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The area of network traffic classification, which aims at labeling network traffic according to application or
application type, is constantly evolving. When classification based on port inspection got deployed, applica-
tions started using dynamic ports. Then, the deployment of deep-packet inspection caused some applications
to use encryption or variable length padding. Every new application development triggers new traffic classi-
fication techniques. Often each technique is tested in different environments and using proprietary network
traces making it hard to reproduce the results, compare techniques, and fully understand the limits and ben-
efits of each technique.

This paper presents a tool to benchmark traffic classification techniques, called NeTraMark. NeTraMark is
extensible, so researchers can plug-in their techniques to compare to other classification algorithms.
NeTraMark already includes implementations of eleven existing classification algorithms ranging from port
and deep-packet inspection to graph-based classifiers. It also implements a number of evaluation metrics and
a visualization module. Researchers can easily compare the results of classification techniques under the
same metrics. Since publicly available full-payload traces are rare, NeTraMark can be deployed at different
sites to run on locally available data sets. In summary, NeTraMark combines a number of features that should
facilitate the life of developers of traffic classification techniques. The source code is available, so we should
all contribute with our own algorithms and techniques. A community effort should lead to better standards
for evaluating traffic classification techniques.

Public review written by
Renata Teixeira 

Laboratoire d'Informatique de Paris 6 (LIP6)
CNRS and UPMC Sorbonne Universités, France

a c m             s i g c o m m

ACM SIGCOMM Computer Communication Review 22 Volume 41, Number 1, January 2011

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1925861.1925865&domain=pdf&date_stamp=2011-01-22


NeTraMark: A Network Traffic Classification Benchmark

Suchul Lee
Seoul National University

sclee@popeye.snu.ac.kr

Hyun-chul Kim
Seoul National University

hkim@mmlab.snu.ac.kr

Dhiman Barman
Juniper Networks

tenida@gmail.com

Sungryoul Lee
Seoul National University

srlee@popeye.snu.ac.kr

Chong-kwon Kim
Seoul National University

ckim@snu.ac.kr

Ted "Taekyoung" Kwon
Seoul National University
tk@mmlab.snu.ac.kr

ABSTRACT
Recent research on Internet traffic classification has pro-
duced a number of approaches for distinguishing types of
traffic. However, a rigorous comparison of such proposed
algorithms still remains a challenge, since every proposal
considers a different benchmark for its experimental evalua-
tion. A lack of clear consensus on an objective and scientific
way for comparing results has made researchers uncertain
of fundamental as well as relative contributions and limi-
tations of each proposal. In response to the growing ne-
cessity for an objective method of comparing traffic clas-
sifiers and to shed light on scientifically grounded traffic
classification research, we introduce an Internet traffic clas-
sification benchmark tool, NeTraMark. Based on six de-
sign guidelines (Comparability, Reproducibility, Efficiency,
Extensibility, Synergy, and Flexibility/Ease-of-use), NeTra-
Mark is the first Internet traffic classification benchmark
where eleven different state-of-the-art traffic classifiers are
integrated. NeTraMark allows researchers and practition-
ers to easily extend it with new classification algorithms
and compare them with other built-in classifiers, in terms
of three categories of performance metrics: per-whole-trace
flow accuracy, per-application flow accuracy, and computa-
tional performance.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

General Terms
Design, Management, Measurement, Performance

Keywords
Benchmark, Traffic classification

1. INTRODUCTION
Traffic classification has gained substantial attention with-

in the Internet research and operations communities. Traf-
fic classification is used to measure, understand and predict
patterns and trends of network resource usage. Specific us-
ages include network provisioning, capacity planning, pro-
tecting networks against security threats, etc. All the issues
over the appropriate use and pricing of the Internet, such
as (i) the tussle between file sharing user communities and
intellectual property representatives like RIAA (Recording
Industry Association of America) and MPAA (Moving Pic-
ture Association of America), (ii) the continuous struggle

between malicious hackers and Internet security companies,
and (iii) the network neutrality debate [22] between network
service providers and content/application service providers,
boil down to the ability of network operators to know what
kind of traffic goes over their network [6].

