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ABSTRACT

Deterministic embeddings learned by contrastive learning (CL) methods such as
SimCLR and SupCon achieve state-of-the-art performance but lack a principled
mechanism for uncertainty quantification. We propose Variational Contrastive
Learning (VCL), a decoder-free framework that maximizes the evidence lower
bound (ELBO) by interpreting the InfoNCE loss as a surrogate reconstruction
term and adding a KL divergence regularizer to a uniform prior on the unit hy-
persphere. We model the approximate posterior go(z|x) as a projected normal
distribution, enabling the sampling of probabilistic embeddings. Our two instantia-
tions—VSimCLR and VSupCon—replace deterministic embeddings with samples
from gy(z|x) and incorporate a normalized KL term into the loss. Experiments
on multiple benchmarks demonstrate that VCL mitigates dimensional collapse,
enhances mutual information with class labels, and matches or outperforms deter-
ministic baselines in classification accuracy, all the while providing meaningful
uncertainty estimates through the posterior model. VCL thus equips contrastive
learning with a probabilistic foundation, serving as a new basis for contrastive
approaches.

1 INTRODUCTION

Deep representation learning seeks to map each input x into a compact embedding z that preserves
semantic similarity and facilitates downstream tasks such as classification or retrieval (Bengio et al.,
2013). Contrastive learning methods, including SImCLR (Chen et al.,|2020) and SupCon (Khosla
et al.|2020), have advanced the state of the art by pulling together positive pairs and pushing apart
negatives in the embedding space. However, these approaches rely on deterministic point estimates
for each sample, which do not express uncertainty or capture multiple plausible representations.

To address this limitation, we introduce a probabilistic Variational Contrastive Learning (VCL)
approach, which extends deterministic embeddings to probabilistic embeddings by maximizing
the evidence lower bound (ELBO) within the contrastive learning framework. Unlike variational
autoencoders (VAEs) (Kingma et al., [2019), which employ a decoder to reconstruct inputs from
latent variables, VCL omits explicit decoders. Instead, we show that the InfoNCE loss can serve
as a surrogate for the ELBO reconstruction term, yielding a principled probabilistic formulation of
contrastive learning. Our VCL framework offers several new perspectives on learned embeddings:

Understanding embeddings through distributions. VCL maps each input « to an approximate
posterior distribution g4 (z|x), yielding a mean vector that serves as the embedding and a variance
that quantifies uncertainty. This probabilistic representation not only captures richer information
about each sample but also enables uncertainty-aware downstream decisions.

A probabilistic ELBO viewpoint beyond mutual information. Minimizing the InfoNCE loss
maximizes a lower bound on mutual information, consistent with the InfoMax principle (Linsker,
1988). However, mutual information alone may not directly correlate with downstream task per-
formance (T'schannen et al.| 2020}, motivating geometric analyses based on alignment and unifor-
mity (Wang & Isolal [2020). In contrast, our probabilistic formulation interprets contrastive learning
through the ELBO: maximizing the ELBO without a decoder encourages the learned posterior g, (z|x)
to match the true posterior p(z|x), providing a principled objective for representation learning.
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Controllable embedding distributions. Standard contrastive learning imposes no explicit prior
on embeddings, so their distribution emerges implicitly from the data and model architecture. VCL
incorporates a prior p(z) into the objective, allowing one to specify and control the marginal
embedding distribution p(z). For example, choosing a uniform prior on the hypersphere often
improves empirical performance (Wang & Isolal 2020) that makes negative samples more uniformly
dispersed around each anchor, and domain-specific priors can encode known structure in the data.

Mitigating collapse phenomena. Self-supervised contrastive learning (e.g., SimCLR) can suffer
from dimensional collapse, where embeddings occupy only a low-dimensional subspace (Jing et al.|
2021). A spherical uniform prior mitigates this by encouraging isotropic use of all embedding
dimensions.

This Variational Contrastive Learning framework thus provides uncertainty-aware embeddings, a
new basis of CL with theoretical insights via the ELBO, and practical solutions to common collapse
problems in contrastive learning. Our contributions are summarized as follows:

* We introduce Variational Contrastive Learning (VCL), a decoder-free ELBO maximiza-
tion framework that reinterprets the InfoNCE loss as a surrogate reconstruction term and
incorporates a KL divergence regularizer to a uniform prior on the unit hypersphere.

