
Under review as submission to TMLR

Double Horizon Model-Based Policy Optimization

Anonymous authors
Paper under double-blind review

Abstract

Model-based reinforcement learning (MBRL) reduces the cost of real-environment sampling
by generating synthetic trajectories (called rollouts) from a learned dynamics model. How-
ever, choosing the length of the rollouts poses two dilemmas: (1) Longer rollouts better
preserve on-policy training but amplify model bias, indicating the need for an intermediate
horizon to mitigate distribution shift (i.e., the gap between on-policy and past off-policy
samples). (2) Moreover, a longer model rollout may reduce value estimation bias but raise
the variance of policy gradients due to backpropagation through multiple steps, implying
another intermediate horizon for stable gradient estimates. However, these two optimal
horizons may differ. To resolve this conflict, we propose Double Horizon Model-Based Pol-
icy Optimization (DHMBPO), which divides the rollout procedure into a long “distribution
rollout” (DR) and a short “training rollout” (TR). The DR generates on-policy state sam-
ples for mitigating distribution shift. In contrast, the short TR leverages differentiable
transitions to offer accurate value gradient estimation with stable gradient updates, thereby
requiring fewer updates and reducing overall runtime. We demonstrate that the double-
horizon approach effectively balances distribution shift, model bias, and gradient instability,
and surpasses existing MBRL methods on continuous-control benchmarks in terms of both
sample efficiency and runtime.

1 Introduction

Reinforcement learning (RL) is a framework to find a good policy in sequential decision making applications
via trial-and-error with an environment. Model-based RL (MBRL), which learns dynamics model of an
environment by data-driven manner, leverages the learned dynamics model to generate synthetic samples,
reducing costly real-environment interactions. However, if the model is imperfect, long synthetic rollouts can
introduce significant errors, a “model bias”, especially when the rollout length is large. Additionally, data
collected under a poorly performing policy differs from what the current policy would actually encounter, thus
there is “distribution shift” for policy evaluation (Hallak and Mannor, 2017) and policy improvement (Liu
et al., 2019). Several MBRL methods address these issues by tailoring the length and usage of model’s
predictions.

Broadly, these successful approaches can be grouped into two types. The first type employs differentiable
rollouts (Deisenroth and Rasmussen, 2011; Amos et al., 2021; Hafner et al., 2019; Hansen et al., 2024), or
model derivatives on predictions (Zhang et al., 2024). By backpropagating through a few model-predicted
transitions, these methods compute a model-based value expansion (MVE) estimator (Feinberg et al., 2018),
which sums on-policy rewards for intermediate states with the estimated return from the terminal state or
a critic’s prediction. Because the MVE estimator refines value estimation, the policy can improve based on
more accurate on-policy value estimates even with a lower update-to-data (UTD) ratio, i.e., the number of
policy parameter updates per environment step. This lower UTD ratio also helps suppress the increase in
computation time (Hiraoka et al., 2022). However, extending differentiable rollouts in conjunction with the
reparametrization trick (Kingma and Welling, 2013) can inflate the variance of the policy gradients (Parmas
et al., 2018), which limits how long these training rollouts can effectively be. In this work, we refer to the
policy gradient computed via differentiable rollouts as the “value gradient,” (Heess et al., 2015; Zhang et al.,
2024) distinguishing it from the gradient estimated by a purely model-free algorithm (Sutton et al., 1999;
Silver et al., 2014).

1

Under review as submission to TMLR

MBPO
TR-based
DHMBPO
SAC

Environment

Model BufferDistribution Rollout

Eq. (11)
Model-based gradient

Eq. (12)
Model-free gradient

Training RolloutReplay Buffer

Figure 1: An overview of four approaches to policy gradient estimation: MBPO, TR-based methods,
DHMBPO, and an off-policy model-free method. (1) MBPO (blue lines) Starts from states in the replay
buffer and runs a distribution rollout (DR) with horizon D, generating synthetic samples that are stored in
a model buffer. A model-free policy gradient is then computed over these samples. (2) TR-based (green)
Methods that directly take states from the replay buffer and perform a short-horizon training rollout (TR)
with horizon T . A model-based gradient estimate (the value gradient) is then computed. (3) DHMBPO
(red, proposed) Combines both DR and TR. It first applies a DR on samples from the replay buffer to
obtain on-policy samples, which are used as initial states for a short-horizon TR, and then computes the
value gradient. (4) Model-free (yellow) Represents a fully model-free algorithm that relies solely on
replay-buffer data and a model-free gradient estimate.

Meanwhile, another line of MBRL research, the model-based policy optimization (MBPO) algorithm (Janner
et al., 2019), adopts a branched rollout approach: starting from states in the replay buffer (which stores
states, actions, and rewards), it rolls out a few steps with the learned model to generate synthetic states that
more closely match the state distribution of the current policy. MBPO has demonstrated excellent empirical
performance in the OpenAI Gym benchmark (Brockman, 2016). Although the MBPO formalization and
theoretical analysis do not necessarily support the benefit of model-generated on-policy data, we interpret
its empirical success as evidence that optimizing the policy over an on-policy state distribution can improve
learning in practice.

In this work, we propose to combine these two ideas: a “distribution rollout” (DR) that approximates
the on-policy state distribution (inspired by the branched rollouts in MBPO but without leveraging the
differentiability of the predictions), and a “training rollout” (TR) that yields an MVE estimator which does
exploit differentiable transitions. However, the optimal horizons for DR and TR may differ. A longer DR
helps maintain on-policy samples but also increases model bias, implying an intermediate horizon to minimize
distribution shift. On the other hand, a longer TR can reduce value estimation bias but raises the variance
of the policy gradients, suggesting another intermediate horizon for stable gradient estimates.

Therefore, we propose different rollout horizons for DR and TR—a long horizon for DR and a short horizon
for TR—and name this method the Double Horizon MBPO (DHMBPO) algorithm. In DHMBPO, TR starts
from on-policy states provided by the long DR, allowing us to keep the TR horizon short while still achieving
adequate value estimation accuracy and effective policy improvement. Figure 1 highlights their concept and
the differences.

In experiments on continuous-control benchmarks (Section 4), we show that DHMBPO surpasses existing
MBRL methods in sample efficiency and offers lower runtime thanks to a small UTD ratio (Hiraoka et al.,
2022). The remainder of this paper presents the necessary background (Section 2), details our approach (Sec-
tion 3), and provides empirical evaluations demonstrating the benefits of combining these two complementary
rollouts.

2

Under review as submission to TMLR

2 Background

2.1 Notation and Problem Setting

In this work, we consider a Markov decision process (MDP) with entropy regularization (Geist et al., 2019).
At each environment step t, an agent in state s = st selects an action a = at according to a stochastic policy
πθ(a|st) parametrized by θ, transitions to the next state st+1 based on the transition probability p(s|st, at),
and receives a reward rt = r(st, at). Given a discount factor γ ∈ [0, 1) for weighting future rewards, a
distribution µ(s) from which initial states s0 are drawn, and a parameter α ≥ 0 for entropy bonus, the
objective is to find a policy parameter to maximize

J(π) := Es∼ρπθ
[V πθ
α (s)] , (1)

where ρπθ
is the discounted state visitation distribution under πθ: ρπθ

(s) := (1 − γ)
∑∞
t=0 γ

tp(st = s|µ, πθ)
and p(st = s|µ, πθ) is the probability of observing state s at time t with p(s0 = s|µ, πθ) := µ(s), and

V πα (s) := E

[∞∑
t=0

γt (r(st, at) − α log πθ(at|st))
∣∣∣∣∣s0 = s

]
, (2)

is a soft value function. The expectation in eq. (2) is taken under the stochastic trajectory (s0, a0, s1, · · ·)
drawn from its distribution Π∞

t=0π(at|st)p(st|µ, πθ).

We use an associated soft Q-function

Qπα(s, a) := r(s, a) + γ Es′∼p(·|s,a) [V πα (s′)] . (3)

The following equation is assumed to hold, for all s ∈ S, V πα (s) = Ea∼π(·|s) [Qπα(s, a) − α log π(a|s)] .

If α = 0, eq. (2) is equivalent to an unregularized MDP’s objective E [
∑∞
t=0 γ

tr(st, at)]. Hence, in what
follows, we do not strictly differentiate between the entropy regularized MDP and the unregularized MDP
and for simplicity we just write V π(s) for the value function and Qπ(s, a) for the Q-function.

2.2 Model-based Actor-Critic Methods

In this study, we consider a deep model-based actor-critic architecture. Namely, we have neural networks
for a policy πθ(a|s) as an actor, a critic Qϕ(s, a) approximating Qπ(s, a), and a dynamics model pψ(s′|s, a)
and reward model rψ(s, a). The parameters θ, ϕ, and ψ refer to the respective neural network weights.

During critic learning, for an input (s, a), a target signal ŷ is computed, and the critic Qϕ is up-
dated to minimize the squared difference between its output and ŷ. Meanwhile, the actor πθ is up-
dated to maximize the sample average (sampled from a given state distribution) of the estimated value
V πθ (s) ≈ Ea∼πθ(·|s) [Qϕ(s, a) − α log πθ(a|s)] . Following existing works (Janner et al., 2019; Hafner et al.,
2019; Hansen et al., 2022; 2024), we perform alternating updates of the critic and actor within a policy
optimization loop. This alternation is explicitly shown in the for loop (line 8) of Algorithm 1.

2.3 Model-Based Policy Optimization (MBPO)

The MBPO algorithm (Janner et al., 2019) applies the policy optimization procedure from SAC (Haarnoja
et al., 2018) to fictitious samples generated via model rollouts. Here, we call these rollouts DR. To execute
DR, we randomly select initial states from the replay buffer and then simulate D steps using the learned
model. The resulting trajectories are stored in a “model buffer”, DD

m, which is separate from the replay
buffer.

The critic Qϕ is updated to minimize:

LD(ϕ) := E(s,a,r,s′)∼DD
m

[(
Qϕ(s, a) − ŷ

)2
]
, (4)

3

Under review as submission to TMLR

where the target signal ŷ := r(s, a) + γ Ea′∼πθ(·|s′)
[
Qϕ̄(s′, a′) − α log πθ(a′|s′)

]
. Here, Qϕ̄ is a target critic

with parameters ϕ̄, which are an exponentially moving average of ϕ (Mnih et al., 2015). (s, a, r, s′) ∼ DD
m

and s ∼ DD
m denote independent sampling operations from the model buffer.

The policy is then updated to maximize

JD(θ) := Es∼DD
m

[
Vϕ,θ(s)

]
, (5)

where
Vϕ,θ(s) := Ea∼πθ(·|s)

[
Qϕ(s, a) − α log πθ(a|s)

]
. (6)

2.4 Training Rollout-based Methods

In this work, we refer to methods that employ the MVE estimator (Feinberg et al., 2018) as TR-based with
differentiable rollout, a TR. The MVE estimator for a state s uses a T -step TR trajectory τT = (s0 =
s, a0, ŝ1, a1, · · · , aT−1, ŝT) generated by the policy πθ and the model pψ, to compute:

V̂ϕ,θ,T (s) :=
T−1∑
t=0

γt (rψ(ŝt, at) − α log πθ(at|ŝt)) + γT V̂ϕ(ŝT), (7)

where V̂ϕ(ŝT) := Qϕ(ŝT , aT) −α log πθ(aT |ŝT) ≈ Ea∼πθ(·|ŝT) [Qϕ(ŝT , a) − α log πθ(a|ŝT)] . Even when V̂ϕ(ŝT)
is imperfect due to the critic Qϕ struggling to keep pace with a rapidly changing policy, the on-policy reward
sequence up to T − 1 steps improves the overall value estimate at s (Feinberg et al., 2018). Although it is
assumed in (Feinberg et al., 2018) that the reward function is known, learning a reward model rψ typically
poses smaller difficulties than learning a dynamics model or Q-function, so similar benefits are expected.

