
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SQLGOVERNOR: AN LLM-POWERED SQL TOOLKIT
FOR REAL WORLD APPLICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

SQL queries in real-world analytical environments—whether written by humans
or generated automatically—often suffer from syntax errors, inefficiency, or se-
mantic misalignment, especially in complex OLAP scenarios. To address these
challenges, we propose SQLGOVERNOR, an LLM-powered SQL toolkit that uni-
fies multiple functionalities—including syntax correction, query rewriting, query
modification, and consistency verification—within a structured framework en-
hanced by knowledge management. SQLGOVERNOR introduces a fragment-wise
processing strategy to enable fine-grained rewriting and localized error correction,
significantly reducing the cognitive load on the LLM. It further incorporates a hy-
brid self-learning mechanism guided by expert feedback, allowing the system to
continuously improve through DBMS output analysis and rule validation. Ex-
periments on benchmarks such as BIRD and BIRD-CRITIC, as well as industrial
datasets, show that SQLGOVERNOR consistently boosts the performance of base
models by up to 10%, while minimizing reliance on manual expertise. Deployed
in production environments, SQLGOVERNOR demonstrates strong practical util-
ity and effective performance.

1 INTRODUCTION

In real-world analytical applications, Structured Query Language (SQL) remains the primary inter-
face for interacting with relational databases. Despite its maturity and widespread adoption, crafting
accurate, efficient, and semantically aligned SQL queries—especially in complex analytical (OLAP)
scenarios—remains a challenging task for both novice and experienced users alike.

OLAP workloads are central to modern business intelligence, reporting, and decision-making sys-
tems Codd (1993); Thomsen (2002). Even minor inefficiencies or ambiguities can lead to significant
performance degradation, incorrect insights, or increased development overhead Vassiliadis & Sellis
(1999); Pedersen & Jensen (2001). SQL queries in OLAP settings typically exhibit three key charac-
teristics. First, they perform multi-dimensional analysis using advanced operations such as roll-up
and drill-down Ceci et al. (2015), resulting in highly structured and deeply nested query forms.
Second, these queries operate on large-scale enterprise data Chen et al. (2012), which increases
computational costs and run-time unpredictability. Third, many OLAP queries are executed repeat-
edly—such as daily or weekly reports—making even small inefficiencies costly over time Zhan et al.
(2019).

The repetitive and high-stakes nature of OLAP queries amplifies the need for robust, automated, and
adaptive SQL post-processing solutions. Given these challenges, many tools have been developed
to assist users in crafting better SQL queries, including syntax correction, query rewriting, and
semantic refinement Cen et al. (2024); Chen et al. (2023); Liu & Mozafari (2024); Li et al. (2024c).
While large language models (LLMs) have shown great promise in translating natural language
questions into SQL, their applicability across the broader spectrum of SQL-related tasks remains
underexplored. Moreover, in industrial practice, many users lack deep database expertise and often
produce poorly written queries that are inefficient or semantically inaccurate, further exacerbating
system performance and reliability issues Banisharif et al. (2022).

C1: Productivity bottleneck from a fragmented ecosystem. Existing SQL tools offer isolated func-
tionalities, lacking a unified framework for tasks like syntax correction, semantic refinement, and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

query rewriting Cen et al. (2024); Chen et al. (2023); Li et al. (2024c). This fragmentation cre-
ates a high barrier to entry for non-experts and increases manual effort by 30-40% for experienced
practitioners due to context switching and compatibility issues team (2023a).

C2: Lack of advanced techniques tailored for OLAP. Most existing tools target general-purpose
or simpler workloads like OLTP, NL2SQL, or offline optimization Chen et al. (2023); Wang et al.
(2022); Cen et al. (2024); Yi et al. (2025). OLAP queries are complex, long-running, and require
a careful balance between effectiveness and computational cost. Lightweight methods often fail to
capture this complexity, while computationally intensive ones risk increasing end-to-end execution
time Zhan et al. (2019).

C3: High operational cost in an expert-centric knowledge lifecycle. Correcting and rewriting queries
demands deep domain and database expertise, which is difficult to capture with conventional data-
driven methods. This reliance on expert teams increases labor costs by 25-35% Gartner (2022).
Furthermore, maintaining and updating this expert knowledge is time-consuming, limiting scalabil-
ity and adoption.

In summary, the current landscape lacks a comprehensive and practical SQL toolkit, which utilize
evolving knowledge with fewer human efforts.

To address C1, we propose an LLM-powered SQL toolkit that unifies multiple functionalities within
a structured framework enhanced by knowledge management. Users can either select individual
tools for specific tasks or use an end-to-end pipeline that orchestrates multiple tools in a coordi-
nated, use-case-driven manner. By consolidating diverse functionalities into a single platform, our
approach eliminates the fragmentation in existing SQL tool-chains, significantly reducing deploy-
ment overhead, manual effort, and the barrier to entry.

To address C2, we adopt a dual approach that applies validated rules as guidance when appropriate,
while permitting the LLM autonomous operation otherwise. Additionally, for particularly long and
structurally complex queries, we propose a “fragment processing” strategy to reduce the chance of
LLM hallucinations and lower the cost of using the LLM.

To address C3, we propose an expert-guided iterative self-learning mechanism to maintain a dy-
namic knowledge base for SQL tasks. The LLM agent analyzes DBMS outputs to generate new
rules, identifying unseen error types from failed SQL and discovering rewriting strategies for inef-
ficient queries. These rules are periodically verified by experts and integrated into the knowledge
base for continuous improvement.

The main contributions of this paper can be summarized as follows:

1. Unified Framework: To the best of our knowledge, SQLGOVERNOR is the first compre-
hensive LLM-based SQL toolkit with a knowledge management module. It provides four
core functionalities powered by a hybrid self-learning mechanism, thereby improving both
user productivity and SQL quality.

2. Fragment Processing: We propose a fragment-wise processing strategy to address the com-
plexity and length of OLAP queries. By localizing error detection and rewriting within
individual fragments, including subqueries and CTEs, our approach enhances precision
and reduces the cognitive burden on LLMs.

3. Hybrid Self-Learning: We introduce an expert-guided hybrid self-learning framework that
enables SQLGOVERNOR to automatically extract common pattern from execution outputs,
generate and validate new knowledge with minimal expert intervention, leading to contin-
uous performance improvement.

4. Proven Effectiveness: Extensive experiments on academic benchmarks and real-world in-
dustrial datasets demonstrate that SQLGOVERNOR consistently improves the performance
of base models by up to 10% in key metrics. Deployed in production environments, SQL-
GOVERNOR indicates strong practical utility and effective performance.

2 FRAMEWORK DESIGN

As illustrated in Figure 1, the architecture of SQLGOVERNOR comprises four specialized tools,
each tailored to address a specific category of SQL-related tasks. These tools are supported by

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

User DBMS

Logs	& ResultsKnowledge	Retrieval

RewriterCorrector Modifier Verifier
Specialized
Tools

Issue	SQL
User	Query Meta	

Data

Auto-ExtractionStructured	Knowledge	Bases

Knowledge	
Management Manual	Check

New
Knowledge

Verified
Knowledge

Query

Figure 1: SQLGOVERNOR integrates four specialized SQL tools and a knowledge management
module into a unified framework.

a knowledge management module that analyzes historical data and extracts actionable insights to
guide error correction, query rewriting, and semantic refinement. We leave the detailed introduction
to the knowledge management module in Appendix A.1.

Specifically, we focus on three common issues encountered during SQL execution in real-world
applications: 1) resolving execution failures caused by syntax errors; 2) rewriting inefficient queries
that result in excessively long execution times; 3) modifying SQL to better align with user intent.

3 SPECIALIZED SQL TOOLS

This section introduces our core design principle—the fragment processing strategy—which en-
ables fine-grained, modular analysis for complex SQL tasks. Built upon this foundation, we further
present four specialized tools in SQLGOVERNOR, each targeting a key subtask. The following sub-
sections will detail three of these tools, while the elaboration of the equivalence verifier is provided
in Appendix A.2.

3.1 FRAGMENT PROCESSING STRATEGY

Modern SQL queries, especially in OLAP workloads, often exhibit deeply nested structures with
multiple layers of subqueries and Common Table Expressions (CTEs). To enable scalable and pre-
cise analysis, we propose a recursive fragment processing strategy that decomposes an input SQL
query into smaller, self-contained fragments. Each fragment is analyzed independently under the
same procedure, significantly reducing the reasoning complexity for LLM-based agents.