* We propose a distributional embedding model using a projected normal posterior ¢y (z|x)
that enables sampling, uncertainty quantification, and efficient KL computation on the
hypersphere.

* We derive a theoretical connection between the optimal InfoNCE critic and the ELBO,

showing that minimizing InfoNCE asymptotically maximizes the ELBO reconstruction term
(Proposition [3.2) and providing a generalization bound (Theorem [3.3) of KL regularization.

* We demonstrate that VCL mitigates both dimensional collapse in self-supervised contrastive
learning via the KL regularizer, while preserving embedding structure. We show that VCL
methods preserve or improve mutual information with labels, match or exceed classification
accuracy of deterministic baselines, and provide meaningful implication of distributional
embeddings.

2 PRELIMINARIES

Let D = {(x;,y:)}}Y, be a dataset of input € X and label pairs drawn i.i.d. from the joint
distribution p(x,y). An encoder fo: X — R?, parameterized by 6, maps each input z to a d-
dimensional vector, which we then normalize to unit length: z = % Throughout this section,
we define the temperature—scaled cosine similarity between embeddings z; and z; as

Z-T Zj

S(ziazj) = 17_ 9 (1)

where 7 > 0 is the temperature hyperparameter. For any two probability distributions ¢ and p, we

denote the Kullback-Leibler (KL) divergence by D(¢||p) = E.q [log %} .

2.1 SELF-SUPERVISED CONTRASTIVE LEARNING

Self-supervised contrastive learning (SSCL) learns representations from unlabeled data by pulling
together embeddings of semantically related views (positives) and pushing apart those of unrelated
views (negatives). For an anchor z, let «/ denote a positive view sampled from p(x; | ), and let
{z;} j+i be N — 1 negative views drawn i.i.d. from the marginal p(2’). The InfoNCE loss (Oord
et al.,[2018)) for anchor x is then

@

exp(s(z, 2}
@) ~p(a) @) Sim1exp(s(z, 2)))
{x}j2i~p(a)

where z = fy(x)/|| fo(x)]||2 and s(, ) is the temperature-scaled cosine similarity.
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In practice, following SimCLR (Chen et al.,|2020), we generate positives by applying two random
augmentations ', ¢ ~ 7T to each sample x;, yielding (x}, /) = (¢'(z;), t”(x;))]'| All other 2N —2
augmented samples in the mini-batch serve as negatives. Let I3 be the set of all 2NV embeddings in
the batch; then InfoNCE can be computed as

1 exp(s(z, zp))
I =—— log ’
o 2N zzegf ZZnEB\{z} exp(s(z, zn))

where 2, denotes the positive embedding corresponding to z. Since InfoNCE lower-bounds the
mutual information I (x; ') via I (x; ') > log N — Incr(x; '), we can see that minimizing Incp
encourages encoders to preserve the semantic information of x (Poole et al., 2019).

3

2.2  SUPERVISED CONTRASTIVE LEARNING

Khosla et al| (2020) extend the InfoNCE loss from the self-supervised setting to a supervised
context, calling the resulting method Supervised Contrastive Learning (SupCon). When class labels
yi € {1,...,C} are available, all samples sharing the same label can serve as positives.

Given a mini-batch {(z;,y;)}2 ;, define for each anchor index a
A(a) ={1,2,...,B}\ {a}, and P(a) ={p € A(a) : yp = Ya},
so that P (a) contains the indices of all positives for anchor a. The SupCon loss for anchor z,, is then

1 exp(s(zaazp))
I a) = — I . )
) @] 5, S opletan =) ”
JjEA(a)

Averaging over all anchors in the batch yields the full objective:

B
) 1
L = B E Isup(za). )
a=1

2.3  VARIATIONAL INFERENCE AND THE EVIDENCE LOWER BOUND (ELBO)

In variational inference (Blei et al., 2017} Kingma et al.,[2019), we treat the data distribution p(a)
as the marginal of a joint distribution over observed data  and latent variables z, i.e., p(x) =
| p(z|z) p(z)dz. The latent variable z captures meaningful structure in @, serving both as a hidden
cause and as a compressed representation for downstream tasks. In representation learning, we
interpret z as the embedding of .

