
Leveraging Variation Theory in Counterfactual Data Augmentation for
Optimized Active Learning

Anonymous ACL submission

Abstract

Active Learning (AL) allows models to learn001
interactively from user feedback. This paper002
introduces a counterfactual data augmentation003
approach to AL, particularly addressing the se-004
lection of datapoints for user querying, a piv-005
otal concern in enhancing data efficiency. Our006
approach is inspired by Variation Theory, a the-007
ory of human concept learning that emphasizes008
the essential features of a concept by focusing009
on what stays the same and what changes. In-010
stead of just querying with existing datapoints,011
our approach synthesizes artificial datapoints012
that highlight key similarities and differences013
among labels using a neuro-symbolic pipeline014
combining large language models (LLMs) and015
rule-based models. Through an experiment in016
the example domain of text classification, we017
show that our approach achieves a compara-018
ble accuracy to prevalent AL strategies while019
necessitating fewer annotations. This research020
sheds light on integrating theories of human021
learning into the optimization of AL.022

1 Introduction023

Active learning (AL) allows users to provide fo-024

cused annotations to integrate human perception025

and domain knowledge into machine learning026

models (Settles, 2009). It relies on user’s itera-027

tive annotations to build and refine model perfor-028

mance (Budd et al., 2021), as a result, the model’s029

gain in performance with each round of annota-030

tion relies on the quality and quantity of annotated031

examples. In addition, AL faces a cold start prob-032

lem, where initially, in the absence of sufficient033

annotated data, the model struggles to make effec-034

tive learning decisions, impacting its early perfor-035

mance (Yuan et al., 2020). Previous work showed036

that careful selection of examples to be annotated037

is instrumental for optimal performance gain (Beck038

et al., 2013).039

Prior work has employed theories in human cog-040

nitive learning to inspire how and what models041

learn (Zhang and Er, 2016). Following this di- 042

rection, our work explores the use of a theory of 043

human learning—The Variation Theory—to sup- 044

port human-AI collaboration in interactive ma- 045

chine learning. The Variation Theory of learn- 046

ing (Ling Lo, 2012; Marton, 2014; Marton and 047

Booth, 1997) states that human learners can more 048

effectively grasp critical aspects of a concept by 049

experiencing variation along critical features. For 050

instance, to comprehend the concept of a “ripe 051

banana”, learners should first encounter bananas 052

alongside examples of other fruit, and then en- 053

counter various colors of bananas labeled as more 054

or less ripe, so that they can recognizing the crit- 055

ical qualities of a banana, e.g., "yellowness" and 056

firmness, as critical indicators of ripeness (Seel, 057

2011). Variation Theory involves two key steps: (1) 058

identifying critical features and conceptual bound- 059

aries, and (2) devising new examples to delineate 060

these conceptual boundaries. This work explores 061

the relevance of the Variation Theory of human 062

concept learning in contexts where an AI model is 063

actively learning a concept from human-provided 064

annotations; the variations that Variation Theory 065

proscribes may assist both the machine and the 066

human in this context. 067

Previous research showed the benefits of coun- 068

terfactual data augmentation to enhance model per- 069

formance (Liu et al., 2021; Yang et al., 2022a; 070

Wang and Culotta, 2020; Reddy et al., 2023). How- 071

ever, a consistent challenge has been the scalable 072

generation and selection of augmented data (Liu 073

et al., 2022; Li et al., 2023). To address this, 074

DISCO (Chen et al., 2023) proposed a method for 075

automatically generating counterfactual data using 076

task-agnostic models. Although DISCO provided 077

a robust approach to augmented data, the use of 078

a fully black-box pipeline could make debugging 079

and improving the model difficult. To address this, 080

we adopt a neuro-symbolic approach to define the 081

concept boundaries in user annotations (Gebreegzi- 082
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Figure 1: Inspired by Variation Theory of learning, our
approach combines neuro-symbolic patterns with in-
context learning to generate counterfactual examples for
active learning. The single arrow indicates the model
training data stream, while the double arrow indicates
the model inference data stream.