Concretely, the strategy operates as follows: the input query is first partitioned into a main query
and a collection of CTEs. Each of these components is then recursively parsed to extract subqueries,
which are likewise treated as fragments. For every fragment, the system performs a localized anal-
ysis and stores the result as a tuple of the form <fragment id, analysis res>. The pseu-
docode in Algorithm 1 outlines the core idea for fragment processing.

3.2 QUERY REWRITER

The Query Rewriter tool performs query optimization via a two-stage process: evaluation and rewrit-
ing. In the evaluation stage, the tool analyzes the input query to determine whether it exhibits in-
efficiencies. Specifically, it localizes the bottlenecks to specific fragments and proposes targeted
rewriting strategies. In the rewriting stage, the tool applies the selected rewriting strategies to gener-
ate an optimized version of the original query. By leveraging the fragment-level structure produced
during the fragment processing stage, the rewriting is both context-aware and fine-grained, ensuring
that improvements are applied precisely without altering the query semantics.

Evaluation The evaluation process combines rule-based pattern matching with LLM-driven rea-
soning to deliver both precise and innovative optimization strategies—enhancing the overall effi-
ciency of complex SQL queries.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

If any rules match during the initial phase, their detailed descriptions are retrieved from the knowl-
edge base and combined with the corresponding fragments into a structured prompt template (re-
ferred to as Scenario 1). If no rules are matched, the system evaluates the query against a set of
“already efficient SQL” rules. A successful match indicates that the query is already optimal and
does not require further rewriting efforts; otherwise, it suggests potential optimization opportunities
that may not be covered by existing rules. In such cases, the query is passed to another predefined
prompt template (referred to as Scenario 2).

Following the broad assessment, a detailed analysis is conducted using the LLM to refine and expand
upon the rewriting suggestions. Specifically: (1) For Scenario 1, the prompt instructs the LLM to
evaluate the applicability of each suggested rule, providing justifications and transforming general
recommendations into actionable instructions where appropriate. (2) For Scenario 2 , the prompt
directs the LLM to analyze the intent of the original query and explore alternative, more efficient
formulations that preserve semantic equivalence. The output of this stage is standardized in JSON
format, enabling seamless integration with the subsequent rewriting module.

To clarify the “fragment processing” design, Listing 1 provides a representative example. This SQL
query contains six subqueries across different levels, with the deepest level of nesting being four.
We have numbered all subqueries according to the order in which they are analyzed. The analysis
results are as follows: Fragments 1-3 did not match any rules and meet the criteria for efficient SQL.
Fragment 4 matched the SAME TABLE JOIN rule, as it was detected to scan the same table (e.g.,
tb0) twice. Fragments 5-6 also did not match any rules and are considered efficient. The outermost
query (i.e., fragment 7) satisfies a rule involving a LEFT JOIN and an IS NOT NULL condition.
These two defects were further confirmed by the LLM.

Listing 1: Show the working mechanism of the fragment processing design.
1 -- Fragment 7, Line 2-27
2 SELECT tb0.c0,
3 -- Fragment 5, Line 4
4 (SELECT tb3.c1 - tb3.c2 FROM tb3 WHERE tb3.ds = tb1.ds),
5 -- Fragment 6, Line 6
6 (SELECT AVG(tb4.c3) FROM tb4 WHERE tb4.ds = tb1.ds AND tb4.c3 > 100)
7 FROM tb1
8 LEFT JOIN tb2 ON tb1.ds = tb2.ds
9 WHERE tb2.ds is NOT NULL AND

10 tb1.dcrs <=
11 (
12 -- Fragment 4, Line 13-27
13 SELECT IFNULL(t1.c1 / t2.c2, 100) AS dcrs
14 FROM
15 -- Fragment 2, Line 16-22
16 (SELECT MIN(c) AS c1
17 FROM
18 -- Fragment 1, Line 19-22
19 (SELECT COUNT(*) AS c, ds
20 FROM tb0
21 WHERE ds >= ’1014’ AND ds < ’1016’
22 GROUP BY ds)) AS t1,
23 -- Fragment 3, Line 24-26
24 (SELECT COUNT(*) AS c2
25 FROM tb0
26 WHERE ds = ’1016’) AS t2
27)

Rewriting As previously described, the Query Rewriter identifies potential inefficiencies in the
input SQL and generates a set of actionable rewriting suggestions during the evaluation phase. In
addition, the system retrieves relevant historical rewriting examples from the knowledge base by
matching the current SQL fragments and their associated optimization rules. The LLM then inte-
grates this information and synthesizes into a semantically equivalent yet execution-efficient SQL
query that incorporates the suggested optimizations.

Listing 2 illustrates the rewritten SQL for the query presented in Section 5.2.1. Specifically, the
pattern involving a LEFT JOIN combined with the IS NOT NULL condition is replaced with an
INNER JOIN. This transformation is effective because an INNER JOIN naturally filters out rows
with null values, thus achieving the same result as the original query but with a more efficient join
operation. Furthermore, the two separate scans of table tb0 are merged into a single scan to reduce

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

I/O overhead. The WHERE and SELECT clauses are appropriately adjusted to preserve the query’s
semantic correctness.

Listing 2: Show the rewritten SQL for the example in Listing 1.
1 WITH cte AS
2 (SELECT
3 IFNULL(MIN(CASE WHEN ds >= ’1014’ AND ds < ’1016’ THEN cnt END) /
4 SUM(CASE WHEN ds = ’1016’ THEN 1 ELSE 0 END), 100) AS dcrs
5 FROM (
6 SELECT ds, COUNT(*) AS cnt
7 FROM tb0
8 WHERE ds >= ’1014’ AND ds <= ’1016’
9 GROUP BY ds

10)
11 SELECT tb0.c0,
12 (SELECT tb3.c1 - tb3.c2 FROM tb3 WHERE tb3.ds = tb1.ds),
13 (SELECT AVG(tb4.c3) FROM tb4 WHERE tb4.ds = tb1.ds AND tb4.c3 > 100)
14 FROM tb1
15 INNER JOIN tb2 ON tb1.ds = tb2.ds
16 WHERE tb1.dcrs <= (SELECT dcrs FROM cte)

3.3 QUERY MODIFIER

We classify modification requests into four general categories: (1) Realizing a specified semantics:
Adjust the SQL logic to align with the user’s intended meaning. (2) Explaining the SQL: Preserve
the original logic while adding comments or annotations for clarity. (3) Adopting a specified syntax:
Maintain semantic equivalence while adapting the query to match the user’s stylistic or structural
preferences. (4) Other SQL-related tasks: Capture queries that do not clearly fall into the above three
categories, such as stylish polishing. To fulfill each request, the tool follows a three-step pipeline:
(1) metadata preparation, (2) user intent clarification, and (3) query modification. Note that the
definitions of categories are rather flexible and can be customized.

Metadata Preparation During the metadata preparation stage, we extract the target SQL snippet
along with its surrounding context to provide a comprehensive view of the query environment. We
gather metadata from two primary sources. The first includes tables and columns referenced in
the SQL snippet, along with their names and descriptions. The second source is derived from the
user’s historical query logs, where we identify the top-k most frequently accessed tables. For each
of these tables, we extract relevant metadata—such as schema information and usage patterns—to
help the LLM better understand the context and semantics of the query. Additionally, we append a
current timestamp to the metadata to provide temporal grounding, which is particularly useful when
handling evolving schema or time-sensitive queries.

User Intent Clarification The user intent clarification step maps the natural language request to
one of the four predefined categories described earlier. This classification combines two comple-
mentary strategies: heuristic keyword matching and semantic similarity scoring. In the heuristic
keyword matching strategy, we identify a set of domain-specific keywords and phrases that are com-
monly associated with each modification type. For each category Cj , we define a corresponding
keyword set KWj = {kj1, k12, . . . , kjnj}. Given a user request Q, we compute a weighted match-
ing score Skw

j for each category as Skw
j = 1

Nj

∑
kji∈KWj

match(Q, kji) × wji, where Nj is the
total number of candidate keywords in KWj ; match(Q, kji) is a binary function returning 1 if the
keyword kji appears in the requestQ, and 0 otherwise; wji denotes the weight assigned to keyword
kji, reflecting its relative importance within category Cj .