The log-evidence can be written with respect to any approximate posterior g4 (z|x) as

Ing(w) = IOgEq¢(z|m)|:p(w7,Z))] (6)

94 (2

Rather than optimizing (6) directly, variational methods maximize the evidence lower bound (ELBO)
obtained as a result of applying Jensen’s inequality:

logp(@) > Eq, (s(a)[log p(x|2)] — D(ge(z|2) [ p(2)) = LZO(9), ™

where p(z) is a fixed prior (commonly N (0, 1;)). The ELBO decomposes into a reconstruction term
E,[log p(z|2)] and a regularizer D(qs(2|z) || p(z)). Maximizing LELBO thus balances (i) accurate
reconstruction, (ii) posterior-to-prior regularization, and (iii) posterior accuracy. By

logp(z) = LF*BO(¢) + D(qy(2|z) || p(2|)), 8)

for fixed log p(«), maximizing the ELBO minimizes the KL divergence between the approximate
and true posteriors (Blei et al., 2017).

The ELBO provides a tractable surrogate for marginal likelihood that can be optimized by standard
gradient methods. It will serve as the theoretical backbone of our Variational Contrastive Learning
framework, offering both a probabilistic interpretation and explicit control over latent uncertainty.

! Although we adopt the SimCLR augmentation scheme, our method applies to any contrastive framework.
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Relation to contrastive objectives. Although the ELBO stems from latent-variable modeling,
its two components align naturally with contrastive objectives: the KL divergence term enforces
uniformity in the embedding space, while the reconstruction term promotes alignment between
embeddings and observations. In Section 3] we leverage this connection by adopting distributional
embeddings in the contrastive framework and incorporating a KL-based regularizer on the posterior.

3 VARIATIONAL CONTRASTIVE LEARNING (VCL)

Unlike existing variational contrastive learning methods—which primarily focus on generative models
with explicit decoders (Chen et al.,|2025; |Wang et al., |2024b)—our approach performs decoder-free
ELBO maximization, making VCL a truly contrastive learning framework.

3.1 DECODER-FREE ELBO MAXIMIZATION

Here we describe how to optimize two terms in ELBO (/) within a purely contrastive learning setup.

Reconstruction term.  The reconstruction term E, (. |2) [log p(:c|z)] requires the true conditional
p(x|z), which is generally intractable. Instead, we approximate it via the embedding conditional

o p(z,2)
p(2'|z) = Tp(z. =)z ©)

where z’ ~ gg(- | ) captures semantics of . Thus,

Eqgy (212) [log p(2]2)] = Egy (22)g0 (') [l08 P(2']2)]

— p(z2) | e?(=2)
= Elog 12E50 | ~ Elog z.ewz’zw}’ (10)
where we approximate p(z,z’) ~ e¥(*=) via a critic ¢). Details on parameterizing p(z’ | z)

appear in Section The following lemma supports the approximation Eg, (2 |qz) [1og p(m|z)} ~

Ego (z12)q0 (2| ) [logp(z/|z) . A further discussion on the approximation in (I0) and a tightness
condition is in Appendix

Lemma 3.1. Let x and z be conditionally independent given z'. Then, the reconstruction term in
Section[31lis bounded as

Eq(zja) [l0g p(2]2)] > Eqy(2|2)q(2|a) [log p(z'|2)] + const., (11)

where const. is independent of z.
Proof. The proof of Proposition[3.1]is in Appendix [B.I] O

Noting that the right-hand side of is (up to sign) the InfoNCE surrogate, setting (-, ) = s(, -)
in (T0) where s(-, -) is defined in (I)) yields

Eqgo (210) [log p(@]2)] & — Incp(z; 2'). (12)
Hence, minimizing the InfoNCE loss maximizes the reconstruction term without explicit decoders.