Following Hafner et al. (2019), we utilize the MVE estimator for learning both of the critic and the policy.
Specifically, the critic is trained to approximate the Q-function Qπθ (s, a) by minimizing

LQ(ϕ) := E(s,a)∼De

[(
Qϕ(s, a) − Q̂ϕ̄,θ,T (s, a)

)2
]
, (8)

where

Q̂ϕ̄,θ,T (s, a) := rψ(s, a) +
T−1∑
t=1

γt (rψ(ŝt, at) − α log πθ(at|ŝt)) + γT V̂ϕ̄(ŝT) (9)

For the policy, we maximize
JT (θ) := Es∼De

[
V̂ϕ,θ,T (s)

]
. (10)

The gradient ∇θV̂ϕ,θ,T (s) is computed by combining the reparametrization (RP) trick (Kingma and Welling,
2013) with backpropagation through time. It has been shown that when T becomes large, this process can
be prone to gradient explosion (Parmas et al., 2018). Hence, in practice, T is often limited to about 5 steps
to maintain stable optimization (Amos et al., 2021).

2.5 Policy-Value Gradient

A key subproblem in policy optimization is to estimate the gradient of the policy parameters, ∇θJ (θ),
for the objective in (1). We assume the stochastic policy is reparametrized so that for a function y(a):
Ea∼πθ(a|s) [y(a)] = Eϵ∼Z [y(πθ(s, ϵ))] where Z is a simple distribution (e.g, Gaussian), and πθ(a|s, ϵ) is a
deterministic function: πθ : (s, ϵ) 7→ a. In this work, we estimate the policy gradient via the RP trick. The
policy gradient can be expressed as

∇θJ
(
πθ
)

= Es∼µ
[
∇θV

πθ (s))
]

= Es∼µ,ς∼Z
[
∇θQ

πθ (s, π(s, ς))
]

(11)

= Es∼ρπθ , ς∼Z

[
∇θ πθ(s, ς) · ∇aQ

πθ (s, a)
∣∣
a=πθ(s,ς)

]
, (12)

4

Under review as submission to TMLR

as derived in (Zhang et al., 2024), with the last equation derived by extending the deterministic policy
gradient theorem (Silver et al., 2014). Here, we assume α = 0, and the notation “·” denotes an element-wise
product summed over the action dimension.

The last term (12) takes only a change of one-step action into account, enabling us to replace Qπθ with the
critic Qϕ for the approximation of the partial derivative ∇aQ

πθ (s, a)
∣∣
a=πθ(s,ς). We refer to the estimation

∇θ πθ(s, ς) · ∇aQϕ(s, a)
∣∣
a=πθ(s,ς) as a model-free policy gradient field.

On the other hand, the 1st term is (stochastic) value gradient, of which the term ∇θV
πθ (s), referred to as

a value gradient field, takes into account the change of actions in the future. In an RL setting where the
true transition probability is unknown, it is required to use a dynamics model for the estimation. The MVE
estimator (7) can be used for the estimation but the terminal term in the gradient with respect to the MVE
estimator is a model-free policy gradient field

∇θ πθ(s, ς) · ∇a V̂ϕ(ŝT)
∣∣
a=πθ(ŝT ,ς)

= ∇θ πθ(s, ς) · ∇aQϕ(ŝT , aT)
∣∣
aT =πθ(ŝT ,ς)

Additionally, note that in the last term of (12), the expectation is taken with respect to the discounted state-
visitation distribution, whereas in the 1st and 2nd term of (11), it is taken with respect to the initial state
distribution. As implied in Zhang et al. (2024), the mixture of initial state distribution and the discounted
state-visitation distribution may be preferable, since we have a model-free policy gradient field in the terminal
of the value gradient approximated by the MVE estimator.

3 Double Horizon Model-Based Policy Optimization

This section introduces the Double Horizon Model-Based Policy Optimization (DHMBPO) algorithm, which
integrates DR and TR to approximate both the state distribution and the value estimation. Before that, we
highlight the differences between DR-based methods and TR-based methods.

A procedure common to both DR-based and TR-based methods is to alternate i) sampling states and actions
from some distribution d(s, a) and ii) updating policy using samples of estimated policy gradient field.

MBPO samples states and actions from model buffer DD
m, which is close to an on-policy distribution, and

computes model-free policy gradient field:

d(s, a) = DD
m and ∇θ πθ(s, ς) · ∇aQϕ(s, a)

∣∣
a=πθ(s,ς),

where, because of DR, sampling from the model buffer can be interpreted as an approximation of ρπθ in the
term (12).

TR-based methods use a replay buffer De in place of d(s, a) and a value gradient field via the T -step MVE
estimator: ∇θV̂ϕ,θ,T (s):

d(s, a) = De and ∇θV̂ϕ,θ,T (s).

Note that, as discussed in Section 2.5, sampling from more on-policy distribution is preferable to sampling
from the replay buffer.

In DHMBPO, we propose to use a model buffer DD
m by DR in place of ρπθ

(s) and a value gradient field via
the T -step MVE estimator:

d(s, a) = DD
m and ∇θV̂ϕ,θ,T (s),

thereby reducing distribution shift by DR without on-policy and real-environment interactions, and improv-
ing value estimation by use of MVE estimator via TR.

Concretely, the critic loss function is defined as

LD,T (ϕ) := E(s,a)∼DD
m

[(
Qϕ(s, a) − Q̂ϕ̄,θ,T (s, a)

)2
]
, (13)

5

Under review as submission to TMLR

Algorithm 1 Double Horizon Model-Based Policy Optimization
Require: Models pψ and rψ, actor network πθ, critic network Qϕ, target critic network Qϕ̄, replay buffer

De, model buffer DD
m

1: for e = 0, 1, 2, · · · do
2: Interact with the environment using πθ and add observed transitions to De

3: Fit the models pψ and rψ to samples from De

4: Sample states from De; then perform D-step DR and store the generated transitions in DD
m

5: for i = 0 to L− 1 do ▷ Policy optimization loop
6: Sample states from DD

m and execute T -step TR
7: Compute the MVE estimates (7) and (9)
8: Update ϕ to minimize (13) and then update θ to maximize (14) via eq. (11)
9: Clear DD

m

and the actor’s objective is
JD,T (θ) := Es∼DD

m

[
V̂ϕ,θ,T (s)

]
. (14)

Algorithm 1 presents the procedure for the DHMBPO algorithm. Here L is the length of an episode and
repeating policy optimization L times corresponds to a UTD ratio of 1.

Long DR rollouts help maintain on-policy training but increase model bias, thus suggesting an intermediate
rollout length for minimizing distribution shift. On the other hand, a longer TR can reduce value estimation
error but raise the variance of policy gradients, implying another intermediate horizon for stable gradient
estimates. We keep TR in a short-horizon for stable policy gradient estimation and compensate it by using
longer DR, toward leveraging model predictions for achieving adequate value estimation accuracy while
effective policy improvement. In this work, we set the DR horizon to 20 steps and the TR horizon to 5 steps.

4 Experiments

We validate our DHMBPO on standard continuous control tasks (from Section 4.1 to Section 4.2) and show
ablation study in Section 4.3.

4.1 Continuous control benchmark tasks

We evaluate the DHMBPO algorithm on a suite of MuJoCo-based (Todorov et al., 2012) continuous control
tasks from Gymnasium (GYM) (Towers et al., 2023) and DMControl (DMC) (Tunyasuvunakool et al., 2020).
These tasks range from basic control problems to higher-dimensional robot locomotion, thereby allowing us
to investigate the general effectiveness of our approach.

These experiments aim to answer three key questions:

• Does the combined use of DR and TR enhance sample efficiency?

• Does it facilitate efficient critic learning?

• How does DHMBPO compare against other state-of-the-art MBRL algorithms?

All DHMBPO runs share a common set of hyperparameters, which are described along with other imple-
mentation details in Appendix A.

Evaluation Protocol. After x environment steps, we measure the algorithm’s performance via a test
return. Specifically, the test return for DHMBPO is based on the sample mean of the cumulative rewards
over 10 episodes, whereas some other methods used fewer episodes (See Appendix B for details).

Performance Visualization and Statistical Analysis. We illustrate each method’s performance on
individual tasks by plotting the mean test return over random seeds (solid line) and its 95% confidence

6

Under review as submission to TMLR

Table 1: Runtimes (in hours), until 500K environment steps, of DHMBPO, MACURA (Frauenknecht et al.,
2024) and SAC-SVG(H) (Amos et al., 2021), on GYM tasks and each ratio to DHMBPO’s mean runtime.

Task DHMBPO MACURA SAC-SVG(H)

Ant 3.6 58.3 5.2
HalfCheetah 3.3 32.6 6.7
Hopper 3.7 73.3 6.7
Humanoid 5.2 104.3 6.9
Walker2d 4.0 63.0 6.6

Ratio 1.0 16.8 1.6

interval (shaded area). To aggregate and compare results across multiple tasks, we utilize rliable (Agarwal
et al., 2021), which offers various statistical tools such as sample efficiency curves and aggregation metrics.

However, because existing works typically focus on either GYM or DMC (but not both), their performance
ranges are not directly comparable. We thus apply a task-specific normalization: (i) the number of environ-
ment steps is normalized by the maximum step budget for each task, and (ii) the test return is divided by
the final performance of a designated baseline. Note that this additional normalization is our adaptation to
unify GYM and DMC results. In our GYM comparisons (Figure 2 in Section 4.2), however, we present raw
(unnormalized) returns to align with common practice (Chua et al., 2018; Janner et al., 2019; Amos et al.,
2021; Frauenknecht et al., 2024).

In Section 4.3, we provide an ablation study that isolates the effect of combining DR and TR, and in
Section 4.2, we benchmark DHMBPO against several high-performance MBRL algorithms.

4.2 Comparison with State-of-The-Art Algorithms

In this section, we compare the proposed DHMBPO algorithm with several high performance deep MBRL
algorithms whose implementations are publicly available.

For the comparison on the GYM suite, we selected five tasks and compared DHMBPO with MBPO (Janner
et al., 2019), SAC-SVG(H) (Amos et al., 2021), and MACURA (Frauenknecht et al., 2024). In addition
to MBPO, SAC-SVG(H) is an important baseline algorithm, which uses SVG method, a kind of TR-based
algorithm. The primary difference between DHMBPO without DR and SAC-SVG(H) is that DHMBPO uses
Deep Ensemble models (Lakshminarayanan et al., 2017), whereas SAC-SVG(H) uses a GRU (Cho, 2014) as
the deterministic recurrent neural network. Additionally, SAC-SVG(H) learns the critic using one-step TD
targets during the TR. MACURA is based on the MBPO algorithm but adaptively adjusts the length of the
DR and is reported to achieve state-of-the-art performance on the GYM suite.