Until the fall of 2002, when P2P file sharing applications
like KaZaA started using dynamic ports, traffic classification
had largely relied on the use of transport layer port num-
bers. As increasingly popular applications like P2P file shar-
ing attempt to evade their identity by dynamically assign-
ing ports and/or masquerading into the well-known ports
of other applications, port-based classification has become
less reliable [14]. As a more accurate and reliable approach,
Deep Packet (Payload) Inspection (DPI) technique looks at
the packet payloads to classify traffic as many applications
write their signatures in the first few bytes in the payload.
While DPI has been found very accurate once given a set of
unique payload signatures for corresponding applications,
it fails to work on encrypted traffic and entails significant
privacy and legal concerns, which often preclude access to
payload data. Worse, some applications like Gnutella (and
its variants) have evolved to get around DPI as well by using
variable length padding1 [18].

The research community has responded by developing clas-
sification techniques capable of inferring application-specific
communication and/or statistical patterns without inspec-
tion of packet payloads, most of which are categorized into
(i) host-level communication behavior-based approaches rep-
resented by BLINC [13] and Traffic Dispersion Graphs (TDG)
[11, 12], which inspect “social interaction” for classification,
and (ii) statistical approaches where data mining techniques
are applied on a variety of traffic flow features such as packet
size, inter-packet arrival time, etc [15, 16, 17, 20].

Despite a variety of algorithms proposed for traffic clas-
sification, mutual comparison of them and the quantifica-
tion of benefits of one approach over another still remain a
challenge, since every paper considers different performance
metrics, application categories, codes, datasets (typically
locally collected since there is few publicly available trace
data to use as a benchmark [9, 6]), and even ground-truth
for its experimental evaluation [6, 9, 19]. This lack of an
objective and head-to-head comparison/benchmark frame-
work has left researchers and practitioners little basis for
consensus on what approach to use when and where, and
how could an approach be improved upon (or extended) to

1Erman et al.’s measurements indicate that 400 payload
bytes of each packet is required to identify 90% of the
Gnutella flows using payload signatures [18].
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identify a specific type of and/or all the existing network
applications [6].

In response to the growing necessity for a traffic classifi-
cation benchmark with which researchers and operators can
compare different approaches in an objective way, we present
an extensible Internet traffic classification benchmark frame-
work, named NeTraMark2. We believe NeTraMark’s design
principles and implementation lay a foundation on which
scientifically grounded (i.e., comparable and reproducible)
traffic classification research will be enabled.

We highlight the main contributions from this paper:
1) We identify six key requirements (Comparability, Re-

producibility, Efficiency, Extensibility, Synergy, and Flexib-
ility/Ease-of-use) for a traffic classification benchmark, in-
spired from the previous work and experiences of Salgar-
elli et al. [9] and Kim et al. [6]. A benchmark tool fulfilling
these requirements should help researchers and operators (i)
understand fundamental contributions and limitations of ex-
isting approaches as well as new proposals of their own, and
(ii) choose what approach(es) to use for a specific purpose
in a given environment (e.g., a single approach vs. multi-
ple combined approaches, backbone vs. edge link, target
applications or threats, etc.)

2) We present NeTraMark. As it is designed and im-
plemented on the basis of the above six requirements, the
capabilities of NeTraMark are not limited to the compari-
son of multiple traffic classification approaches. It also en-
ables users to achieve various classification needs in the field
of network monitoring and operation; for example, a user
might be more interested in finding heavy P2P traffic sources
while others might be interested in detecting malicious traf-
fic. Similarly, different users might focus on different per-
formance metrics.