In contrast to VAE embeddings—which often rely on pixel-level reconstruction through expressive de-
coder (Song et al.}2024)—VCL preserves semantics via contrastive objectives. The next proposition
(proved in Appendix [B.2)) provides a theoretical connection between InfoNCE and the reconstruction
term.

Proposition 3.2. Assume that: 1) the critic ¢ in InfoNCE is optimal; 2) p(z) < oo, Vz; and 3)
0 < e < p(z|z') < g4(2z), Vz,2' with a absolutely integrable g : Z — (0,00). Then, as the
number of negatives N — 0o,

—Ince(z; @) +log N — Ellogp(2'|2)] — D(ae(2') | p(2")) — H(qe(2'|)),  (13)

where the expectation is over qg(z|x)qo(2'|x), and H(-) denotes entropy.
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Regularization. Maximizing the ELBO requires choosing a prior p(z) and an approximate posterior
go(z | ). Although both are often taken as Gaussian distributions (Kingma et al., 2019), this choice
conflicts with the geometry of contrastive embeddings, which often lie on the unit hypersphere due to
the normalization (Wang & Isola, 2020). Instead, we adopt non-Gaussian priors and posteriors—one
key distinction from standard VAE approaches.

Motivated by the uniformity property (Wang & Isola, 2020) on the unit sphere S¢~1 = {2z € R% :
| z|l2 = 1}, we set the prior p(z) to be the uniform distribution over S¢~!. For the approximate
posterior, we use the projected normal distribution (Hernandez-Stumpfhauser et al.,[2017), which
admits efficient KL-divergence computation while enforcing z € S¢!. A random variable z ~
PN (u, K) is obtained by sampling

z with u~ N (g, K). (14)

2

In particular, PA/(0, I,) reduces to the uniform distribution on S, i.e., PA/(0, I;) < Unif(S4~1).
With gg(z|x) = PN (i, K), the regularization term becomes

D(gs(2l) [|p(2)) = D(PN (1, K) || Unif (S~ 1)). (15)

Since a closed-form KL divergence between projected normals and the uniform sphere is intractable,
we instead minimize the Gaussian KL as an upper bound—by the data processing inequality (Polyan;
skiy & Wu,|[2025)):

D(N(, K) [ N(0. 1)) = D(PN(u, K) || Unif($"~1)). (16)

In Appendix [C.2] we analyze the tightness of the gap in (I6) and show that the Gaussian KL
divergence closely approximates the projected-normal KL divergence; the two exhibit nearly identical
behavior throughout VCL training.

For K = diag(c?,...,07), the Gaussian KL admits the closed form
1
2, 2 2
D(;L,K):i E (Ui—l—ui—l—logoi). a7

i=1

The KL divergence term D(u, K) grows linearly with the embedding dimension d, which can

destabilize training when d is large. To address this, we normalize the KL term by d, i.e., D(u, K) =
é D(p, K), so that its magnitude remains comparable to the InfoNCE loss.

Final objective for maximizing ELBO. By combining (I2) and (I7), we obtain the following
(approximate) lower bound on the ELBO:

LEBO0) > — Incp(; @) — D(pa, Ka), (13)

where 5 and K, = diag(oz.,1,...,04,q4) are the parameters of go(z | ). Because this bound is
asymmetric in (2, '), we symmetrize it to define our final VCL objective:

1
£VCL _ 3 (INCE("E; x') + Ince('; ) + D(pie, Ko) + D (o, K:c’))- (19)
Minimizing LVCL therefore maximizes the ELBO. Next, we introduce Variational SimCLR (VSim-
CLR), which is specifically designed to optimize this objective efficiently.

3.2 VARIATIONAL SIMCLR (VSIMCLR)

We propose Variational SimCLR (VSimCLR), whose architecture is illustrated in Figure[I(b)] VSim-
CLR minimizes £V in (T9), thereby implicitly maximizing the ELBO and bringing the approximate
posterior closer to the true posterior by (§). Compared to SimCLR, VSimCLR differs in three key
aspects: (i) the encoder outputs the parameters of a variational posterior rather than deterministic
embeddings; (ii) embeddings are sampled from this posterior; and (iii) a KL divergence term between
the approximate posterior and the prior is included in the loss.
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Figure 1: Graphical illustration of SimCLR and Variational SimCLR (VSimCLR).