For the comparison on DMC suite, we selected 18 tasks and compared DHMBPO with TD-MPC2 (Hansen
et al., 2024) and Dreamer v3 (Hafner et al., 2023). Both of these are latent model-based actor-critic algo-
rithms that have demonstrated exceptional performance across multiple benchmark suites, including DMC,
using common hyperparameters. TD-MPC2 combines representation learning and reward learning, and dur-
ing behavior execution, it performs model predictive control (MPC). Dreamer v3 combines representation
learning with the MVE estimator from TR, used for training of both the critic and the actor.

4.2.1 Comparison on GYM Tasks

Sample efficiency The results on GYM tasks are shown in Figure 2a, where the sample mean over eight
random seeds is plotted as the solid line and 95% credible intervals are shown as the shaded area. For
MBPO, five random seeds were used. It is confirmed that DHMBPO achieved the highest sample efficiency
across all tasks even without per-task tuning. This large practical performance improvement is perhaps the
most important contribution of our work.

7

Under review as submission to TMLR

0 1 2 3 4 5

Environment steps ×105

0

2000

4000

6000

8000

T
es

t
re

tu
rn

Ant

0 1 2 3 4 5

Environment steps ×105

0

4000

8000

12000

HalfCheetah

0 1 2 3 4 5

Environment steps ×105

0

1000

2000

3000

4000
Hopper

0 1 2 3 4 5

Environment steps ×105

0

2500

5000

7500

Humanoid

0 1 2 3 4 5

Environment steps ×105

0

2500

5000

7500

Walker2d

DHMBPO MBPO SAC-SVG(H) MACURA

(a) Sample efficiency

0 15 30 45 60

Runtime [Hours]

2000

4000

6000

8000

T
es

t
re

tu
rn

Ant

0 6 12 18 24 30

Runtime [Hours]

3000

6000

9000

12000

HalfCheetah

0 15 30 45 60 75

Runtime [Hours]

1000

2000

3000

4000
Hopper

0.0 0.2 0.4 0.6 0.8 1.0

Runtime [Hours] ×102

0

2000

4000

6000

8000

Humanoid

0 15 30 45 60

Runtime [Hours]

0

2500

5000

7500

Walker2d

MBPO DHMBPO SAC-SVG(H) MACURA

(b) Test return curve as a function of runtime at each constant environment step.

Figure 2: Comparison with state-of-the-art methods on GYM tasks with respect to sample efficiency (upper)
and runtime until 500K environment steps (bottom). The solid line represents the sample mean over eight
random seeds, and the shaded area indicates the 95% confidence intervals. The runtime plots show that
DHMBPO reached the highest test returns the fastest, highlighting the DHMBPO’s efficiency with regard
to both of sample and runtime cost efficiency.

Runtime Comparison For comparison with respect to runtime for DHMBPO, MACURA, and SAC-
SVG(H) on GYM tasks, we show in Figure 2b and summarize it Table 1. Each experiment was executed
until 500K environment steps. The computer configuration was NVIDIA RTX A400016GB × 8. Taking
into account the aforementioned results on sample efficiency, it can be seen that the DHMBPO algorithm
reached 500K steps in less than one-sixteenth of the runtime, while achieving the same or higher degree of
sample efficiency as the MACURA. The main reason why MACURA took a relatively long time is its UTD
ratio. For example, the UTD ratio for MACURA on Humanoid task was 20, while that of DHMBPO (and
SAC-SVG(H)) was 1. Although a high UTD ratio promotes higher sample efficiency (Chen et al., 2020;
D’Oro et al., 2023), we observed DHMBPO worked well with the UTD ratio of 1, enabling us to save its
runtime. Rather, we observed that running at higher UTD ratios did little to increase sample efficiency,
while execution time increased (See Figure 20 in Appendix D.5).

4.2.2 Comparison on DMC Tasks

Next, in Figure 3, we present the aggregation metrics on DMC tasks. The metrics are about the test
return at 50% normalized steps. The three metrics for each method are shown, where the vertical bars
represent the metrics, and the width of the bars corresponds to the 95% confidence intervals. The IQM
(Inter Quantile Mean) score shows that DHMBPO exhibited significant performance improvement over the
other two methods.

Additional task-specific learning curves and runtime results are provided in Section C.

4.3 Ablation study

Figure 4 shows the experimental results evaluating the sample efficiency of the proposed DHMBPO algorithm
and its variants on a set of 10 continuous control benchmark tasks. We selected 5 representative tasks from
the GYM suite (upper row) and 5 relatively challenging tasks from the DMC suite (lower row). All compared
methods share the same model-learning modules and implementation details, differing only in how the DR
and TR are combined.

8

Under review as submission to TMLR

0.60 0.75 0.90 1.05

DHMBPO

TD-MPC2

Dreamer v3

Median

0.75 0.90

IQM

0.60 0.75 0.90 1.05

Mean

Figure 3: Comparison of aggregation metrics with TD-MPC2 (Hansen et al., 2024) and Dreamer v3 (Hafner
et al., 2023) on 18 DMC tasks. The metrics are normalized by DHMBPO’s scores. The inter quantile mean
(IQM) (Agarwal et al., 2021) score shows significant improvement, demonstrating DHMBPO’s advantage
over the other methods.

0 1 2 3 4 5

Environment steps ×105

0

2000

4000

6000

8000

T
es

t
re

tu
rn

Ant

0 1 2 3 4 5

Environment steps ×105

0

4000

8000

12000

HalfCheetah

0 1 2 3 4 5

Environment steps ×105

0

1000

2000

3000

4000
Hopper

0 1 2 3 4 5

Environment steps ×105

0

2000

4000

6000

8000

Humanoid

0 1 2 3 4 5

Environment steps ×105

0

2500

5000

7500

Walker2d

0 1 2 3 4 5

Environment steps ×105

0

200

400

600

800

T
es

t
re

tu
rn

cartpole-swingup sparse

0 1 2 3 4 5

Environment steps ×105

200

400

600

800

quadruped-run

0 1 2 3 4 5

Environment steps ×105

0

150

300

450

humanoid-stand

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000
hopper-stand

0 1 2 3 4 5

Environment steps ×105

200

400

600

800

1000
finger-turn hard

DHMBPO DHMBPO w/o DR DHMBPO w/o TR

Figure 4: Performance comparison of DHMBPO (orange) against its two ablated variants: DHMBPO with-
out DR (w/o DR, corresponding to SAC-SVG(H), green) and DHMBPO without TR (w/o TR, corresponding
to MBPO, blue). The top row shows results on five representative tasks from the GYM suite, and the bottom
row shows results on five more challenging tasks from the DMC suite. Each solid line represents the mean
test return over 8 random seeds, and the shaded regions denote the 95% confidence intervals. The proposed
DHMBPO configuration (DR horizon = 20, TR horizon = 5) consistently outperforms both variants.

We consider three configurations of DHMBPO corresponding to different (DR horizon, TR horizon) set-
tings: DHBMPO (20, 5), the proposed algorithm, uses both DR and TR. DHMBPO without DR
(0, 5): samples initial states from replay buffer and uses them for TR. This setup corresponds to SAC-
SVG(H). DHMBPO without TR (20, 0) samples initial states from model buffer and applies the policy
optimization procedure in SAC, as described in Section 2.3. This setup corresponds to MBPO.

For each configuration, we ran experiments with 8 different random seeds. The solid lines in Figure 4
represent the mean performance across these seeds, while the shaded areas indicate the 95% confidence
intervals.

The results show that combining DR and TR outperforms using either DR or TR alone. In particular, the
DHMBPO configuration (20, 5) achieves higher returns and better sample efficiency compared to the two
reduced versions. For example, the TR-only variant (0, 5) corresponds to SAC-SVG(H); while it benefits
from improved value estimation, the absence of DR leads to reliance on off-policy samples, resulting in less
sample efficiency in challenging tasks like Humanoid, Walker2d, and quadruped-run. Meanwhile, the DR-
only variant (20, 0) corresponds to MBPO; although it can approximate the on-policy state distribution,
the lack of TR’s MVE estimation fails to provide effective value corrections, leading to notably inferior
performance on all tasks. Overall, these results demonstrate that the synergy achieved by combining DR
and TR in DHMBPO leads to faster learning than either technique alone.

9

Under review as submission to TMLR

1.02 1.08 1.14

0

10

20

40

Median

1.02 1.05 1.08 1.11

IQM

1.02 1.08 1.14

Mean

(a) Variants of DR horizon.

0.8 0.9 1.0

1

3

5

7

9

Median

0.8 0.9 1.0

IQM

0.8 0.9 1.0

Mean

(b) Variants of TR horizon.

Figure 5: Aggregation metrics on 10 tasks for (a) variants of different DR horizons and (b) variants of
different TR horizons.

101 103

Iteration

0.0

0.4

0.8

1.2

R
M

ed
S

E

Ant

101 103

Iteration

0.0

0.3

0.6

0.9

HalfCheetah

101 103

Iteration

0.0

0.2

0.4

0.6

Hopper

101 103

Iteration

0.0

0.3

0.6

0.9

Humanoid

101 103

Iteration

0.0

0.3

0.6

0.9

Walker2d

with DR without DR

Figure 6: Development of the RMedSE for DHMBPO (Orange) and DHMBPO without DR (Blue). The
x-axis is the number of iterations for an update of the critic parameter while all other models are fixed.
y-axis is the normalized RMedSE about Monte Carlo return (N=256) from the target environment.

We include additional experiments, in Appendix D.1, for DHMBPO without TR, corresponding to MBPO,
but with different UTD ratios. Increasing the UTD ratio improved sample efficiency (Figure 11) but also
led to longer execution times (Figure 12). In other words, achieving high sample efficiency without TR
requires sacrificing computation cost by raising the UTD ratio. On the other hand, DHMBPO achieved high
sample efficiency without increasing the UTD ratio (Figure 4), indicating that introducing TR helps reduce
computational cost. Indeed, as shown in Section 4.2, DHMBPO attained a sample efficiency comparable to
state-of-the-art MBPO-based methods in a shorter execution time.

4.4 Hyper-parameter sensitivity

Figure 5 illustrates our sensitivity analysis of the distribution-rollout (DR) and training-rollout (TR) horizon
hyperparameters. We evaluated 10 tasks under 8 random seeds, measuring test return after 500K environ-
ment steps. To avoid bias toward any single metric, the figure reports three summary statistics—median,
inter-quantile mean (IQM), and mean—along with 95% confidence intervals.

We chose DR=20 and TR=5 as our baseline. In Figure 5a, we varied only the DR horizon (0, 10, 20, 40),
while keeping TR=5 fixed. In Figure 5b, we varied only the TR horizon (1, 3, 5, 7, 9), while keeping DR=20
fixed. The results show that: 1). DR benefits from being relatively long (e.g., 20) compared to short horizons
(e.g., 0). 2). TR=5 offers a good balance between sample efficiency and gradient stability. Short TR reduces
sample efficiency (similar to “DHMBPO w/o TR” in Figure 4), while too long TR can cause gradient norms
to explode (see Appendix C.3, Figure 10b), destabilizing learning. Furthermore, in Section D.2, we provide
the investigation of trade-off in policy gradient through TR and a practical way to determine a better TR
horizon based on a small number of real samples.

Overall, these findings suggest setting DR to a moderately long horizon and TR to a shorter, carefully chosen
horizon to prevent gradient explosion and maintain robust performance.