NeTraMark has the following three key features.
First, it incorporates a rich set of eleven state-of-the-

art traffic classification approaches in its classification en-
gine. The suite of classifiers includes: (i) the payload-based
classifier, crl pay, which has been developed and widely
used by the Internet research community3 [6, 13, 7, 12], (ii)
the graph-based classifiers, BLINC and Traffic Dispersion
Graphs, (iii) the CoralReef’s [1] ports-applications match-
ing database (i.e., ports-based classifier), (iv) the seven most
commonly used machine learning algorithms such as C4.5
Decision Tree, Naive Bayes, Naive Bayes Kernel Estima-
tion, Bayesian Networks, k-Nearest Neighbors, Neural Net-
works and Support Vector Machines [6], and (v) a combined
weight-based classifier which takes classification results from
some or all of the aforementioned classifiers and performs a
weighted voting process to derive a single best classification
result4.

NeTraMark enables users to perform a thorough eval-
uation of these traffic classification algorithms, based on
six performance metrics: per-trace accuracy (Overall Ac-
curacy), per-application accuracy (Precision, Recall, and F-
Measure), and computational performance (Learning Time
and Classification Time). To the best of our knowledge, this
is the first work that has undertaken this challenging task
of integrating the state-of-the-art classification engines.

2NeTraMark was demonstrated in the IEEE INFOCOM
Demo Session, San Diego, CA, March 2010.
3The crl pay and BLINC codes have been distributed to >
30 universities and research institutes.
4The combined classifier may not always perform the best.

Second, NeTraMark allows researchers and practitioners
to extend it with new classification algorithms easily and
compare their performance with that of the eleven existing
ones. Users can combine multiple classifiers to test for pos-
sible synergies (i.e., more accurate and complete results).

Third, NeTraMark has adapted the interactive visualiza-
tion module of BLINC and TDG graphs (which capture
transport layer communication and social behavior of hosts
as shown in Fig. 3 and Fig. 4). This helps users further ex-
amine and identify new P2P or malicious traffic flows whose
classification results are left “unknown” with the incorpo-
rated classifiers.

3) We make the the NeTraMark source code available5 for
researchers or practitioners interested in validating or ex-
tending this benchmark tool. We believe that NeTraMark
will facilitate both the research and operation communities
pursuing the direction of comparable and reproducible traf-
fic classification research, to address the one of the foremost
challenges in this field: effectively comparing between the
many proposed approaches [19].

The rest of this paper proceeds as follows. We first re-
view the requirements for a traffic classification benchmark
in Section 2. Section 3 describes the architecture design, im-
plementation, and usage examples of NeTraMark. Section 5
concludes the paper.

2. REQUIREMENTS ANALYSIS
NeTraMark has been developed based on six key require-

ments as discussed in this section.
Comparability : A benchmark tool should facilitate users

to evaluate candidate algorithms on the same performance
metrics and traces [9]. It is also desirable that the bench-
mark tool retains the definitions of application classes/categ-
ories of different classification methods, yet in a comparable
way [9]. This requirement helps users quantify improve-
ments of one approach over others.

Reproducibility : To verify the results obtained by differ-
ent research groups, classification approaches and their re-
sults must be reproducible within the framework of a bench-
mark tool. Often results from different groups have not been
reproducible as the codes and datasets used in their exper-
imental evaluation are not shared nor publicly available [9,
19, 6]. Note that reproducibility is also important to stim-
ulate adoption of a traffic classification algorithm.

Efficiency : Traffic classification involves processing of
voluminous datasets which is both time-consuming and re-
source intensive. Efficiency in running a benchmark tool is
a key to experimental productivity.

Extensibility : Researchers and practitioners should be
able to easily extend the benchmark’s features. In particu-
lar, users should be able to incorporate new algorithms and
compare them with existing ones.

Synergy : Every traffic classification method has its own
strengths and weaknesses. For example, payload-based clas-
sifiers are not applicable to encrypted traffic data. Careful
combinations of classifiers may be synergistic and result in
more accurate and complete classifications [6, 8]. A traf-
fic classification benchmark should allow users to test and
obtain synergy by combining multiple classification methods
on a given dataset such that a combined classifier (i) outper-

5http://popeye.snu.ac.kr/∼sclee/NeTraMark, on a per-
request basis, for research purposes only.
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Figure 1: Block diagram of the NeTraMark software suite

forms every individual method, and (ii) performs tasks that
are not supported by any single method (e.g., further in-
vestigation on “Unknown”-labeled traffic with multiple ap-
proaches.)