Specifically, during training, each input @ is first augmented twice to obtain ' and «”, as in SimCLR.
The encoder then maps ' and x” to posterior parameters (u', o’) and (u”, o”'), respectively. We
then sample

2 =y +diag(o’) €1, and 2" = p” + diag(o”) e, (20)

where €1, €5 '~ N (0, I4). After normalizing z’ and z” to unit length, we compute the InfoNCE loss
over the normalized embeddings in the batch and add the KL divergence

1 .
SD WV (k. diag(e?)) V(0. 1)) 1)
for each sample. Minimizing this combined objective effectively minimizes £VC" in (T9) and thus
maximizes the ELBO. Figure[I] highlights these differences: VSimCLR replaces deterministic em-
beddings with the projected-normal posterior PN (u, diag(o?)) and regularizes it via KL divergence
to the standard normal.

3.3 VARIATIONAL SUPCON (VSUPCON)

Building on the variational embedding pipeline of VSimCLR, VSupCon simply swaps the unsuper-
vised InfoNCE term for the supervised contrastive loss while retaining the KL regularizer. Concretely,
for each input & with two augmentations @', ", let the encoder output posterior parameters (u', K')
and (p”, K'"), and sample normalized embeddings

2 ~PN(W,K'), 2" ~PNW' K"). (22)

Then the VSupCon objective is the symmetrized supervised loss plus the averaged, normalized KL
penalties:

1 1
EVSup — §<£SUP(Z,7ZH) + [_:SUP(ZH,Z/)) + %<D(MI’K/) + D(/J,//7KN)). (23)
Minimizing £V5"P therefore aligns same-class embeddings and regularizes their posterior distribu-
tions toward the uniform prior on the sphere.

3.4 GENERALIZATION ANALYSIS FOR KL DIVERGENCE

Generalization bounds quantify how a loss function performs on unseen data. While recent work
has extensively studied the InfoNCE loss (Saunshi et al., 2019} [Lei et al., 2023; Hieu et al.,[2025)),
the KL regularizer in VCL has not yet received comparable theoretical treatment. To address this
gap, we derive a generalization bound for the KL term under the deep neural network encoder
function class F=, parameterized by a bounded weight set = and equipped with Lipschitz activation
functions, as considered in the recent work (Hieu et al.,[2025). We introduce an informal version of
the generalization bound below; the formal version is provided in Theorem [BT]in Appendix [B.3]
Theorem 3.3 (Informal). Let {x;} £ p(x), and let Dk1,(fe;x) denote the KL regularizer
applied to the output of the encoder fo € Fg given input x. Then, with high probability, it holds:

1Y N
S| Eonyie) Dt (for@) = > Dxu(fe;xi)| < O(1/VN). (24)
e&/= i=1
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Figure 2: Embedding visualization for SiImCLR and VSimCLR on CIFAR-10 test set. (a) t-SNE
of SimCLR; (b) t-SNE of VSimCLR; (¢c) UMAP of SimCLR; (d) UMAP of VSimCLR. VSimCLR
preserves the characteristic cluster structure of contrastive learning while introducing probabilistic
embeddings regularized by (7).

Theorem [3.3|shows that the generalization gap of the KL term decays as O(1/+/N). In contrast, as
shown in (Hieu et al., 2025, Theorem 1), the gap of InfoNCE scales as ) (1) and does not improve
with the number of negative samples N. Moreover, their analysis assumes that {z;}Y ; are drawn
from class-conditional distributions, which is a strictly stronger assumption than our i.i.d. assumption
from the marginal distribution. Therefore, the KL regularizer does not degrade the generalization
guarantees of InfoNCE, while also providing principled uncertainty quantification.