10

Under review as submission to TMLR

4.5 Efficient Critic Learning

We show the benefit of DR in critic learning, a more accurate value estimation. We ran DHMBPO for 100K
environment steps on five environments from the GYM suite. After this training, the learned dynamics model
and actor network were fixed. We then re-initialized critic networks and compared two variants for critic
learning: with DR: Use model-generated rollouts (stored in a model buffer) to train the critic. without
DR: Use only samples from the replay buffer, without additional model-based rollouts.

As ground truth values, we computed a Monte Carlo return Q̂g(s, a) from 2,048 rollouts in the real en-
vironment, for each of 256 randomly sampled state-action pairs (s, a) taken from the replay buffer. We
then calculated MVE estimate Q̂ϕ̄,θ,5(s, a) for the 256 state-action pairs, and measured its discrepancy from
Q̂g(s, a) via a normalized root median squared error (RMedSE):

E(i) :=

√√√√√Median

(Q̂g(s, a) − Q̂ϕ̄,θ,5(s, a)
Q̂g(s, a)

)2
,

where i is the critic optimization step. “Median” denotes the median over the selected 256 state-action pairs.
For each setup, we repeated the procedure with 32 different random seeds for the critic’s initialization and
plotted the mean (solid line) and the 95% confidence intervals (shaded area) of E(i) as a function of i.

As in the environment of the last three panels in Figure 6, we observe that with DR exhibits a significantly
lower estimation error, particularly at the early stages of training. This difference indicates that the MVE
estimator is more accurately approximating the true value function. Since the policy is continuously updated
throughout training, an early advantage in value estimation can accumulate and benefit each subsequent
optimization step. In the Humanoid environment specifically, we believe this improved value estimation under
DR leads to the notable gains in sample efficiency shown in Figure 4.

5 Related Work

Many practical off-policy actor-critic methods, including the SVG algorithm, rely on uniform sampling from
the replay buffer. While importance sampling corrections have been proposed in model-free reinforcement
learning (Hallak and Mannor, 2017; Zhang et al., 2020), they are prone to issues such as high variance in
the likelihood ratios (Liu et al., 2019).

In MBRL, MBPO (Janner et al., 2019) introduced DR, achieving high sample efficiency. However, MBPO
suffers from the issue of requiring extensive runtime. In contrast, while MBPO uses the model solely for
generating virtual data, the SVG method is expected to leverage the differentiability of the model directly
in the optimization of the policy, enabling more efficient learning.

PILCO (Deisenroth and Rasmussen, 2011), which employs Gaussian processes (GPs) as a model, demon-
strates very high sample efficiency by performing policy optimization using SVG on the analytical distribution
of the cumulative reward. However, when using sample-based predictions instead of assuming an analytical
distribution, the gradient estimation becomes unstable, especially for long prediction horizons, as errors
accumulate over time (Parmas et al., 2018). This issue is particularly pronounced in tasks where accurate
long-term predictions are crucial.

Furthermore, as discussed in Section 3, SVG methods have not adequately addressed the problem of distribu-
tion shift in the objective function. Specifically, Feinberg et al. (2018) explored the usefulness of model-based
value estimation and derived conditions for an on-policy stationary distribution, but the utility of combining
these conditions with SVG for policy optimization was not made clear. In this study, we introduce a novel
approach that uses the MVE estimator for both actor and critic learning, resolving the distribution shift
issue. This constitutes the key novelty of our work.

Finally, while it is possible to consider using IS to resolve the distribution shift as in model-free reinforcement
learning literature, our study focuses on achieving practical performance improvements. We demonstrate
that simply adding the DR leads to performance gains without a large runtime increase. This simple yet

11

Under review as submission to TMLR

effective approach proves to be highly beneficial in developing technologies for RL problems where sample
efficiency is important.

6 Conclusion

In this study, we introduced DHMBPO, a new MBRL algorithm that integrates two separate model rollouts
—a long-horizon DR and a short-horizon TR— to tackle two aspects of the trade-off: (i) state distribution
shift versus model bias, and (ii) accuracy in value and value gradient versus policy gradient instability. Long
DR resamples from the model to better approximate the on-policy state distribution, whereas short TR
leverages differentiable transitions to offer accurate on-policy value estimation with stable gradient updates,
thereby requiring fewer updates and reducing overall runtime. By assigning different horizon lengths to DR
and TR, we preserve sample efficiency without incurring excessive model-bias and increased runtime.

Experimental results on multiple continuous-control tasks indicate that DHMBPO consistently achieves
faster learning and short runtime compared to existing MBRL baselines. We observe that the synergy of a
long DR with a short TR enables early improvements in value estimation, which accumulate over successive
policy updates. Although the method provides a more balanced solution to the model-bias versus off-policy-
data challenge, exploration remains an open issue. For instance, certain tasks such as finger-spin (Figure 8
in Appendix C), can still lead to local optima. Nonetheless, the relatively short runtime of DHMBPO
facilitates iterative refinement and experimentation, thereby offering a cost-effective path toward practical
performance gains in development of reinforcement learning applications where the sampling cost is critical.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. Advances in Neural Information Processing
Systems, 34, 2021. 4.1, 3

Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson. On the model-based stochastic
value gradient for continuous reinforcement learning. In Learning for Dynamics and Control, pages 6–20.
PMLR, 2021. 1, 2.4, 1, 4.1, 4.2, B, D.3

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. A.1.1

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 1

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient rein-
forcement learning with stochastic ensemble value expansion. Advances in neural information processing
systems, 31, 2018. A.5

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized Ensembled Double Q-Learning:
Learning Fast Without a Model. In International Conference on Learning Representations, 2020. 4.2.1,
A.1.2

Kyunghyun Cho. Learning phrase representations using RNN encoder-decoder for statistical machine trans-
lation. arXiv preprint arXiv:1406.1078, 2014. 4.2, D.3

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep Reinforcement Learning
in a Handful of Trials using Probabilistic Dynamics Models. Adv. Neural Inf. Process. Syst., 2018-Decem
(Nips):4754–4765, 2018. 4.1, A.2

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on machine learning (ICML-11), pages 465–472, 2011.
1, 5

12

Under review as submission to TMLR

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron
Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
OpC-9aBBVJe. 4.2.1

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018. A.1.1

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine. Model-
based value expansion for efficient model-free reinforcement learning. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML 2018), 2018. 1, 2.4, 2.4, 5

Bernd Frauenknecht, Artur Eisele, Devdutt Subhasish, Friedrich Solowjow, and Sebastian Trimpe. Trust the
model Where it trusts itself – model-Based Actor-Critic with uncertainty-Aware Rollout Adaption. arXiv
[cs.LG], 2024. 1, 4.1, 4.2, B

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision processes.
In International Conference on Machine Learning, pages 2160–2169. PMLR, 2019. 2.1

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pages 1861–1870. PMLR, 2018. 2.3

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to Control: Learning
Behaviors by Latent Imagination. 2019. 1, 2.2, 2.4

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models. arXiv preprint arXiv:2301.04104, 2023. 4.2, 3, B

Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. In International Conference on
Machine Learning, pages 1372–1383. PMLR, 2017. 1, 5

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, Robust World Models for Continuous
Control. In The Twelfth International Conference on Learning Representations, 2024. 1, 2.2, 4.2, 3, B

Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal Difference Learning for Model Predictive Control.
In International Conference on Machine Learning, pages 8387–8406. PMLR, 2022. 2.2

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning con-
tinuous control policies by stochastic value gradients. Advances in neural information processing systems,
28, 2015. 1

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka. Dropout
q-functions for doubly efficient reinforcement learning. In International Conference on Learning Repre-
sentations, 2022. 1, 1

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to Trust Your Model: Model-Based Pol-
icy Optimization. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. 1, 2.2, 2.3, 4.1, 4.2, 5, A.1.1, B

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013. 1, 2.4

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.
4.2

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with state
distribution correction. arXiv preprint arXiv:1904.08473, 2019. 1, 5

13

https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe

Under review as submission to TMLR

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Conference on
Learning Representations, 2019. 2

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015. 2.3

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS: Flexible model-based policy
search robust to the curse of chaos. In International Conference on Machine Learning, pages 4065–4074.
PMLR, 2018. 1, 2.4, 5

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and Roberto Calandra. MBRL-Lib: A
Modular Library for Model-based Reinforcement Learning. Arxiv, 2021. B, D.4

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In Eric P Xing and Tony Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pages 387–395, Bejing, China, 2014. PMLR. 1, 2.5

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014. A.1.1

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999. 1

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE, 2012. 4.1

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, 2023. URL https:
//zenodo.org/record/8127025. 4.1

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez,
Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for continuous
control. Software Impacts, 6:100022, 2020. 4.1

Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably convergent two-timescale off-
policy actor-critic with function approximation. In International Conference on Machine Learning, pages
11204–11213. PMLR, 2020. 5

Shenao Zhang, Boyi Liu, Zhaoran Wang, and Tuo Zhao. Model-based reparameterization policy gradient
methods: Theory and practical algorithms. Advances in Neural Information Processing Systems, 36, 2024.
1, 2.5

A Implementation Detail

Neural network architectures for dynamics and reward model, actor and critics is explained in Section A.1.
About the dynamics and reward model, we describe how to predict the model in Section A.2 and how to
train it in Section A.3. Hyperparameters are listed in Section A.4. Finally we describe technique for stable
critic’s prediction in Section A.5.

14

https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

Under review as submission to TMLR

A.1 Neural network models

A.1.1 Dynamics and reward model

Following Janner et al. (2019), we employ a bootstrap ensemble of M = 8 models,

{pψ1 , pψ2 , · · · , pψM
}.

We refer to them as deep ensemble (DE) models. As discussed in Section A.3, each ensemble member is
trained on (virtually) independent bootstrapped datasets. The ensemble members model aleatoric noise by
fitting independent multivariate Gaussian distributions.

Concretely, the m-th model pψm
(s, a) takes a state-action pair x = (s, a) as input and outputs the mean

vector µm ∈ RS+1 of a multivariate Gaussian distribution. Here, S is the dimension of the continuous state
space, and we jointly predict the next state (S dimensions) plus the reward (1 dimension), hence the total
output dimension S + 1. For the covariance, we assume homoscedastic noise, meaning that each model’s
diagonal covariance elements σ2

m ∈ RS+1 are constant with respect to the input.

We use Layer normalization (Ba et al., 2016) and Dropout (Srivastava et al., 2014) for regularization, and
apply SiLU (Elfwing et al., 2018) as the activation function.

Below is a PyTorch-like summary of our network architecture:
(model): Sequential(

(0): EnsembleLinearLayer(
8, in_size=S+A, out_size=256, decay=0.00025)

(1): Dropout(p=0.0075)
(2): SiLU()
(3): LayerNorm((256,))
(4): EnsembleLinearLayer(

8, in_size=256, out_size=256, decay=0.0005)
(5): Dropout(p=0.005)
(6): SiLU()
(7): LayerNorm((256,))
(8): EnsembleLinearLayer(

8, in_size=256, out_size=256, decay=0.00075)
(9): Dropout(p=0.0025)
(10): SiLU()
(11): LayerNorm((256,))
(12): EnsembleLinearLayer(

8, in_size=256, out_size=S+1, decay=0.001)
)

)
“EnsembleLinearLayer” denotes the layer which calculates the feed forward pass in parallel.