Flexibility/Ease-of-use: a traffic classification bench-
mark tool should allow users to configure various traffic clas-
sifiers in a variety of settings in a flexible and easy way, ei-
ther interactively or via batch. Different elements such as
pre-processing of data, selection of flow features, data for-
mat conversion, deciding on ground-truth reference should
be automated and/or pipe-lined whenever necessary.

In the next section, we present the architecture and im-
plementation of NeTraMark meeting these six requirements.

3. NETRAMARK

3.1 Performance Metrics
Using the same and appropriate metrics to evaluate the

performance of traffic classification algorithms constitutes
the basis of a benchmark. To (i) avoid the coarseness of
evaluating performance over an entire trace rather than for
each application contained in it [6] and (ii) eliminate the
bias known as the “class imbalance problem” [19], NeTra-
Mark assesses the performance of each algorithm on a per-
application basis using the following four metrics: overall
accuracy, precision, recall, and F-Measure. For a given ap-
plication class, the number of correctly classified flows6 is
referred to as the True Positives (TP). False Positives (FP)

6Currently, NeTraMark does not adopt “byte accuracy”,
which is also an important measure for a traffic classifier’s
performance [19]. It will be incorporated in the next release
of NeTraMark.

is the number of flows falsely ascribed to a given application.
False Negatives (FN) is the number of flows from a given ap-
plication that are falsely labeled as another application.

•Overall accuracy is the ratio of the sum of all True Posi-
tives to the sum of all the True Positives and False Positives
for all classes. We apply this metric to measure the accu-
racy of a classifier on the whole trace set. The following
three metrics are used to evaluate the quality of classifica-
tion results for each application class.

•Precision = TP/(TP + FP ), or the percentage of flows
that are properly attributed to a given application.

•Recall = TP/(TP + FN), or the percentage of flows in
an application class that are correctly identified.

•F-Measure, a widely-used metric in information retrieval
and classification [21], considers both precision and recall in
a single metric by taking their harmonic mean: 2 × Preci-
sion × Recall / (Precision + Recall). NeTraMark uses this
metric to compare and rank the per-application performance
of classifiers.

In addition, NeTraMark also evaluates the computational
performance of traffic classifiers, using the following two
metrics7:

•Classification time is the time spent for a classifier to
perform classification operations on a given data set.

7NeTraMark evaluates the computational performance of
concrete implementations plugged into its own platform, not
the theoretical complexity of the algorithms because (i) all
the plugged-in codes are real implementations developed and
used in previous traffic classification efforts [6, 1, 15, 13, 11,
2, 17, 20, 16], and (ii) this approach yields tangible perfor-
mance numbers for comparisons [20]. Optimized implemen-
tations would likely yield faster learning and classification
speeds for all classifiers.
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Table 1: Application Categories
Category Application/protocol
Web HTTP, HTTPS
P2P FastTrack, eDonkey, BitTorrent, Ares,

Gnutella, WinMX, OpenNap, MP2P,
SoulSeek, Direct Connect, GoBoogy,
Soribada, PeerEnabler, Napster
Blubster, FileBEE, FileGuri, FilePia
IMESH, ROMNET, HotLine, Waste

FTP FTP
DNS DNS
Mail/News BIFF, SMTP, POP, IMAP, IDENTD, NNTP
Streaming MMS(WMP), Real, Quicktime, Shoutcast,

Vbrick Streaming, Logitech Video IM
Backbone Radio, PointCast, ABACast

Network Operation Netbios, SMB, SNMP, NTP
SpamAssasin, GoToMyPc, RIP
ICMP, BGP, Bootp, Traceroute

Encryption SSH, SSL, Kerberos, IPSec, ISAKMP
Games Quake, HalfLife, Age of Empires, DOOM

Battle field Vietnam, WOW, Star Sieze
Everquest, Startcraft, Asherons, HALO

Chat AIM, IRC, MSN Messenger, Yahoo messenger
IChat, QNext, MS Netmeet, PGPFone, TALK

Attack Address scans, Port scans
Unknown -

•Learning time is the time spent for an (supervised ma-
chine learning) algorithm to build a classification model us-
ing a given training data set.

