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Abstract

Active Learning (AL) allows models to learn
interactively from user feedback. This paper
introduces a counterfactual data augmentation
approach to AL, particularly addressing the se-
lection of datapoints for user querying, a piv-
otal concern in enhancing data efficiency. Our
approach is inspired by Variation Theory, a the-
ory of human concept learning that emphasizes
the essential features of a concept by focusing
on what stays the same and what changes. In-
stead of just querying with existing datapoints,
our approach synthesizes artificial datapoints
that highlight key similarities and differences
among labels using a neuro-symbolic pipeline
combining large language models (LLMs) and
rule-based models. Through an experiment in
the example domain of text classification, we
show that our approach achieves a compara-
ble accuracy to prevalent AL strategies while
necessitating fewer annotations. This research
sheds light on integrating theories of human
learning into the optimization of AL.

1 Introduction

Active learning (AL) allows users to provide fo-
cused annotations to integrate human perception
and domain knowledge into machine learning
models (Settles, 2009). It relies on user’s itera-
tive annotations to build and refine model perfor-
mance (Budd et al., 2021), as a result, the model’s
gain in performance with each round of annota-
tion relies on the quality and quantity of annotated
examples. In addition, AL faces a cold start prob-
lem, where initially, in the absence of sufficient
annotated data, the model struggles to make effec-
tive learning decisions, impacting its early perfor-
mance (Yuan et al., 2020). Previous work showed
that careful selection of examples to be annotated
is instrumental for optimal performance gain (Beck
et al., 2013).

Prior work has employed theories in human cog-
nitive learning to inspire how and what models

learn (Zhang and Er, 2016). Following this di-
rection, our work explores the use of a theory of
human learning—The Variation Theory—to sup-
port human-Al collaboration in interactive ma-
chine learning. The Variation Theory of learn-
ing (Ling Lo, 2012; Marton, 2014; Marton and
Booth, 1997) states that human learners can more
effectively grasp critical aspects of a concept by
experiencing variation along critical features. For
instance, to comprehend the concept of a “ripe
banana”, learners should first encounter bananas
alongside examples of other fruit, and then en-
counter various colors of bananas labeled as more
or less ripe, so that they can recognizing the crit-
ical qualities of a banana, e.g., "yellowness" and
firmness, as critical indicators of ripeness (Seel,
2011). Variation Theory involves two key steps: (1)
identifying critical features and conceptual bound-
aries, and (2) devising new examples to delineate
these conceptual boundaries. This work explores
the relevance of the Variation Theory of human
concept learning in contexts where an Al model is
actively learning a concept from human-provided
annotations; the variations that Variation Theory
proscribes may assist both the machine and the
human in this context.

Previous research showed the benefits of coun-
terfactual data augmentation to enhance model per-
formance (Liu et al., 2021; Yang et al., 2022a;
Wang and Culotta, 2020; Reddy et al., 2023). How-
ever, a consistent challenge has been the scalable
generation and selection of augmented data (Liu
et al., 2022; Li et al., 2023). To address this,
DISCO (Chen et al., 2023) proposed a method for
automatically generating counterfactual data using
task-agnostic models. Although DISCO provided
a robust approach to augmented data, the use of
a fully black-box pipeline could make debugging
and improving the model difficult. To address this,
we adopt a neuro-symbolic approach to define the
concept boundaries in user annotations (Gebreegzi-
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Figure 1: Inspired by Variation Theory of learning, our
approach combines neuro-symbolic patterns with in-
context learning to generate counterfactual examples for
active learning. The single arrow indicates the model
training data stream, while the double arrow indicates
the model inference data stream.

abher et al., 2023).

In this paper, we combine a neuro-symbolic
pattern-based approach (Gebreegziabher et al.,
2023) to identify and vary over important features
used by a classification model. We use an LLM
backend to generate counterfactual data points to
be used in consecutive rounds of model re-training.
Specifically, we generate examples that change the
assigned label into each of the remaining labels
while still matching the original neuro-symbolic
pattern. To ensure the quality of generated counter-
factual examples, we design a three-step automatic
filtering pipeline.

