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Abstract

This paper explores the impact of variable prag-001
matic competence on communicative success002
through simulating language learning and con-003
versing between speakers and listeners with004
different levels of reasoning abilities. Through005
studying this interaction, we hypothesize that006
matching levels of reasoning between commu-007
nication partners would create a more benefi-008
cial environment for communicative success009
and language learning. Our research findings010
indicate that learning from more explicit, literal011
language is advantageous, irrespective of the012
learner’s level of pragmatic competence. Fur-013
thermore, we find that integrating pragmatic014
reasoning during language learning, not just015
during evaluation, significantly enhances over-016
all communication performance. This paper017
provides key insights into the importance of018
aligning reasoning levels and incorporating019
pragmatic reasoning in optimizing communica-020
tive interactions.021

1 Introduction022

In everyday conversations there is a trade-off be-023

tween clarity and conciseness. Efficient messages024

might appear under-specified or ambiguous un-025

der a literal interpretation but can be success-026

fully resolved using pragmatic reasoning about the027

speaker’s intentions and the context of the commu-028

nication (Grice, 1975; Horn, 1984; Fox and Katzir,029

2011; Davies et al., 2022). If the speaker trusts030

the listener to make the right inferences, they can031

choose to be more concise. Being able to infer the032

intended meaning of an utterance beyond its literal033

content allows us to communicate efficiently.034

The process of how people attain pragmatic inter-035

pretations using a model of the speaker’s intentions036

has long been studied. There is also plenty of evi-037

dence from psycho-linguistic studies that individu-038

als have different levels of pragmatic competence039

(Franke and Degen, 2016; Mayn et al., 2023). More040

importantly, people have been shown to keep track041

Figure 1: The speaker is asking for the red object. For a
literal listener, this is ambiguous. A reasoning listener
can conclude that the speaker is asking for the red cir-
cle, as ”square" would have been a more informative
message for the other red object.

of the communicative partner’s pragmatic compe- 042

tence and adjust their interpretations and messag- 043

ing accordingly. This has been demonstrated both 044

with human (Horton and Gerrig, 2002; Mayn et al., 045

2024) and artificial partners (Loy and Demberg, 046

2023; Branigan et al., 2011). 047

The pragmatic reasoning modeled in this work 048

involves counterfactual reasoning about alternative 049

sentences that the speaker could have uttered . The 050

interaction in Figure 1 depicts an instance of such 051

pragmatic reasoning about alternatives within our 052

simple environment. According to pragmatic the- 053

ory (Grice, 1975) the same process accounts for the 054

interpretation "They are in the office for the rest of 055

the week", when we hear the sentence "We are not 056

in the office on Mondays". 057

In this work, we investigate the impact of varying 058

pragmatic competence on communicative success. 059

We pair literal and pragmatic listeners with speak- 060

ers of different levels of pragmatic competence. 061

We study the interaction between such speakers 062

and listeners not only during inference, where both 063

partners have an already learned lexicon, but also 064
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during language learning. This way we gain in-065

sight into optimal levels of pragmatic inference for066

teachers and language learners. We hypothesise067

that matching levels of reasoning between part-068

ners benefits communicative success and language069

learning.070

Our simulations reveal that with a lexicon that071

doesn’t perfectly match that of the speaker’s, so-072

phisticated pragmatic listeners still significantly073

benefit from explicit literal language use. We also074

show that language learners that do not model prag-075

matic inference, struggle when learning from a076

speaker who uses pragmatic communication, while077

language learners that integrate a model of the078

speaker are significantly more successful.079

2 Background080

We situate our listener in an image-based version081

of Lewis’s signaling game (Lewis, 1969). Image-082

referential games are commonly used to study the083

benefit of speakers and listeners reasoning about084

each other in context (Lee et al., 2018; White et al.,085

2020; Andreas and Klein, 2016).086

At each turn a collection of N images (o1, ..., oN )087

is provided, with the speaker having knowledge088

of a specific target image ot, where 1 ≤ t ≤ N .089

The listener’s objective is to correctly identify the090

target image index t given the speaker’s message091

w . The messages may contain multiple words by092

combining words from a fixed vocabulary.093

2.1 Literal meanings and the Rational Speech094

Act model095

Frank and Goodman (2012) provide a concise096

model for how speakers and listeners reason about097

each-other when sharing referential content. As a098

starting point, the model assumes an underlying099

literal interpretation. This is a function D(w, o) of100

an utterance w and an observation o, in our case an101

image. In the original formulation the base inter-102

pretation function is a 0-1 valued indicator of the103

set of messages that are true of the image o. In line104

with other work, we replace this binary function105

with a real-valued similarity between the observed106

image-embedding and text-embedding.107

D(oi,w) = ϕθ(oi)
Tγθ(w) (1)108

Each image is individually embedded with a CNN109

following the ResNet architecture (He et al., 2016).110

The message embedding is computed by an RNN111

with Gated Recurrent Units (Cho et al., 2014).112

The listener models the distribution over the in- 113

dices in an ordered set of images. The simplest 114

listener distribution is produced by normalizing 115

the score assigned by literal interpretation function 116

over all the images in a given context C. 117

L0(i∣w,C) =
eD(oi,w)

