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ABSTRACT

Existing biomedical knowledge graphs are primarily geared toward drug repur-
posing and pathway analysis (gene—disease—drug). For biosensing, however, the
primary early-stage task is different: selecting recognition elements (RE) that
bind selectively to a given analyte. We present a large-scale biomolecular knowl-
edge graph that aggregates data from 15 heterogeneous open sources: ~1.3 M
entities and ~43 M edges of three types - interacts_with (experimental
analyte-RE interactions), has_similarity (structure/sequence similarity), and
has_biomarker (associations with physiological conditions). Despite typical
sparsity, the graph is highly connected (97% of nodes in the giant component)
and exhibits heavy-tailed degree distributions. We cast the problem as large-scale
link prediction on symmetric IW edges using PyTorch-BigGraph and introduce a
symmetry-aware protocol (mirror pairs are not assigned to different splits). In a
controlled operator-comparator study under a pairwise ranking loss, the unit-norm
DistMult (cosine) configuration delivers the most stable results (MRR = 0.457,
Hits@10 = 0.822) on a 2.6 M-triple test set. A lightweight UI supports interactive
navigation and analysis. Overall, our KG and protocol provide in-vitro-oriented
ranking of analyte-RE pairs, helping to narrow the experimental search space and
accelerate the transition to sensor prototypes.

1 INTRODUCTION

The rapid advancement of biosensor technologies calls for more efficient approaches to identify
and predict the molecular interactions underlying sensory systems. Despite significant progress in
molecular recognition, the de novo design of biosensors capable of selectively and specifically binding
biomarkers remains a complex and resource-intensive task (Quijano-Rubio et al., 2021)). Biomarkers
play a central role in disease diagnostics (Garg et al., [2024)), therapeutic monitoring (Dhama et al.,
2019), and the development of personalized medicine (Quijano-Rubio et al.,|2021). The design of
biosensors fundamentally relies on an accurate prediction of intermolecular interactions, which may
involve a broad range of biological and synthetic molecules, including DNA, various forms of RNA,
peptides, proteins, antibodies, nanobodies, small molecules, diseases, and their associated biomarkers.
Traditional methods for identifying molecular receptors for biosensors — such as phage display or
SELEX — are labor intensive, costly, and poorly scalable, significantly slowing down the development
of new sensory platforms (Watson et al., [2023} |Rettie et al., 2025)).

In recent years, knowledge graphs (KGs) have emerged as a convenient tool for integrating heteroge-
neous biological data and automating the discovery of biomolecules interactions. Its strength lies in
unifying diverse biological structures (e.g. DNA, RNA, amino acid sequences, diseases, biomarkers,
etc.) into a coherent semantic structure, providing contextual meaning to interactions, and ultimately
facilitating the discovery of novel non-obvious connections (Conj Sun et al., |2019). Despite recent
progress in biomedical knowledge graphs construction — such as Hetionet (Himmelstein et al., 2017),
PharmKG (Zheng et al.| |2021)), Petagraph (Stear et al., 2024), Bioteque (Fernandez-Torras et al.|
2022), GraphBAN (Hadipour et al.;[2025), and PertKGE (Ni et al.,2024) — most of these frameworks
are focused on in vivo biological effect prediction, drug repurposing, or disease mechanism analysis.
These graphs rarely incorporate detailed physicochemical parameters of molecular interactions (e.g.,
dissociation constants or binding free energies) and remain limited in the diversity of entity and
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interaction types they represent (Himmelstein et al., 2017; Zheng et al., 2021} [Stear et al., [2024;
Fernandez-Torras et al.l 2022; Hadipour et al., 2025} |N1 et al., [2024)).

This reveals a critical gap in the use of KGs to predict fundamental molecular interactions, which are
required for the development of biosensors. To address this, we propose a new approach based on the
integration of heterogeneous biological data into a semantically rich KG augmented with quantitative
interaction characteristics. Our approach consists of three key components:

1. A comprehensive property graph database covering intermolecular interactions of four
biosensor types including peptides, proteins, ribo- and deoxyribonucleic acids was imple-
mented in Neo4j (Webber, |2012), incorporating semantic and quantitative interaction data
collected from a total of 29 sources.

2. To enhance semantic connectivity and contextual coherence as well as to account for struc-
tural similarity and co-occurrence of biosensors and target analytes, two additional relation
types were added to the primary interacts_with edge, namely has_similarity
and has_biomarker edges.