This paper makes the following contributions:

Evaluating the effectiveness of Variation Theory
in active learning: We assess how the Variation
Theory of human learning can enhance the robust-
ness and address the cold-start challenges (Yuan
et al., 2020) of early active learning. The results
show that using counterfactual-based example se-
lection results in higher accuracy with fewer anno-
tations required compared to other example selec-
tion methods.

Quality of Counterfactual examples with neuro-
symbolic approaches: Our approach employs
Variation Theory to generate counterfactual data
that differ from the original data semantically over
neuro-symbolic dimensions but have high levels of
syntactic similarity with the original annotated data.
We assess the quality of generated counterfactual
examples using a three-stage filtering mechanism.
The results show significant increase in Soft Label

Flip rate (SLFR) - the rate of removal of original
label from counterfactual example, and high level
of consistency in Label Flip Rate (LFR) - the rate
of changing the original label into the target label
in generated counterfactual examples.

In this paper, we assess the impacts of annotation
selection, syntactic diversity, and semantic diver-
sity of generated counterfactuals in active learn-
ing. We use a classification task to compare the
performance of our method with baseline perfor-
mance. Our method uses generated counterfac-
tual data as augmentation, while the baseline uses
existing “real” data along with example selection
methods in Active Learning. The results show a
promising potential of using counterfactual data
to enhance user annotation in early active learning
scenarios to bootstrap model learning with fewer
human annotation.

2 Related Work

2.1 Data Generation and Augmentation

In domains with scarce annotated data, data aug-
mentation methods aim to enhance the quantity and
quality of training data (Yang et al., 2022b). Tradi-
tional data augmentation techniques, such as geo-
metric transformations and color space alterations,
do not modify the fundamental causal generative
process. As a result, they do not counteract biases
like spurious correlations (Kaushik et al., 2021).
Counterfactual data augmentation has been
widely used to counteract spurious correlations
in data (Denton et al., 2020; Liu et al., 2021;
Yang et al., 2022a; Wang and Culotta, 2020).
This approach employs counterfactual inference
to control generative factors, facilitating the gen-
eration of samples that can address confound-
ing biases. Many existing strategies uss dataset-
specific counterfactual augmentation methods in
specific domains such as sentiment analysis (Yang
et al., 2022a; Kaushik et al., 2020), named entity
recognition (Ghaddar et al., 2021), text classifica-
tion (Wang and Culotta, 2020), and neural machine
translation (Liu et al., 2021). A popular approach
to address spurious dependence in NLP datasets
is to use human-guided counterfactual augmenta-
tion (Kaushik et al., 2021). This approach presents
individuals with data and preliminary labels, ask-
ing them to modify the data for an alternate label
while avoiding unnecessary edits (Kaushik et al.,
2020). This method depends on human efforts and
expertise to overcome the challenge of automati-



cally translating raw text into important features.

Recent studies examining data augmentation
through a causal lens have received increasing at-
tention due to their potential to enhance model per-
formance and stability. For example, in computer
vision, methods such as Counterfactual Generative
Networks (CGN) (Sauer and Geiger, 2021) and
CycleGANSs (Zhu et al., 2020) were used to create
counterfactual data points, building on the premise
that the original training data contains learnable
patterns. Similarly in natural language process-
ing, prevalent techniques generate counterfactual
samples by pinpointing and altering causal terms
in sentences, which subsequently change their la-
bels (Madaan et al., 2022; Liu et al., 2021; Yang
et al., 2022a). However, most of these methods
rely solely on internal data and may not ensure
robustness against out-of-distribution (OOD) sce-
narios, especially if augmentations overlook con-
text (Mouli et al., 2022). Joshi and He (2022) em-
phasized that limited diversity in these perturba-
tions compromises the efficacy of counterfactually
augmented data (CAD) in OOD scenarios, pointing
to the necessity for innovative crowdsourcing ap-
proaches to elicit diverse perturbation of examples.

LLMs have shown to possess extensive genera-
tive capacity, making them a useful tool for counter-
factual data generation. Li et al. (2023) introduced
a method utilizing Language Models (LLMs) to
generate domain-specific counterfactual samples
through prompt design, highlighting the alignment
between the efficacy of LLMs in domain-specific
counterfactual generation and their overall profi-
ciency in that domain. Although in-context learn-
ing has been a promising direction to get LLMs
to perform different tasks Min et al. (2022) found
that demonstrating the label space, the distribution
of the input text, and the overall format of the se-
quence as important factors for the performance of
in-context learning.