To complement the keyword-based method, we also employ semantic embeddings to capture
more nuanced intent signals. We have explored two distinct embedding pathways: (1) Sentence-
Transformer with Masking: We pre-process the query by replacing specific metadata (e.g., table/-
column names) and constant values with special tokens [MASK], then encode the masked text
into a vector eQ using a Sentence-Transformer model (e.g., RoBERTa Liu et al. (2019)). (2)
Instruction-aware Qwen3-Embedding: We utilize the Qwen3 embedding model Zhang et al. (2025)
to encode the original query Q, guided by an instruction prompt that directs the model to focus
on the user’s action intent rather than details such as schema identifiers. During our development
and testing, the Instruction-Aware Qwen3 Embedding consistently outperforms the masking-based

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Sentence-Transformer approach in both classification accuracy and robustness to domain variations.
This is attributed to its ability to better align with the LLM’s internal reasoning process and its use
of instruction-tuned representations that emphasize action-oriented semantics. What’s more, real-
world user queries often suffer from ambiguity, incomplete descriptions, or informal phrasing. In
such cases, rule-based detection and masking strategies tend to fail.

Once the embedding method has been selected, we construct a representative embedding vector eCj

for each category Cj . These are derived by collecting historical user queries, classifying their intents
using an LLM, and computing the centroid embedding for each category.

We employ cosine similarity between the query embedding eQ and the category centroid embed-
dings eCj as a measure of semantic proximity. This semantic score is combined with the heuristic
keyword matching score to form the final classification decision. Formally, we define the final clas-
sification score Fj for each category Cj as Fj = α ·Skw

j +β · similarity(eQ, eCj
), where α and β are

weighting parameters used to balance the heuristic keyword matching score and the semantic simi-
larity score. To ensure robust and reliable intent clarification, we introduce a confidence threshold
θ. If the maximum classification score max(Fj) across all categories falls below this threshold, the
system treats the request as unsupported and rejects the modification task. This mechanism helps
filter out ambiguous or outlier queries that do not align well with any known modification type,
thereby maintaining the integrity and reliability of the classification pipeline.

Modification Once the necessary data has been collected and the user’s intent has been classified,
we construct a structured prompt tailored to the identified modification type. The prompt integrates
the following components: the original SQL fragment, its surrounding context, relevant metadata
(e.g., schema information and top accessed tables), the current timestamp for temporal grounding,
and the natural language instruction from the user. This contextualized prompt is then fed into the
LLM, which reasons over the input and generates a modified SQL fragment that accurately fulfills
the user’s intent while preserving correctness and consistency.

3.4 SYNTAX ERROR CORRECTOR

The overall syntax correction workflow comprises three key stages: clarification, data preparation,
and correction.

Clarification The clarification stage begins by extracting structured information—such as the ex-
ception type, error location, and descriptive message—from DBMS error logs. This data is used for
embedding-based retrieval against a knowledge base of known error patterns and correction strate-
gies. Each retrieved strategy provides three key components to guide the LLM: (1) Schema De-
pendency: Indicates whether the error requires access to schema metadata (e.g., for column-related
errors) to avoid including large, complex schemas unnecessarily. (2) Correction Scope: Classifies
the error as either localized (e.g., a missing comma) or global, helping to focus the LLM’s attention.
(3) Correction Hints: Provides explicit, actionable guidance for the LLM, such as explaining the
root cause of a Column count mismatch error. This approach of selective schema inclusion
and localized correction keeps the prompt concise. This not only reduces inference latency and cost
but also prevents irrelevant information from interfering with the model’s reasoning capabilities.

Data Preparation Guided by the outputs from the clarification stage, the data preparation step
determines what information should be included in the final prompt. It selectively extracts relevant
schema components, or isolates specific query fragments for localized correction, depending on
the retrieved strategy. If the clarification stage fails to find a confident match in the knowledge
base, a conservative fallback strategy is applied: the full schema is retained, and a global correction
approach is used.

Correction In the final correction stage, the erroneous SQL (or fragment), along with its associ-
ated context—including selectively extracted schema information and tailored guidance—is assem-
bled into a structured prompt. The LLM agent then processes this input and generates a corrected
version of the SQL query.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

This section presents the main results of our experiments on the BIRD and BIRD-CRITIC bench-
marks, along with a partial ablation study. For more comprehensive details on the datasets, experi-
mental settings, and additional results, please refer to the Appendix A.4- A.6.

4.1 MAIN RESULTS

Results on BIRD As SQLGOVERNOR is used as post-processing tool for the NL2SQL task, we
select three strong base models and one representative baseline. The base models are CodeS-7B,
CodeS-15B Li et al. (2024a) and XiYanSQL Gao et al. (2024b) and the baseline is SQLFixAgent Cen
et al. (2024).

Simple Mod. Chall. Total35

40

45

50

55

60

65

70

75

80

EX
(%

)

+4.75

+10.35

+8.97

+6.85

+5.95

+8.19

+8.28

+6.84

+0.98

+3.23

+3.57

+1.96

CodeS-7B CodeS-15B XiYan-32B

(a)

0.4 0.2 0.0 0.2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(b)

Figure 2: (a) Performance on various difficulty data categories. (b) Visualization results of user
query clustering.
Table 4 presents a detailed comparison of SQLGOVERNOR’s performance against existing methods
on the BIRD dataset. When integrated with CodeS-15B, SQLGOVERNOR achieves EX and VES
scores of 65.32% and 67.87%, respectively, representing improvements of 6.84% in EX and 8.00%
in VES over the baseline. These gains outpace those of SQLFixAgent, which improves the base-
line by only 3% in EX and 4.35% in VES, highlighting SQLGOVERNOR’s superior effectiveness.
When paired with XiYan-32B, SQLGOVERNOR further enhances the already high baseline scores
of 68.97% (EX) and 70.89% (VES), achieving marginal but meaningful improvements of 1.96% in
EX and 3.10% in VES.

Furthermore, we carefully analyze the detailed performance of SQLGOVERNOR across various base
models. Figure 2a presents the results of this method on the three difficulty levels (Simple, Mod.,
and Chall.) of the BIRD dev set. The solid bars represent the results of the base model, while
the dashed bars above indicate the gains achieved by SQLGOVERNOR. It is evident that SQLGO-
VERNOR achieves significantly higher gains on the Mod. and Chall. difficulty levels compared
to Simple. Notably, on the CodeS-15B and XiYan-32B models, the metric gains for Chall. even
surpass those for Mod., making it the highest-performing category among the three difficulty levels,
with respective gains of +8.28% and +3.57%. This clearly demonstrates the advantage of SQLGO-
VERNOR in handling long and complex SQL queries.

In summary, SQLGOVERNOR exhibits strong performance improvements across all tested base-
line models, outperforming alternative methods such as SQLFixAgent and demonstrating promising
value even when applied to state-of-the-art models like XiYan-32B.

Table 1: Evaluation of SQLGOVERNOR on BIRD-CRITIC-Flash. Metric: SR (%).

Method Category
Query Management Personalization Efficiency Total

Qwen3-32B / 18.8 / 34.0 / 28.1 / 22.7 / 26.0 /
+ SQLGOVERNOR 21.9 ↑3.1 54.0 ↑20.0 35.9 ↑7.8 36.4 ↑13.7 36.0 ↑10.0

Qwen2.5
-72B-Instruct

/ 20.3 / 46.0 / 32.8 / 31.8 / 32.0 /
+ SQLGOVERNOR 26.6 ↑6.3 52.0 ↑6.0 43.8 ↑11.0 45.5 ↑13.6 40.5 ↑8.5

Results on BIRD-CRITIC-Flash To evaluate the effectiveness of SQLGOVERNOR in addressing
SQL issues arising from user-provided natural language queries, we conduct experiments on the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

BIRD-CRITIC-Flash benchmark. Our approach dynamically routes each SQL issue to the most
suitable tool: the Query Rewriter for efficiency-related problems, the Syntax Error Corrector for
execution errors, and the Query Modifier for other semantic or stylistic adjustments.

We evaluate two widely used LLMs—Qwen3-32B and Qwen2.5-72B-Instruct—in both the original
configurations provided by the benchmark team and with our toolkit integrated. As shown in Table 1,
SQLGOVERNOR consistently improves performance across all categories and both base models.

For Qwen3-32B, integrating SQLGOVERNOR leads to substantial gains, particularly in the Man-
agement category (+20.0%), where the success rate increases from 34.0% to 54.0%. Significant
improvements are also observed in Efficiency (+13.7%) and Personalization (+7.8%), indicating
that both query rewriting and semantic alignment benefit greatly from our toolkit. Overall, the total
score rises from 26.0% to 36.0%. When applied to Qwen2.5-72B-Instruct, SQLGOVERNOR still
delivers consistent gains. The largest improvement is seen in Personalization (+11.0%).