3. To justify representativeness of the database, several link prediction methods based on
Knowledge Graph Embeddings (KGE) were implemented, e.g., DistMult, RESCAL,
TransE, and ComplEx, by removing known links and testing the models’ ability to
reconstruct them, where KGE clustering further confirmed its informativity.

To further evaluate the framework beyond aggregate metrics, we deliberately selected Apolipoprotein
B-100 (ApoB-100) as a case study target. ApoB-100 is the main structural protein of low-density
lipoproteins (LDL), which are central players in lipid transport and atherosclerosis. Its interactions
with other biomolecules are extensively studied in cardiovascular and metabolic disorders, making
ApoB-100 a biologically and clinically relevant benchmark. We therefore assessed whether the
dot-linear model could recover meaningful interaction candidates for ApoB-100 that were absent
from the training set.

Unlike other computational approaches such as molecular docking or conventional ML, the use of
KGE allows to capture collective connectivity and contextual chemical closeness of intermolecular
interactions. This is particularly crucial when dealing with novel and poorly studied interaction types
(Zheng et al., [2021}; |Liu et al.l 2024)). Moreover, existing graphs rarely include accurate quantitative
descriptions of interactions (e.g., dissociation constants or Gibbs free energy) (Stear et al.| [2024)).

The novelty of this work lies in the development of a specialized integrated KG focused on four
main biosensor types (protein, dna, rna, small molecules) reflecting its structural similarity and
co-occurrence, along with the use of embedding techniques that capture the specificity and diversity
of biological entities — differentiating our framework from existing methods that focus primarily on
interactomes (Fernandez-Torras et al.| [2022; [Hadipour et al., [2025} [Ni et al., [2024)).

2 METHODS

2.1 DATA COLLECTION AND PREPROCESSING

Data collection was performed automatically via through the public databases application pro-
gramming interface (API) and manually data collection. All data sources listed in Table [7| were
preprocessed, which included the removal of duplicate and invalid records.

2.2  PROPERTY GRAPH CONSTRUCTION
2.2.1 DATA PLATFORM OVERVIEW

Neo4j (Webber, 2012) graph database management system was chosen as the primary storage for
KG being an open-source and robust solution that also offers a wide variety of well optimized
graph algorithms for scientific research and data analysis as well as property graph model which is
convenient for data and metadata storage.
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2.2.2 GRAPH NODES SCHEME

The parsed data was uploaded to the database via Neo4j Python Driver. Neo4;j uses labels for the
classification of nodes and relationships to organize and optimize storage, so all data were classified
into the labels listed in Table 8] Besides the six main node labels (node properties in Table[J), the
parsed data contained metadata allowing more precise classification of the entities. The metadata
includes entity affiliation with classes such as aptamers, nanobodies, antibodies, and antibiotics.
However, entities with additional classes were underrepresented and as a consequence could not
form distinct labels. Since the database contains entities of different nature from various sources,
the presence of properties vary (Table [I0). Also, restrictions on the content of node properties
specific to different labels were applied. Small molecules’ content was evaluated using RDKit (RDKJ)
library. As for sequences, the content cannot contain any symbols except canonical and non-canonical
monomers.

2.2.3 GRAPH RELATIONSHIPS SCHEME

The relationships between entities were classified into the labels listed in Table [IT] Most of the
relationships present in the parsed databases indicated the presence of the interaction between
compounds without introducing any numeric interaction characteristics, thus no mandatory properties
were put into the relationships scheme. The list of properties present in the database is given in Table
The point about the distribution of properties across the node labels is also true for relationships.
The distribution of properties across relationship labels is listed in Table[I3]

2.3 EDGE AUGMENTATION

To saturate the graph, the has_similarity connection was added. For small molecules, the connection
is established if the Tanimoto coefficient is >0.9 (see algorithm in [B).

2.4  STATISTICAL ANALYSIS AND GRAPH PROPERTIES CALCULATION / KG QUALITY
EVALUATION APPROACHES

To characterize the structural properties of the constructed graph G = (V, R, E), where V is the set
of entities, R = {IW, HS, H B} denotes the set of relation types, and E C V X R x V is the set of
observed triplets (h, r, t), a set of descriptive statistics was computed. Since our database contains
duplicate mirrored edges for symmetric relations (IW, HS), a canonicalized version of the graph
was used for analysis and training, in which such pairs were replaced by a single edge in the form
IDin{u, v}, IDpar{u, v}. Consequently, all reported statistics refer to this directed graph without
mirrored edges, which corresponds to the link prediction experiments dataset.