4 EXPERIMENTS

We evaluate VCL with SimCLR and SupCon across five aspects: (i) embedding visualization, (ii)
dimensional collapse, (iii) mutual information between embeddings and labels, (iv) classification
accuracy, and (v) implications of distributional embeddings. Implementation and training details are
provided in Appendix [D.1]

4.1 EMBEDDING VISUALIZATION

Figure |Z| presents t-SNE (Van der Maaten & Hintonl, [2008) and UMAP (Mclnnes et al., [2018)
projections of the embeddings learned by SimCLR and VSimCLR on the CIFAR-10 test set. Although
VSimCLR incorporates an additional KL-regularizer, it preserves the characteristic cluster structure
induced by contrastive learning. This confirms that our distributional embeddings retain the semantic
information learned by contrastive methods.

4.2 DIMENSIONAL COLLAPSE

Contrastive learning methods such as SimCLR often suffer

from dimensional collapse, where embeddings concentrate in =~ 5, s e
a low-dimensional subspace, underutilizing the full capacity of [ == IRt
the representation space (Jing et all 2021). To quantify this ef-  ** = EFTIEETER
fect, let {2;}¥; be the test-set embeddings and their covariance
matrix C' = + Ziil(zi —z)(z— %), withz = & Zivzl z;.
Figure [3]shows the singular values of C' for SimCLR and VSim-
CLR. VSimCLR produces a substantially flatter spectrum, indi- 100
cating a higher effective rank and thus mitigating dimensional N
collapse. Remarkably, on CIFAR-100, VSimCLR nearly dou- o a0 s e s 100 120
bles the number of dominant components compared to SimCLR. singular value Ranicincex

These results demonstrate that VSimCLR not only preserves se- )

mantic clustering but also leverages the embedding space more ~Figure 3: Smgu}ar—value spectrum
fully, and can be combined with other collapse-mitigation strate- ©f the embedding covariance on
gies for further gains. Additional experiments on Caltech-256 CIFAR-10 and CIFAR-100. VSim-
and Tiny-ImageNet (Figure[7} Appendix [D.2) exhibit similar CLR mitigates dimensional col-
behavior. lapse.

Singular Values
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Table 1: Classification accuracy on various datasets. We report top-1 and top-5 accuracies.

METHOD CIFAR-10 CIFAR-100 TINY-IMAGENET STL10 CALTECH256
Torl TopP5 Torl TopP5 Torl Top5 Torl Topr5 Torl Topr5
SIMCLR 78.42  98.52 4956  78.84  38.95 66.89 60.44  95.80 43.14  66.15

VSupCON 93.85 99.68 71.66 89.42  48.30 72.84 75.76  96.99  83.06 91.29

4.3 MUTUAL INFORMATION COMPARISON

Figure reports the estimated mutual information I(z; ¢) between .
the learned embeddings z and their true class labels ¢ of CIFAR-10.
We compute this using the Mixed KSG estimator (Gao et al., 2017)),
which is well-suited for mixed or multimodal distributions.

Both VSimCLR and VSupCon achieve mutual information on par "
with—or slightly exceeding—their non-variational counterparts. ..
These results indicate that VSimCLR ultimately preserves—or even "
improves—information between embeddings and labels, while also
producing rich distributional representations.

Figure 4: Estimate of I(z; ¢).

4.4 CLASSIFICATION

For classification, we use the posterior mean g5 as the embedding and train a linear classiﬁerE]
Table [T]reports Top-1 and Top-5 accuracies on CIFAR-10, CIFAR-100, Tiny-ImageNet, STL-10, and
Caltech-256. VSimCLR outperforms SimCLR on CIFAR-10 and CIFAR-100 in Top-1 accuracy,
with similar gains in Top-5. On Caltech-256, VSimCLR also improves Top-1 accuracy substantially.
Performance on Tiny-ImageNet and STL-10 remains comparable, with slight decreases (within
experimental variance) likely due to the KL regularizer.

SupCon provides supervised baselines, and VSupCon further improves Top-1 accuracy on CIFAR-10
and CIFAR-100. Modest declines on Tiny-ImageNet, STL-10, and Caltech-256 reflect the trade-off
of adding the KL term on datasets with higher complexity or fewer samples. We hypothesize that
the drop in VSupCon arises from two factors: (i) VSimCLR’s objective coincides with the VCL
objective in (T9), whereas VSupCon’s does not, creating a mismatch that may hinder proper ELBO
maximization; and (ii) SupCon directly optimizes embeddings for classification, so an added KL term
can conflict with that objective. We further study the effect of the KL regularizer in Appendix

Although VCL is not designed to boost classification accuracy, VSimCLR consistently match or
exceed their deterministic counterparts. This demonstrates that probabilistic embeddings preserve the
alignment and uniformity (Wang & Isola, |2020), while yielding meaningful uncertainty proxy.