A flow is defined on its 5-tuple (source IP address, destina-
tion IP address, transport protocol, source port, destination
port) with a timeout of 64 seconds [5].

3.2 Application Categories
Another issue to consider when comparing multiple classi-

fiers is that the definition of application classes varies across
the classifiers [10, 9, 6]. The scope and goal of different
methods render them incomparable in some cases. For ex-
ample, BLINC does not distinguish between BitTorrent and
Gnutella as different P2P applications and clubs them un-
der P2P application, while CoralReef can identify individual
P2P applications.

We use the definition of group classes and assign each ap-
plication into a relevant group as in [10, 6, 1]. This is to
address the “Comparability” requirement, which allows us
to (i) compare a technique that classifies traffic into specific
applications with another classifying into group classes, and
(ii) do a higher-level (group-class level) performance com-
parison. By default, NeTraMark is configured to use applica-
tion classes as shown in Table 1. The default categorization
has been derived from those of the default component clas-
sifiers: CoralReef, BLINC, crl pay, etc. Users can change
and update the default application categories by modify-
ing the NeTraMark source code, as new applications may
appear over time or different categorizations may be more
appropriate in different contexts [9]. For example, the “Net-
work Operation” category may include different application
protocols or may be further divided into a few subcategories
when needed.

3.3 Architecture and Implementation
We present the architecture overview of NeTraMark in

Fig. 1, which consists of five parts: (1) Graphical and
command-line user interface for interactive and batch pro-
cessing, (2) Data preprocessing for traffic flow feature se-
lection, feature discretization, input data format conversion

and other related tasks, (3) Traffic Data Repository from/to
which datasets are retrieved and stored, (4) PostgreSQL-
based [3] Project Database where classification results are
stored in a fast and efficient manner, for later retrieval and
re-use, and (5) Classification engine, currently comprised
of eleven state-of-the-art traffic classification methods: the
payload-based classifier crl pay, BLINC (including the Re-
verse BLINC module [6]), Traffic Dispersion Graph (TDG),
CoralReef’s ports-based classification DB (the up-to-date
version 3.8 [1]), and the seven most often-used machine
learning algorithms from WEKA[2]. Moreover, NeTraMark
also provides a combined weight-based classification method,
which takes prediction results from the other classifiers and
performs a weighted voting process to derive a single best
classification.

3.3.1 Project Management
NeTraMark operates on voluminous trace data with multi-

ple classification algorithms, rendering a benchmarking pro-
cess both time-consuming and resource-intensive. In order
to achieve efficiency in running several benchmarking exper-
iments and avoid unnecessary repetition of the same exper-
iments, NeTraMark stores classification benchmark results
in “Project” DB.

Each project consists of four components: (1) Task : a set
of classifiers selected by users for benchmarking, (2) Times-
tamp: the (UNIX) system time at which the project started,
(3) Flow-table: a collection of flows (generated with 5 min.
interval by default) with the user-selected flow features and
classification results of all the tested classifiers, (4) Bench-
mark results: accuracy and efficiency results.

Due to the sheer amount of trace data and processing
involved, NeTraMark adopts the PostgreSQL [3] Database
Management System (DBMS), for fast and efficient indexing
and retrieval of flow records as well as classification results.

The Project Management (PM) module provides the fol-
lowing advantages:

(1) Reusability : The PM allows users to store all the clas-
sification and benchmark results from an experiment as a
project. Users can reload the saved project later to review
the results, and then simply extend it with any new classifi-
cation algorithms to compare and/or datasets to add, with-
out repeating the same experiments already done and stored
in the project.

(2) Extension to a Distributed NeTraMark System : As
stored project or their sub-components can be shared and
collected from remote locations, NeTraMark can be used
to build a distributed traffic classification and benchmark
system, in which different (or the same set of) classifiers
run on different datasets (typically locally collected from
different locations [9]) over different servers as necessary.
This extension is left for future work.