∑
∣C∣
j=1 e

D(oj ,w)
(2) 118

The speaker produces a message that maximizes 119

the probability that the listener chooses the right 120

image and also considers the cost of each message 121

w. This means that the speaker has an internal 122

model of the listener. 123

Sn(w∣C, i) =
eλ(log(Ln−1(i∣C,w))−cost(w))

∑w′∈V eλ(log(Ln−1(i∣C,w′))−cost(w′))

(3) 124

In this work, we use a cost function that assigns a 125

constant weight to each word and we only consider 126

fully rational speakers with λ = 1. 127

Building on 3, higher level listeners have an in- 128

ternal model of a speaker: 129

Ln(i∣C,w)∝ Sn−1(w∣C, i)P (C, i) (4) 130

By applying Equations 3 and 4 in an alternating 131

fashion, we can produce higher level speakers and 132

listeners. 133

The most studied levels in the case of human 134

communication are L0 literal and L2 pragmatic 135

listeners paired with S1 and S3 speakers. This is 136

motivated by evidence that humans can interpret 137

messages from a S3 speaker consistent with a L2 138

listener (Goodman and Frank, 2016) and multiple 139

pragmatic phenomona have been derived using the 140

RSA framing and these levels (Franke and Degen, 141

2016; Hawkins et al., 2023). 142

2.2 Reasoning while learning 143

In the previous subsection 2.1 we saw how to per- 144

form recursive reasoning on top of given literal 145

representations D(o,w). These literal interpreta- 146

tions are most commonly initialized by functions 147

learned outside of the context of a referential game 148

and the reasoning is added only during inference 149

(Fried et al., 2018; Lazaridou et al., 2020; Andreas 150

and Klein, 2016; Liu et al., 2023). 151

However, the optimal literal representations are 152

likely influenced by the reasoning itself. Following 153

the work of Monroe and Potts (2015) and McDow- 154

ell and Goodman (2019), we would like to inte- 155

grate the knowledge that the received messages are 156
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the result of pragmatic reasoning already during157

learning. Therefore, we apply recursive reasoning158

during model training.159

Pragmatic listeners seek to update the weights160

of the literal interpretation D(o,w) but they need161

to do so by considering the repeated application162

of Equations 3 and 4. Similarly to McDowell163

and Goodman (2019), we derive the gradients of164

the reasoning process with respect to the lexicon165

weights. By repeated application of the chain rule166

through the hierarchical reasoning, pragmatic lis-167

teners backpropagate through the hierarchical rea-168

soning and update the weights of the image- and169

utterance-embedding models.170

3 Data171

To investigate the impact of the pragmatic compe-172

tence of speakers and listeners on communicative173

success, it is necessary to establish a controlled set-174

ting that allows for manipulation of the reasoning175

abilities of participants. We create a new environ-176

ment based on the ShapeWorld dataset (Kuhnle and177

Copestake, 2017). Instead of the rule based method178

of Kuhnle and Copestake (2017), we use an exact179

implementation of the rational speaker defined in180

Equation 3. This way we can create speakers with181

different depth of recursive reasoning. Our speak-182

ers are not learned, they are knowledgeable users183

of the language: they have access to the underlying184

true lexicon which indicates the mapping between185

color and shape words and image properties.186

Each game consists of a target image and a vari-187

able number of N distractor images. Images are188

described by one out of six different colors and a189

shape that can take five different values. The loca-190

tion, size and rotation of the objects is randomized191

on a 64x64 grid which creates a large variation of192

candidate pictures.193

We parameterize the process that generates the194

image tuples for each game by four probability195

distributions: the priors over the shapes P (S) and196

colors P (C), the probability that controls the corre-197

lations between colors P (C ∣C) and the conditional198

defining the co-occurrence of shapes P (S∣S). We199

sample these distributions from different Dirichlet-200

distributions. We create two sets of concentration201

parameters: in the first version of the game, all sam-202

pled distributions are close to uniform (Corr = 0),203

while in the second version introduces correlations204

in the shape and color conditionals (Corr = 1).205

This way the sampled image tuples share more206

Distractors S1 S3

2 1.07 1.01
3 1.14 1.02
4 1.24 1.09

Table 1: Average message length over 5000 samples
for different number of distractors and speaker levels,
Corr = 1. Higher level speakers send shorter messages
and more distractors result in longer messages.