A consistent challenge in counterfactual gen-
eration has been the scalable generation and se-
lection of augmented data (Liu et al., 2022; Li
et al., 2023). To address this, DISCO (Chen et al.,
2023) introduced a method for automatically gen-
erating high-quality counterfactual data using task-
agnostic “teacher and student” models to allow clas-
sifier models to learn casual representation. DISCO
uses a neural syntactic parser to select the spans of
the sentence to vary on to generate data using Large
Language Models (LLMs). Although DISCO pro-

vides more robust models trained on augmented
data, the use of black-box approaches to generate
data could make model debugging and improve-
ment harder. To address this, we adopt a neuro-
symbolic approach to define the concept bound-
aries in user annotations (Gebreegziabher et al.,
2023).

2.2 Example-based Learning via Variation
Theory

Based on previous studies on LLMs as counter-
factual generators, our work seeks to learn from
human cognition and example-based learning to
better guide LL.Ms for generating higher quality
data. Will educational theories that work for hu-
man learners also work for AI? Decades of re-
search have demonstrated that utilizing example-
based learning constitutes an effective instructional
strategy for human acquiring new skills (Gog and
Rummel, 2010). Similarly, few-shot learning is an
example-based learning method used by LL.Ms.
How can we use human learning theories to
support the annotation of data and training of
LLM classifiers? Variation Theory, rooted in phe-
nomenography, gives us insights from human ex-
perience (Cheng, 2016). The core concept of this
theory involves presenting sets of examples that
vary along a specific dimension, enabling learners
to identify and use that dimension as a useful coor-
dinate space for describing the underlying concept.
This aligns with the foundational principle of coun-
terfactual data augmentation in machine learning.

3 Approach

Drawing on Variation Theory, we propose using
neuro-symbolic patterns for LLM in-context learn-
ing, aiming to create counterfactual examples for
AL. We define learning spaces and concept bound-
aries through domain-specific patterns, which are
executable syntactic representations of user anno-
tations. Using these patterns and human labels,
we fine-tune GPT-3.5 to produce data points that
match the patterns but differ from user labels.

Intuitively, the generated counterfactual items
are syntactically similar to an item known to be
label X, predicted to be label X by an explainable
pattern-based symbolic model, but predicted to be
not label X by an LLM.

To ensure quality, we apply a three-level filtering
mechanism (Fig. 2): heuristic regex for common
LLM errors, symbolic filtering to verify rule com-



pliance, and LLM-based discrimination to assess
label change.

We evaluate our pipeline in a simulated inter-
active annotation task in AL, using the fine-tuned
model to generate variations of human-annotated
data. For example, for a concept A, with some
annotated data, our approach generates a set of
neuro-symbolic patterns based of pre-defined do-
main specific language adapted from Gebreegziab-
her et al. (2023) that characterize the concept (See
Fig. 3 Step-1). At inference time, we prompt the
fine-tuned GPT-3.5 to generate counterfactual data
that changes an annotated data from concept A to
a different concept B, based on the learned pat-
terns (See Fig. 3 Step-2). This systematic approach
helps our model identify the most relevant factors
for the learning objective. We then use the gen-
erated examples as part of the training set in the
classifier model and measure the accuracy.

3.1 Defining Concept Space with
Neuro-symbolic Patterns

We use a neuro-symbolic approach to define and
demonstrate learning space and concept boundaries
for large language models (LLMs), allowing the
generation of high-quality counterfactual data at
scale. During annotation, we used PaTAT’s (Ge-
breegziabher et al., 2023) interactive program syn-
thesis approach to generate domain-specific pattern
rules that match human annotated examples. The
pattern rules represent the lexical, syntactic, and
semantic similarities of data under the same label.
This method generates a collection of regex-like
(but with semantically-enhanced tags) that match
with the annotated positive examples while exclud-
ing the annotated negative examples. For example,
for data points in the domain of restaurant review
“Good food with great variety.” and “The food was
amazing." both labeled “products” by the annotator,
PaTAT learns patterns that match both sentences
like “[food]+*+ADJ”, “(amazing)+*”. Below we
show examples of PaTAT’s pattern language:

* Part-of-speech (POS) tags:
NOUN, ADJ, ADV, AUX, PRON, NUM

VERB, PROPN,

* Word stemming: [WORD] (e.g., [have] will
match all variants of have, such as had, has,
and having)

e Soft match: (word) (e.g., (pricey) will
match synonyms such as expensive and costly,
etc.)