4.5 IMPLICATIONS OF DISTRIBUTIONAL EMBEDDINGS

Examples of CIFAR-10 with posterior. We illustrate the interpretability of posterior using exam-
ples from CIFAR-10. Figuredisplays sample images alongside the log-determinant log det(K') of
their posterior covariance K learned by VSimCLR. Top-row images are common class members and
exhibit larger log det( K )—indicating broader posterior dispersion—whereas bottom-row images are
atypical or uncommon with smaller log det( K), reflecting more concentrated posteriorsE]

*In Appendix we present additional results exploring various VSimCLR design choices.

3log detK quantifies the dispersion of the posterior in embedding space, which reflects typicality rather
than label uncertainty. Larger values correspond to more “typical” samples with many latent realizations
consistent with the data manifold, whereas smaller values indicate more “unique” or outlier samples with tightly
concentrated posteriors. A generative analogy may help understanding: if an outlier image had an extremely large
posterior variance, then samples drawn from the prior would reproduce that outlier far too often—contradicting
its rarity. Hence, larger variance corresponds to “typical” not “uncertain” inputs.
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(a) log det(K) heatmap (b) Change in logdet(K) from (c) logdet(K) vs. severity (top-6
severity 1 to 5 (sorted) most changing corruptions)

Figure 5: log det(K) of VSimCLR embeddings on CIFAR-10C under different corruption types and
severities. “Severity” denotes the corruption level. Exact log det(K') values are in Table

Relationship between label-entropy and log det(/’). We quantify the relationship between poste-
rior covariance and uncertainty using CIFAR-10H (Peterson et al.,2019) and CIFAR-10C (Hendrycks
& Dietterich| [2019). Figure [9]and [I0] plot posterior dispersion against the entropy of the CIFAR-10H
soft labels (Ishida et al.| 2023; Jeong et al.,[2023)); the negative slope of the linear fit (red line) indicates
that images with lower log det(/ )—i.e., more concentrated posteriors—tend to have higher label
entropy and thus greater ambiguity. Next, using CIFAR-10C, we examine how posterior covariance
varies with corruption severity, which correlates with label uncertainty. Figures [5 and [TT] show
that log det( K') decreases as corruption strength increases, implying that lower posterior dispersion
corresponds to higher uncertainty, consistent with Figure 9] These results demonstrate that the
dispersion of the learned posterior correlates with semantic uncertainty, highlighting the practical
interpretability of VCL’s distributional embeddings.

Use case of posterior. As an example application of posterior, we consider CIFAR-100 under a
label-scarce setting in which only a small number of labels per class are available to train a linear
classifier. Table|§|reports accuracies for SImCLR, VSimCLR, and VSimCLR+wt, with classifiers
trained using cross-entropy (CE). Here, “+wt” denotes a weighted CE in which sample weights
are proportional to posterior covariance to downweight ambiguous examples. Specifically, we use
LocE = vazl w; log ¢¢, (zi), with w; « logdet(K) (after normalization), where ¢, (z;) is the
estimated probability of the true class. Table[6]shows that VCL variants improve over SimCLR and
SupCon, with smaller gains for SupCon since it already leverages labels during pretraining. Moreover,
weighting by posterior covariance further improves performance, supporting probabilistic embeddings
as a confidence proxy. Additional experiments and discussion are provided in Appendix [D.3]

This counterintuitive finding—that typical (i.e., common) samples exhibit larger posterior disper-
sion—parallels the observation in concurrent work by |Guth et al.| (2025)), albeit under different
settings: (i) Quantity: we analyze latent-space posterior via log det K, whereas they study input-space
marginal density p(x); (ii) Observation: typical samples have larger log detK’, while they have lower
marginal density. Although the quantities are measured in different spaces, both results indicate that
typical samples are not the highest-density points. In our case, typical images yield larger posterior
dispersion and atypical images smaller dispersion; since dispersion is inversely related to peak density,
our result aligns with (Guth et al.,2025)). Hence, in both settings, “typical” # “highest-density.”