2.4.1 GLOBAL METRICS

The total amount of unique entities |V'| = [{h} U {t}|, the amount of edges |E| = |{h,7,t} : h,t €
V,r € R| are counted. The amount of edges corresponds with the database. Additional statistic
revision of data quality for duplicates and self-relationships was conducted.

2.4.2 RELATIONSHIP TYPES STATISTICS

For each relationship € R the metrics were calculated:
TPH, = Ep[|{t: (h,r,t) € E}|] ()
HPT, = Ei[|h: (h,r,t) € E] 2)

These metrics correspond to the average number of tails per head and heads per tail. Based on their
values, the relations were classified into categories 1-1, 1-N, and N-N. The grouping rules were
defined empirically using a threshold of 1.5 (Wang et al.).

2.4.3 DISTRIBUTIONS AND QUANTILE METRICS

For node in- and out-degrees, we computed the mean, median, upper quantiles (0.90/0.95/0.99), and
the maximum. This set of summaries reveals distributional skewness and the presence of hubs.
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2.4.4 RECIPROCITY

For each relationships type the reciprocity was estimated: E,. = {(h,t) : (h,r,t) € E} is the set of
ordered node pairs connected via the relationship r and M,. = {(h,t) : (h,t) € E,. A (t,h) € E,} is
the set of mirror pairs.

So, the reciprocity is defined as:

Reciprocity(r) = 3)

|Er|

2.4.5 UNDIRECTED PROJECTION AND DENSITY

To analyze the sparsity of the graph, its undirected projection was constructed, where each edge
(h,r,t) € E was mapped to an unordered pair h,t. Thus, the set of edges in the projection was
defined as Eypnqir = {{h,t} : (h,7,t) € E},r € R. The graph density was calculated using the
following equation:
‘Eundir|
D= _unarl “
VIV -1)/2

2.5 TRIPLET EXTRACTION AND KNOWLEDGE GRAPH EMBEDDING

Triplets were extracted from a Neo4j database using Cypher queries executed in a Python environment
in a streaming mode with fixed-size batches. The export was performed via the official Neo4j driver
(Bolt)(Webber, 2012), utilizing internal APOC (Webber, [2012) identifiers. For symmetric relations
(IW, HS), mirrored duplicates were removed by representing each unordered pair of entities as a single
edge, ordering the node IDs in ascending order. For the directed relation HB, the original orientation
was preserved. In addition, invalid or inconsistent records were removed during data preprocessing.
The resulting cleaned dataset was saved and subsequently split into training, validation, and test sets.

2.5.1 DATA SPLIT

To split the set of triples | E| into train, test, and validation sets the PyKEEN (Ali et al) framework
was used to ensure a transductive evaluation setting (see details in[G).

2.5.2 KGE MODELS TRAINING

Each entity v € V is associated with a vector x,, € R?. For each relation r € R a scoring function
s, : RY x R* — R is defined and represented in a compositional form as an operator-comparator
(Lerer et al., [2019):

sr(wh, 2) = c(Th, gr(24; 7)), )

where g, : Ry — R - relation-parameterized operator, with parameters O,, and a comparator
c: R4 x R* - R common to all relations. This formulation defines a relational transformation
gr applied to the comparison mechanism c and is convenient for analyzing classes of recognizable
patterns (see algorithms description in Appendix Y). In this work, the cosine comparator ¢(u,v) =

m is used, which makes the scoring invariant to the vector magnitude. In our study, the target

relation is IW, which is symmetric. Therefore, the primary model used was DistMult (Yang et al.)
with vector normalization based on cosine similarity (see details hyperparameters in[J).

2.5.3 PROBLEM STATEMENT

A knowledge graph is defined as a directed multigraph G = (V, R, E), where V is the set of entities,
R = {IW, HS, HB} is the set of relation types, and E C V' x R x V is the set of observed triplets
(h,r,t). The main goal is link prediction for the IW relation. Only IW relations were used during
training. While HS and HB relations are present in the database, they were excluded from the current
training phase due to their extremely low frequency (less than 3% of the entire graph). Their broader
incorporation is planned for future work.