In addition to success rate, we measure the average end-to-end inference time per query on both
models. For Qwen3-32B, the runtime increases from 8.5s (base) to 18.4s with our toolkit; similarly,
for Qwen2.5-72B-Instruct, it increases from 9.8s (base) to 21.3s. While this represents a non-trivial
overhead, it is largely due to the multi-stage processing pipeline—including intricate problem anal-
ysis and solving process powered by LLM-that is essential for achieving high-quality corrections in
complex OLAP queries.

4.2 ABLATION STUDY

User Intent Clarification To evaluate the effectiveness of user intent clarification in the SQL
Modifier, we sampled 150 real-world query tasks from our production environment and manually
annotated them with intent categories. We then tested the performance of the Instruction-Aware
Qwen3 Embedding in classifying these intents. Specifically, we used an embedding model with 8B
parameters and a vector dimension of 1024. As a baseline, we also evaluated Qwen3-32B, where
the LLM directly performs classification without prior embedding-based filtering. Both models were
deployed under identical execution environments to ensure fair comparison.

The results are as follows: the Instruction-Aware Qwen3 Embedding achieves an accuracy of 78.9%,
with an average inference latency of 0.173 seconds. In contrast, Qwen3-32B achieves higher accu-
racy at 84.3%, but incurs a significantly higher average latency of 0.354 seconds. These findings
suggest that while the LLM-based classifier offers relatively higher accuracy (5.4%), the embedding-
based approach provides a favorable trade-off between speed and performance—making it particu-
larly suitable for high-throughput or latency-sensitive applications.

To provide a more intuitive understanding of the embedding quality, we applied PCA to reduce the
embedding vectors to two dimensions and visualized them using scatter plots, as shown in Figure 2b.

Rewriting To evaluate the performance of SQL rewriting tool, we used Payment-SQL, a test set
that closely aligns with OLAP scenario, and employed ETS and ETOG as evaluation metrics. We
selected four representative models as baselines: Qwen2.5-72B-Instruct Hui et al. (2024), Qwen3-
32B Zhang et al. (2025), LLM-R2 Li et al. (2024c), and GenRewrite Liu & Mozafari (2024).
Specifically, Qwen2.5-72B-Instruct and Qwen3-32B are general-purpose LLMs that are instructed
to rewrite the input SQL query in a single inference step. LLM-R2 employs LLMs to select ap-
propriate rewriting rules and trains a separate demonstration recommendation model to guide the
rewriting process. GenRewrite represents the first non-rule-based, end-to-end query rewriting ap-
proach that fully leverages the generative capabilities of LLMs. To ensure fair comparisons, we
maintained identical execution environments for the SQL queries before and after rewriting during
testing.

Table 2: Execution efficiency of SQLs in Payment-SQL after rewriting and time-cost for rewriting.

Methods ETOG(%) ETS(s) Cost(s) ∆(s)
Qwen3 11.06 20.19 15.24 ↑4.95

Qwen2.5 14.56 26.59 18.41 ↑8.18
LLM-R2 29.87 54.53 46.85 ↑7.68

GenRewrite 31.25 57.07 38.36 ↑18.71
SQLGOVERNOR 45.92 83.86 30.73 ↑53.13

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The results are presented in Table 2. From the table, we observe that SQLGOVERNOR exhibits a
significant performance advantage when applied to industrial-level OLAP workloads. On average,
across the entire test set, SQLGOVERNOR achieves a 45.92% reduction in execution time and an
83.86-second reduction in absolute execution time. We also report the rewriting cost, i.e., the time
required to perform the rewriting itself, and the net benefit (∆), defined as the difference between
ETS and Cost. Notably, while SQLGOVERNOR incurs a relatively moderate rewriting overhead
(30.73s), it delivers the largest net benefit (+53.13s), demonstrating its practical viability in real-
world applications where query latency is critical.

Listing 3 presents an example of an rewritten SQL query from Payment-SQL. During the evaluation
stage, the LLM provided the following rewriting suggestions: (1) Use the WITH clause to explicitly
define the result of UNION ALL as a temporary table, making it easier for the rewriter to understand
and optimize the query. (2) In the UNION ALL step, explicitly select only the columns that are
actually needed, avoiding the retrieval and processing of unnecessary data.

Listing 3: Example of rewriting result from Payment-SQL.
-- Original SQL
SELECT AVG(duration)
FROM (

SELECT *, row_number() OVER (PARTITION by instanceid ORDER BY modifytime
DESC) AS id

FROM (
SELECT *
FROM table0
WHERE ds > ’0201’
UNION ALL
SELECT *
FROM table1
WHERE ds > ’0201’

) a
) b
WHERE id = 1 AND taskid IN (1, 12, 123) AND scriptid = 666
-- Rewritten SQL
WITH combined_data AS (

SELECT taskid, instanceid, scriptid, modifytime
FROM table0
WHERE ds > ’0201’
UNION ALL
SELECT taskid, instanceid, scriptid, modifytime
FROM table1
WHERE ds > ’0201’

)
SELECT AVG(duration)
FROM
(

SELECT *, ROW_NUMBER() OVER (PARTITION BY instanceid ORDER BY modifytime
DESC) AS id

FROM combined_data
) b
WHERE id = 1 AND taskid IN (1, 12, 123) AND scriptid = 666

5 CONCLUSIONS

In this work, we present SQLGOVERNOR, the first comprehensive LLM-based SQL toolkit with
integrated knowledge management. It unifies four core functionalities—syntax correction, query
rewriting, semantic refinement, and consistency verification—into a single framework powered by
a hybrid self-learning mechanism.

One of the key innovations lies in its fragment-wise processing strategy. By focusing on individ-
ual fragments such as subqueries and CTEs, the approach improves precision while reducing the
cognitive burden on LLMs. Moreover, SQLGOVERNOR incorporates an expert-guided hybrid self-
learning framework that continuously enhances performance by extracting patterns from execution
outputs and validating generated rules with minimal expert input.

Extensive experiments show that SQLGOVERNOR consistently boosts base models’ performance
by up to 10% in key metrics on benchmarks like BIRD and BIRD-CRITIC. Deployed in production
environments, it demonstrates strong utility and adaptability across real-world databases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Qiushi Bai. Improving SQL Performance Using Middleware-Based Query Rewriting. PhD thesis,
University of California, Irvine, 2023.

Qiushi Bai, Sadeem Alsudais, and Chen Li. Querybooster: Improving sql performance using mid-
dleware services for human-centered query rewriting. arXiv preprint arXiv:2305.08272, 2023.

Mahdi Banisharif, Arman Mazloumzadeh, Mohammadreza Sharbaf, and Bahman Zamani. Auto-
matic generation of business intelligence chatbot for organizations. In 2022 27th International
Computer Conference, Computer Society of Iran (CSICC), 2022.

Michelangelo Ceci, Alfredo Cuzzocrea, and Donato Malerba. Effectively and efficiently supporting
roll-up and drill-down olap operations over continuous dimensions via hierarchical clustering.
Journal of Intelligent Information Systems, 44, 2015.

Jipeng Cen, Jiaxin Liu, Zhixu Li, and Jingjing Wang. Sqlfixagent: Towards semantic-accurate sql
generation via multi-agent collaboration. arXiv preprint arXiv:2406.13408, 2024.

Hsinchun Chen, Roger HL Chiang, and Veda C Storey. Business intelligence and analytics: From
big data to big impact. MIS quarterly, 2012.

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and Denny Zhou. Teaching large language models
to self-debug. In The 61st Annual Meeting Of The Association For Computational Linguistics,
2023.

Edgar F Codd. Providing olap (on-line analytical processing) to user-analysts: An it mandate.
http://www. arborsoft. com/papers/coddTOC. html, 1993.

Haoran Ding, Zhaoguo Wang, Yicun Yang, Dexin Zhang, Zhenglin Xu, Haibo Chen, Ruzica Piskac,
and Jinyang Li. Proving query equivalence using linear integer arithmetic. Proceedings of the
ACM on Management of Data, 2023a.

Haoran Ding, Zhaoguo Wang, Yicun Yang, Dexin Zhang, Zhenglin Xu, Haibo Chen, Ruzica Piskac,
and Jinyang Li. Proving query equivalence using linear integer arithmetic. Proceedings of the
ACM on Management of Data, 2023b.

Rui Dong, Jie Liu, Yuxuan Zhu, Cong Yan, Barzan Mozafari, and Xinyu Wang. Slabcity: Whole-
query optimization using program synthesis. Proceedings of the VLDB Endowment, 2023.

BV Elasticsearch. Elasticsearch. software, version, 2018.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proceedings of the
VLDB Endowment, 2024a.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. Xiyan-sql: A multi-generator ensemble
framework for text-to-sql. arXiv preprint arXiv:2411.08599, 2024b.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, et al. Xiyan-sql: A multi-generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599, 2024c.