* Entity type: $ENT-TYPE (e.g., $LOCATION will
match phrases of location type, such as Hous-
ton, TX and California; $DATE will match
dates; $ORG will match names of organiza-
tions)

* Wildcard: * (will match any sequence of
words)

Using the generated patterns for each concept,
we apply zero-shot prompting with GPT-4 to gener-
ate counterfactual data points that match the pattern
but match different concepts or labels present in
the annotated data.

3.2 Generating Counterfactual Data with
Fine-tuned LLM

Variation Theory says students learn by looking at
the differences and similarities of certain features
of a concept (Bussey et al., 2013). To generate
counterfactual variants from original data point, the
core is building conceptual understanding through
small, connected steps that highlight the represen-
tational variances and invariances. However, real-
world texts may be annotated with multiple labels,
making it difficult to build conceptual understand-
ing of them in small steps. Therefore we start
our approach by creating single labeled examples
that represent a single concept. To separate multi-
labeled data into single-labeled examples, we uti-
lize zero-shot GPT-4 with prompt to complete data
preprocessing (See Fig. 3 Step-1).

Following this, we generate pattern rules by sim-
ulating iterative annotation using the ground truth
labels. The generated patterns provide a syntac-
tic and semantic representation for the annotated
texts, using a rule-based, executable symbolic lan-
guage. During counterfactual generation, we start
by generating candidate phrases that adhere to these
patterns (§A.1), ensuring the original syntactic in-
tegrity is preserved in the generated counterfactual
variants. The generated phrases are then used as
a constraint to be included in the generated coun-
terfactual example. This constraint ensures that
counterfactual examples remain within the syntac-
tic boundaries set by the patterns with variations
and distribution in the semantic content.

Fine-tuning smaller language models, such as
GPT-3.5, can achieve results comparable to, or
even surpassing, more advanced models like GPT-
4. This approach is not only cost-effective but also
particularly advantageous in large-scale commer-
cial applications. As of December 2023, the cost



of using a fine-tuned GPT-3.5 is just a tenth of
employing GPT-4. To fine tune a GPT-3.5 counter-
factual generator, we follow a three-step process
(See Fig. 1): first, we prompt a GPT-4 model to
generate counterfactual dataset over user assigned
label and pattern rules (§A.1), then we filter the
generated data over a three-stage criteria (Section
3.3), lastly using the set of filtered dataset we fine-
tune a GPT-3.5 model to be used as a counterfactual
generator during interactive annotation.

3.3 Filtering Generated Counterfactual Data

The ideal counterfactual variants should keep the
pattern of original text, and successfully flip the
original label to the target label. In our fine-tuning
pipeline, we first generate counterfactual data 20
times the size of the original dataset. To ensure the
quality of the fine-tuning dataset we implement a
three-stage filtering mechanism:

3.3.1 Regex Heuristic Filtering

We use a heuristic-based filter to identify and re-
move low quality generations. This method uses
regular expressions to detect common generation
errors observed during our experimentation. We
define rules to identify error patterns such as repe-
tition of prompt, inaccurate formatting, which are
common pitfalls in text generation systems, as indi-
cation of suboptimal output. This process functions
autonomously, providing a seamless quality assur-
ance layer that operates in real-time to generate the
fine-tuning dataset without human intervention.

3.3.2 Neuro-symbolic Filtering

In the context of Variation Theory, it is crucial to
strategically vary certain elements of an example
while maintaining consistency in others. This prac-
tice serves to underscore the critical attributes of
the feature under examination. In our study, the
identified neuro-symbolic patterns serve as indica-
tors of the key features that the classifier model
considers significant within a sentence. To teach
the importance of the feature and push the con-
cept boundaries boundaries between inclusion and
exclusion of a sentence beyond the identified pat-
terns, it is important that the generated counterfac-
tuals match the pattern of the original item. To
ensure this, we implement a neuro-symbolic fil-
tering method using executable domain specific
neuro-symbolic patterns in § 3.1. We quantify this
through the pattern keeping rate (PKP) as defined
below.