3.3.2 User Interface
NeTraMark’s User Interface (UI) provides users with var-

ious knobs to configure benchmarking experiments and vi-
sualize the results. Upon startup, users can establish a
project, a basic operational unit of NeTraMark’s interac-
tive and batch processing, by selecting a set of classifiers
to evaluate, traffic flow features to use and/or discretize,
and datasets against which the selected classifiers will be
tested (and trained, if necessary). Users also can adjust the
weights of those classifiers to obtain combined classification
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Figure 2: The graphical NeTraMark user interface with an example benchmark result.

Figure 3: BLINC Visualization (The BLINC Graph
tab in the bottom-left panel): a behavior graph of a
P2P host.

results. Once users are done with all the configuration pro-
cesses and finish running the experiment, they can re-load
and re-run the most recent experiment by clicking “Run the
latest project”. This knob reprieves users from repeating
tedious manual configuration process, particularly when the
same experiments have to be repeated on multiple traces.

Fig. 2 shows a screenshot of the graphical UI, comprised
of four different panels with different statistics and views.

(i) Top-left panel displays flow records (of the first 5 min-
utes’ interval by default) consisting of 38 unidirectional flow
features most of which were inspired from the 248 bidirec-
tional features used in [16] and the 22 bidirectional features
in [20]. These 38 unidirectional features have proved use-
ful and more than expressive enough to distinguish among

Figure 4: TDG Visualization (the TDG tab on the
bottom-left panel): A TDG graph of “Unknown”
flows.

different applications [6, 7]. The 38 flow features are: pro-
tocol, source and destination ports, the number of pack-
ets, transferred bytes, the number of packets without Layer
4 (TCP/UDP) payload, start time, end time, duration, aver-
age packet throughput and byte throughput, max/min/aver-
age/standard deviation of packet sizes and inter-arrival times,
the number of TCP packets with FIN, SYN, RSTS, PUSH,
ACK, URG (Urgent), CWE (Congestion Window Reduced),
and ECE (Explicit Congestion Notification Echo) flags set
(all zero for UDP packets), the size of the first ten packets,
and payload classification results provided by the crl pay

classifier. Users can select and/or discretize specific features
before running classification experiments. (ii) Top-right and
(iii) Bottom-right panels display two types of classification

ACM SIGCOMM Computer Communication Review 27 Volume 41, Number 1, January 2011



Table 2: Classifier class definition
public class Classifier plugin {
boolean enabled;
String name;
String version;
String description;
boolean external or internal;
String execution;
Object[] parameters;

}

Table 3: An instance of a classifier (Naive Bayes)
enabled = true; // Use this classifier plugin
name = ‘‘Naive Bayes’’;
version = ‘‘3.7.2’’;
description = ‘‘Naive Bayes is the simplest probabilistic
classifier...’’;
external or internal = false; // external code (non-Java code)
execution = ‘‘weka.classifiers.bayes.NaiveBayes’’;
// library information
parameters[0] = ‘‘-D’’; // execution arguments

results. The former shows per-classifier view (a table of
application labels generated by a single classifier8 and the
latter shows per-flow view (classification results of differ-
ent classifiers for the single highlighted flow). (iv) Bottom-
left panel displays performance statistics such as applica-
tion breakdown obtained from each classifier, performance
benchmarking results (as in Fig. 2), as well as host-behavior
graphs generated by BLINC (Fig. 3) and TDG (Fig. 4).

As such, this four-panel user interface enables users to eas-
ily obtain, compare, and visualize the classification results
as well as performance of different classifiers and figure out
underlying traffic mix in a dataset.