Gartner. Gartner forecasts worldwide it spending to grow 3 percent in 2022, 2022. URL https:
//www.gartner.com.

Sneha Gathani, Peter Lim, and Leilani Battle. Debugging database queries: A survey of tools, tech-
niques, and users. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, 2020.

Goetz Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 1995.

Goetz Graefe and William J McKenna. The volcano optimizer generator: Extensibility and efficient
search. In Proceedings of IEEE 9th international conference on data engineering, 1993.

10

https://www.gartner.com
https://www.gartner.com

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kem-
per. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint
arXiv:1809.00677, 2018.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian
Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise
text-to-sql workflows, 2024.

Alon Y Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. Query optimization by predicate move-
around. In VLDB, 1994.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2024a.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
2024b.

Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
Xiaohan Xu, Yue Zhang, et al. Swe-sql: Illuminating llm pathways to solve user sql issues in
real-world applications. arXiv preprint arXiv:2506.18951, 2025.

Zhaodonghui Li, Haitao Yuan, Huiming Wang, Gao Cong, and Lidong Bing. Llm-r2: A large
language model enhanced rule-based rewrite system for boosting query efficiency. arXiv preprint
arXiv:2404.12872, 2024c.

Jie Liu and Barzan Mozafari. Query rewriting via large language models. arXiv preprint
arXiv:2403.09060, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim
Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 Inter-
national Conference on Management of Data, 2021.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree
structures for programming language processing. In Proceedings of the AAAI conference on
artificial intelligence, 2016.

M Muralikrishna et al. Improved unnesting algorithms for join aggregate sql queries. In VLDB,
1992.

Torben Bach Pedersen and Christian S Jensen. Multidimensional database technology. Computer,
2001.

Hamid Pirahesh, Joseph M Hellerstein, and Waqar Hasan. Extensible/rule based query rewrite
optimization in starburst. ACM Sigmod Record, 1992.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 2024.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nadav Roiter. Boosting revenue and growth with a data flywheel, 2025.
URL https://brightdata.com/blog/brightdata-in-practice/
using-data-flywheel-to-scale-your-business.

Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Transactions on Database Systems
(TODS), 2017.

Ji Sun and Guoliang Li. An end-to-end learning-based cost estimator. arXiv preprint
arXiv:1906.02560, 2019.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Stackoverflow team. Stack overflow developer survey 2023, 2023a. URL https://survey.
stackoverflow.co/2023/.

StarRocks team. Starrocks, 2023b. URL https://github.com/StarRocks/starrocks.

Erik Thomsen. OLAP solutions: building multidimensional information systems. John Wiley &
Sons, 2002.

TPC. Tpc-h. URL https://www.tpc.org/tpch/.

Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Moseley, Saehan Jo,
Joseph Antonakakis, and Ankush Rayabhari. Skinnerdb: Regret-bounded query evaluation via
reinforcement learning. ACM Transactions on Database Systems (TODS), 2021.

Panos Vassiliadis and Timos Sellis. A survey of logical models for olap databases. ACM Sigmod
Record, 1999.

Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding, Chuzhe Tang, Haibo
Chen, and Jinyang Li. Wetune: Automatic discovery and verification of query rewrite rules. In
Proceedings of the 2022 International Conference on Management of Data, 2022.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
llm-as-a-meta-judge. arXiv preprint arXiv:2407.19594, 2024.

Zixuan Yi, Yao Tian, Zachary G Ives, and Ryan Marcus. Low rank learning for offline query
optimization. arXiv preprint arXiv:2504.06399, 2025.

Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin, Sheng Wang, Zhe
Chen, Feifei Li, Yue Pan, Fang Zheng, et al. Analyticdb: real-time olap database system at
alibaba cloud. Proceedings of the VLDB Endowment, 2019.

Yi Zhan, Longjie Cui, Han Weng, Guifeng Wang, Yu Tian, Boyi Liu, Yingxiang Yang, Xiaoming
Yin, Jiajun Xie, and Yang Sun. Towards database-free text-to-sql evaluation: A graph-based
metric for functional correctness. In Proceedings of the 31st International Conference on Com-
putational Linguistics, 2025.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025.

Fuheng Zhao, Lawrence Lim, Ishtiyaque Ahmad, Divyakant Agrawal, and Amr El Abbadi. Llm-
sql-solver: Can llms determine sql equivalence? arXiv preprint arXiv:2312.10321, 2023.

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. Automated verification
of query equivalence using satisfiability modulo theories. Proceedings of the VLDB Endowment,
2019.

Qi Zhou, Joy Arulraj, Shamkant B Navathe, William Harris, and Jinpeng Wu. Spes: A symbolic
approach to proving query equivalence under bag semantics. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE), 2022.

12

https://brightdata.com/blog/brightdata-in-practice/using-data-flywheel-to-scale-your-business
https://brightdata.com/blog/brightdata-in-practice/using-data-flywheel-to-scale-your-business
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/
https://github.com/StarRocks/starrocks
https://www.tpc.org/tpch/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. A learned query rewrite system
using monte carlo tree search. Proceedings of the VLDB Endowment, 2021.

Xuanhe Zhou, Zhaoyan Sun, and Guoliang Li. Db-gpt: Large language model meets database. Data
Science and Engineering, 2024.

A APPENDIX

A.1 KNOWLEDGE MANAGEMENT

To enhance the effectiveness of LLMs in SQL-related tasks, we design a knowledge management
module paired with dedicated recall and retrieving techniques. SQLGOVERNOR benefits from past
experiences and domain-specific insights to reduce redundant computations and improve both accu-
racy and consistency. To further automate knowledge acquisition and minimize reliance on manual
expert input, we implement structured knowledge bases inspired by the self-reinforcing data fly-
wheel mechanism Roiter (2025). Each knowledge base continuously accumulates and updates rules
from both successful and failure cases, enabling the system to improve over time with minimal
supervision.

DescriptionIndex
Pre-aggregate using a CTE and convert complex condition into 0/1 flags with the `MAX`

function and then use `SUM` to count these flags.
COUNT(DISTINCT)_SAME_

FIELD

Decompose multiple `COUNT(DISTINCT)` expressions within the same `SELECT` clause into
separate subqueries, each computing a single `COUNT(DISTINCT)` to enable parallel

execution. Subsequently, the results are combined using `JOIN` or `UNION ALL` operations.

COUNT(DISTINCT)_DIFFER
ENT_FIELD

Rewrite the `IN (SELECT xxx)` clause as a `JOIN (SELECT xxx)` operation and apply the
`MAPJOIN` hint to fully load the subquery’s corresponding small table into memory.IN(SELECT)

(a) “Rules”

TagDetailsIndex

IN(SELECT)

Raw SQL:
SELECT * FROM table1 WHERE id IN (SELECT id FROM table2 WHERE cond = 0)

Rewritten SQL:
SELECT /*+ MAPJOIN(t2) */ t1.* FROM table1 t1

JOIN (SELECT DISTINCT id FROM table2 WHERE cond = 0) t2 ON t1.id = t2.id

Embedding
of the raw

SQL’s
template

COUNT(DIS
TINCT)_SA
ME_FIELD

Raw SQL:
SELECT ds, COUNT(DISTINCT filed_1) as unique_filed_1,

COUNT(DISTINCT filed_2) as unique_filed_2, COUNT(DISTINCT filed_3) as unique_filed_3
FROM table GROUP BY ds

Rewritten SQL:
WITH filed_1_count AS (SELECT ds, COUNT(DISTINCT filed_1) as unique_filed_1

FROM table GROUP BY ds),
filed_2_count AS (SELECT ds, COUNT(DISTINCT filed_2) as unique_filed_2

FROM table GROUP BY ds),
filed_3_count AS (SELECT ds, COUNT(DISTINCT filed_3) as unique_filed_3

FROM table GROUP BY ds)
SELECT u.ds, u.unique_filed_1, o.unique_filed_2, p.unique_filed_3

FROM filed_1_count u JOIN filed_2_count o ON u.ds = o.ds JOIN filed_3_count p ON u.ds = p.ds

Embedding
of the raw

SQL’s
template

(b) “Historical Data”
Figure 3: Demonstration of the knowledge base serving the Query Rewriter tool.