Details regarding ranking are given in[H| The evaluation is carried out in the raw unfiltered setting.
Other known true triplets are not removed from the set of candidates (Lerer et al.,|2019). The filtered
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setting, where all known true heads and tails of Fyyqin U Erest U Eyqri4, €Xcept the target one, are
excluded from the candidate set, is described in classical works on knowledge graph embeddings
(KGE) and established in survey studies as the standard for small datasets, for example, FB15k,
WN18 (Bordes et al.; [Trouillon et al.). In PyTorch-BigGraph, the filtered setting is not applied by
default due to its poor scalability on large graphs (Lerer et al.,[2019)).

2.5.4 RANKING METRICS

Global metrics (see[D) over the entire test set were considered. System types with a small number of
instances were excluded from the evaluation.

2.5.5 MODEL TRAINING: DISTRIBUTED TRAINING, NEGATIVE SAMPLING AND LOSS
FUNCTION

The set of entities is divided into P partitions {V;}£_,. The edges are sharded into buckets B =
{(¢,7) : 1 <1i,5 < P}. Ateach step, a pair of partitions (V;, V;) is loaded, and training is performed
on the corresponding bucket (4, j) under memory constraints. This design enables scaling to billions
of triplets, which matches the size of our data. As an alternative, the PyYKEEN (Ali et al.) framework
can be used; however, its computational speed imposes significant limitations on our experiments.
In the current version of the experiment, all entity types in the partitioning are assigned to the
molecule class, in order to mitigate the imbalance of triplets in different interaction systems (see
details in [E).

2.6 COMPUTATIONAL RESOURCES

All computations were performed on a server equipped with an AMD EPYC 7763 64-core processor,
an NVIDIA A6000 GPU with 48 GB of VRAM, and 512 GB of system memory.

3 RESULTS

3.1 PERFORMANCE LINK PREDICTION

The knowledge graph (KG) was constructed by importing data parsed from publicly available
databases into a Neo4j instance using the Python driver (Webber, [2012)). Following the import,
redundant nodes were identified and removed using built-in database procedures, thus increasing
the effective density of the graph. Two nodes were considered duplicates if they shared identical
values for the name and content properties. Subsequently, duplicate relationships were merged to
account for redundancy introduced during the node-merging step. In total, 1200 nodes and 1 million
relationships were found to be duplicate and eliminated.

To further enrich KG via target analyte similarity, it was decided to compute pairwise Tanimoto
coefficients for small molecules and introduce has_similarity (HS) edges for pairs surpassing
a specified threshold. As a result of the algorithmic calculation (see section 2.3 in Methods) of the
Tanimoto coefficient for total of 453,437 unique small molecules, a data set of 612,402 pairs with
similarity > 0.8 was obtained. Edges of type HS were added to the graph at a threshold of > 0.9
ensuring highly similar target analytes are connected in our KG and therefore are more probable
to have similar biosensor molecules. Additional analysis revealed the presence of molecular pairs
(5.99%) with Tanimoto = 1, which correspond to stereoisomer pairs. Although Tanimoto coefficients
do not generally differentiate between stereoisomers, they were used to enrich the KG due to relatively
small quantities of optically active analyte molecules. To account for that, more computationally
expensive spatial structure-based similarity metrics should be applied.

Based on the computed statistics, it is evident that the KG can be characterized as large-scale, globally
sparse, and free of duplicates or self-loops. The summary metrics are reported in Table[I] The
distribution of edges by relation type is presented in Table 2] Despite the strong imbalance related
to high computational burden for pairwise similarity calculations and analyte co-occurrence data
scarcity, the model was trained only on interacts_with (IW), while HS and has_biomarker
(HB) serve as semantic complements and may be included in further experiments.
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Table 2: Distribution of relation types
Relation type Count Share

IW (interacts_with) 26,171,302 97.7%
HS (has_similarity) 621,323 2.3%
HB (has_biomarker) 2,292 0.009%

Table 1: Global statistics of the knowledge graph

Metric Value
|V| (entities) 536,188
|E| (triplets) 26,794,917
Duplicate triplets 0
Self-loops 0
Reciprocity 0

Global density 1.864 x 10~*

Quantitative characteristics of node degrees are summarized in Table[3] The gap between median and
mean, as well as high quantile values, confirms the existence of heavy tails. This implies that MR
and MRR metrics may be sensitive to hubs. The overall distribution is consistent with a scale-free
pattern. The average number of tails per head (TPH) and heads per tail (HPT) are reported in Table 4]
All relations belong to the many-to-many (N-N) category, which justifies the use of ranking-based
loss and evaluation via Hits @K.