3.3.3 Classifier Plugins
In the current implementation of NeTraMark, each classi-

fication module is plugged in via a Java class, whose mem-
bers include: (i) name of the corresponding classifier, (ii)
list of parameters/options for the classifier (which can be
configured through the user interface), and (iii) link to the
executable codes (for non-Java codes such as BLINC, TDG,
crl pay, etc.) or library (for Java codes like WEKA), etc.
Table 2 and 3 show the class definition and an instantiation
of Naive Bayes classifier plugin, respectively. Users can add
new classification plugins written in any user-preferred pro-
gramming languages or modify existing ones by adding new
classes or reconstructing existing ones in the NeTraMark
source code. To help plugin developers, detailed documen-
tation on how to add or modify classification plugins as well
as sample reference codes are distributed with NeTraMark.

3.3.4 Ground Truth
Establishing a comparison reference point (i.e., ground

truth) also forms the basis on which to compare perfor-
mance of different traffic classifiers. As a flexible traffic clas-
sification benchmark framework, NeTraMark allows users
to choose any plugged-in classifier (including a combined
weight-based classifier) to establish ground truth, while its
default setting is to use the payload-based crl pay classifier
for the purpose. This flexibility (and extensibility together)
helps to update and maintain NeTraMark with the most
accurate and complete ground truth available, as users can

8When the “WEKA” tab is clicked, sub-tabs of the seven
machine learning algorithms appear.

add newly developed classification techniques that generate
such results.

3.3.5 Combination of multiple classifiers
A traffic classifier typically consists of multiple finger-

prints designed to identify specific target applications, thus
each approach often has its own strengths and weaknesses
in classifying a particular application. When a classifier has
a fundamental weakness in identifying particular types of
traffic, integrating aspects of other techniques can help [6].
Motivated by the above observations, NeTraMark supports
the combination of multiple classifiers by providing a weight-
based combined classifier, whose per-application weight val-
ues (i.e., confidence level of the prediction) can be either
given manually by users or automatically derived from per-
application performance history in the n latest experiments.

For example, suppose that classifiers A, B, and C identify
a flow F as of Web, Web, and BitTorrent, respectively, while
the average F-Measures of these classifiers have been set to
0.6 on Web, 0.5 on Web, and 0.9 on BitTorrent. In this case,
our combined classifier may identify the flow F as of Web
or BitTorrent depending on which combination algorithm is
set to use: the majority votes, the best F-Measured one,
or hybrid which somehow takes into account both of them.
The current implementation of NeTraMark supports the two
simplest combination rules only, the majority votes and the
best F-Measured classifier. More complicated strategies like
hybrid ones can be developed and added by users.

3.3.6 System Requirements
The current implementation of the NeTraMark framework

is written in Java using NetBeans IDE 6.7, while its classi-
fier plugins are in C++ (crl pay and BLINC), Java (ma-
chine learning algorithms from WEKA), and Perl (TDG and
CoralReef’s ports-based classification module). NeTraMark
currently supports Linux platforms and requires the Coral-
Reef [1] software suite, as the crl pay and ports-based clas-
sifier rely on it. It supports pcap and DAG trace files.

We tested the current implementation on a desktop PC
with a 2.4 GHz Intel Core 2 Quad Kentzfield Q6600 CPU,
4 GB of memory and Ubuntu 9.10 (kernel ver. 2.6.31-
22-generic), and confirmed that it successfully performed
benchmark experiments with max 2 GB memory usage, where
eleven classifiers are tested against two multi-gigabyte traces
collected at a university campus network. The average uti-
lization and the number of flows per 5 minutes of the traces
were around 75 Mbps and 92-158 K, respectively. The mem-
ory usage depends on the number of flows processed and put
into the project DB in a time interval (5 minutes by default)
rather than the volume of traffic. We estimate that around
10-12 GB of memory will be required to process a backbone
trace whose average number of flows per time interval is >
1 M, though more optimized implementations would likely
consume less memory to run, which we leave as future work.

3.4 Usage Examples
In this subsection, we briefly present two examples of us-

ing NeTraMark in an operational setting: (i) identifying
heavy hitters, and (ii) addressing “unknown” flows with in-
teractive visualization of BLINC and TDG graphs. A more
complete outline of uses can be found in the NeTraMark
documentation.
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ISPs or network operators are often interested in finding
hosts or flows which consume most of network resources (e.g.,
heavy hitters, scanners, spammers, etc.). NeTraMark’s user
interface makes it easy and convenient for users to quickly
identify heavy hitters by providing “Sort” and “Asc/Desc”
buttons in the bottom panel (Fig. 2); when they are clicked,
flow records are sorted accordingly based on the columns
corresponding to the number of packets or bytes transferred.