Structure of the Knowledge Base The knowledge base is carefully structured to meet the diverse
needs of different SQL tools, with each tool having its own dedicated repository. Each repository
is divided into two sub-modules: “Rules” and “Historical Data”. The “Rules” sub-module contains
structured entries that provide actionable guidance for the LLM in addressing specific SQL-related
tasks. These rules include transformation patterns, rewriting strategies, and syntactic corrections,
enabling the model to apply well-defined solutions in a consistent manner. The “Historical Data”
sub-module stores high-quality, representative cases collected from real-world applications of the
SQL tools. By analyzing these past examples, the LLM can recognize recurring patterns and adopt
strategies that have proven effective in similar contexts.

Figure 3 illustrates the structure of the knowledge base used by the Query Rewriter. Each rule entry
consists of two fields: index, used for efficient retrieval, and description, which provides a detailed

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

explanation of the rule’s application and scope. Each historical data entry includes three fields: index
(for retrieval), details (a full description of the case), and tag, which links the case to relevant rule
indices, thereby facilitating cross-referencing between observed problems and applicable solutions.

Knowledge Storage and Retrieval To effectively support the diverse types of knowledge en-
tries, we design tailored storage and retrieval strategies for each sub-module of the knowledge base.
For the “Historical Data” module, all entries are stored in a vector database—specifically Star-
Rocks team (2023b). Retrieval is based on the structural and semantic similarity between SQL
templates. To facilitate this, we first extract the template of each SQL query by replacing concrete
identifiers (e.g., table and column names) with symbolic placeholders. This abstraction allows the
encoder to focus on high-level patterns rather than surface-level variations. During retrieval, the
input SQL is similarly transformed into a template, encoded into a vector representation, and used
to retrieve the top-k most similar historical cases via cosine similarity. These candidates are further
filtered using the Tag field to ensure alignment with the specific task or error type.

In contrast, the “Rules” module employs different strategies depending on its application con-
text. For the Query Rewriter, each rule is associated with a unique label (e.g., IN(SELECT))
that captures its applicability condition. We store these rules in an ElasticSearch Elastic-
search (2018) database to enable efficient exact matching during retrieval. For the Syntax Er-
ror Corrector, exception categories (e.g., RuntimeException, SqlValidatorException)
are often too coarse-grained to be informative. Therefore, we retain more detailed error
messages (e.g., SqlValidatorException: INNER, LEFT, RIGHT or FULL join
requires a condition (NATURAL keyword or ON or USING clause)) as re-
trieval targets. These messages are stored in a vector database. Given the verbosity of real-world
SQL execution logs, we first apply regular expressions to extract key information before encoding it
into vector representations for retrieval.

Hybrid Self-Learning Mechanism To ensure the knowledge base is both effective and actionable,
we adopt a multi-source initialization strategy tailored to each sub-module. For the “Rules” sub-
module, initialization involves aggregating knowledge from diverse sources and organizing it into
structured entries. For the Query Rewriter, the rule set is primarily sourced from domain experts and
is designed to complement the built-in optimization rules of the DBMS. These expert-defined rules
have been rigorously validated to ensure their practical effectiveness in real-world OLAP scenarios.
For the Syntax Error Corrector, the rule base is initialized using frequently asked questions (FAQs)
and common error-handling guidelines from technical documentation. These are formalized into
¡exception, fixing action¿ pairs and further mapped to the ¡index, description¿ structure for retrieval
compatibility. For the “Historical Data” sub-module, initialization is conducted in two ways: (1)
manually curating high-quality cases that align with existing rules, and (2) extracting representative
queries from execution logs. These cases are selected based on criteria such as execution frequency,
complexity, and historical performance, ensuring their relevance and utility in future inference tasks.

Furthermore, both sub-modules support incremental updates through the self-learning mechanism,
allowing the system to refine its knowledge over time based on new data and user feedback. Specifi-
cally, we design a rule update paradigm that automatically extracts supplementary rules by analyzing
SQL queries that fail to meet user requirements—such as those resulting in execution errors, return-
ing incorrect results, or exhibiting excessive runtime. A heuristic pattern recognition-based data
filtering algorithm is first applied to extract relevant features (e.g., error messages, query structures,
execution times) from execution logs. An LLM agent then analyzes this information, identifies
common inefficiencies or mistakes, and generates structured knowledge entries. The prompt used
for rule generation is presented in Listing 4.

Listing 4: Prompts for generating rules.
Task Description:

You are provided with an SQL query along with its execution outputs (e.g. logs and
results) from DBMS. Your task is to analyze the logs and results to identify
potential errors or inefficiencies in the query.

-
Instruction:

1. Review the execution logs and results to determine whether the query contains errors
or inefficiencies.

2. For each confirmed problem, try to distill it into a generalizable rule, including the
abstract problem pattern, detailed description, and its solution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

3. Convert your findings into JSON format, where the key is the problem pattern used as
index and the value is a detailed description of the problem along with possible
corrective actions.

-
Demonstration:

{Few-shot examples curated from previously validated rule entries.}
-

Question:
{SQL query and user query if necessary.}

-
Execution Outputs:

{From logs and results.}

To ensure accuracy and reliability, experts verify the newly generated rules based on predefined con-
ditions. We implement a threshold-triggered mechanism to maintain the relevance of the knowledge
base. Verification is triggered when either: (a) the number of new rules exceeds a threshold t1,
or (b) the time elapsed since the last update surpasses a threshold t2, where t1 = ⌊λ ·

√
Ncurrent⌋

and t2 = β · E[∆thistorical], with λ = 2.5 controlling capacity scaling and β = 1.3 for tempo-
ral adaptation. Here Ncurrent denotes the current number of rules, and E[∆thistorical] represents the
expected historical update interval. To avoid redundancy, semantically equivalent rules are iden-
tified and clustered through the following process: (a) The description field of rule ri is encoded
using RoBERTa-base Liu et al. (2019). (b) Compute the pairwise similarity. (c) Rules are grouped
around ri into Ck(i) based on the similarity score using DBSCAN Schubert et al. (2017). (d) Merge
semantically equivalent rules using centroid synthesis.

ei = RoBERTa(ri.get(description)) ∈ R768 (1)

s(ri, rj) =
e⊤i ej
∥ei∥∥ej∥

(2)

rnew = arg min
r∈Ck(i)

∑
ri∈Ck(i)

∥er − eri∥2 (3)

The updated rules are then applied to subsequent tasks, generating new data that perpetuates the
improvement cycle.

The update mechanism for the “Historical Data” sub-module is relatively straightforward. As men-
tioned earlier, for rules that have been validated by experts, we incorporate the corresponding in-
stances into the historical data. This continuous cycle of knowledge collection, validation, and
application ensures that the knowledge base remains up-to-date and effective, thereby enhancing the
overall performance of the LLM-based SQL toolkit.

A.2 EQUIVALENCE VERIFIER

We conduct a systematic review of representative SQL equivalence verification methods and sum-
marize their characteristics in Table 3.

Formal methods such as SPES Zhou et al. (2022) offer rigorous correctness guarantees through sym-
bolic execution but are limited in practical applicability due to type constraints and poor performance
on real-world benchmarks like TPC-H TPC. Graph-based approaches (e.g., FuncEvalGMN Zhan
et al. (2025)) achieve broader coverage via structural matching but require extensive model training,
leading to high deployment costs and limited generalization across diverse query patterns. LLM-
based solutions Zhao et al. (2023) employ advanced prompting techniques but still suffer from
limited accuracy on complex queries and exhibit positive bias in equivalence judgments Wu et al.
(2024).

Table 3: Comparison of representative SQL equivalence verification methods.

Method Technical
Basis

Correctness
Guarantee

Applicable
Scope

Deployment
Cost

SPES Zhou et al. (2022) Symbolic Execution ✓ Very Limited Low
SQLSolver Ding et al. (2023a) Formal Logic ✓ Limited Low
FuncEvalGMN Zhan et al. (2025) Graph Matching × General High
LLM-SQL-Solver Zhao et al. (2023) Probabilistic LM × General Medium
SQLGOVERNOR Probabilistic LM × SELECT-based DML Medium

To address these limitations, we propose a structured framework for SQL semantic equivalence ver-
ification, specifically tailored for SELECT-based DML queries in OLAP scenarios. Our approach

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

decomposes the verification process into two stages: (1) semantic intent extraction, which cap-
tures the meaning of each query using controlled LLM-mediated interpretation, and (2) hierarchical
consistency checking, which performs field-level alignment and derivation trace analysis to assess
equivalence.

In the first stage, each SQL query is translated into a structured natural language representation that
captures the provenance of every field in the main SELECT clause. This includes source tables,
transformation logic (e.g., aggregations or arithmetic expressions), and filtering or joining condi-
tions. To enhance interpretability, we adopt a stepwise parsing strategy that starts with the innermost
subqueries and progressively builds up the outer query semantics.