N
1 .
PKR:NZJL(pn:pn)
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where p,, is original pattern, p,, is the pattern given
to the generated data point.

3.3.3 LLM-based Discriminator Filtering

Finally, we apply a filter using a GPT-3.5 discrimi-
nator that retains only generated counterfactuals
that have effectively changed from the original
label to the desired target label. We adopt two
matrices (Chen et al., 2023) to quantify this - the
Lable Flip Rate (LFR), and the Soft Label Flip
Rate (SLFR) as defined below:

1L .
LFR:NZJL(ln:Ln)

n=1
N
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where [, is the label given by GPT-3.5 discrimina-
tor, L, is the target label, /,, is the original label.

4 Experiments

We evaluate the generated counterfactuals in two
phases: an automated filtering mechanism to detect
the rates in which the generated data changes its
label and though a standard classification task us-
ing a pre-trained model. We simulate and evaluate
the effects of four different annotation selection in
interactive AL: random selection, rule-based selec-
tion, counterfactual based example selection. We
use each dataset’s original label as ground truth
and use GPT-3.5 to simulate human annotation of
generated counterfactuals (Xiao et al., 2023).

4.1 Conditions

We investigate the implications of counterfactual
example selection and other selection methods in
interactive AL. Specifically, we use three condi-
tions:

* Condition 1: Random example selection
- In this condition random labeled examples
are selected for each annotation iteration to
train the classification model, serving as the
baseline condition.



¢ Condition 2: Clustering-based example
selection. This condition adopts lowest-
confidence-first method, common in active
learning approaches (Fu et al., 2013). To en-
sure data balance, original examples are ini-
tially transformed into word vectors. These
vectors are then grouped using k-means, and
the input order is ultimately generated by ro-
tation among the different clusters.

* Condition 3: LLM generated counterfac-
tual example with filtering - In this con-
dition each selected example is paired with
counterfactual examples generated by a fine-
tuned GPT-3.5 model, where the fine-tuned
data was filtered using the three step filtering
method (§ 3.3).

4.2 Dataset

In order to simulate the subjectivity in human
data annotation we chose datasets that exhibit high
intra-coder reliability, but low inter-coder reliabil-
ity. That is to say different annotators may hold
controversial opinions on the same example, but for
a single annotator, examples are of low ambiguity.

* YELP: The YELP dataset (Asghar, 2016) con-
sists of user reviews of different businesses
and services. The dataset itself provides 4
ground-truth categories (i.e. service, price, en-
vironment and products), we randomly sam-
pled 495 examples for this experiment.

¢ MASSIVE: The MASSIVE (FitzGerald et al.,
2022) virtual assistant utterances with 18 la-
beled intents as ground-truth (e.g. audio, cook-
ing, weather, recommendation etc). For this
experiment we randomly selected 30 exam-
ples from each category, making up a total of
540 examples.

4.3 Counterfactual Evaluation with Active
Learning

To evaluate the generated counterfactual examples,
we employ a simulated active learning task to fine-
tune a BERT model (Devlin et al., 2018) for a multi-
class classification task. We use the example selec-
tion conditions defined in § 4.1 to define a subset of
10, 15, 30, and progressively increasing upto 120
data points (referred to as ‘shots’), alongside their
corresponding ground truths. After finetuining the
model we evaluate it against a holdoff set of the
dataset.

To augment the model’s training with generated
counterfactual examples we pair each original data
with its generated counterfactual examples and
their assigned target label. This pairing aimed to en-
rich the training data, hypothesizing that the inclu-
sion of counterfactuals would enhance the model’s
learning and predictive accuracy in early stages of
annotation addressing the cold start problem (Yuan
et al., 2020). Similarly, the performance of the
model, in this case trained with both original and
counterfactual dataset, was again evaluated against
the same holdoff set. This comparative analysis
aimed to quantify the impact of counterfactual ex-
amples on the model’s ability to generalize and
make accurate predictions on unseen data in early
active learning scenarios.

