at
U txt +

√
āt−1

1− āt−1
Ū

⊤
t−1x0

)
+ constant.

(37)

We see that the above takes a quadratic form and it can be shown that q(xt−1|xt,x0) is still a Gaussian distribution. The
covariance matrix is given by

Ψt,ϕ =

(
at

1− at
U tU

⊤
t +

1

1− āt−1
I

)−1

= (1− āt−1)

(
I − at(1− āt−1)

1− at
U t

(
I +

at(1− āt−1)

1− at
U⊤

t U t

)−1

U⊤
t

)

= (1− āt−1)

(
I − at(1− āt−1)

1− at

(
1 +

at(1− āt−1)

1− at

)−1

U tU
⊤
t

)

= (1− āt−1)

(
I − at − āt

1− āt
U tU

⊤
t

)
(38)

where we have used the matrix inverse formula

(I +XY )−1 = I −X(I + Y X)−1Y (39)

for matrices X and Y with proper sizes in the second line, and the semi-orthogonality of U t in the third line. The mean is
given by

µt,ϕ(xt,x0) = Ψt,ϕ

√
at

1− at
U txt +Ψt,ϕ

√
āt−1

1− āt−1
Ū

⊤
t−1x0

=

(√
at(1− āt−1)

1− at
−
at
√
at(1− āt−1)

2

(1− at)(1− āt)

)
U txt

+
√
āt−1Ū

⊤
t−1x0 −

√
āt−1at(1− āt−1)

1− āt
U tU

⊤
t Ū

⊤
t−1x0

=

√
at(1− āt−1)

1− āt
U txt +

√
āt−1Ū

⊤
t−1x0 +

√
āt−1(āt − at)

1− āt
U tU

⊤
t Ū

⊤
t−1x0.

(40)

A.2. Proof of Lemma 3.1 and Lemma 3.2

First, we consider Lemma 3.1. It can be verified that

Eq(x)[log p(x)] = −1

2
log |Σ1| −

1

2
tr(Σ−1

1 Eq(x)

[
(x− µ1)(x− µ1)

⊤]︸ ︷︷ ︸
=R

)− d

2
log(2π), (41)

Eq(x)[log q(x)] = −1

2
log |Σ2| −

d

2
(1 + log(2π)). (42)
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The function f can be written as

f(Σ1) =
1

2

(
log |Σ1|+ tr

(
Σ−1

1 (R+Ψ)
))

+ c (43)

where c = − 1
2 (log |Σ2|+ d). It is known that the solution to min

Σ1∈Sd
++

f(Σ1) is uniquely given by Σ⋆
1 = R+Ψ if R+Ψ

is positive definite (PD). To put this into context, consider the change of variable Y = Σ−1
1 . The corresponding objective

function
f(Y ) =

1

2

(
− log |Y |+ tr

(
Σ−1

1 (R+Ψ)
))

+ c

is convex, and its gradient equals

∇f(Y ) =
1

2

(
−Y −1 +R+Ψ

)
;

see, e.g., (Boyd, 2004). It is easy to verify that

R = Σ2 + (µ2 − µ1)(µ2 − µ1)
⊤︸ ︷︷ ︸

=W

. (44)

Also, since Σ2 is PD, R is also PD. Putting the optimal solution Σ⋆
1 into f gives

f(Σ⋆) =
1

2
(log |R+Ψ| − log |Σ2|) =

1

2
log |Σ−1/2

2 (R+Ψ)Σ
−1/2
2 |, (45)

and applying (44) to (45) gives the desired result.

Next, we consider Lemma 3.2. The proof is identical to the above, with the previous R being replaced by

R = Eq(x)

[
(x− µ(x))(x− µ(x))⊤

]
.