Table 3: Statistics of node degrees
Metric mean median p90 p95 p99 max

In-degree 61.06 5 50 228 1338 13,781
Out-degree  58.18 5 41 166 1202 12,824

Table 4: TPH/HPT statistics by relation type
Relation TPH HPT Class

w 64.16 68.18 N-N
HS 323 296 N-N
HB 5.10 232 N-N

To evaluate the predictive properties of the constructed KG as well as to justify it bears meaningful
connectivity, link prediction experiments were performed on the hidden edges of type IW. The
evaluation followed the unfiltered setting: for each test triplet (h, r,t), two queries were generated
(head and tail prediction), and the resulting ranks were aggregated into MRR and Hits @K metrics.
This protocol is commonly used for large-scale graphs (Lerer et al.,|2019). The test set comprised total
of 2,617,102 triplets. Table [5]summarizes the performance of four representative embedding models.
Among them, norm-DistMult with cosine normalization achieved the highest performance on
the symmetric IW relation.

The norm-DistMult model stably trained on tens of millions of triplets and consistently achieved the
best scores: MRR =0.457 and Hits@10 = 0.822. Cosine normalization improved stability by reducing
sensitivity to hubs. The training dynamics across epochs are summarized in Figure[I] confirming
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stable convergence and generalization performance. The loss stabilized after approximately 10 epochs,
while the violators metric clearly reflected the model’s ability to distinguish true from corrupted
triples—the fewer violators per positive, the more robust the ranking. Finally, the small gap between
train and test metrics (MRR, Hits@K) indicates good generalization on a highly sparse graph.

UMAP clustering was performed to interpret the embeddings from the training norm-DistMult model.
The clustering results are shown in Figure[2] In the 2D UMAP-cluster, a pronounced class imbalance
is evident: the point cloud is dominated by protein and small-molecule embeddings (the main P—P
and P-SM systems). Dense agglomerations reflect bundling around high-degree hub nodes, while
scattered peripheral points correspond to low-degree vertices and weakly connected components. The
mixing of colors/systems in the center is expected because the target relation IW is symmetric and
many-to-many; the model optimizes the local proximity of interacting pairs rather than separability

by type.

Table 5: Comparison of KGE models on the IW relation (test set of 2.6M triplets)

Model Operator Comparator MRR Hits@1l Hits@10 AUC
cos-DistMult diagonal cos 0.457 0.297 0.822 0.969
cos-TransE translation cos 0.439 0.279 0.795 0.962
dot-TransE translation dot 0.252 0.151 0.454 0.733
12-TransE translation 12 0.395 0.248 0.709 0.923
sq-12-TransE translation squared_12 0.358 0.227 0.617 0.872
cos-ComplEx complex diagonal  cos 0.466 0.308 0.724 0.966
dot-ComplEx complex diagonal dot 0.316 0.184 0.612 0.879
12-ComplEx complex diagonal 12 0.409 0.275 0.695 0.872
sq-12-ComplEx  complex diagonal squared_I2 0416 0.268 0.738 0.930
12-RESCAL linear 12 0.360 0.238 0.620 0.883
dot-RESCAL linear dot 0469 0.315 0.817 0.969
cos-RESCAL linear cos 0.440 0.292 0.771 0.958

3.2 CASE STUDY

To verify the quality of predictions, we selected Apolipoprotein B-100 and used the dot-linear model
to obtain a list of the top 50 candidates for interaction. It is crucial that none of these connections
were included in the training set (out-of-train evaluation), meaning that the model made predictions
without direct knowledge of them.

Among the candidates obtained, we found at least three interactions that have experimental con-
firmation or clinical significance. These cases confirm the model’s ability to identify biologically
sound and practically significant associations, which is critically important for scenarios involving
the search for new connections in the knowledge graph.

Table 6: Examples of predicted interactions for ApoB-100 (dot-linear, TOP-50). None of these
interactions were present in the training set.

Entity Rank Biological relevance
Biglycan 7 Retention of LDL in the arterial intima, a key
mechanism of atherogenesis|O’Brien et al.
(1998)
Serum Amyloid A (SAA) 19 Association with ApoB-lipoproteins during

inflammation, enhancing proteoglycan
binding |Wilson et al.| (2018)

Endoplasmin (GRP94) 31 ER chaperone essential for proper folding and
secretion of ApoB-100|Linnik et al.|(1998)
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Figure 1: training dynamics of the norm-DistMult model on the IW relation: (a) MRR, (b) Hits@1,
(c) Hits@10, (d) loss, (e) violators across epochs.