abher et al., 2023).083

In this paper, we combine a neuro-symbolic084

pattern-based approach (Gebreegziabher et al.,085

2023) to identify and vary over important features086

used by a classification model. We use an LLM087

backend to generate counterfactual data points to088

be used in consecutive rounds of model re-training.089

Specifically, we generate examples that change the090

assigned label into each of the remaining labels091

while still matching the original neuro-symbolic092

pattern. To ensure the quality of generated counter-093

factual examples, we design a three-step automatic094

filtering pipeline.095

This paper makes the following contributions:096

Evaluating the effectiveness of Variation Theory097

in active learning: We assess how the Variation098

Theory of human learning can enhance the robust-099

ness and address the cold-start challenges (Yuan100

et al., 2020) of early active learning. The results101

show that using counterfactual-based example se-102

lection results in higher accuracy with fewer anno-103

tations required compared to other example selec-104

tion methods.105

Quality of Counterfactual examples with neuro-106

symbolic approaches: Our approach employs107

Variation Theory to generate counterfactual data108

that differ from the original data semantically over109

neuro-symbolic dimensions but have high levels of110

syntactic similarity with the original annotated data.111

We assess the quality of generated counterfactual112

examples using a three-stage filtering mechanism.113

The results show significant increase in Soft Label114

Flip rate (SLFR) - the rate of removal of original 115

label from counterfactual example, and high level 116

of consistency in Label Flip Rate (LFR) - the rate 117

of changing the original label into the target label 118

in generated counterfactual examples. 119

In this paper, we assess the impacts of annotation 120

selection, syntactic diversity, and semantic diver- 121

sity of generated counterfactuals in active learn- 122

ing. We use a classification task to compare the 123

performance of our method with baseline perfor- 124

mance. Our method uses generated counterfac- 125

tual data as augmentation, while the baseline uses 126

existing “real” data along with example selection 127

methods in Active Learning. The results show a 128

promising potential of using counterfactual data 129

to enhance user annotation in early active learning 130

scenarios to bootstrap model learning with fewer 131

human annotation. 132

2 Related Work 133

2.1 Data Generation and Augmentation 134

In domains with scarce annotated data, data aug- 135

mentation methods aim to enhance the quantity and 136

quality of training data (Yang et al., 2022b). Tradi- 137

tional data augmentation techniques, such as geo- 138

metric transformations and color space alterations, 139

do not modify the fundamental causal generative 140

process. As a result, they do not counteract biases 141

like spurious correlations (Kaushik et al., 2021). 142

Counterfactual data augmentation has been 143

widely used to counteract spurious correlations 144

in data (Denton et al., 2020; Liu et al., 2021; 145

Yang et al., 2022a; Wang and Culotta, 2020). 146

This approach employs counterfactual inference 147

to control generative factors, facilitating the gen- 148

eration of samples that can address confound- 149

ing biases. Many existing strategies uss dataset- 150

specific counterfactual augmentation methods in 151

specific domains such as sentiment analysis (Yang 152

et al., 2022a; Kaushik et al., 2020), named entity 153

recognition (Ghaddar et al., 2021), text classifica- 154

tion (Wang and Culotta, 2020), and neural machine 155

translation (Liu et al., 2021). A popular approach 156

to address spurious dependence in NLP datasets 157

is to use human-guided counterfactual augmenta- 158

tion (Kaushik et al., 2021). This approach presents 159

individuals with data and preliminary labels, ask- 160

ing them to modify the data for an alternate label 161

while avoiding unnecessary edits (Kaushik et al., 162

2020). This method depends on human efforts and 163

expertise to overcome the challenge of automati- 164
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cally translating raw text into important features.165