A.3. Derivation of (24)

Recall that the covariance matrices of qϕ(xt−1|xt,x0) and pθ(xt−1|xt) are the same. The KL divergence can be written as

DKL (qϕ(xt−1|xt,x0)||pθ(xt−1|xt))

=
1

2

∥∥ft,θ(xt)− µt,ϕ(xt,x0)
∥∥2
Ψt,ϕ

+ constant

=
1

2

(
ft,θ(xt)− µt,ϕ(xt,x0)

)⊤( at
1− at

U tU
⊤
t +

1

1− āt−1
I

)(
ft,θ(xt)− µt,ϕ(xt,x0)

)
+ constant

=
1

2

(
at

1− at

∥∥∥U⊤
t

(
ft,θ(xt)− µt,ϕ(xt,x0)

)∥∥∥2
2
+

1

1− āt−1

∥∥ft,θ(xt)− µt,ϕ(xt,x0)
∥∥2
2

)
+ constant.

(46)

Based on (22), we can further write

at
1− at

∥∥∥U⊤
t

(
ft,θ(xt)− µt,ϕ(xt,x0)

)∥∥∥2
2
=
atāt−1

1− at

∥∥∥∥(U⊤
t − at(1− āt−1)

1− āt
U⊤

t

)(
Ū

⊤
t−1x0 − ρ(Atx)

)∥∥∥∥2
2

=
āt(1− at)

(1− āt)2

∥∥∥U⊤
t

(
Ū

⊤
t−1x0 − ρ(Atx)

)∥∥∥2
2
;

(47)

and
1

1− āt−1
∥ft,θ(xt)− µt,ϕ(xt,x0)∥22

=
āt−1

1− āt−1

∥∥∥∥(I − at(1− āt−1)

1− āt
U tU

⊤
t

)(
Ū

⊤
t−1x0 − ρ(Atx)

)∥∥∥∥2
2

=
āt−1

1− āt−1

(
Ū

⊤
t−1x0 − ρ(Atx)

)⊤(
I − (at − āt)(2− at − āt)

(1− āt)2
U tU

⊤
t

)(
Ū

⊤
t−1x0 − ρ(Atx)

)
=

āt−1

1− āt−1

∥∥∥Ū⊤
t−1x0 − ρ(Atx)

∥∥∥2
2
− āt(2− at − āt)

(1− āt)2

∥∥∥U⊤
t

(
Ū

⊤
t−1x0 − ρ(Atx)

)∥∥∥2
2
.

(48)
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Adding (47) and (48) up gives

DKL (qϕ(xt−1|xt,x0)||pθ(xt−1|xt))

=
āt−1

2(1− āt−1)

∥∥∥Ū⊤
t−1x0 − ρ(Atx)

∥∥∥2
2
+

1

2

(
āt(1− at)

(1− āt)2
− āt(2− at − āt)

(1− āt)2

)∥∥∥U⊤
t

(
Ū

⊤
t−1x0 − ρ(Atx)

)∥∥∥2
2

=
āt−1

2(1− āt−1)

∥∥∥Ū⊤
t−1x0 − ρ(Atx)

∥∥∥2
2
+

āt
2(āt − 1)

∥∥∥U⊤
t

(
Ū

⊤
t−1x0 − ρ(Atx)

)∥∥∥2
2
,

(49)

which leads to the r̃t in (24).

A.4. Derivation of (29)

We can write r̃T as

řT =Eqγ(xT |xT−1) [log pθ(xT−1|xT )]

=Eqγ(xT |xT−1) [logN (xT−1;ATxT ,ΣT )]

=Eqγ(xT |xT−1)

[
−1

2
∥xT−1 −ATxT ∥2ΣT

]
− 1

2
log (2π|ΣT |)

=Eqγ(xT |xT−1)

[
−1

2

(
∥xT−1∥2ΣT

+ ∥ATxT ∥2ΣT
− 2x⊤

T−1Σ
−1
T ATxT

)]
− 1

2
log (2π|ΣT |)

=− 1

2

(
∥xT−1∥2ΣT

+ tr
(
A⊤Σ−1

T AT

(
µT,γ(xT−1)µT,γ(xT−1)

⊤ +ΨT,γ(xT−1)
))

− 2x⊤
T−1Σ

−1
T ATµT,γ(xT−1)

)
− 1

2
log (2π|ΣT |)

=− 1

2

(
∥xT−1∥2ΣT

+ ∥ATµT,γ(xT−1)∥2ΣT
− 2x⊤

T−1Σ
−1
T ATxT

)
− 1

2
log (2π|ΣT |)

− 1

2
tr
(
Σ−1

T ATΨT,γ(xT−1)A
⊤
)

= logN (xT−1;ATµT,γ(xT−1),ΣT )−
1

2
tr
(
Σ−1

T ATΨT,γ(xT−1)A
⊤
)
,

(50)
which gives the result in (29).