A.1.2 Actor and Critics

We also use ensemble of MLP as critic networks used for randomized ensemble double Q-learning, or RED-
Q (Chen et al., 2020). We summarize the neural network architecture using Pytorch-like notation:

for model,
(critics): Sequential(

(0): EnsembleLinearLayer(
5, in_size=S+A, out_size=512, decay=0.0)

(1) Dropout(p=0.0001)
(2): SiLU()
(3) LayerNorm((256,))
(4): EnsembleLinearLayer(

5, in_size=512, out_size=512, decay=0.0)
(5) Dropout(p=0.0001)
(6): SiLU()
(7) LayerNorm((256,))
(8): EnsembleLinearLayer(

5, in_size=512, out_size=512, decay=0.0)
(9) Dropout(p=0.0001)
(10): SiLU()
(11) LayerNorm((256,))
(12): EnsembleLinearLayer(

5, in_size=512, out_size=1, decay=0.0)
)

)
for critic networks, and

15

Under review as submission to TMLR

(actor): Sequential(
(0): Linear(in_features=S, out_features=512)
(1): SiLU()
(2): Linear(in_features=512, out_features=512)
(3): SiLU()
(4): Linear(in_features=512, out_features=512)
(5): SiLU()
(6): Linear(in_features=512, out_features=2A)

)
)
for actor networks, respectively, where S is the dimension of state space, and A is the dimension of action
space. The total number of weight parameters, for example on Humanoid task from GYM suite is about 2M,
where S=45 and A=17.

A.2 Model prediction

We propose to normalize the signals targeted for regression (See Section A.3 for more detail). Given a
variable z, we denote its normalized version by z̄. We perform normalization by the empirical mean µz and
standard deviation σz statistics of the variable with the equation z̄ := z−µz

σz
. Similarly, we can perform

denormalization by z = z̄σz + µz. We denote the state vectors and the next-state vectors as s, s′ ∈ RdS

respectively, and the i-th element of the displacement between them as ∆i := s′
i−si. Our dynamics models,

Tψ, are trained to predict the displacements in states from one step to the next, thus we normalize the
outputs based on their used targets. Let µ∆i

and σ∆i
be the mean and standard deviation of the observed

displacements in the data up to now. During training the model, the i-th element of the model’s target
signal for the n-th data point is defined as t̄ni := ∆ni−µ∆i

σ∆i
. We summarize the different normalizations we

perform: all inputs to models are normalized; the rewards are normalized during training the reward model,
but the predicted rewards are denormalized during policy learning; the actions are never normalized (as we
choose their scale to be reasonable); the transition model targets are normalized during model training and
also during the actor training rollouts.

The rollout predictions, in particular, require care in the implementation. Suppose the normalized state
is s̄ and the transition model has predicted a change ∆̄. We can add the normalized displacement to
the normalized state by first denormalizing, then adding them, then normalizing them again. This leads
to the process: (i) s = µs + σss̄, (ii) ∆ = µ∆ + σ∆∆̄, (iii) s′ = s + ∆ = µs + σss̄ + µ∆ + σ∆∆̄, (iv)
s̄′ = s′−µs

σs
= s̄+ µ∆+σ∆∆̄

σs
. We thus see that to make correct predictions in the normalized space using our

displacement model, we need to denormalize the displacements, then normalize them using the normalization
scale of the states, s, and add the displacement to the normalized state, s̄.

Note that although a similar normalization was performed in SAC-SVG(H), the output was normalized using
the sample mean and standard deviation of the state, just like the input.

When predicting next-state and reward during rollout, we adopt the TS-1 algorithm proposed in Chua et al.
(2018), which randomly selects an ensemble member for each input and timestep in order to propagate
uncertainty through bootstrapping.

A.3 Model Learning

A.3.1 The objective function

The objective of the model learning is minimizing the sum of the negative log-likelihood:

L(ψ) := 1
MND

M∑
m=1

N∑
n=1

wmnLmn

where

Lmn :=
D∑
d=1

{
log σmd + 1

2

(
t̄nd − µmnd

σmd

)2}
.

16

Under review as submission to TMLR

µmnd := µ
(d)
ψm

(xn) represents the dth output of the mth neural network µψm
for the nth input xn := (sn, an),

and σmd denotes the noise regarding the dth dimension output of the mth ensemble member σm.

wmn ∈ [0,∞] is a weight for nth sample allocated to the mth model, in order to make the dataset virtually
independent bootstrapped one. The value is randomly sampled from the exponential distribution f(w|1)
with the parameter λ = 1 and fixed, thus the effective number of data used for each model’s learning is
equivalent on average.

A.3.2 Early stopping

When xn is the input, let µmn and σm represent the mean and scale parameter, of the mth model’s predicted
Gaussian distribution. We aggregate the predictions across all ensemble members, and define the prediction
of the DE models as a Gaussian distribution with mean parameters for the dth dimension when the input
is xn as µ̃nd := 1

M

∑M
m=1 µmnd and the scale parameter as σ̃2

nd := s2
nd + 1

M

∑M
m=1 σ

2
md, where s2

nd is the
sample variance among the ensemble of predictions {µmnd}Mm=1. This approach is often also called moment
matching.

Then, we define the evaluation score Sn for the nth data as:

Sn := 1
2

D∑
d=1

[
(µ̃nd − tnd)2

σ̃2
nd

+ log σ̃2
nd

]
under the assumption that the predicted distribution follows a Gaussian distribution with a diagonal co-
variance matrix. After each epoch of model learning, we evaluate the score for each validation data point
and compare the distribution of these scores based on the new parameters of the model with those from
the previous parameters. If the distribution of the new scores shows significant improvement according to a
Z-test with a significance level of 0.1, we continue training the model.

Our stopping strategy is the same as in the MBPO implementation: if the new model does not show
improvement over a fixed number of epochs, the training is stopped. We set the threshold as b log ds, where
b is a scalar-valued hyper-parameter, representing the base number of epochs, and ds is the dimension of the
state space.

A.4 Hyper-parameters

We summarize in Table 2 hyper-parameters shared for all experiments in Section 4.

A.5 Bounding target critic’s output

In this study, we use the MVE estimator for Q-function, eq. (9) as the target values in critic learning. How-
ever, due to the recursive dynamics model predictions, the model errors may accumulate or value estimation
errors may increase (Buckman et al., 2018). In order to avoid this risk, we bound the values predicted by
the target critics to stabilize critic learning.

Since the Q-value is within 1
1−γ times the upper and lower bounds of the reward value (Proof.

∑∞
h=0 γhrh ≤∑∞

h=0 γ
hrmax = 1

1−γ rmax and similar for the lower bound), we approximate these upper and lower reward
bounds. The procedure for estimation of bounds on Qπθ is as follows: (1) Perform training rollouts. (2) Set
the 1-st and 99-th percentiles of rewards from the rollouts as rl and ru, respectively. (3) Ql := rl

1−γ and
Qu := ru

1−γ . (4) When calculating the bounds for the first time, set Ql and Qu as the initial values, and
subsequently update them by taking exponential moving averages with a hyperparameter η. Then we clip
the target critic networks’ outputs in eq. (9) by Ql and Qu. Since the process is simple, its computation cost
is negligible.

We do not perform, on the other hand, clipping on the output of the critic used when training actor with
eq. (7). This is because if the critic network outputs a value outside the bounds, the gradient to encourage
predicting values within that range would vanish because of the clipping.

17

Under review as submission to TMLR

Table 2: Hyper-parameters for DHMBPO used across all experiments in this study

Hyper-parameter Value
Discount factor 0.995

Seed steps 5000
Action repeat 1 (Gym)

2 (DMControl)
Batch size 256

Update-to-data ratio 1
Replay buffer size 1M

Learning rate for the actor, critics and α 3 · 10−4

Initial value of α 0.1
Momentum coefficient c for target critic 0.995

Length of DR D 20
Length of training rollout T 5

Iteration per DR 20
Ensemble size of model 8

Optimizer for training model AdamW (Loshchilov and Hutter, 2019)
Learning rate training model 1 · 10−3

The motivation for using percentiles in the step (2), instead of using a hard max and min, is based on
the observation in our preliminary experiments (Appendix D.6). There are occasional large outliers in the
rewards that would make the bounds extremely broad. Ignoring these outliers, but estimating the bounds
based on the most of the samples gives more efficient and stable results.

B Experiment Details

We describe configuration for comparison in Section 4.2. In this study, when the other algorithms’ experi-
mental results under identical settings were available, we used those results as part of the results (MBPO
and Dreamer v3). For the rest of the results, we ran the publicly available source code with its default
hyperparameter settings.

The number of samples to measure a test return varies depending on the implementation of the algorithm.
Like DHMBPO, SAC-SVG(H) (Amos et al., 2021) and TD-MPC2 (Hansen et al., 2024) used 10 test episodes,
while as MACURA (Frauenknecht et al., 2024) used 3 test episodes and MBPO (Janner et al., 2019; Pineda
et al., 2021) and Dreamer v3 (Hafner et al., 2023) used 1 test episode.

For each GYM tasks, except for DHMBPO, each algorithms’ hyper-parameters were tuned per-task. Follow-
ing (Janner et al., 2019), we used variants for the Humanoid and Ant environments from GYM, with some
state dimensions truncated to lower dimensions.

For DMC tasks, Each of three algorithms’ hyper-parameters were set commonly over all DMC tasks.

C Result Details

C.1 Ablation study

Figure 7 shows performance profile and score distributions of ablated algorithms on 5 GYM tasks and 5 DMC
tasks, of which individual plots are shown in Section 4.3. We see that DHMBPO’s statistically significant
sample efficiency in early phase against the ablated algorithms.

18

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00
Normalized Environment Steps

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

IQ
M

S
co

re

0.0 0.25 0.5 0.75 1.0

Normalized Test Return (R)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

R
u

n
s
>
R

DHMBPO w/o DR DHMBPO w/o TR DHMBPO

Figure 7: Performance profile (left) and score distributions (right) of ablated algorithms on 5 GYM tasks
and 5 DMC tasks.

Table 3: Runtimes on DMC tasks until maximum environment step budget (250K or 500K) and its ratio to
DHMBPO’s mean runtime (in hours).

DHMBPO Dreamer v3 TD-MPC2
acrobot-swingup 1.7 2.9 3.8
acrobot-swingup_sparse 1.6 2.9 2.6
cartpole-balance 0.9 1.5 1.2
cartpole-swingup 0.9 2.9 1.9
cartpole-swingup_sparse 1.9 2.9 2.3
cheetah-run 2.7 4.1 2.8
cup-catch 1.2 1.6 1.9
finger-spin 2.2 3.2 2.9
finger-turn_easy 2.2 3.2 2.7
finger-turn_hard 2.2 3.2 2.6
hopper-hop 2.7 3.1 3.8
hopper-stand 3.2 3.3 2.3
humanoid-stand 4.3 2.9 5.0
quadruped-run 3.7 3.2 2.7
reacher-hard 2.0 2.9 3.7
walker-run 2.7 3.2 3.9
walker-stand 1.2 1.6 1.8
walker-walk 1.7 1.5 3.7
Ratio 1.0 1.3 1.3

C.2 Comparison with other algorithms

For DMC tasks, we provide plots for individual sample efficiency curve in Figure 8, plots for runtime in
Figure 9 and Table 3 for summarizing their runtimes.

C.3 Hyper-parameter sensitivity

We show individual results of experiments in Section 4.4 with respect to sample efficiency (a) and to an
Euclidean norm of policy gradient θ ∈ RD:

√∑D
i θ

2
i .