Recent studies examining data augmentation166

through a causal lens have received increasing at-167

tention due to their potential to enhance model per-168

formance and stability. For example, in computer169

vision, methods such as Counterfactual Generative170

Networks (CGN) (Sauer and Geiger, 2021) and171

CycleGANs (Zhu et al., 2020) were used to create172

counterfactual data points, building on the premise173

that the original training data contains learnable174

patterns. Similarly in natural language process-175

ing, prevalent techniques generate counterfactual176

samples by pinpointing and altering causal terms177

in sentences, which subsequently change their la-178

bels (Madaan et al., 2022; Liu et al., 2021; Yang179

et al., 2022a). However, most of these methods180

rely solely on internal data and may not ensure181

robustness against out-of-distribution (OOD) sce-182

narios, especially if augmentations overlook con-183

text (Mouli et al., 2022). Joshi and He (2022) em-184

phasized that limited diversity in these perturba-185

tions compromises the efficacy of counterfactually186

augmented data (CAD) in OOD scenarios, pointing187

to the necessity for innovative crowdsourcing ap-188

proaches to elicit diverse perturbation of examples.189

LLMs have shown to possess extensive genera-190

tive capacity, making them a useful tool for counter-191

factual data generation. Li et al. (2023) introduced192

a method utilizing Language Models (LLMs) to193

generate domain-specific counterfactual samples194

through prompt design, highlighting the alignment195

between the efficacy of LLMs in domain-specific196

counterfactual generation and their overall profi-197

ciency in that domain. Although in-context learn-198

ing has been a promising direction to get LLMs199

to perform different tasks Min et al. (2022) found200

that demonstrating the label space, the distribution201

of the input text, and the overall format of the se-202

quence as important factors for the performance of203

in-context learning.204

A consistent challenge in counterfactual gen-205

eration has been the scalable generation and se-206

lection of augmented data (Liu et al., 2022; Li207

et al., 2023). To address this, DISCO (Chen et al.,208

2023) introduced a method for automatically gen-209

erating high-quality counterfactual data using task-210

agnostic “teacher and student” models to allow clas-211

sifier models to learn casual representation. DISCO212

uses a neural syntactic parser to select the spans of213

the sentence to vary on to generate data using Large214

Language Models (LLMs). Although DISCO pro-215

vides more robust models trained on augmented 216

data, the use of black-box approaches to generate 217

data could make model debugging and improve- 218

ment harder. To address this, we adopt a neuro- 219

symbolic approach to define the concept bound- 220

aries in user annotations (Gebreegziabher et al., 221

2023). 222

2.2 Example-based Learning via Variation 223

Theory 224

Based on previous studies on LLMs as counter- 225

factual generators, our work seeks to learn from 226

human cognition and example-based learning to 227

better guide LLMs for generating higher quality 228

data. Will educational theories that work for hu- 229

man learners also work for AI? Decades of re- 230

search have demonstrated that utilizing example- 231

based learning constitutes an effective instructional 232

strategy for human acquiring new skills (Gog and 233

Rummel, 2010). Similarly, few-shot learning is an 234

example-based learning method used by LLMs. 235

How can we use human learning theories to 236

support the annotation of data and training of 237

LLM classifiers? Variation Theory, rooted in phe- 238

nomenography, gives us insights from human ex- 239

perience (Cheng, 2016). The core concept of this 240

theory involves presenting sets of examples that 241

vary along a specific dimension, enabling learners 242

to identify and use that dimension as a useful coor- 243

dinate space for describing the underlying concept. 244

This aligns with the foundational principle of coun- 245

terfactual data augmentation in machine learning. 246

3 Approach 247

Drawing on Variation Theory, we propose using 248

neuro-symbolic patterns for LLM in-context learn- 249

ing, aiming to create counterfactual examples for 250

AL. We define learning spaces and concept bound- 251

aries through domain-specific patterns, which are 252

executable syntactic representations of user anno- 253

tations. Using these patterns and human labels, 254

we fine-tune GPT-3.5 to produce data points that 255

match the patterns but differ from user labels. 256

Intuitively, the generated counterfactual items 257

are syntactically similar to an item known to be 258

label X, predicted to be label X by an explainable 259

pattern-based symbolic model, but predicted to be 260

not label X by an LLM. 261

To ensure quality, we apply a three-level filtering 262

mechanism (Fig. 2): heuristic regex for common 263

LLM errors, symbolic filtering to verify rule com- 264
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pliance, and LLM-based discrimination to assess265