We also implemented the interactive visualization mod-
ule of BLINC and TDG graphs in the NeTraMark software
suite, so as to allow users to further examine and iden-
tify traffic flows whose classification results are “unknown”
with the incorporated classification methods. Since BLINC
and TDG graphs capture the transport layer communication
and social behavior of application protocols, the visualized
graphs may provide users with hints in identifying previ-
ously “unknown” applications and protocols that fall under
the graph-modeled types of BLINC and TDG (e.g., a new
P2P protocol or malicious scanning behavior) [13, 11].

Fig. 4. shows a TDG graph of flow-records that were
ascribed as unknown or unclassified by the payload-based
and ports-based classifiers, with which users may further
identify a few to several nodes with malicious activity such
as worm spreads and scanning. Fig. 3 shows an example
BLINC graph of a P2P application (eMule), which exactly
matches with the typical communication behavior graph of
P2P applications as explained in [13].

4. COMPARISON WITH RELATED WORK
Recently, Dainotti et al. introduced a novel community-

oriented traffic classification platform called Traffic Identi-
fication Engine (TIE), which is the only work both com-
parable and complementary to NeTraMark, to the best of
our knowledge. TIE’s design choices focused on compari-
son of different classification approaches (i.e., comparabil-
ity and extensibility), multiple classification (i.e., synergy of
combining multiple classifiers’ results), and real-time online
classification [10]. The current implementation of TIE sup-
ports two classification plugins: the ports-based classifier of
CoralReef and the payload-based L7-filter classifier [4], with
a few more payload-based and flow features-based classifi-
cation plugins still under development [10].

In contrast, NeTraMark (i) incorporates a richer set of
eleven state-of-the-art classification techniques, including ho-
st-behavior based classification techniques and their visu-
alization modules as well as flow features-based classifiers
in addition to ports and payload-based ones, and (ii) was
designed with more emphasis on reproducibility, efficiency,
flexibility and ease-of use than real-time classification of on-
line traffic, as online classification does not seem to be of a
top priority particularly when benchmarking > 10 classifiers
on a broad range of multi-giga/terabytes trace sets collected
from different geographic locations with diverse link charac-
teristics and application traffic mix. As a consequence of
our design choices, NeTraMark adopts PostgreSQL DBMS
back-end for efficient management and reuse of benchmark
projects and results, and user-friendly GUI that allows users
to easily configure, run, store, and repeat benchmark experi-
ments and visualize the results, none of which are supported
by TIE.

5. CONCLUSIONS
We presented an Internet traffic classification benchmark

tool, NeTraMark. Based on the six key design guidelines (Co-
mparability, Reproducibility, Efficiency, Extensibility, Syn-
ergy, and Flexibility/Ease-of-use), NeTraMark is the first
Internet traffic classification benchmark where eleven state-
of-the-art traffic classifiers are integrated. NeTraMark also
allows researchers and practitioners to easily extend it with
new classification algorithms and compare them with other
built-in classifiers, in terms of the three categories of perfor-
mance metrics: Per-whole-trace Accuracy, Per-application
Accuracy, and Computational Performance.

In the near future, we plan to extend NeTraMark to sup-
port (i) online traffic classification as well as (ii) distributed
traffic classification and benchmarking. This will allow net-
work operators and researchers to monitor, collect, and clas-
sify traffic and compare the classification results and perfor-
mance from multiple locations. (iii) We are also developing
and integrating an automated application payload signature
detection and generation module like LASER [23], which will
be available in the next release of NeTraMark.

Releasing the source code to researchers and practition-
ers,9 we believe that NeTraMark will lay a foundation for
a meaningful traffic classification benchmark and facilitate
both the research and operation communities pursuing the
direction of scientifically-grounded traffic classification re-
search.
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