19

Under review as submission to TMLR

0 1 2 3 4 5

Environment steps ×105

0

150

300

450
T

es
t

re
tu

rn

acrobot-swingup

0 1 2 3 4 5

Environment steps ×105

0

60

120

180

acrobot-swingup sparse

0.0 0.5 1.0 1.5 2.0 2.5

Environment steps ×105

200

400

600

800

1000

cartpole-balance

0.0 0.5 1.0 1.5 2.0 2.5

Environment steps ×105

0

200

400

600

800

cartpole-swingup

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

T
es

t
re

tu
rn

cartpole-swingup sparse

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5

Environment steps ×105

0

250

500

750

1000

cup-catch

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000

finger-spin

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000

T
es

t
re

tu
rn

finger-turn easy

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000
finger-turn hard

0 1 2 3 4 5

Environment steps ×105

0

150

300

450

hopper-hop

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000

hopper-stand

0 1 2 3 4 5

Environment steps ×105

0

150

300

450

T
es

t
re

tu
rn

humanoid-stand

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000
quadruped-run

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000

reacher-hard

0 1 2 3 4 5

Environment steps ×105

0

200

400

600

800

walker-run

0.0 0.5 1.0 1.5 2.0 2.5

Environment steps ×105

250

500

750

1000

T
es

t
re

tu
rn

walker-stand

0.0 0.5 1.0 1.5 2.0 2.5

Environment steps ×105

0

250

500

750

1000

walker-walk

TD-MPC2 DHMBPO Dreamer v3

Figure 8: Comparison of sample efficiency with latent model-based methods on DMC tasks. The solid line
represents the sample mean over 8 random seeds, and the shaded area indicates the 95% confidence intervals.

20

Under review as submission to TMLR

0.0 1.5 3.0 4.5 6.0

Runtime [Hours]

0

150

300

450
T

es
t

re
tu

rn

acrobot-swingup

0.0 1.5 3.0 4.5 6.0

Runtime [Hours]

0

50

100

150

200

acrobot-swingup sparse

0.0 0.4 0.8 1.2 1.6 2.0

Runtime [Hours]

200

400

600

800

1000

cartpole-balance

0.0 0.6 1.2 1.8 2.4

Runtime [Hours]

0

200

400

600

800

cartpole-swingup

0.0 0.8 1.6 2.4 3.2 4.0

Runtime [Hours]

0

250

500

750

T
es

t
re

tu
rn

cartpole-swingup sparse

0.0 1.5 3.0 4.5 6.0

Runtime [Hours]

0

250

500

750

cheetah-run

0.0 0.4 0.8 1.2 1.6 2.0

Runtime [Hours]

0

250

500

750

1000

cup-catch

0.0 0.8 1.6 2.4 3.2 4.0

Runtime [Hours]

0

250

500

750

1000

finger-spin

0.0 0.8 1.6 2.4 3.2 4.0

Runtime [Hours]

0

250

500

750

1000

T
es

t
re

tu
rn

finger-turn easy

0.0 0.8 1.6 2.4 3.2 4.0

Runtime [Hours]

0

250

500

750

finger-turn hard

0.0 1.5 3.0 4.5 6.0

Runtime [Hours]

0

150

300

450

hopper-hop

0.0 1.5 3.0 4.5 6.0

Runtime [Hours]

0

250

500

750

1000

hopper-stand

0.0 1.5 3.0 4.5 6.0 7.5

Runtime [Hours]

0

150

300

450

T
es

t
re

tu
rn

humanoid-stand

0.0 1.5 3.0 4.5 6.0

Runtime [Hours]

0

250

500

750

1000
quadruped-run

0.0 1.5 3.0 4.5 6.0

Runtime [Hours]

0

250

500

750

1000

reacher-hard

0.0 0.8 1.6 2.4 3.2 4.0

Runtime [Hours]

0

200

400

600

800

walker-run

0.0 0.4 0.8 1.2 1.6 2.0

Runtime [Hours]

250

500

750

1000

T
es

t
re

tu
rn

walker-stand

0.0 0.4 0.8 1.2 1.6 2.0

Runtime [Hours]

0

250

500

750

1000

walker-walk

TD-MPC2 DHMBPO Dreamer v3

Figure 9: Runtime comparison with latent model-based methods on DMC tasks.

D Additional Experiments for Highlighting improvement over DR-based and
TR-based algorithms

D.1 DHMBPO without Training Rollout but with different UTD ratios

We show the results of DHMBPO without TR but with different UTD ratios in Figure 11 for sample efficiency
curves, in Figure 13 for performance profiles, in Figure 12 for runtime comparison and in Table 4 for summary

21

Under review as submission to TMLR

0 1 2 3 4 5

Environment steps ×105

0

2000

4000

6000

8000

T
es

t
re

tu
rn

Ant

0 1 2 3 4 5

Environment steps ×105

0

4000

8000

12000

HalfCheetah

0 1 2 3 4 5

Environment steps ×105

0

1000

2000

3000

4000

Hopper

0 1 2 3 4 5

Environment steps ×105

0

2500

5000

7500

Humanoid

0 1 2 3 4 5

Environment steps ×105

0

2500

5000

7500

10000

Walker2d

0 1 2 3 4 5

Environment steps ×105

0

200

400

600

800

T
es

t
re

tu
rn

cartpole-swingup sparse

0 1 2 3 4 5

Environment steps ×105

200

400

600

800

quadruped-run

0 1 2 3 4 5

Environment steps ×105

0

150

300

450

humanoid-stand

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000
hopper-stand

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000

finger-turn hard

1 3 5 7 9

(a) Sample efficiency curves.

1 2 3 4 5

Environment steps ×105

101

102

N
o
rm

of
p

ol
ic

y
gr

ad
ie

n
t

Ant

1 2 3 4 5

Environment steps ×105

101

102

103

HalfCheetah

1 2 3 4 5

Environment steps ×105

101

102
Hopper

1 2 3 4 5

Environment steps ×105

101

102

Humanoid

1 2 3 4 5

Environment steps ×105

101

102

Walker2d

1 2 3 4 5

Environment steps ×105

10−2

10−1

100

101

102

N
or

m
o
f

p
ol

ic
y

gr
a
d

ie
n
t

cartpole-swingup sparse

1 2 3 4 5

Environment steps ×105

10−1

100

101

102

quadruped-run

1 2 3 4 5

Environment steps ×105

10−2

10−1

100

101

humanoid-stand

1 2 3 4 5

Environment steps ×105

10−2

10−1

100

101

102

hopper-stand

1 2 3 4 5

Environment steps ×105

103

107

1011

1015

finger-turn hard

1 3 5 7 9

(b) Norm of policy gradient.

Figure 10: Development of test return and critic loss over environment steps.

22

Under review as submission to TMLR

0 1 2 3 4 5

Environment steps ×105

0

1500

3000

4500

T
es

t
re

tu
rn

Ant

0 1 2 3 4 5

Environment steps ×105

0

4000

8000

12000

HalfCheetah

0 1 2 3 4 5

Environment steps ×105

0

800

1600

2400

3200

Hopper

0 1 2 3 4 5

Environment steps ×105

0

2000

4000

6000

Humanoid

0 1 2 3 4 5

Environment steps ×105

0

2500

5000

7500

Walker2d

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

T
es

t
re

tu
rn

cartpole-swingup sparse

0 1 2 3 4 5

Environment steps ×105

150

300

450

quadruped-run

0 1 2 3 4 5

Environment steps ×105

0

25

50

75

100

humanoid-stand

0 1 2 3 4 5

Environment steps ×105

0

250

500

750

1000

hopper-stand

0 1 2 3 4 5

Environment steps ×105

250

500

750

1000

finger-turn hard

UTD = 1
UTD = 2

UTD = 4 UTD = 8 UTD = 16

Figure 11: Sample efficiency curves of DHMBPO without TR (corresponding to MBPO) but with different
UTD ratios.

0 5 10 15 20 25

Runtime [Hours]

0

1500

3000

4500

T
es

t
re

tu
rn

Ant

0 5 10 15 20

Runtime [Hours]

0

3000

6000

9000

12000

HalfCheetah

0 5 10 15 20 25

Runtime [Hours]

800

1600

2400

3200

Hopper

0 6 12 18 24

Runtime [Hours]

0

2000

4000

6000

Humanoid

0 5 10 15 20 25

Runtime [Hours]

0

2000

4000

6000

8000

Walker2d

0.0 2.5 5.0 7.5 10.0 12.5

Runtime [Hours]

0

250

500

750

T
es

t
re

tu
rn

cartpole-swingup sparse

0.0 2.5 5.0 7.5 10.0

Runtime [Hours]

150

300

450

quadruped-run

0 3 6 9 12 15

Runtime [Hours]

0

25

50

75

100

humanoid-stand

0.0 2.5 5.0 7.5 10.0

Runtime [Hours]

0

250

500

750

1000

hopper-stand

0.0 2.5 5.0 7.5 10.0 12.5

Runtime [Hours]

200

400

600

800

1000

finger-turn hard

UTD = 1 UTD = 2 UTD = 4 UTD = 8 UTD = 16

Figure 12: Runtime comparison of the DHMBPO variants without TR but with different UTD ratios.

of runtimes. We can see that the higher UTD ratio the higher performance. Conversely, DR-based algorithm,
or DHMBPO without TR, needs higher UTD ratio in order to attain high sample efficiency, requiring longer
runtime as shown in 12. And this results reflect that MBPO (and MACURA) were sample efficient while
took so long runtime.

D.2 Trade-off in Policy Gradient Estimation

We investigate how the horizon length T of the training rollout (TR) affects the bias and variance of value
gradient estimates. In principle, increasing T reduces the bias by incorporating longer reward sequences,
but it can simultaneously raise the variance of the policy gradient.

Experimental Setup

For each benchmark task, we train a DHMBPO agent for 500k environment steps and then fix its policy,
critic, dynamics, and reward networks, as well as the replay buffer. We draw B = 2048 states

{
sb
}B
b=1 at

random from the replay buffer. For each state sb and each TR horizon t ∈ {1, 3, 5, 7, 9}, we run R = 2048
short-horizon rollouts under the learned model and compute the corresponding MVE-based value gradients

23

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00
Normalized Environment Steps

0.0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

IQ
M

S
co

re

0.0 0.25 0.5 0.75 1.0

Normalized Test Return (R)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

R
u

n
s
>
R

UTD = 1
UTD = 2

UTD = 4
UTD = 8

UTD = 16

Figure 13: Performance profiles and score distributions of DHMBPO without TR (corresponding to MBPO)
but with different UTD ratios. The baseline here is the variant with UTD = 1.

Table 4: Runtime until 500K environment step. Tha last row shows the ratio of mean runtime to that of
the case with UTD = 1.

The UTD ratio 1 2 4 8 16
Ant 3.8 5.1 7.9 13.7 27.0
HalfCheetah 3.0 4.4 6.6 11.8 23.2
Hopper 3.3 4.7 7.5 12.6 26.5
Humanoid 4.6 6.8 9.7 15.9 28.1
Walker2d 3.6 5.2 8.7 14.5 26.7
cartpole-swingup_sparse 1.7 2.3 3.7 6.3 12.2
finger-turn_hard 2.3 2.3 3.5 6.3 12.9
hopper-stand 2.1 2.6 4.5 6.8 11.2
humanoid-stand 3.7 4.5 5.8 8.0 14.6
quadruped-run 3.8 4.2 5.4 7.7 11.9
Ratio 1.0 1.3 2.0 3.3 6.1

{
gtbr
}R
r=1, where gtbr is a normalized vector by the dimension of policy parameter which differs across tasks.