label change.266

We evaluate our pipeline in a simulated inter-267

active annotation task in AL, using the fine-tuned268

model to generate variations of human-annotated269

data. For example, for a concept A, with some270

annotated data, our approach generates a set of271

neuro-symbolic patterns based of pre-defined do-272

main specific language adapted from Gebreegziab-273

her et al. (2023) that characterize the concept (See274

Fig. 3 Step-1). At inference time, we prompt the275

fine-tuned GPT-3.5 to generate counterfactual data276

that changes an annotated data from concept A to277

a different concept B, based on the learned pat-278

terns (See Fig. 3 Step-2). This systematic approach279

helps our model identify the most relevant factors280

for the learning objective. We then use the gen-281

erated examples as part of the training set in the282

classifier model and measure the accuracy.283

3.1 Defining Concept Space with284

Neuro-symbolic Patterns285

We use a neuro-symbolic approach to define and286

demonstrate learning space and concept boundaries287

for large language models (LLMs), allowing the288

generation of high-quality counterfactual data at289

scale. During annotation, we used PaTAT’s (Ge-290

breegziabher et al., 2023) interactive program syn-291

thesis approach to generate domain-specific pattern292

rules that match human annotated examples. The293

pattern rules represent the lexical, syntactic, and294

semantic similarities of data under the same label.295

This method generates a collection of regex-like296

(but with semantically-enhanced tags) that match297

with the annotated positive examples while exclud-298

ing the annotated negative examples. For example,299

for data points in the domain of restaurant review300

“Good food with great variety." and “The food was301

amazing." both labeled “products" by the annotator,302

PaTAT learns patterns that match both sentences303

like “[food]+*+ADJ”, “(amazing)+*”. Below we304

show examples of PaTAT’s pattern language:305

• Part-of-speech (POS) tags: VERB, PROPN,306

NOUN, ADJ, ADV, AUX, PRON, NUM307

• Word stemming: [WORD] (e.g., [have] will308

match all variants of have, such as had, has,309

and having)310

• Soft match: (word) (e.g., (pricey) will311

match synonyms such as expensive and costly,312

etc.)313

• Entity type: $ENT-TYPE (e.g., $LOCATION will 314

match phrases of location type, such as Hous- 315

ton, TX and California; $DATE will match 316

dates; $ORG will match names of organiza- 317

tions) 318

• Wildcard: * (will match any sequence of 319

words) 320

Using the generated patterns for each concept, 321

we apply zero-shot prompting with GPT-4 to gener- 322

ate counterfactual data points that match the pattern 323

but match different concepts or labels present in 324

the annotated data. 325

3.2 Generating Counterfactual Data with 326

Fine-tuned LLM 327

Variation Theory says students learn by looking at 328

the differences and similarities of certain features 329

of a concept (Bussey et al., 2013). To generate 330

counterfactual variants from original data point, the 331

core is building conceptual understanding through 332

small, connected steps that highlight the represen- 333

tational variances and invariances. However, real- 334

world texts may be annotated with multiple labels, 335

making it difficult to build conceptual understand- 336

ing of them in small steps. Therefore we start 337

our approach by creating single labeled examples 338

that represent a single concept. To separate multi- 339

labeled data into single-labeled examples, we uti- 340

lize zero-shot GPT-4 with prompt to complete data 341

preprocessing (See Fig. 3 Step-1). 342

Following this, we generate pattern rules by sim- 343

ulating iterative annotation using the ground truth 344

labels. The generated patterns provide a syntac- 345

tic and semantic representation for the annotated 346

texts, using a rule-based, executable symbolic lan- 347

guage. During counterfactual generation, we start 348

by generating candidate phrases that adhere to these 349

patterns (§A.1), ensuring the original syntactic in- 350

tegrity is preserved in the generated counterfactual 351

variants. The generated phrases are then used as 352

a constraint to be included in the generated coun- 353

terfactual example. This constraint ensures that 354

counterfactual examples remain within the syntac- 355

tic boundaries set by the patterns with variations 356

and distribution in the semantic content. 357

Fine-tuning smaller language models, such as 358

GPT-3.5, can achieve results comparable to, or 359

even surpassing, more advanced models like GPT- 360

4. This approach is not only cost-effective but also 361

particularly advantageous in large-scale commer- 362

cial applications. As of December 2023, the cost 363
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of using a fine-tuned GPT-3.5 is just a tenth of364