features, creating higher likelihood for pragmatic 207

messaging that differentiates S1 and S3. 208

For training, we sample only one instance of 209

each distribution. At test time, we sample different 210

P (S), P (C), P (S∣S) and P (C ∣C) instances 10 211

times. From each of these constellations we sample 212

3200 games. 213

The random seed is fixed across all experiments 214

and is reset for the learning and evaluation of each 215

learner. This ensures that each listener sees the 216

exact same examples in all environments. 217

4 Experiments 218

The fact that we have full control over the speaker’s 219

messaging strategy and the data generating process 220

allows us to alter the level of the speakers that the 221

listeners learn from and create image tuples that 222

highlight the contrast between higher level prag- 223

matic and lower level literal messaging strategies. 224

We train train L0 literal listeners and L2 prag- 225

matic listeners. We create two different levels of 226

speakers to pair them with our learning listeners: 227

S1 has an internal model of a competent L0, while 228

S3 anticipates L2-behavior. 229

4.1 Results 230

In this section, we present the insights gained from 231

simulating language learning and communication 232

between listeners and speakers with pragmatic or 233

literal preferences. First we look at altering speaker 234

and listener levels only during evaluation using 235

an already trained lexicon. Then we turn to the 236

learning dynamics between our four pairs: L0 - S1, 237

L0 - S3, L2 - S1 and L2 - S3. 238

Talking to speakers with different depth First 239

we take the L0 listener which learned in the easiest 240

environment (S1, Corr = 0, N = 2) hence has the 241

highest in-domain performance of 91.2% accuracy. 242

During evaluation, we upgrade this listener to dif- 243

ferent levels and pair them with S1 and S3. Table 244
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Listener eval Speaker eval Accuracy

a) 0 3 75.8
b) 2 3 76.4 **
c) 0 1 80.5
d) 2 1 80.8

Table 2: A listener trained as L0 upgraded to different
listener levels and paired with S1 or S3 at evaluation.
Both L0 and L1 perform significantly better with the
more verbose S1. When receiving messages from an
S3, the higher level S2 is significantly better.

2 shows that pragmatic L2 is significantly 1 better245

than literal L0 when paired with S3. At the same246

time, L2 still achieves the best performance with247

the more verbose S1, this is due to the fact that248

the listener did not learn the word-feature mapping249

with perfect accuracy and they still benefit from the250

more descriptive input.251

Listener train Speaker train Accuracy

a)
0

1 80.7**
b) 3 79.1

c)
2

1 84.8**
d) 3 83.2

Table 3: For each level of listener, learning from lower
level S1 results in significantly better accuracy. The
same trends hold for a S3 at evaluation time. Environ-
ment parmeters: cost = 0.6, N = 4, Corr = 1.

Learning from speakers with different depth252

Now we turn to how listeners of different levels are253

impacted by learning from different speakers.254

Table 3 shows that reasoning learners that255

learned from lower level speakers always achieve256

higher accuracy at evaluation. This can be ex-257

plained by the fact that lower level speakers send258

longer messages on average, see Table 1, because259

their internal model is of a simpler listener who260

needs longer descriptions for success.261

Despite the fact that a L2 can disambiguate S3262

messages, learning from a S1 speaker is easier as263

it provides more data on both image features. This264

behaviour nicely aligns with the intuition that lan-265

guage learners benefit from simple, verbose com-266

munication and teachers should not assume chal-267

lenging patterns of communicative competence268

1We perform Fisher’s exact test for significance testing.
We note p < 0.05 with one asterisk * and for p < 0.01 we put
** next to the results.