4 CONCLUSION

To enhance semantic connectivity and contextual as well as to account for target analyte structural
similarity and co-occurrence, KG was augmented with calculated similarity measure derived from
Tanimoto coefficients and parsed biomarker-related data. KG representative power was justified by
impressive results from link prediction models e.g., cos—-DistMult achieving MRR=0.457 and
Hits@10=0.822 on the test set of 2.6M triples. To show KGE retains connectivity and grouping
information, UMAP clustering was performed showing a pronounced imbalance, with a clear bias
toward proteins, small molecules, and their interactions. The dense clusters exhibit hub-centric
aggregation, consistent with scale-free degree distributions typically observed in biological networks.
In contrast, the scattered points correspond to low-degree nodes or weakly connected components,
reflecting peripheral or sparsely integrated regions of the graph. To further evaluate the model’s ability
to predict significant relationships, we examined how well the model was able to find significant
relationships for a known biopolymer. As a result, three empirically known interactions (Biglycan,
SAA, GRP94) for Apolipoprotein B-100, which have medical applications, were found in the top
50 for the dot+linear model. Therefore, this work makes the first but obligatory step towards
generalizable biosensor repurposing and design.
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CODE AVAILABILITY

The code is publicly available https://anonymous.4open.science/r/graph_link_|
prediction—-3B27/README .md.
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A  SUPPLEMENTARY DATA

Table 7: Open-source databases and datasets used for the property graph development

Data source

Prot. Pept. sz;ll Apt. RNA DNA Phys.  Enities

subclasses
aliases
uniprot_id

or SMILES)
List of additional classes the node is classified as
Trivial names merged from different data sources
ID of the entity in UniProt Database (Consortium
et al., [2025)

mol. cond.
SAbDab (Schneider et al}[2022) v v v 11,800
APIPred (API) Dataset Ve Ve v 2,891
R-SIM (S et al.;[2023) v v 904
PDBBind (Wang et al., [2004) v v 135
Apta—Index v v v v 132
Aptamer datasets v v v 561
BindingDB (Liu et al.| [2025)) v v 1,289,958
BioGRID (Oughtred et al., 2021) v 57,510
MarkerDB (Wishart et al., 2021) v v v 1,828
NCI Database (Srivastava & v v 643
Wagner, |2020)
starBase (Li et al.; 2014) v 1,630
Repeats dataset v v v 97
Ribosomal dataset v v v 195
Riboswitch dataset v v v 100
Viral dataset v v v 281
miRNA dataset v v v 146
Table 8: List of unique node labels
Label Representation format
small_molecule SMILES string
protein Amino acid sequence
peptide Amino acid sequence
rna Nucleic acid sequence
dna Nucleic acid sequence
condition Text
Table 9: List of node properties
Property name Description Required
name Trivial name of the compound or entity v
content String sequence representing the compound v
representation_type Textual description of the content type (e.g. sequence
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Table 10: Node properties distribution across biosensor types

Label name content representation_type subclasses aliases uniprot_id
Small molecule v v v v v
Protein v v v v v v
Peptide v v v v v v
RNA v v v v v
DNA v v v v
Condition v
Table 11: List of relationship labels
Label Description

interacts_with Experimentally confirmed interaction between compounds
has_biomarker Relation between physiological condition and associated compounds
has_similarity Artificial relation based on sequence similarity score > 0.9

Table 12: List of relationship properties

Property name Description
kd Experimentally evaluated dissociation constant
affinity Experimentally evaluated interaction tendency
binding_sites Specific sequence regions with high binding specificity
score Numerical affinity characterization
indication_types Treatment stage at which the biomarker is used
sex Sex of patients where biomarker was detected
biofluid Source in which the biomarker was detected

Table 13: Property distribution across relationship labels

Label kd affinity binding_sites score indication_types sex biofluid
interacts_with V v v
has_biomarker v v v
has_similarity v

14



Under review as a conference paper at ICLR 2026

B SMALL MOLECULES SIMILARITY ALGORITHM

Each molecule m was assigned a binary Morgan-type fingerprint f(m) € {0, 1}¢ with radius r=2
and length d=2048 bits. Define the following:

S(m)={ie,..,d): fi(m) =1},a(m) = |S(m)] 6)

Then for a pair of molecules m;, m; similarity is defined by the Tanimoto coefficient:

_ [S(ma) 0 S(my)| c
1S(ms) US(my)|  a;+a; —c’

T (m;, mj) a; = a(m;),a; = a(m;),c=|S;NS;|  (7)

For a fixed threshold 7 € (0, 1), an edge is added between m; and m if T'(m;, m;) > 7, avoiding
exhaustive search of complexity O(|M?|). To achieve that, the following necessary condition on the
numbers of set bits a; and a; , in which case if T'(m;, m;) > 7, then [7a;] < a; < [%].