employing GPT-4. To fine tune a GPT-3.5 counter-365

factual generator, we follow a three-step process366

(See Fig. 1): first, we prompt a GPT-4 model to367

generate counterfactual dataset over user assigned368

label and pattern rules (§A.1), then we filter the369

generated data over a three-stage criteria (Section370

3.3), lastly using the set of filtered dataset we fine-371

tune a GPT-3.5 model to be used as a counterfactual372

generator during interactive annotation.373

3.3 Filtering Generated Counterfactual Data374

The ideal counterfactual variants should keep the375

pattern of original text, and successfully flip the376

original label to the target label. In our fine-tuning377

pipeline, we first generate counterfactual data 20378

times the size of the original dataset. To ensure the379

quality of the fine-tuning dataset we implement a380

three-stage filtering mechanism:381

3.3.1 Regex Heuristic Filtering382

We use a heuristic-based filter to identify and re-383

move low quality generations. This method uses384

regular expressions to detect common generation385

errors observed during our experimentation. We386

define rules to identify error patterns such as repe-387

tition of prompt, inaccurate formatting, which are388

common pitfalls in text generation systems, as indi-389

cation of suboptimal output. This process functions390

autonomously, providing a seamless quality assur-391

ance layer that operates in real-time to generate the392

fine-tuning dataset without human intervention.393

3.3.2 Neuro-symbolic Filtering394

In the context of Variation Theory, it is crucial to395

strategically vary certain elements of an example396

while maintaining consistency in others. This prac-397

tice serves to underscore the critical attributes of398

the feature under examination. In our study, the399

identified neuro-symbolic patterns serve as indica-400

tors of the key features that the classifier model401

considers significant within a sentence. To teach402

the importance of the feature and push the con-403

cept boundaries boundaries between inclusion and404

exclusion of a sentence beyond the identified pat-405

terns, it is important that the generated counterfac-406

tuals match the pattern of the original item. To407

ensure this, we implement a neuro-symbolic fil-408

tering method using executable domain specific409

neuro-symbolic patterns in § 3.1. We quantify this410

through the pattern keeping rate (PKP) as defined411

below.412

PKR =
1

N

N∑
n=1

1(p̂n = pn) 413

where pn is original pattern, p̂n is the pattern given 414

to the generated data point. 415

3.3.3 LLM-based Discriminator Filtering 416

Finally, we apply a filter using a GPT-3.5 discrimi- 417

nator that retains only generated counterfactuals 418

that have effectively changed from the original 419

label to the desired target label. We adopt two 420

matrices (Chen et al., 2023) to quantify this - the 421

Lable Flip Rate (LFR), and the Soft Label Flip 422

Rate (SLFR) as defined below: 423

LFR =
1

N

N∑
n=1

1

(
l̂n = Ln

)
424

SLFR =
1

N

N∑
n=1

1(l̂n ̸= ln) 425

426

where l̂n is the label given by GPT-3.5 discrimina- 427

tor, Ln is the target label, ln is the original label. 428

4 Experiments 429

We evaluate the generated counterfactuals in two 430

phases: an automated filtering mechanism to detect 431

the rates in which the generated data changes its 432

label and though a standard classification task us- 433

ing a pre-trained model. We simulate and evaluate 434

the effects of four different annotation selection in 435

interactive AL: random selection, rule-based selec- 436

tion, counterfactual based example selection. We 437

use each dataset’s original label as ground truth 438

and use GPT-3.5 to simulate human annotation of 439

generated counterfactuals (Xiao et al., 2023). 440

4.1 Conditions 441

We investigate the implications of counterfactual 442

example selection and other selection methods in 443

interactive AL. Specifically, we use three condi- 444

tions: 445

• Condition 1: Random example selection 446

- In this condition random labeled examples 447

are selected for each annotation iteration to 448

train the classification model, serving as the 449

baseline condition. 450
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• Condition 2: Clustering-based example451