A lightweight pre-filtering module eliminates clearly inconsistent query pairs based on schema-level
heuristics, such as mismatches in field count or source tables. For remaining pairs, an LLM agent
performs detailed consistency analysis by aligning corresponding SELECT fields and reasoning
about semantic equivalence.

Our prompt design enforces bidirectional field mapping, supports counterexample generation for
non-equivalent pairs, and incorporates calibrated confidence scoring—ensuring both the inter-
pretability and reliability of the verification process.

A.3 RELATED WORK

Query Rewriting Query rewriting can be classified according to the stages of the SQL query
lifecycle. A typical query goes through several phases: parsing for syntax validation, binding for
schema resolution, optimization using a cost model, and execution by the database engine. Based
on this lifecycle, rewriting can be applied at different levels: (1) raw SQL queries before parsing,
(2) logical plans generated by the binder, or (3) physical plans produced by the optimizer within the
DBMS.

Physical plan rewriting focuses on selecting the most efficient execution plan among functionally
equivalent alternatives. The DBMS optimizer employs search algorithms—such as dynamic pro-
gramming Graefe (1995); Graefe & McKenna (1993)—to explore the space of physical plans with-
out exhaustive enumeration. A cost model is used to estimate the execution cost of each candidate
plan. Recent approaches have introduced machine learning and deep learning techniques Kipf et al.
(2018); Trummer et al. (2021); Sun & Li (2019) to enhance cost estimation and plan selection. How-
ever, these methods often suffer from long training times, limited adaptability across workloads, and
high integration costs.

An alternative approach that preserves the existing optimizer architecture is Bao Marcus et al.
(2021), which integrates a Tree Convolutional Neural Network Mou et al. (2016) with Thompson
sampling to guide the selection of better hint sets. This hybrid approach improves plan generation
without requiring a complete redesign of the optimizer, thereby balancing innovation with system
compatibility.

Logical plan rewriting involves transforming a tree-structured representation of query operations,
focusing on what to compute rather than how to compute it. This process is primarily driven by
rule-based pattern matching, where heuristic rules—such as predicate push-down and operation
merging—guide the transformation Levy et al. (1994); Pirahesh et al. (1992); Muralikrishna et al.
(1992). Recent efforts aim to automate rule discovery. WeTune Wang et al. (2022) uses brute-
force enumeration to identify and validate new rules, enhancing the internal optimizer’s capabilities.
QueryBooster Bai et al. (2023) introduces a connector for user-defined rules, enabling task-specific
rewriting strategies. Traditional rule application orders are often fixed and suboptimal. LR Zhou
et al. (2021) applies Monte Carlo Tree Search to explore effective rewriting sequences, while LLM-
R2 Li et al. (2024c) leverages large language models to recommend context-aware rewriting rules,
improving adaptability and generalization.

End-to-end SQL rewriting aims to enhance transparency and usability by rewriting queries before
they enter the DBMS pipeline. This approach enables holistic transformations and avoids the lim-
itations of local rewriting efforts. Recent studies have explored the use of Large Language Models
(LLMs) to facilitate this process. The DB-GPT framework Zhou et al. (2024) categorizes such ap-
proaches into three paradigms: in-context learning, LLM fine-tuning, and DB-specific pre-training.
GenRewrite Liu & Mozafari (2024), a representative in-context learning method, designs prompts to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

guide LLMs in SQL rewriting and stores generated natural language rules in the NLR2s repository
for reuse. To mitigate LLM hallucinations, GenRewrite includes a validation and correction step to
ensure the reliability of the rewritten queries.

Additionally, middleware-based rewriting has been explored to offload optimization tasks from the
DBMS. This approach provides a flexible layer between the application and the database, enabling
query transformation before execution Bai (2023). Similarly, query rewriting has been integrated
into human-in-the-loop systems to support interactive data exploration, where users can iteratively
refine queries based on intermediate results.

Query Error Detection and Correction SQL query errors fall into two categories: syntax errors
and semantic errors. Syntax errors occur when a query violates SQL’s syntactical rules, preventing
execution. Traditional debugging methods, as noted by Gathani et al. Gathani et al. (2020), lack
automated correction and instead help users identify errors through techniques like visualizing in-
termediate results. Semantic errors arise when a query fails to return expected data, indicating a
mismatch between the query’s output and the user’s intent. Verifying query equivalence is crucial
in NL2SQL conversion Pourreza et al. (2024); Talaei et al. (2024); Gao et al. (2024c) and query
rewriting models Dong et al. (2023); Liu & Mozafari (2024); Wang et al. (2022). Existing SQL
equivalence provers use algebraic representations to verify query equivalence by solving mathemat-
ical problems Ding et al. (2023b); Zhou et al. (2019), offering high reliability but at high compu-
tational cost. For loosely bounded verification, heuristic rules and counterexample construction are
employed Dong et al. (2023), while some studies leverage LLMs for reasoning and judgment Liu &
Mozafari (2024).

Algorithm 1: Fragment Processing Strategy
Input: SQL query Q
Output: Analysis result set S

1 S ← ∅ ; // Initialize result set
2 D ← ∅
3 Qmain, {Qctej} ← divide CTE(Q)
4 if Qmain = ∅ then
5 return ∅
6 end
7 {Qsubi} ← parse subqueries(Qmain)
8 foreach Qsub ∈ {Qsubi} do
9 Ssub ← fragment processing(Qsub)

10 S ← S ∪ Ssub

11 end
12 foreach Qcte ∈ {Qctej} do
13 Scte ← fragment processing(Qcte)
14 S ← S ∪ Scte

15 end
// Main query analysis (details omitted)

16 return S

A.4 DATASETS AND METRICS

Datasets. To comprehensively evaluate the performance of SQLGOVERNOR, we select two rep-
resentative benchmarks: BIRD-CRITIC Li et al. (2025) and BIRD Li et al. (2024b). Additionally,
we have constructed a new dataset named Payment-SQL, which comprises analytical SQL queries
derived from real industrial scenarios, specifically designed to evaluate performance in handling
complex and diverse queries.

BIRD-CRITIC is an innovative SQL benchmark crafted to evaluate the critical capabilities of LLMs
in diagnosing and resolving user issues within real-world database environments. The benchmark
categorizes issues into four domains: Query, Management, Personalization, and Efficiency. These
categories align with the core functionalities of SQLGOVERNOR. For our experiments, we utilize

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

a light version, bird-critic-1.0-flash-exp, which consists of 200 user issues on Post-
greSQL.

BIRD serves as a challenging large-scale database text-to-SQL evaluation benchmark, designed to
bridge the gap between academic research and practical applications. It encompasses 95 extensive
databases and high-quality text-SQL pairs, with data storage reaching up to 33.4GB, spanning 37
professional fields. The validation set includes 1,534 test entries, offering a comprehensive evalua-
tion of text-to-SQL translation capabilities. Notably, in utilizing this dataset, we employ SQLGO-
VERNOR as a post-processing tool for NL2SQL models, aimed at further enhancing the quality of
generated SQL queries.

Payment-SQL dataset originates from real-world industrial OLAP scenarios and is curated by hu-
man experts based on execution logs. It contains 50 SQL queries, each involving an average of
2 tables and 11 columns, drawn from a schema of 74 tables with thousands of fields. Designed
specifically for evaluating SQL rewriting systems, Payment-SQL measures effectiveness through
execution time comparisons before and after rewriting in the same environment—directly reflect-
ing real-world performance gains. A key feature of Payment-SQL is its complexity: the average
query length is 421 tokens , far exceeding that of BIRD’s challenging category (107 tokens). Ac-
cording to Spider 2.0 Lei et al. (2024), where queries over 160 tokens are considered difficult, even
the shortest query in Payment-SQL (173 tokens) qualifies as hard, with the longest reaching 1169
tokens. This makes Payment-SQL a rigorous and realistic benchmark for evaluating the robustness
and scalability of SQL rewriting techniques in industrial applications. The dataset is available at
https://anonymous.4open.science/r/SQLGovernor-33DF.

Evaluation Metrics. On the BIRD-CRITIC-FLASH dataset, we follow the official guidelines and
use the success rate (SR) as the metric, as it effectively evaluates multiple aspects of performance
due to the well-designed test cases. For the BIRD dataset, we employ both Execution Accuracy
(EX) and Valid Efficiency Score (VES) metrics to comprehensively evaluate performance. In the
case of the Payment-SQL dataset, rewriting effectiveness is assessed using Execution Time Saved
(ETS) and Execution Time Optimization Gain (ETOG), calculated as follows:

ETS = ETpre − ETpost, ETOG =
ETS
ETpre

× 100%, (4)

where ETpre represents the execution time before rewriting and ETpost represents the execution
time after rewriting. It is worth noting that when using ETS and ETOG to evaluate SQL rewriting
tasks, we typically execute both the pre-optimized and post-optimized SQL queries in the same
system while excluding interference factors such as execution caching to ensure the objectivity and
reliability of the test results.