We define

gtb := 1
R

R∑
r=1

gtbr, gt := 1
B

B∑
b=1

gtb.

Following the approach in our hyperparameter sensitivity analysis (Appendix C.3), we designate t = 9 =: T
as the ground truth horizon:

ḡ := gT .

In other words, we treat the gradient computed at t = 9 as a baseline for evaluating shorter horizons.

To quantify bias, we measure the mean squared difference between each sample-averaged gradient gtb and ḡ,
averaged over all b:

Biast := 1
B

B∑
b=1

∥∥gtb − ḡ
∥∥2
.

In addition, we compute the standard error of the mean (SEM) to capture the variability of the gradient
across states in the replay buffer:

SEMt :=

√∑B
b=1
∥∥gtb − gt

∥∥2

B(B − 1) ,

24

Under review as submission to TMLR

where ∥ · ∥ denotes the Euclidean norm over the policy parameter dimension (i.e., the gradient dimension).
Intuitively, Biast reflects how far the sample-averaged gradient at horizon t is from the ground truth at t = 9,
while SEMt indicates how much variability remains across different states.

Experimental Results

Figure 14 presents results using T = 5, 7, and 9 as the ground-truth horizon. In all tasks except
finger-turn_hard, we see that as t increases from 1 to 9, the bias steadily declines while the SEM
grows—revealing a clear trade-off between bias and variance in the policy gradient. By contrast, in
finger-turn_hard, the bias when T=9 did not show clear trend to decrease, suggesting the batch size
of 2048 was not enough for gT=9 to be as ground truth, and that setting t = 5 does not necessarily prevent
gradient explosion in certain challenging domains.

Notably, all these estimates rely on a replay buffer of 2048 real-environment states, while the multiple
trajectories at each state are generated by the model, although the model was trained on after 500k samples.
Therefore, this method can be carried out without any additional real-environment interaction and used to
set relatively stable length of TR horizon, as demonstrated in unclear trend of the bias in finger-turn_hard.

D.3 Application of DR to SAC-SVG(H) Implementation

In order to see the effect of DR on an existing implementation, we added DR procedure into the official code
of SAC-SVG(H) algorithm (Amos et al., 2021), which employs the SVG method with a single GRU (Cho,
2014) as the recurrent neural network and one-step TD errors for training the critic networks. We refer to
this variant as DHSAC-SVG(H) and evaluated it on five GYM tasks with varying DR lengths, repeating the
execution with different 5 seeds. As shown in Fig. 15, the variants with longer DRs exhibited either poor
learning performance or a drop in performance after a certain point. We investigated the training metrics
and found that the critic losses started to explode as the DR length increased, as shown in Fig. 16. Here,
the solid line is mean µ and shaded area shows the 95% CIs in log-scale: µ(1 ± exp(log SEM × 1.96)) where

log SEM is defined as log SEM :=
√∑S

s=1
(ls−µ)2

S(S−1) and ls is critic loss with s-th seed.

One potential cause of these results is the deterministic nature of the model used in the SAC-SVG(H)
algorithm. Predictions generated by a fixed deterministic model are likely to introduce consistent biases. In
contrast, the DE model approach adopted by DHMBPO and MBPO uses multiple ensemble members, each
potentially having similar biases. However, the manner in which these biases accumulate is random across
ensemble members. During predictions, an ensemble member is randomly selected at each timestep, making
the bias accumulation in the predicted states also random. As a result, within a single trajectory, these
biases may cancel out to some extent, leading to an overall smaller average bias, albeit with larger variance.

Policy evaluation and improvement based on the higher-variance predictions of a DE model may slow down
learning, but they avoid the risk of extreme predictions caused by deterministic models with large biases. On
the other hand, policy evaluation and optimization using predictions with significant bias from deterministic
models carry the risk of focusing on extreme values, potentially destabilizing the training process.

D.4 Comparison of Model Learning Performance

We also conducted a quantitative analysis to compare the predictive performance of models used in
DHMBPO, SAC-SVG(H), and MBPO (Pineda et al., 2021), using common training and evaluation datasets.

Data Generation Procedure For each GYM task, we ran the DHMBPO algorithm for up to 500K steps.
From the replay buffer, we created three input-output datasets containing data collected up to 5K, 20K, and
50K steps, respectively. Additionally, we created another dataset from all data collected between 495K and
500K steps. Each dataset was split into training (80%) and validation (20%) subsets, while the 495K–500K
dataset was exclusively used for evaluation.

25

Under review as submission to TMLR

Evaluation Methodology For each of the three models, we trained them using the respective train-
ing datasets and measured Root Mean Squared Error (RMSE) on the training, validation, and evaluation
datasets at each epoch. This procedure was repeated for three random seeds.

Results The results of the experiments are plotted separately for each dataset size, comparing training
data versus validation data and training data versus evaluation data, as shown in Figs. 17– 19. Additionally,
the results after 100K epochs are summarized in Table 5. The shaded areas in the plots and the ± values in
the table both represent the standard error over three seeds.

D.5 Different UTD ratio

We executed DHMBPO wit the different UTD ratios, shown in Figure 20. All value for each metrics are
normalized by the value for the UTD ratio = 1.

D.6 Distribution of predicted rewards and target values for critic

We applied the MBPO algorithm HalfCheetah using the MBRL-lib and created histograms of batch size
rewards and critic losses calculated from the rollout buffer sampling every 10,000 interaction steps. We
repeated this process up to 50,000 steps and summarized the results in Figure 21. While there are only a
few outliers that can be considered as extreme values for rewards, the target values exhibit more variability,
occasionally resulting in many outliers. Considering that gamma is 0.99, it can be stated that the samples
at the 30,000th and 50,000th steps are extreme valued samples.

Although the causal relationship between the outliers in rewards and the anomalies in target values is not
clear, it is speculated that the target values start to exhibit variability earlier than the rewards. From this
observation, bounding the target critics’ outputs described in Section A.5 is suggested as an effective remedy.
Additionally, since the reward value can take extreme value, we use 1-st and 99-th percentiles of rewards for
estimation of the lower bound and the upper bound, instead of the minimum and the maximum.

26

Under review as submission to TMLR

Table 5: Summary of RMSE values after 100K epochs. “Size” denotes the size of training data.

Method DHMBPO MBPO SAC-SVG(H)
Metric Task Size

Training RMSE Ant 5000 0.29 ± 0.0 1.86 ± 0.02 1.1 ± 0.01
20000 0.48 ± 0.0 1.21 ± 0.01 0.67 ± 0.0
50000 0.5 ± 0.0 0.79 ± 0.02 0.59 ± 0.0

HalfCheetah 5000 0.18 ± 0.0 1.46 ± 0.01 0.7 ± 0.01
20000 0.35 ± 0.0 0.73 ± 0.01 0.57 ± 0.0
50000 0.49 ± 0.0 1.58 ± 0.08 0.76 ± 0.0

Hopper 5000 0.01 ± 0.0 0.06 ± 0.0 0.11 ± 0.0
20000 0.02 ± 0.0 0.09 ± 0.0 0.18 ± 0.0
50000 0.02 ± 0.0 0.04 ± 0.0 0.21 ± 0.0

Humanoid 5000 0.44 ± 0.0 2.02 ± 0.0 2.99 ± 0.02
20000 1.18 ± 0.0 1.99 ± 0.0 1.65 ± 0.0
50000 1.55 ± 0.0 1.77 ± 0.01 1.69 ± 0.0

Walker2d 5000 0.16 ± 0.0 1.74 ± 0.08 2.88 ± 0.01
20000 0.36 ± 0.0 1.1 ± 0.01 1.48 ± 0.03
50000 0.43 ± 0.0 0.72 ± 0.02 0.92 ± 0.0

Validation RMSE Ant 5000 6.44 ± 0.03 4.29 ± 0.12 8.59 ± 0.07
20000 1.51 ± 0.02 1.62 ± 0.02 3.64 ± 0.03
50000 0.93 ± 0.01 1.07 ± 0.01 1.43 ± 0.01

HalfCheetah 5000 3.72 ± 0.01 3.82 ± 0.03 8.78 ± 0.01
20000 1.99 ± 0.02 1.87 ± 0.03 3.16 ± 0.05
50000 1.61 ± 0.03 1.97 ± 0.11 3.9 ± 0.14

Hopper 5000 0.19 ± 0.01 0.16 ± 0.01 0.25 ± 0.0
20000 0.25 ± 0.02 0.2 ± 0.0 0.95 ± 0.03
50000 0.13 ± 0.01 0.1 ± 0.01 1.15 ± 0.02

Humanoid 5000 5.14 ± 0.06 5.09 ± 0.02 7.9 ± 0.1
20000 3.25 ± 0.04 3.49 ± 0.02 9.25 ± 0.08
50000 2.66 ± 0.01 2.52 ± 0.02 6.51 ± 0.0

Walker2d 5000 4.08 ± 0.06 4.54 ± 0.16 6.04 ± 0.04
20000 2.69 ± 0.02 2.79 ± 0.08 7.22 ± 0.06
50000 1.46 ± 0.02 1.54 ± 0.03 2.49 ± 0.02

Evaluation RMSE Ant 5000 8.61 ± 0.21 6.45 ± 0.18 10.9 ± 0.22
20000 2.49 ± 0.06 2.05 ± 0.05 6.29 ± 0.11
50000 1.13 ± 0.01 1.25 ± 0.01 2.61 ± 0.02

HalfCheetah 5000 21.11 ± 0.24 274.94 ± 51.26 25.31 ± 1.15
20000 12.76 ± 0.19 18.12 ± 1.23 16.56 ± 0.35
50000 5.89 ± 0.06 27.91 ± 4.62 9.51 ± 0.23

Hopper 5000 1.97 ± 0.01 20.67 ± 1.34 2.05 ± 0.03
20000 0.99 ± 0.04 1.47 ± 0.19 1.61 ± 0.13
50000 0.4 ± 0.0 0.62 ± 0.16 0.88 ± 0.01

Humanoid 5000 12.91 ± 0.18 14.25 ± 0.54 17.22 ± 0.69
20000 12.64 ± 0.21 14.63 ± 0.19 13.24 ± 0.46
50000 11.47 ± 0.18 11.46 ± 0.17 12.86 ± 0.14

Walker2d 5000 11.27 ± 0.28 251.58 ± 54.54 13.91 ± 0.59
20000 11.37 ± 0.49 16.42 ± 2.58 12.38 ± 0.76
50000 8.89 ± 0.18 22.69 ± 10.32 9.72 ± 0.3

27

Under review as submission to TMLR

Horizon
0
1
2
3
4
×10−4

Ant
(0.04)

Horizon
0.0
0.8
1.6
2.4

×10−3

HalfCheetah
(0.11)

Horizon
0
1
2
3
4
×10−5

Hopper
(0.01)

Horizon
0.0
1.5
3.0
4.5
6.0

×10−4

Humanoid
(0.04)

Horizon
0.0
1.5
3.0
4.5
6.0
×10−4

Walker2d
(0.05)

1 3 5

Horizon

0.0
0.4
0.8
1.2
1.6

×10−5

cartpole-swingup sparse
(0.01)