selection. This condition adopts lowest-452

confidence-first method, common in active453

learning approaches (Fu et al., 2013). To en-454

sure data balance, original examples are ini-455

tially transformed into word vectors. These456

vectors are then grouped using k-means, and457

the input order is ultimately generated by ro-458

tation among the different clusters.459

• Condition 3: LLM generated counterfac-460

tual example with filtering - In this con-461

dition each selected example is paired with462

counterfactual examples generated by a fine-463

tuned GPT-3.5 model, where the fine-tuned464

data was filtered using the three step filtering465

method (§ 3.3).466

4.2 Dataset467

In order to simulate the subjectivity in human468

data annotation we chose datasets that exhibit high469

intra-coder reliability, but low inter-coder reliabil-470

ity. That is to say different annotators may hold471

controversial opinions on the same example, but for472

a single annotator, examples are of low ambiguity.473

• YELP: The YELP dataset (Asghar, 2016) con-474

sists of user reviews of different businesses475

and services. The dataset itself provides 4476

ground-truth categories (i.e. service, price, en-477

vironment and products), we randomly sam-478

pled 495 examples for this experiment.479

• MASSIVE: The MASSIVE (FitzGerald et al.,480

2022) virtual assistant utterances with 18 la-481

beled intents as ground-truth (e.g. audio, cook-482

ing, weather, recommendation etc). For this483

experiment we randomly selected 30 exam-484

ples from each category, making up a total of485

540 examples.486

4.3 Counterfactual Evaluation with Active487

Learning488

To evaluate the generated counterfactual examples,489

we employ a simulated active learning task to fine-490

tune a BERT model (Devlin et al., 2018) for a multi-491

class classification task. We use the example selec-492

tion conditions defined in § 4.1 to define a subset of493

10, 15, 30, and progressively increasing upto 120494

data points (referred to as ‘shots’), alongside their495

corresponding ground truths. After finetuining the496

model we evaluate it against a holdoff set of the497

dataset.498

To augment the model’s training with generated 499

counterfactual examples we pair each original data 500

with its generated counterfactual examples and 501

their assigned target label. This pairing aimed to en- 502

rich the training data, hypothesizing that the inclu- 503

sion of counterfactuals would enhance the model’s 504

learning and predictive accuracy in early stages of 505

annotation addressing the cold start problem (Yuan 506

et al., 2020). Similarly, the performance of the 507

model, in this case trained with both original and 508

counterfactual dataset, was again evaluated against 509

the same holdoff set. This comparative analysis 510

aimed to quantify the impact of counterfactual ex- 511

amples on the model’s ability to generalize and 512

make accurate predictions on unseen data in early 513

active learning scenarios. 514

4.4 Results 515

4.4.1 Automatic Generation Quality 516

Evaluation 517

As shown in Table 1 we evaluate the quality of 518

the generated counterfactual data using the two 519

datasets. Building on the work of Chen et al. 520

(2023), the efficacy of the counterfactuals was mea- 521

sured based on three metrics: Pattern Keeping Rate, 522

Soft Label Flip Rate, and Label Flip Rate. These 523

metrics were examined in two conditions: using 524

GPT-4 to generate counterfactuals and using a fine- 525

tuned GPT-3.5 counterfactual generator as defined 526

in Fig 1. The results show that for both datasets, 527

the multi-filtering and fine-tuning pipeline based 528

on GPT-3.5 maintains or even improves the quality 529

of generated counterfactuals on all metrics. Specif- 530

ically, the Soft Label Flip Rate, which assesses the 531

ability of counterfactuals to eliminate their origi- 532

nal label, shows an increase rate of 7 when using 533

the fine-tuned generator method compared to the 534

GPT-4 generator for YELP and similarly a rate in- 535

crease of 20 for the MASSIVE dataset. The Pattern 536

Keeping Rate, which assesses whether the counter- 537

factuals maintain the original data pattern indicat- 538

ing their syntactic similarity, also improves over 539

raw GPT-4 generation, suggesting that the multi- 540

filtering and fine-tuning pipeline enables generated 541

data to retain its essential structure while changing 542

its label. The absolute value of pattern retention is 543

relatively low as we over generate counterfactuals 544

on all target labels without checking whether the 545

task itself is meaningful. 546
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Prompt
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Figure 2: The candidate fine-tune data (raw GPT-4 generation) is first filtered by a heuristic filter, a symbolic filter
and a GPT-3.5 discriminator. Then the filtered data will be used to fine-tune a GPT-3.5 counterfactual generator.

Pattern Keeping Rate

Method YELP MASSIVE

GPT-4 generation 7.86 22.08
Fine-tuned generation 13.64 22.85

Soft Label Flip Rate

Method YELP MASSIVE

GPT-4 generation 30.13 42.30
Fine-tuned generation 37.83 63.75

Label Flip Rate

Method YELP MASSIVE

GPT-4 generation 99.14 97.58
Fine-tuned generation 96.27 98.7

Table 1: Generated counterfactual data quality evalua-
tion on raw GPT-4 generation vs. Fine-tuned generation.

4.4.2 Counterfactual Evaluation on Active547

Learning548

In presenting our findings on the efficacy of gener-549

ated coutnerfactuals in active learning as defined550

in § 4.3, we report the Macro F1-scores for two551

datasets (Table 2): YELP and MASSIVE. The re-552

sults are stratified across different sizes of training553

data, ranging from 10 to 120 shots. For each size,554

we compare the performance of models trained555

on random samples of data, cluster based selec-556

tion, andcounterfactuals augmented training. The557

F1-scores are accompanied by their respective stan- 558

dard deviations (SD), providing insights into the 559

variability of the model performance. 560

The inclusion of counterfactuals with filtering 561

consistently outperforms the baseline random selec- 562

tion across all data sizes. This trend is particularly 563

less pronounced as the number of shots increases 564

giving us a theoretical insight into how these gener- 565

ated counterfactuals can address training cold-starts 566

in active learning. For the YELP dataset starting 567

from an F1-score of 0.25 compared to 0.14 with 568

random sampling in 10 shots. In the MASSIVE 569

dataset, a similar trend is observed, with counterfac- 570

tuals again showing a clear advantage over random 571

selection. Starting with an F1-score of 0.144 at 572

10 shots, the model consistently achieves higher 573

performance compared to the other conditions. 574

5 Limitations and Future work 575

Our proposed neuro-symbolic pipeline allows au- 576

tomatic and real-time generation of counterfactual 577

data, however this ability is restrained to specific 578

domains (business review and virtual utterance) 579

and English language in our experiments. As the 580

rule-based program synthesis in the data prepro- 581

cessing process is designed exclusively for English, 582

additional difficulties may arise when adapting our 583

pipeline to other languages. We also point out that 584

our fine-tuned counterfactual generators were built 585

only from a single LLM, i.e. GPT-3.5. Even though 586

our efforts are limited to Active Learning, we be- 587
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Macro F1-scores (YELP)

No. shots 10 15 30 50 70 90 120

0.14 0.15 0.25 0.42 0.46 0.63 0.59Random
SD 0.12 0.11 0.04 0.18 0.12 0.09 0.20

0.20 0.29 0.34 0.39 0.63 0.81 0.70Cluster
SD 0.14 0.15 0.09 0.10 0.19 0.12 0.11

0.25 0.22 0.35 0.46 0.53 0.65 0.73Counterfactuals
SD 0.17 0.07 0.08 0.12 0.13 0.13 0.02