4.4 Results

4.4.1 Automatic Generation Quality
Evaluation

As shown in Table 1 we evaluate the quality of
the generated counterfactual data using the two
datasets. Building on the work of Chen et al.
(2023), the efficacy of the counterfactuals was mea-
sured based on three metrics: Pattern Keeping Rate,
Soft Label Flip Rate, and Label Flip Rate. These
metrics were examined in two conditions: using
GPT-4 to generate counterfactuals and using a fine-
tuned GPT-3.5 counterfactual generator as defined
in Fig 1. The results show that for both datasets,
the multi-filtering and fine-tuning pipeline based
on GPT-3.5 maintains or even improves the quality
of generated counterfactuals on all metrics. Specif-
ically, the Soft Label Flip Rate, which assesses the
ability of counterfactuals to eliminate their origi-
nal label, shows an increase rate of 7 when using
the fine-tuned generator method compared to the
GPT-4 generator for YELP and similarly a rate in-
crease of 20 for the MASSIVE dataset. The Pattern
Keeping Rate, which assesses whether the counter-
factuals maintain the original data pattern indicat-
ing their syntactic similarity, also improves over
raw GPT-4 generation, suggesting that the multi-
filtering and fine-tuning pipeline enables generated
data to retain its essential structure while changing
its label. The absolute value of pattern retention is
relatively low as we over generate counterfactuals
on all target labels without checking whether the
task itself is meaningful.
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Pattern Keeping Rate

Method YELP MASSIVE
GPT-4 generation 7.86 22.08
Fine-tuned generation 13.64 22.85
Soft Label Flip Rate
Method YELP MASSIVE
GPT-4 generation 30.13 42.30
Fine-tuned generation  37.83 63.75
Label Flip Rate
Method YELP MASSIVE
GPT-4 generation 99.14 97.58
Fine-tuned generation 96.27 98.7

Table 1: Generated counterfactual data quality evalua-
tion on raw GPT-4 generation vs. Fine-tuned generation.

4.4.2 Counterfactual Evaluation on Active
Learning

In presenting our findings on the efficacy of gener-
ated coutnerfactuals in active learning as defined
in § 4.3, we report the Macro F1-scores for two
datasets (Table 2): YELP and MASSIVE. The re-
sults are stratified across different sizes of training
data, ranging from 10 to 120 shots. For each size,
we compare the performance of models trained
on random samples of data, cluster based selec-
tion, andcounterfactuals augmented training. The

F1-scores are accompanied by their respective stan-
dard deviations (SD), providing insights into the
variability of the model performance.

The inclusion of counterfactuals with filtering
consistently outperforms the baseline random selec-
tion across all data sizes. This trend is particularly
less pronounced as the number of shots increases
giving us a theoretical insight into how these gener-
ated counterfactuals can address training cold-starts
in active learning. For the YELP dataset starting
from an F1-score of 0.25 compared to 0.14 with
random sampling in 10 shots. In the MASSIVE
dataset, a similar trend is observed, with counterfac-
tuals again showing a clear advantage over random
selection. Starting with an F1-score of 0.144 at
10 shots, the model consistently achieves higher
performance compared to the other conditions.

5 Limitations and Future work

Our proposed neuro-symbolic pipeline allows au-
tomatic and real-time generation of counterfactual
data, however this ability is restrained to specific
domains (business review and virtual utterance)
and English language in our experiments. As the
rule-based program synthesis in the data prepro-
cessing process is designed exclusively for English,
additional difficulties may arise when adapting our
pipeline to other languages. We also point out that
our fine-tuned counterfactual generators were built
only from a single LLM, i.e. GPT-3.5. Even though
our efforts are limited to Active Learning, we be-



Macro F1-scores (YELP)

No. shots 10 15 30 50 70 90 120
Random 0.14 015 025 042 046 063 0.59
SD 0.12 0.11  0.04 0.18 0.12 0.09 0.20
Cluster 0.20 029 034 039 063 081 0.70
SD 0.14 0.15 009 010 019 0.12 0.11
Counterfactuals  0.25 022 035 046 053 0.65 0.73
SD 0.17 0.07 008 0.12 0.13 0.13 0.02
Macro F1-scores (MASSIVE)
No. shots 10 15 30 50 70 90 120
Random 0.013 0.026 0.039 0.102 0.109 0.148 0.198
SD 0.011 0.019 0.011 0.040 0.063 0.065 0.036
Cluster 0.050 0.040 0.046 0.104 0.157 0.336 0.315
SD 0.028 0.032 0.024 0.109 0.038 0.035 0.067
Counterfactuals 0.144 0.146 0.302 0.366 0.457 0.368 0.428
SD 0.084 0.068 0.037 0.048 0.059 0.035 0.089

Table 2: Average F1-score with increasing numbers of annotations(shots) and the standard deviations(SD) across

five independent experiments

lieve that leveraging LLMs for counterfactual data
generation has the potential to benefit a wider array
of tasks.