A.5. Examples of applicable prior distributions

Table 3 presents examples of applicable distribution pairs. We clarify some notation. Given two vectors x and y of the
same dimension, x⊙ y and x/y denote the element-wise product and division, respectively. The symbols Γ(·) and ψ(·)
denote the Gamma and Digamma functions, respectively. Given a vector x, |x|, Γ(x), ψ(x), log(x), exp(x) and x2

denote the element-wise operations of their scalar counterparts. The multivariate Beta distribution B(x;α,β) is defined as∏
i B(xi;αi, βi) where B(x;α, β) is the probability density function of the one-dimensional Beta distribution; the same

applies to the Laplace distribution. The symbol c collects irrelevant constants.

B. Experimental Setups and Additional Results
B.1. Abundance Estimation in Hyperspectral Images

The settings of DRD-VI are listed in Table 4. For VASCA, the model dimensions, learning rate, batch size, and the number
of epochs are set the same. Table 5 provides a more comprehensive MSE results for each hyperspectral image including
contributions from each EM. Figs. 3-5 show the estimated abundance maps. The results show that the deep structure
MiSiCNet performs well on the Apex dataset. DRD-VI consistently outperforms VASCA and is very competitive in general.

B.2. Low-Dimensional Representation Learning

The datasets used are summarized in Table 6. Table 7 presents the experiment settings of the DRD-VI methods which are the
same for all the datasets. The model dimensions of all other MMF methods are set the same as those of DRD-VI. Tables 8,
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Table 3. Examples of distribution pairs.

DISTRIBUTION SETTING EXPRESSION

LAPLACE (MEYER, 2021)

p(xT ) L (xT ,1,1)
qγ(xT |xT−1) L (xT ,µγ(xT−1), bγ(xT−1))
µT,γ(xT−1) µγ

ΨT,γ(xT ) DIAG(2b2γ)
H(qγ(xT |xT−1)) 1⊤ (

b⊙ exp
(
−|µγ |/b

)
+ |µγ | − log b

)
+ c

DIRICHLET

p(xT ) DIR(xT ,1)
qγ(xT |xT−1) DIR(xT ,αγ(xT−1))
µT,γ(xT−1) αγ/(1

⊤αγ)

ΨT,γ(xT )
(
DIAG(µT,γ)− µT,γµ

⊤
T,γ)

)
/
(
1 + 1⊤αγ

)
H(qγ(xT |xT−1)) (αγ − 1)⊤

(
ψ(αγ)− ψ

(
1⊤αγ

))
− log

1⊤Γ(αγ )

Γ(1⊤αγ )
+ c

BETA

p(xT ) B(xT ;1,1)
qγ(xT |xT−1) B(xT ;αγ(xT−1),βγ(xT−1))
µT,γ(xT−1) αγ/(αγ + βγ)

ΨT,γ(xT ) DIAG
(
(αγ ⊙ βγ)/

(
αγ + βγ

)2
/(αγ + βγ + 1)

)
H(qγ(xT |xT−1)) (αγ − 1)⊤ψ(αγ) + (βγ − 1)⊤ψ(βγ)− (αγ + βγ − 21)⊤ψ(αγ + βγ)− 1⊤ log

Γ(αγ )⊙Γ(βγ )

Γ(αγ+βγ )
+ c

Table 4. Experimental settings of DRD-VI in abundance estimation.