Macro F1-scores (MASSIVE)

No. shots 10 15 30 50 70 90 120

0.013 0.026 0.039 0.102 0.109 0.148 0.198Random
SD 0.011 0.019 0.011 0.040 0.063 0.065 0.036

0.050 0.040 0.046 0.104 0.157 0.336 0.315Cluster
SD 0.028 0.032 0.024 0.109 0.038 0.035 0.067

0.144 0.146 0.302 0.366 0.457 0.368 0.428Counterfactuals
SD 0.084 0.068 0.037 0.048 0.059 0.035 0.089

Table 2: Average F1-score with increasing numbers of annotations(shots) and the standard deviations(SD) across
five independent experiments

lieve that leveraging LLMs for counterfactual data588

generation has the potential to benefit a wider array589

of tasks.590

6 Conclusion591

In this paper, we use Variation Theory to gener-592

ate counterfactual examples over neuro-symbolic593

patterns to optimize annotation needs of Active594

Learning (AL). Our neuro-symbolic approach de-595

fines the concept boundaries between concepts596

in an interpretable way and helps large language597

model (LLM) based classifier models. We present598

a pipeline for generating counterfactual data using599

large language models (LLMs). This pipeline in-600

volves fine-tuning the LLMs on data generated by601

GPT-4, which is then filtered through a combina-602

tion of a GPT-3.5 discriminator and an executable603

neuro-symbolic filter. This paper introduces the604

use of neuro-symbolic patterns as a means to de-605

fine conceptual boundaries that play a role in de-606

termining the quality of generated counterfactual607

data. Through a simulated evaluation, we show608

that counterfactual datapoints generated by our pro-609

posed neuro-symbolic pipeline enable LLM-based610

classifiers to achieve a level of accuracy similar to611

widely used AL strategies while requiring fewer612

annotations. Our results show models using coun-613

terfactual examples perform better than models 614

using random order example selection or cluster- 615

based example selection. Furthermore, we provide 616

a framework for generating and using counterfac- 617

tual data with the original data to address chal- 618

lenges faced by lack of annotated data in early 619

active learning scenarios. 620
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A Appendix767

A.1 Generation Pipeline768

In this section we provide the details of all the769

prompts and models we use to construct the whole770

counterfactual generation pipeline.771

A.1.1 GPT-4 Multi-label Separator772

As shown in Fig. 3 Step-1, we utilize zero-shot773

GPT-4 to preprocess the raw data, in order to sep-774

arate the given multi-labeled sentences into sev-775

eral single-labeled parts. We call GPT-4 through776

the API provided by OpenAI, set the temperature777

parameter to 0 and restrict the maximum token778

number to 512, which ensures the reliability of779

the generated results. The prompt used is shown780

below:781

• {"role": "system", "content": "The assistant will seper-782
ate the given multi-labeled sentences into different parts,783
each corresponds to a label and a pattern (if the pattern784
is viable)"}785

• {"role": "user", "content": "The assistant will make786
conversations based on the following example. New787
content should be in the format: ’text’ + ’pattern’ +788
’label’; ’text’ + ’pattern’ + ’label’. All the text, patterns789
and labels are already given as input, if there is no790
corresponding pattern, just use ” to indicate empty."}791

• {"role": "user", "content": "Each separated text must792
only have a single label, but may contain several pat-793
terns. Each label or pattern must appear at least once794
in the completion. The patterns can be composed with795
AND (+) or OR (|) operators."}796

• {"role": "user", "content": "Conversation: Great cus-797
tomer service, reasonable prices, and a chill atmosphere.798
Pattern: [’(customer)+*+[service]’, ’(pay)|(sale)’, ’(en-799
vironment)’] Label: price, service, environment"}800

• {"role": "assistant", "content": "’Great customer ser-801
vice, ’ + ’(customer)+*+[service]’ + ’service’; ’reason-802
able prices, ’ + ’(pay)|(sale)’ + ’price’; ’and a chill803
atmosphere.’ + ’(environment)’ + ’environment’"}804

• {"role": "user", "content": "Conversation: {text} Pat-805
tern: {pattern} Label: {label}"}806

A.1.2 GPT-4 Turbo Candidate Phrases807

Generator808
As we are generating counterfactuals that keeps neuro-809
symbolic patterns, the first step of this task is to generate810
candidate phrases that keep the pattern but variate semanti-811
cally, which make up crucial branches of generated counter-812
factual variations. For this part, we call GPT-4 Turbo through813
the API provided by OpenAI, set the temperature parameter to814
0 and restrict the maximum token number to 256. The prompt815
used is shown below:816