6 Conclusion

In this paper, we use Variation Theory to gener-
ate counterfactual examples over neuro-symbolic
patterns to optimize annotation needs of Active
Learning (AL). Our neuro-symbolic approach de-
fines the concept boundaries between concepts
in an interpretable way and helps large language
model (LLM) based classifier models. We present
a pipeline for generating counterfactual data using
large language models (LLMs). This pipeline in-
volves fine-tuning the LL.Ms on data generated by
GPT-4, which is then filtered through a combina-
tion of a GPT-3.5 discriminator and an executable
neuro-symbolic filter. This paper introduces the
use of neuro-symbolic patterns as a means to de-
fine conceptual boundaries that play a role in de-
termining the quality of generated counterfactual
data. Through a simulated evaluation, we show
that counterfactual datapoints generated by our pro-
posed neuro-symbolic pipeline enable LLM-based
classifiers to achieve a level of accuracy similar to
widely used AL strategies while requiring fewer
annotations. Our results show models using coun-

terfactual examples perform better than models
using random order example selection or cluster-
based example selection. Furthermore, we provide
a framework for generating and using counterfac-
tual data with the original data to address chal-
lenges faced by lack of annotated data in early
active learning scenarios.
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A Appendix

A.1 Generation Pipeline

In this section we provide the details of all the
prompts and models we use to construct the whole
counterfactual generation pipeline.

A.1.1 GPT-4 Multi-label Separator

As shown in Fig. 3 Step-1, we utilize zero-shot
GPT-4 to preprocess the raw data, in order to sep-
arate the given multi-labeled sentences into sev-
eral single-labeled parts. We call GPT-4 through
the API provided by OpenAl, set the temperature
parameter to O and restrict the maximum token
number to 512, which ensures the reliability of
the generated results. The prompt used is shown
below:

e {"role": "system", "content": "The assistant will seper-
ate the given multi-labeled sentences into different parts,
each corresponds to a label and a pattern (if the pattern
is viable)"}

e {"role": "user", "content": "The assistant will make
conversations based on the following example. New
content should be in the format: ’text’ + ’pattern’ +
’label’; "text’ + 'pattern’ + 'label’. All the text, patterns
and labels are already given as input, if there is no
corresponding pattern, just use ” to indicate empty."}

e {"role": "user", "content": "Each separated text must
only have a single label, but may contain several pat-
terns. Each label or pattern must appear at least once
in the completion. The patterns can be composed with
AND (+) or OR (l) operators."}

e {"role": "user", "content": "Conversation: Great cus-
tomer service, reasonable prices, and a chill atmosphere.
Pattern: [’(customer)+*+[service]’, ’(pay)l(sale)’, *(en-
vironment)’] Label: price, service, environment" }

e {"role": "assistant", "content": "’Great customer ser-
vice, ’ + ’(customer)+*+[service]’ + ’service’; reason-
able prices, * + ’(pay)l(sale)’ + ’price’; ’and a chill
atmosphere.” + ’(environment)’ + ’environment’" }

e {"role": "user", "content": "Conversation: {text} Pat-
tern: {pattern} Label: {label}"}

A.1.2 GPT-4 Turbo Candidate Phrases

Generator

As we are generating counterfactuals that keeps neuro-
symbolic patterns, the first step of this task is to generate
candidate phrases that keep the pattern but variate semanti-
cally, which make up crucial branches of generated counter-
factual variations. For this part, we call GPT-4 Turbo through
the API provided by OpenAl, set the temperature parameter to
0 and restrict the maximum token number to 256. The prompt
used is shown below:
* {"role": "system", "content":"The assistant will create
a list of phrases that match the given domain specific
language based on the given definition."}
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e {"role": "user", "content": "For the following text
and pattern, generate as many diverse example phrases
that match the given pattern and can be part of the
given target label. Try to not use the word {label} or
{target_label} in the phrases you generate. Separated
your answer by a comma"}

n,on non non

e {"role": "user", "content": "text: {matched_phrase},
pattern: {pattern}, current label: {label} target label:
{target_label}"}

e {"role": "user", "content": "The word ‘{match}‘is a
soft match, you can only use {soft-match_words} as
its synonyms to replace it. You can not use other words
for {match}"}