Evidence: .
c min(a;, a;
- < minlai a;) ®)
a; +a; —c ~ maz(a;,a;)
min(a;, a;
min(a, ;) >7 ©)
max(a;, a;)
a; a;
(szai:>7'§i:>aj§i (10)
aj T
s
ajgai:>7-§a—?:>aj2aﬂ (11)
K3

Any pair conforming to 7' > 7 must pass that condition. Thus, its sufficient for each i to look at j
candidates only from bit-number range [[7a;], [ % |]

Algorithm steps:

1. Fingerprints generation
2. Bucketing by bit count. Group the molecule indices by « : 5 = {i : a(m;) = a}
[
3. Candidates formation by filter. For each i with a; collect the candidates: C; = |J fa.

[Ta;]
where j > 1

4. Tanimoto check. For each j € C; compute

o _ _ I R
¢ij = popcount(f(m;)& f(m;)), T = G a)j =y (12)

15



Under review as a conference paper at ICLR 2026

C GRAPH MODELS DESCRIPTION

DistMult (Yang et al.) (diagonal):
sp(h,t) = (zn, w, © 1), 0, = w, € R? (13)

Since the diagonal matrix w, is commutative, the model effectively captures only symmetric
relations and poorly distinguishes directions.

TransE (Bordes et al.) (translation):

sp(h,t) = —||zn + w, — 24]|, 0, = w, € R? (14)

The model interprets a relation as a translation, which is suitable for simple one-to-one
relations but performs poorly on symmetric and antisymmetric relation patterns.

RESCAL (Nickel et al.) (linear):
sp(h,t) = 1 x W, x 24,0, = w, € R¥*? (15)

It is capable of modeling compositional patterns but requires a larger number of parameters.

ComplEx (Trouillon et al.) (complex diagonal):
sp(h,t) = Re(zp, w, © %), z € C¥/? (16)

By separating real and imaginary components, the model can capture both symmetric and
antisymmetric relation patterns.
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D GRAPH MODELS METRICS

Let @ denote the union of all head and tail queries. Each test triple (h,r,t) is assigned two queries.
Then the metrics are defined as follows:

e MR = ﬁ Zq cq 'q - mean true triples rank relative to their negative counterparts;
e MRR = ﬁ quQ Ti - mean value across all the queries;
q
o HitsQK = |T;12| >_qeq rq < K] - the share of queries where a true triple ranks within the
top K positions.

* Area Under the Curve (AUC) - an estimation of the probability that a randomly chosen
positive scores higher than a randomly chosen negative (any negative, not only the negatives
constructed by corrupting that positive).

r4 denotes the rank of the true answer for the query ¢. Results are reported for standard cutoff values

of K € {1,10,50}. In addition, the ROC metric is applied to the scores, where, for each query, the
score of the true example s,. is compared with the scores of sampled negative examples.
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E GRAPH MODELS LOSS

For each positive triplet (h,7,t) € Eirqin, a set of negative samples — corrupted triplets — is
generated by replacing either the head h or the tail ¢:

N(h,rt) = {(W r,t) : b ~ g YU {(h,rt) : t' ~ gt} (17)

The new entity k' or t’ is sampled from a mixture distribution that combines frequency-based and
uniform components:
deg(v) 1
Gr=0=""—"-—"—+(1-0a)7—,
Duev deg(u) Vi

batch
negs

batch uniform
NReos" tNnegs

0.5, which can be adjusted via the parameters num_batch_negs and num_uniform_negs in
the configuration file.