• {"role": "system", "content":"The assistant will create817
a list of phrases that match the given domain specific818
language based on the given definition."}819

• {"role": "user", "content": "For the following text 820
and pattern, generate as many diverse example phrases 821
that match the given pattern and can be part of the 822
given target label. Try to not use the word {label} or 823
{target_label} in the phrases you generate. Separated 824
your answer by a comma"} 825

• {"role": "user", "content": "text: {matched_phrase}, 826
pattern: {pattern}, current label: {label} target label: 827
{target_label}"} 828

• {"role": "user", "content": "The word ‘{match}‘ is a 829
soft match, you can only use {soft-match_words} as 830
its synonyms to replace it. You can not use other words 831
for {match}"} 832

A.1.3 GPT-4 Turbo Counterfactual Generator 833
The GPT-4 Turbo generator will finish the second step of 834
counterfactual generation, making use of candidate phrases 835
generated in the first step and combining these semantic pieces 836
into reasonable sentences. We set the temperature parameter 837
to 0 and restrict the maximum token number to 256. The 838
prompt used is shown below: 839

• {"role": "system", "content": "The assistant will gener- 840
ate a counterfactual example close to the original sen- 841
tence that contains one of the given phrases."} 842

• {"role": "user", "content": ”’Your task is to change the 843
given sentence from the current label to the target. 844

For example: ’Find me a train ticket next monday to 845
new york city’ with original label "transport" would 846
be turned to ’Play me a song called New York City by 847
Taylor Swift’ with a label "audio". 848

You can use the following phrases to help you generate 849
the counterfactuals. Please make the sentence about 850
{target_label}. Make sure that the new sentence is 851
not about {label}. You must use one of the follow- 852
ing phrases without rewording it in the new sentence: 853
{generated_phrases}”’} 854

• {"role": "user", "content": ”’You must follow three 855
criteria: 856

criteria 1: the phrase should change the label from 857
{label} to {target_label} to the highest degree. 858

criteria 2: the modified sentence can not also be about 859
{label} and make sure the word {target_label} is not 860
part of the modified sentence. 861

criteria 3: the modified sentence should be grammati- 862
cally correct.”’} 863

• {"role": "user", "content": "If you find that you cannot 864
generate new sentence that fulfill all the requirements 865
above, just response ’cannot generate counterfactual’ 866
and don’t feel bad about this"} 867

• {"role": "user", "content": "original text:{text}, original 868
label:{label}, modified label:{target_label}, generated 869
phrases:{generated_phrases}, modified text:"} 870
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Ta
sk Separate the given multi-labeled sentences into different parts, 

each part corresponds to a label and a pattern.

New content should be in the format: 'text' + 'pattern' + 'label'; 
'text' + 'pattern' + 'label’.
All the text, patterns and labels are already given as input, if 
there is no corresponding pattern, just use '' to indicate empty.
Make sure each separated sentence only has a single label but 
may relate to several patterns.

Conversation: "Friendly w / great customer service, reasonable 
prices, and a chill atmosphere."
Pattern: (customer)+*+[service], (pay)|(sale)
Label: price, service, environment

'Friendly w / great customer service, ' + '(customer)+*+[service]' 
+ 'service'; ‘reasonable prices, ' + '(pay)|(sale)' + 'price'; 'and a 
chill atmosphere.' + '' + 'environment'
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Step 1: separate multi-labeled text

Ta
sk Make small changes to the conversation to change the topic label, 

but not to change the given pattern.

The patterns can be composed with AND (+) or OR (|) operators
The pattern language consists of the following syntax:
Part-of-speech (POS) tags: VERB, PROPN, NOUN, ADJ, ADV, AUX, 
PRON, NUM
Word stemming: [WORD] (e.g., [have] will match all variants of 
have, such as had, has, and having)
Soft match: (word) (e.g., (pricey) will match synonyms such as 
expensive and costly, etc.)
Entity type: $ENT-TYPE (e.g., $LOCATION will match phrases of 
location type; $ORG will match names of organizations)
Wildcard: * (will match any sequence of words)

Conversation: "Our bill was around $ 400 - it was upsetting that 
they decided to be stingy about a $ 8 piece of cake."
Pattern: $MONEY|(price); Original label: price; Target: service

Our bill was around $ 400 - the service was upsetting as they 
decided to be stingy about a $ 8 piece of cake.
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Step 2: generate pattern-kept counterfactual text

Figure 3: Illustration of LLM prompts used for preparing training datapoints and generating counterfactual datapoints
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