Figure 2: During training, listeners are paired with dif-
ferent speakers of different pragmatic competence. The
listeners are trained in environments of increasing dif-
ficulty. L0 reasoning learners paired with S1 speakers
have the same performance as L2 paired with S3. Eval-
uation setup: L2, S1, Corr = 0, N = 4.

early on in the learning process (Nguyen, 2022). 269

Comparing all possible pairings however, we can 270

clearly see the benefit of listeners having the ap- 271

propriate level for the speaker during learning. A 272

L0 listener learning from a S1 matches the perfor- 273

mance of a L2 listener learning from a S3 speaker. 274

This is illustrated by Figure 2 where we evaluate 275

listeners that were paired with higher or lower level 276

speakers during training. The evaluation environ- 277

ment is kept the same, all listeners are upgraded to 278

L2 and deployed with S1. Pragmatic L2 listener 279

can compensate for the difficulty of learning from 280

the concise S2 through all training environments. 281

5 Conclusions 282

Humans exploit pragmatic reasoning in order to re- 283

duce the effort of speaking. For artificial agents to 284

understand humans, it is critical to correctly resolve 285

ambiguities. By recursively modeling the conversa- 286

tional partner, pragmatic listeners can arrive at the 287

interpretations intended by pragmatic speakers. 288

In this work, we introduced speaker-listener 289

pairs with matching or misaligned levels of prag- 290

matic competence. We examined the benefits of 291

integrating pragmatics not only during evaluation 292

but already during language learning. Our results 293

show that learning from more explicit, literal lan- 294

guage is always beneficial, regardless of the prag- 295

matic capacity of the learner. At the same time, 296

we conclude that language learners need to apply 297

reasoning about the context and the speaker when 298

learning from data that was generated pragmati- 299

cally. 300
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6 Limitations301

While the conversational phenomena we model in302

this paper have been widely attested to in linguistic303

theory and psycho-linguistic research, our experi-304

ments are limited to an artificial sandbox scenario305

with a small vocabulary and simple observations.306

The reasoning about all possible utterances used in307

this paper is intractable with larger vocabularies.308

Real world conversations contain a wide range309

pragmatic inferences, not all of which can be ac-310

counted for by the recursive reasoning presented in311

this paper.312
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A Model training and implementation428

All 261838 model-parameters are trained from429

scratch. The weights are updated with the AdamW430

optimizer (Loshchilov and Hutter, 2017) which we431

initialize with a learning rate of 1e − 5.432

For each training step, we use a batch of 32433

games and the listeners are trained for 25920 train-434

ing steps. Each instance of a listener training took435

1.5 GPU hours on a single NVIDIA RTX A6000436

GPU.437

The implementation code will be released upon438

acceptance of the paper.439

B Concentration parameters of the image440

generators441

We sample P (S), P (C), P (C ∣C) and P (S∣S)442

from Dirichlet distributions. In the case of no cor-443

relation between the images (Corr = 0), we set all444

concentration parameters to 1. For the correlated445

case (Corr = 1), we introduce correlation between446

the same shapes and a randomly chosen shape from447

all five shapes. We achieve this by setting the con-448

centration parameter α to 5 at the index that corre-449

sponds to the i’th shape and a randomly generated450

other index. P (S∣S = shapei) ∼ Dir(α1, ..., α5),451

where all α’s are 1 except for αi = 5 and αj = 5 for452

a randomly generated j. We apply the same process453

for generating all the P (C ∣C) distributions.454

C Benefits of pragmatic reasoning during 455

learning 456

C.1 Pragmatic listeners learn faster 457

Figure 3: Higher level listeners learn quicker. In this
comparison all other parameters such as speaker level,
number of distractors, correlation between shapes are
left constant.

Figure 3 shows that when we keep all parameters 458

of the learning environment constant, and only vary 459

the listener’s depth, we observe that listeners with 460

higher levels, learn to perform the task with good 461

accuracy faster. The gap in performance is espe- 462

cially large in the initial learning stages. This result 463

is in line with McDowell and Goodman (2019), 464

where they discuss the benefits of pragmatic train- 465

ing. 466

C.2 Easiest and Hardest learning 467

environments 468

Listener train & eval Easy Hard

a) 0 91.2 80
b) 2 93.7** 84.5**

Table 4: Accuracy in the easiest and hardest environ-
ments. The easy environment has no messaging cost,
each game has N = 2 distractor images. In the hard
environment N = 4, each word has a cost 0.6 for the
speaker and Corr = 1. In both environments higher
level listeners perform better. The speaker is S1 for
training and evaluation.

Table C.2 shows the accuracy of the pragmatic 469

listeners who are trained and evaluated with the 470

same level of three different levels in the least and 471

most challenging settings. 472

The cost of messaging has the biggest impact 473

on accuracy, followed by the number of distrac- 474

tors. The fewer distractors the environments have, 475

the easier the task becomes. Having correlation 476
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between the the target and distractor colors and477

shapes (Corr = 1) increases similarity between the478

target and the distractor and makes the task harder.479
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