1 3 5

Horizon

0.0
0.4
0.8
1.2

×10−5

quadruped-run
(0.01)

1 3 5

Horizon

0.0
0.8
1.6
2.4

×10−6

humanoid-stand
(0.00)

1 3 5

Horizon

0.00
0.25
0.50
0.75
1.00
×10−5

hopper-stand
(0.01)

1 3 5

Horizon

0
2
4
6
8

×10−4

finger-turn hard
(0.13)

2.5

5.0

×10−3

4

5

×10−3

1.5

2.0

×10−3

6

8

×10−3

6

8

×10−3

6.5

7.0

7.5

×10−4

2.5

3.0

×10−4

1.75

2.00

×10−4

4

6

×10−4

5.0

7.5

×10−3

Bias (Left) Standard error of mean (Right)

(a) T=5

Horizon
0
2
4
6
8
×10−4

Ant
(0.04)

Horizon
0.0
1.5
3.0
4.5
6.0
×10−3

HalfCheetah
(0.11)

Horizon
0
2
4
6
8
×10−5

Hopper
(0.01)

Horizon
0.0
0.3
0.6
0.9
1.2
×10−3

Humanoid
(0.04)

Horizon
0.0
0.4
0.8
1.2

×10−3

Walker2d
(0.05)

1 3 5 7

Horizon

0.0
0.6
1.2
1.8
2.4

×10−5

cartpole-swingup sparse
(0.01)

1 3 5 7

Horizon

0.0
0.8
1.6
2.4
3.2
×10−5

quadruped-run
(0.01)

1 3 5 7

Horizon

0.0
1.5
3.0
4.5

×10−6

humanoid-stand
(0.00)

1 3 5 7

Horizon

0.0
0.5
1.0
1.5
2.0
×10−5

hopper-stand
(0.01)

1 3 5 7

Horizon

0.0
0.8
1.6
2.4
3.2
×10−3

finger-turn hard
(0.13)

2.5

5.0

×10−3

0.5

1.0
×10−2

1.5

2.0

×10−3

0.75

1.00

×10−2

5.0

7.5

×10−3

0.75

1.00

×10−3

3

4

×10−4

2.0

2.5
×10−4

5.0

7.5
×10−4

1

2

×10−2

Bias (Left) Standard error of mean (Right)

(b) T=7

Horizon
0.0
0.4
0.8
1.2
1.6
×10−3

Ant
(0.04)

Horizon
0.00
0.25
0.50
0.75
1.00
×10−2

HalfCheetah
(0.11)

Horizon
0.0
0.6
1.2
1.8
2.4
×10−4

Hopper
(0.01)

Horizon
0.0
0.8
1.6
2.4

×10−3

Humanoid
(0.04)

Horizon
0.0
0.8
1.6
2.4
3.2
×10−3

Walker2d
(0.05)

1 3 5 7 9

Horizon

0.0
1.5
3.0
4.5
6.0
×10−5

cartpole-swingup sparse
(0.01)

1 3 5 7 9

Horizon

0.0
1.5
3.0
4.5

×10−5

quadruped-run
(0.01)

1 3 5 7 9

Horizon

0.00
0.25
0.50
0.75
1.00
×10−5

humanoid-stand
(0.00)

1 3 5 7 9

Horizon

0.0
0.8
1.6
2.4
3.2

×10−5

hopper-stand
(0.01)

1 3 5 7 9

Horizon

0.0
0.5
1.0
1.5
2.0
×10−2

finger-turn hard
(0.13)

2.5

5.0

7.5

×10−3

1

2

×10−2

2

4
×10−3

1

2
×10−2

0.5

1.0

×10−2

1

2
×10−3

2.5

5.0

7.5

×10−4

2

3
×10−4

5.0

7.5

×10−4

0

5

×10−2

Bias (Left) Standard error of mean (Right)

(c) T=9

Figure 14: Comparison of different ground-truth horizons. Each plot shows how the bias (left vertical axis)
and SEM (right vertical axis) of the value gradient vary with the TR horizon t, using either T = 5, 7, or 9
as the “ground truth” baseline (ḡ). Across all three choices of ground-truth horizon, we observe a consistent
trend: the bias decreases with longer t, whereas the SEM increases.

28

Under review as submission to TMLR

0 1 2 3 4 5

Environment steps ×105

−2000

0

2000

4000

6000

T
es

t
re

tu
rn

Ant

0 1 2 3 4 5

Environment steps ×105

0

4000

8000

12000

HalfCheetah

0 1 2 3 4 5

Environment steps ×105

0

1000

2000

3000

4000

Hopper

0 1 2 3 4 5

Environment steps ×105

0

800

1600

2400

3200

Humanoid

0 1 2 3 4 5

Environment steps ×105

0

1500

3000

4500

Walker2d

SAC-SVG(H) 1 2 4 8

Figure 15: Sample efficiency curve of DHSAC-SVG(H).

1 2 3 4 5

Environment steps ×105

105

1013

1021

C
ri

ti
c

lo
ss

Ant

1 2 3 4 5

Environment steps ×105

106

1016

1026

HalfCheetah

1 2 3 4 5

Environment steps ×105

103

1010

1017

Hopper

1 2 3 4 5

Environment steps ×105

106

1015

1024

Humanoid

1 2 3 4 5

Environment steps ×105

105

1014

1023

Walker2d

1 2 4 8

Figure 16: Development of critic loss over the number of environment steps of DHSAC-SVG(H). Solid lines
is mean and shade are is for 95% CIs in log-scale. See the text in Appendix D.3 for the detail of the CIs.

101 103 105

Iteration

100

101

Ant

101 103 105

Iteration

100

101

HalfCheetah

101 103 105

Iteration

10−2

10−1

100

Hopper

101 103 105

Iteration

100

101

Humanoid

101 103 105

Iteration

100

101

Walker2d

DHMBPO MBPO SAC-SVG(H)

(a) Training-Validation RMSE

101 103 105

Iteration

100

101

Ant

101 103 105

Iteration

100

101

102

HalfCheetah

101 103 105

Iteration

10−1

101

Hopper

101 103 105

Iteration

100

101

Humanoid

101 103 105

Iteration

100

101

102

Walker2d

DHMBPO MBPO SAC-SVG(H)

(b) Training-Evaluation

Figure 17: RMSE of model trained on 5K environment steps dataset. Solid line is for training RMSE and
dashdot line is for validation RMSE or evaluation RMSE

29

Under review as submission to TMLR

101 103 105

Iteration

100

101

Ant

101 103 105

Iteration

100

101

HalfCheetah

101 103 105

Iteration

10−1

100

Hopper

101 103 105

Iteration

101

Humanoid

101 103 105

Iteration

100

101

Walker2d

DHMBPO MBPO SAC-SVG(H)

(a) Training-Validation RMSE

101 103 105

Iteration

100

101

Ant

101 103 105

Iteration

100

101

HalfCheetah

101 103 105

Iteration

10−1

100

Hopper

101 103 105

Iteration

101

Humanoid

101 103 105

Iteration

100

101

Walker2d

DHMBPO MBPO SAC-SVG(H)

(b) Training-Evaluation

Figure 18: RMSE of model trained on 20K environment steps dataset. Solid line is for training RMSE and
dashdot line is for validation RMSE or evaluation RMSE

101 103 105

Iteration

100

101

Ant

101 103 105

Iteration

100

101

HalfCheetah

101 103 105

Iteration

10−1

100

Hopper

101 103 105

Iteration

101

Humanoid

101 103 105

Iteration

100

101

Walker2d

DHMBPO MBPO SAC-SVG(H)

(a) Training-Validation RMSE

101 103 105

Iteration

100

101

Ant

101 103 105

Iteration

100

101

HalfCheetah

101 103 105

Iteration

10−1

100

Hopper

101 103 105

Iteration

101

Humanoid

101 103 105

Iteration

100

101

Walker2d

DHMBPO MBPO SAC-SVG(H)

(b) Training-Evaluation

Figure 19: RMSE of model trained on 50K environment steps dataset. Solid line is for training RMSE and
dashdot line is for validation RMSE or evaluation RMSE

30

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00
Normalized Environment Steps

0.0

0.3

0.6

0.9

1.2

N
or

m
al

iz
ed

IQ
M

S
co

re

0.0 0.25 0.5 0.75 1.0

Normalized Test Return (R)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

R
u

n
s
>
R

1
2

4 8

(a) Profiling plot

0 5 10 15 20

Runtime [Hours]

0

2500

5000

7500

T
es

t
re

tu
rn

Ant

0 5 10 15 20 25

Runtime [Hours]

3000

6000

9000

12000

HalfCheetah

0 5 10 15 20

Runtime [Hours]

1000

2000

3000

4000

Hopper

0 5 10 15 20

Runtime [Hours]

0

2500

5000

7500

10000

T
es

t
re

tu
rn

Humanoid

0 5 10 15 20 25

Runtime [Hours]

0

3000

6000

9000

12000
Walker2d

1 2 4 8

(b) Runtime

Figure 20: Results on GYM tasks of DHMBPO with different UTD ratios. Legends are for the UTD ratios

31

Under review as submission to TMLR

0 5
10−1

100

101

102

R
ew

a
rd

−2.5 0.0 2.5 −20 0 −2.5 0.0 2.5 −25 0

50 100

At step 10000

10−1

100

101

102

T
ar

ge
t

va
lu

e
fo

r
cr

it
ic

100 200

At step 20000

-1.e+5 0.e+0

At step 30000

-5.e+4 0.e+0

At step 40000

-1.e+8 0.e+0

At step 50000

Figure 21: The transition of histograms for rewards (upper row) and target values (lower row) at every
10,000 environment steps during the execution of the MBPO algorithm on the “HalfCheetah” task. In each
panel, the x-axis represents the value, and the y-axis represents the count. Noticeable outliers occur in the
target values at the 30,000th and 50,000th steps.

32

	1 Introduction
	2 Background
	2.1 Notation and Problem Setting
	2.2 Model-based Actor-Critic Methods
	2.3 Model-Based Policy Optimization (MBPO)
	2.4 Training Rollout-based Methods
	2.5 Policy-Value Gradient

	3 Double Horizon Model-Based Policy Optimization
	4 Experiments
	4.1 Continuous control benchmark tasks
	4.2 Comparison with State-of-The-Art Algorithms
	4.2.1 Comparison on GYM Tasks
	4.2.2 Comparison on DMC Tasks

	4.3 Ablation study
	4.4 Hyper-parameter sensitivity
	4.5 Efficient Critic Learning

	5 Related Work
	6 Conclusion
	A Implementation Detail
	A.1 Neural network models
	A.1.1 Dynamics and reward model
	A.1.2 Actor and Critics

	A.2 Model prediction
	A.3 Model Learning
	A.3.1 The objective function
	A.3.2 Early stopping

	A.4 Hyper-parameters
	A.5 Bounding target critic's output

	B Experiment Details
	C Result Details
	C.1 Ablation study
	C.2 Comparison with other algorithms
	C.3 Hyper-parameter sensitivity

	D Additional Experiments for Highlighting improvement over DR-based and TR-based algorithms
	D.1 DHMBPO without Training Rollout but with different UTD ratios
	D.2 Trade-off in Policy Gradient Estimation
	D.3 Application of DR to SAC-SVG(H) Implementation
	D.4 Comparison of Model Learning Performance
	D.5 Different UTD ratio
	D.6 Distribution of predicted rewards and target values for critic