(18)

where | V| is the number of nodes, o = - the mixing coefficient with the default of

The PyTorch-BigGraph framework provides three types of loss functions: logistic, softmax, and
ranking. In our experiments, we employ a margin-based ranking loss:

L= Z Z max(0,y — sy (h,t) + s, (W', t)) (19)

(h,r,t) (h',r,t")EN (h,r,t)

where 7y denotes the margin, which controls the separation corridor between negative and positive
samples, since the objective is formulated as a ranking problem.
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F GRAPH USER INTERFACE

The platform is built with Django, a high-level Python web framework, with Neo4j (Webber, |2012)
as the graph database backend, providing efficient storage and query of biological compound inter-
actions. The interface uses Vis-Network (Almende B.V. and Contributors & Thieurmel, 2025} for
dynamic graphical visualization, providing an intuitive representation of the complex relationships
between connections. The architecture is based on a modular design that separates data process-
ing (Cypher queries), internal logic (Django models and representations), and external rendering
(HTML/CSS/JavaScript with Vis network integration).

Researchers can perform multi-criteria searches on the platform - by compound name, sequence,
or SMILES notation. The search results display an interactive graph with the ability to filter by
connection type and number of interactions, as well as a detailed table of connections related to the
target, with the ability to download datasets for further analysis. The main page provides built-in
clustering visualizations of embeddings generated by graph neural networks for preliminary data
analysis. The step-by-step guide introduces users to the functionality of the platform, making it
accessible to researchers in the fields of computational biology and chemoinformatics.
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G DATA SPLIT STRATEGY
Define the split £ = Eiyqin U Frest U Fyqr:q With the shares 0.8, 0.1, 0.1 respectively. The entity-
closure is guaranteered for the validation and test sets:

{h,t : (hﬂ", t) € Eyatia U Etest} - {h,t : (h,?‘, t) S Etrain} (20)

Split strategies used were (Al et al.):

e coverage: each system is ensured to appear in the training set. In cases of insufficient
instances, samples from the validation or test sets may be reassigned to the training set
according to a minimal redistribution rule.

* cleanup (fallback): removal of rare and conflicting records is applied to ensure entity closure
and prevent data leakage, particularly in systems with a small number of triples.

: : W IW
In each case metrics are computed according to £, 7. - and E; ;.
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H GRAPH RANKS

Let Ciair(h, 1), Cheqa(t, ) denote sets of potential tail and head candidates, respectively. Then the
rank of true trail and true head are defined as follows:

rankigy = 1+ [{t' € Ciaut(h,7) : s,.(h,t'") > s.(h,t)}]| (21)

rankpeqd = 1 + |{h/ S C’hmd(t,r) : Sr(h/,t) > Sr(h,t)H (22)

The target scalar scoring function s,. : V' x V' — R assigns a score s,.(h, t) to the pair (h,t) given a
fixed relation r. Link prediction is thus formulated as:

* Tail prediction: given a query (h, t, ?), all candidate tails ¢ € V' are ranked in descending
order according to their scores s, (h,t).

» Head prediction: given a query (?, t, t), all candidate heads h € V are ranked in descending
order according to their scores s, (h, t).
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I GRAPH EMBEDDINGS CLUSTERING

Clustering of graph embeddings was performed using UMAP algorithm (Healy & McInnes). The
hyperparameter search was performed in a semi-supervised manner. The graph embeddings trans-
formed with UMAP were passed to the KMeans clustering from the Scikit-learn library
with 4 target clusters. Then, the results of KMeans were evaulated using silhouette score.
The hyperparameters of UMAP with the highest score were:

* n_neighbors =25;
* n_components =2;
e min_dist =0.008;

* metric = cosine;
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Figure 2: DistMult graph embedddings UMAP clustering
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J GRAPH MODEL HYPERPARAMETERS

Hyperparameters used for model training:

Table 14: Final hyperparameters used for all KGE models on IW.

Model Oper. Comp. Dim Margin Batchsize Batch negs Uniform negs
cos-DistMult  diagonal cos 400 0.1 1000 50 100
cos-TransE translation cos 400 0.1 1000 50 100
dot-TransE translation dot 400 0.1 1000 50 100
12-TransE translation 12 400 0.1 1000 50 100
sq-12-TransE translation squared_12 400 0.1 1000 50 100
cos-ComplEx  complex diagonal cos 400 0.1 1000 50 100
dot-ComplEx  complex diagonal dot 400 0.1 1000 50 100
12-ComplEx complex diagonal 12 400 0.1 1000 50 100
sq-12-ComplEx complex diagonal squared_12 400 0.1 1000 50 100
12-RESCAL linear 12 400 0.1 1000 50 100
dot-RESCAL  linear dot 400 0.1 1000 50 100
cos-RESCAL  linear cos 400 0.1 1000 50 100
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