A.1.3 GPT-4 Turbo Counterfactual Generator

The GPT-4 Turbo generator will finish the second step of
counterfactual generation, making use of candidate phrases
generated in the first step and combining these semantic pieces
into reasonable sentences. We set the temperature parameter
to 0 and restrict the maximum token number to 256. The
prompt used is shown below:

e {"role": "system", "content": "The assistant will gener-
ate a counterfactual example close to the original sen-
tence that contains one of the given phrases."}

e {"role": "user", "content": "’ Your task is to change the
given sentence from the current label to the target.

For example: ’Find me a train ticket next monday to
new york city’ with original label "transport" would
be turned to ’Play me a song called New York City by
Taylor Swift’ with a label "audio".

You can use the following phrases to help you generate
the counterfactuals. Please make the sentence about
{target_label}. Make sure that the new sentence is
not about {label}. You must use one of the follow-
ing phrases without rewording it in the new sentence:
{generated_phrases}”’ }

e {"role": "user", "content": "’ You must follow three

criteria:

criteria 1: the phrase should change the label from
{label} to {target_label} to the highest degree.

criteria 2: the modified sentence can not also be about
{label} and make sure the word {target_label} is not
part of the modified sentence.

criteria 3: the modified sentence should be grammati-
cally correct.”’ }

e {"role": "user", "content": "If you find that you cannot
generate new sentence that fulfill all the requirements
above, just response ’cannot generate counterfactual’
and don’t feel bad about this"}

e {"role": "user", "content": "original text:{text}, original
label:{label}, modified label: {target_label}, generated
phrases: { generated_phrases}, modified text:"}



Separate the given multi-labeled sentences into different parts, ?ﬁ Make small changes to Fhe conversation to change the topic label,
= | but not to change the given pattern.

= each part corresponds to a label and a pattern.

/ \ ______ me patterns can be composed with AND (+) or OR (|) operatch

The pattern language consists of the following syntax:
Part-of-speech (POS) tags: VERB, PROPN, NOUN, ADJ, ADV, AUX,
PRON, NUM
Word stemming: [WORD] (e.g., [have] will match all variants of
have, such as had, has, and having)
Soft match: (word) (e.g., (pricey) will match synonyms such as
expensive and costly, etc.)
Entity type: SENT-TYPE (e.g., SLOCATION will match phrases of
....... Qcation type; SORG will match names of organizations)

" Y,

New content should be in the format: 'text' + 'pattern’ + 'label’; .
'text' + 'pattern’ + 'label’. 2
All the text, patterns and labels are already given as input, if g
there is no corresponding pattern, just use " to indicate empty. 2
Make sure each separated sentence only has a single label but 'g_
may relate to several patterns. §

o

o

"""" - /

g . ildcard: * (will match any sequence of words)
Conversation: "Friendly w / great customer service, reasonable

‘é_ prices, and a chill atmosphere.” |

£ | Pattern: (customer)+*+[service], (pay)|(sale) _ i Conversation: "Our bill was around $ 400 - it was upsetting that
_______ Label: price, service, environment 3 | they decided to be stingy about a $ 8 piece of cake."

J/ ~ | Pattern: SMONEY | (price); Original label: price; Target: service
g" 'Friendly w / great customer service, ' + '(customer)+*+[service]' pp—
£ | +'service'; ‘reasonable prices, ' +'(pay)|(sale)' + 'price’; 'and a g_ Our bill was around $ 400 - the service was upsetting as they
L2 chillatmosphere.' +" + 'environment’ i 3| decided to be stingy about a $ 8 piece of cake.
Step 1: separate multi-labeled text Step 2: generate pattern-kept counterfactual text

Figure 3: Tllustration of LLM prompts used for preparing training datapoints and generating counterfactual datapoints
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