[d1, d2, . . . , dT ] λ BATCH SIZE EPOCH LEARNING RATE

[64, 32, 16, 8, dT ] 105 ROUND(L/100) 500 0.001

Figure 3. Estimated abundances for the hyperspectral image Samson.

9, and 10 present the results of applying the MF and MMF methods to the datasets, with the latent space dimension being 16
for gray image datasets and 16× 3 for color ones. Note that the Deep Semi-NMF method uses a deterministic initialization.

We also present the results of varying the latent space dimension, with the other settings kept the same as before. Fig. 6,
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Table 5. MSE results of abundance estimation (the best MSE among 10 independent trials/standard deviation).

DATASET ENDMEMBER SISAL PRISM CNNAEU MISICNET VASCA DRD-VI

SAMSON

SOIL 0.387/0.00 0.426/0.21 0.410/0.11 0.351/0.00 0.408/0.25 0.269/0.01
TREE 0.494/0.00 0.630/0.22 0.469/0.07 0.335/0.00 0.380/0.09 0.314/0.01

WATER 0.785/0.00 0.882/0.12 0.480/0.14 0.697/0.00 0.416/0.10 0.401/0.01

AVG. MSE 0.555/0.00 0.646/0.13 0.453/0.08 0.461/0.00 0.401/0.14 0.328/0.00

JASPER

TREE 0.432/0.00 0.498/0.14 0.450/0.13 0.190/0.00 0.469/0.05 0.275/0.01
WATER 0.457/0.00 0.142/0.28 0.266/0.07 0.214/0.00 0.575/0.02 0.220/0.08
SOIL 0.605/0.01 0.597/0.25 0.872/0.14 0.578/0.00 0.696/0.10 0.297/0.05
ROAD 0.569/0.00 0.570/0.15 1.079/0.16 1.093/0.00 0.794/0.22 0.428/0.23

AVG. MSE 0.516/0.00 0.452/0.15 0.667/0.08 0.518/0.00 0.634/0.05 0.305/0.09

APEX

ROAD 0.911/0.00 1.173/0.29 1.596/0.29 0.648/0.00 1.022/0.08 0.978/0.04
TREE 0.543/0.00 0.488/0.13 0.567/0.09 0.255/0.00 0.387/0.08 0.369/0.02
ROOF 0.664/0.00 0.427/0.15 0.615/0.09 0.299/0.00 0.619/0.05 0.389/0.02

WATER 0.853/0.01 0.491/0.22 0.471/0.15 0.452/0.00 0.503/0.09 0.698/0.01

AVG. MSE 0.743/0.00 0.645/0.15 0.812/0.06 0.413/0.00 0.633/0.05 0.609/0.02

URBAN

ASPHALT 0.816/0.02 0.923/0.17 0.626/0.10 0.539/0.00 0.720/0.07 0.617/0.05
GRASS 0.659/0.04 0.549/0.17 0.590/0.07 0.515/0.00 0.538/0.06 0.480/0.04
TREE 0.668/0.03 0.468/0.21 0.496/0.07 0.587/0.00 0.695/0.08 0.542/0.01
ROOF 1.004/0.11 1.024/0.45 0.581/0.09 0.638/0.00 0.895/0.09 0.566/0.01

METAL 0.907/0.05 1.016/0.21 0.977/0.71 2.823/0.00 0.979/0.10 1.337/0.14
DIRT 0.722/0.06 0.963/0.11 0.927/0.24 0.626/0.00 0.883/0.07 0.517/0.04

AVG. MSE 0.796/0.02 0.824/0.12 0.700/0.12 0.955/0.00 0.785/0.03 0.677/0.04

Figure 4. Estimated abundances for the hyperspectral image Apex.

7, and 8 present the results. DRD-VI is generally highly competitive compared to the other state-of-the-art methods and
demonstrates a clearly better performance on the CMUPIE dataset.
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Figure 5. Estimated abundances for the hyperspectral image Urban.

Table 6. Image datasets used for low-dimensional representation learning.