A.5 MORE ABLATION STUDY

Error Correction To evaluate the error correction capabilities of SQLGOVERNOR, we collect a
set of syntactically and semantically incorrect SQL queries generated by two strong LLM-based
NL2SQL systems—CodeS-7B and CodeS-15B—on the BIRD dataset. Queries that failed to exe-
cute due to syntax errors are fed into the Syntax Error Corrector, while those exhibiting semantic
misalignment are routed to the Query Modifier for refinement.

Table 5 presents the results of the error correction capabilities in SQLGOVERNOR. The findings
indicate that the module demonstrates strong error correction performance on the BIRD datasets,
as evidenced by the predictive results from both baseline models. For the CodeS-7B model, we
analyzed 691 erroneous cases, yielding an overall EX rate of 25.8%. Performance across difficulty
levels shows EX rates of 26.4% for simple cases, 26.2% for moderate cases, and 22.0% for challeng-
ing cases. In contrast, the CodeS-15B model, evaluated on 667 erroneous cases, achieved an overall
EX rate of 25.2%, with rates of 26.9% for simple cases, 23.1% for moderate cases, and 25.0% for
challenging cases.

Equivalence Verification We use the predictive results from the CodeS-7B model alongside
golden SQL queries to establish positive and negative pairs. Correctly predicted SQL queries are
classified as equivalent with the golden SQL (labeled as true), while incorrectly predicted queries
are deemed nonequivalent (labeled as false). The results are presented in Table 6. We report two

18

https://anonymous.4open.science/r/SQLGovernor-33DF

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Evaluation on BIRD’s dev set.

Methods Dev set
EX(%) VES(%)

Prompt-based base models
Codex Li et al. (2024b) 34.35 43.41
ChatGPT Li et al. (2024b) 37.22 43.81
GPT-4 Li et al. (2024b) 46.35 49.77
DIN-SQL + GPT-4 Pourreza & Rafiei (2024) 50.72 58.79
DAIL-SQL + GPT-4 Gao et al. (2024a) 54.76 56.08

Fine-tuning-based base models
T5-3B Li et al. (2024b) 23.34 25.57
CodeS-7B Li et al. (2024a) 57.17 58.80
CodeS-15B Li et al. (2024a) 58.48 59.87
XiYan-32B Gao et al. (2024b) 67.01 67.79

With post-processing tools
CodeS-7B + SQLFixAgent Cen et al. (2024) 60.17 (↑3.00) 63.15 (↑4.35)

CodeS-7B + SQLGOVERNOR 64.02 (↑6.85) 64.72 (↑5.92)
CodeS-15B + SQLGOVERNOR 65.32 (↑6.84) 67.87 (↑8.00)
XiYan-32B + SQLGOVERNOR 68.97 (↑1.96) 70.89 (↑3.10)

Table 5: Error correction performance on the BIRD’s dev set including syntactic and semantic levels.

Error Data Statistics Total Simple Mod. Chall.
#CodeS-7B Error Case 691 333 267 91
EX(%) 25.8 26.4 26.2 22.0

#CodeS-15B Error Case 667 324 255 88
EX(%) 25.2 26.9 23.1 25.0

metrics-accuracy and F1 score-and present the results in Table 6, the overall accuracy for verification
is 78.9% and F1 score is 79.3%, indicating effective performance of the Verifier. It is noteworthy
that the scores for challenging queries are lower than those for simpler queries, which is expected
given the increased complexity of the SQL statements.

Table 6: Equivalence verification performance on the predictive results of CodeS-7B.

Data Category Total Simple Mod. Chall.
Verif. Accuracy(%) 78.9 81.2 76.9 71.0
Verif. F1(%) 79.3 84.3 69.9 57.1

A.6 DETAILED EXPERIMENTAL ANALYSIS

Capability in processing long and complex SQL We analyze the capability of SQLGOVERNOR
in handling long SQL queries from two common scenarios: error correction and rewriting. Fig-
ure 2a presents the detailed performance of SQLGOVERNOR when using CodeS-7B, CodeS-15B,
and XiYan-32B as base models. The shaded bars illustrate the performance improvement achieved
by SQLGOVERNOR over the base models. SQLGOVERNOR consistently outperforms the base
models across all categories, with particularly notable gains in the Challenge SQL section of the
BIRD dataset.

Furthermore, Table 2 illustrates the rewriting performance of SQLGOVERNOR on the industrial-
level dataset Payment-SQL. Compared to general-purpose LLMs, SQLGOVERNOR exhibits a clear
advantage in SQL rewriting tasks. Notably, the average token length of Payment-SQL reaches 421,
far exceeding the complexity of SQL queries in the BIRD dataset. Additionally, all SQL queries in
Payment-SQL meet the Hard SQL standard defined by Spider 2.0 Lei et al. (2024) (token length ¿

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

160). These results strongly demonstrate the superior rewriting capability of SQLGOVERNOR in
handling long and complex SQL queries.

Validation of productivity improvement To validate the effectiveness of SQLGOVERNOR in ad-
dressing productivity bottlenecks caused by fragmented SQL tool-chains, we conducted a controlled
A/B testing with 60 practitioners from in-production data platform. Participants were stratified by
SQL expertise (30 experts and 30 non-experts) and uniformly assigned to two groups-Group A: Uti-
lizing the integrated SQLGOVERNOR framework; Group B: Operating equivalent discrete modules
through manual orchestration. Each subject executed 50 standardized SQL governance tasks span-
ning evaluation, correction, rewriting, verification. We systematically measured-task completion
time and tool-switching frequency. Results demonstrated statistically significant advantages for the
integrated framework. Group A achieved 33% faster task completion, with non-experts exhibiting
greater efficiency gains (41% improvement) compared to 25% for experts. This disparity corre-
lates with Group B’s tool-switching patterns, where practitioners incurred 18% temporal overhead
reconstructing workflow contexts between discrete modules. The empirical evidence quantitatively
confirms that SQLGOVERNOR’s unified pipeline effectively mitigates fragmentation-induced pro-
ductivity loss, particularly benefiting non-specialist users.

“Evolving with every step” To validate the effectiveness of our expert-guided hybrid self-learning
mechanism in continuously enhancing the performance of SQLGOVERNOR across various SQL-
related tasks, we collect and retain results at different stages for an end-to-end task and an individual
tasks. This approach allows us to assess how SQLGOVERNOR improves its capabilities through
self-learning.

Specifically, for the end-to-end task, we use the predictive results of CodeS-15B on the BIRD’s dev
set. For SQL rewriting task, we choose the Payment-SQL dataset to examine the iterative gains
of SQLGOVERNOR in long SQL rewriting scenarios. The experimental results shown in Figure 4
demonstrate that the hybrid self-learning approach not only enhances the performance of SQLGO-
VERNOR but also provides a reliable foundation for its continuous rewriting in real-world industrial
applications. Moreover, the effectiveness of this mechanism further validates the feasibility of tran-
sitioning from expert-centric knowledge base construction to an expert-guided hybrid self-learning
framework, thereby providing methodological support for reducing the cost of complete reliance on
experts for knowledge collection and maintenance.

0 5 10 15 20 25
Number of Consumed Data (x100)

0

4

8

12

16

20

Nu
m

be
r o

f R
ul

es

20

25

30

35

40

45

50

ET
OG

 (%
)

(a) Rewriting

0 20 40 60 80 100
Proportion of Consumed Data (%)

0

5

10

15

20

25

Nu
m

be
r o

f R
ul

es

Knowledge Base 1
Knowledge Base 2
Knowledge Base 3
Knowledge Base 4

58

61

64

67

EX
 (%

)

(b) End-to-End

Figure 4: The performance metrics of SQLGOVERNOR across different stages of self-learning. The
bar chart corresponds to the left y-axis, while the line chart corresponds to the right y-axis.

20

	Introduction
	Framework Design
	Specialized SQL Tools
	Fragment Processing Strategy
	Query Rewriter
	Query Modifier
	Syntax Error Corrector

	Experiments
	Main Results
	Ablation Study

	Conclusions
	Appendix
	Knowledge Management
	Equivalence Verifier
	Related Work
	Datasets and Metrics
	More Ablation Study
	Detailed Experimental Analysis