DATASET DIMENSION SAMPLES CLUSTERS DATA TYPE

CMU PIE (FREE VERSION) 32× 32 2856 68 FACES
FASHION-MNIST (TESTING SET) 28× 28 10000 10 CLOTHES
CALTECH 101 SILHOUETTES 28× 28 6407 101 OBJECT SILHOUETTES
GTSRB (TESTING SET) 32× 32× 3 12630 43 TRAFFIC SIGNS
OXFORD-IIIT PET (TESTING SET; RESIZED) 40× 40× 3 3680 37 PETS
DTD (TESTING SET; RESIZED) 50× 50× 3 1880 47 DESCRIBABLE TEXTURES

Table 7. Low-dimensional representation learning experiment settings of DRD-VI.
Data Type [d1, d2, . . . , dT ] λ Batch Size Epoch Learning Rate

Gray Image [256, 128, 64, 32, 16] 106 ROUND(L/100) 500 0.001Color Image [256, 128, 64, 32, 16]× 3 106

Table 8. Accuracy (the best result among 10 independent trials/standard deviation).

METHODS CMU PIE GTSRB FASHION-MNIST OXFORD-IIIT PET SILHOUETTES DTD

SNMF 0.237/0.01 0.199/0.01 0.513/0.01 0.081/0.00 0.115/0.00 0.094/0.00
DANMF 0.223/0.01 0.186/0.00 0.497/0.00 0.079/0.00 0.118/0.00 0.098/0.00
LC-DMF 0.192/0.02 0.179/0.02 0.501/0.06 0.090/0.01 0.217/0.01 0.114/0.00
DMF 0.179/0.01 0.211/0.00 0.620/0.04 0.092/0.00 0.299/0.01 0.109/0.00
DEEP SEMI-NMF 0.395 0.279 0.452 0.081 0.304 0.085

DRD-VI 0.615/0.01 0.290/0.01 0.588/0.00 0.092/0.00 0.300/0.01 0.100/0.00
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Table 9. Normalized mutual information (the best result among 10 independent trials/standard deviation).

METHODS CMU PIE GTSRB FASHION-MNIST OXFORD-IIIT PET SILHOUETTES DTD

SNMF 0.428/0.01 0.288/0.01 0.457/0.01 0.076/0.00 0.320/0.00 0.157/0.00
DANMF 0.407/0.01 0.286/0.00 0.449/0.00 0.076/0.00 0.318/0.00 0.162/0.01
LC-DMF 0.421/0.03 0.281/0.03 0.414/0.06 0.109/0.01 0.441/0.02 0.201/0.00
DMF 0.417/0.02 0.332/0.01 0.549/0.02 0.108/0.00 0.535/0.00 0.163/0.01
DEEP SEMI-NMF 0.677 0.416 0.467 0.100 0.530 0.132

DRD-VI 0.792/0.01 0.412/0.01 0.601/0.00 0.103/0.00 0.532/0.00 0.160/0.00

Table 10. Adjusted rand index (the best result among 10 independent trials/standard deviation).

METHODS CMU PIE GTSRB FASHION-MNIST OXFORD-IIIT PET SILHOUETTES DTD

SNMF 0.103/0.01 0.061/0.00 0.299/0.01 0.007/0.00 0.057/0.00 0.012/0.00
DANMF 0.092/0.00 0.058/0.00 0.272/0.00 0.007/0.00 0.059/0.00 0.014/0.00
LC-DMF 0.080/0.01 0.062/0.01 0.287/0.05 0.013/0.00 0.213/0.03 0.015/0.00
DMF 0.075/0.01 0.069/0.01 0.414/0.03 0.013/0.00 0.280/0.01 0.020/0.00
DEEP SEMI-NMF 0.304 0.151 0.296 0.011 0.263 0.008

DRD-VI 0.479/0.01 0.108/0.01 0.445/0.00 0.013/0.00 0.261/0.01 0.016/0.00

Figure 6. Accuracy vs. latent space dimensions.
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Figure 7. Normalized mutual information vs. latent space dimensions.

Figure 8. Adjusted rand index vs. latent space dimensions
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