5 CONCLUSION

We introduced Variational Contrastive Learning (VCL), a decoder-free ELBO framework that equips
contrastive learning with probabilistic embeddings by treating InfoNCE as a surrogate reconstruction
term and adding a KL penalty to a uniform spherical prior. Instantiated as VSimCLR and VSup-
Con—sampling from ¢y (z | «) with a normalized KL—VCL preserves the strengths of contrastive
embeddings, mitigates dimensional collapse, maintains or improves label mutual information, and
matches or surpasses deterministic baselines, while yielding calibrated posterior uncertainty. Analy-
sis of posterior-covariance dispersion further shows a consistent pattern—also noted in concurrent
diffusion-model work (Guth et al., [2025)—where typical samples exhibit larger covariance and
atypical/outlier samples show smaller dispersion.
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A RELATED WORK

A.1 CONTRASTIVE LEARNING

Self-supervised contrastive learning methods (Chen et al.|, [2020; Tian et al|2020) train an encoder
f: X — 8%~ by drawing semantically related views (positives) together in the embedding space
while pushing unrelated views (negatives) apart. In the standard setup, each example is treated
as its own category, and only its augmented copies count as positives. A variety of contrastive
objectives—such as InfoNCE (Oord et al.,[2018)), Debiased Contrastive Loss (Chuang et al.| 2020),
Unbiased Contrastive Loss (Barbano et al.| [2022), triplet-based losses (Chopra et al., 2005; Hermans
et al.l 2017), and others—have been used to learn robust representations for tasks ranging from
dense prediction in computer vision (Wang et al.,2021) to multimodal alignment (Radford et al.,
2021; (Girdhar et al., [2023} Jeong et al.l 2024b)). InfoNCE (Oord et al.l 2018) in particular has
been shown to lower-bound mutual information (Poole et al., 2019), and subsequent work has
revealed that its empirical success hinges on a balance of alignment and uniformity in the learned
embeddings (Tschannen et al.l|2019;Wang & Isola,[2020). In the supervised setting, SupCon (Khosla
et al.,|2020) extends this idea by using class labels to define positive pairs among same-class samples,
often surpassing cross-entropy training in downstream performance. ProjNCE, a generalization of
SupCon (Jeong & Hero, [2025)), modifies SupCon loss so that it becomes a proper mutual information
lower bound.

A.2 PROBABILISTIC CONTRASTIVE LEARNING

A growing body of work has begun to integrate probabilistic latent-variable modeling with contrastive
objectives. In the video domain, Park et al. represent each video clip as a Gaussian and combine them
into a mixture model, learning these distributions via a stochastic contrastive loss that captures clip-
level uncertainty and obviates complex augmentation schemes (Park et al.,2022). For 3D point clouds,
Wang et al. propose a Generative Variational-Contrastive framework that models latent features as
Gaussians, enforces distributional consistency across positive pairs by combining the variational
autoencoder and contrastive learning (Wang et al.l 2024a). In graph representation learning, Xie and
Giraldo introduce Subgraph Gaussian Embedding Contrast, which maps subgraphs into a structured
Gaussian space and employs optimal-transport distances for robust contrastive objectives, yielding
improved classification and link-prediction performance (Xie & Giraldol 2024)).

On the theoretical front, Zimmermann et al. prove that contrastive objectives invert the data-generating
process under mild conditions, uncovering a deep connection to nonlinear independent component
analysis (Zimmermann et al., 2021). With a more generalized setting, Kirchhof et al. extend the
InfoNCE loss so that the encoder predicts a full posterior distribution rather than a point, and prove
that these distributions asymptotically recover the true aleatoric uncertainty of the data-generating
process (Kirchhof et al., [2023).

A.3 VARIATIONAL INFERENCE AND CONTRASTIVE LEARNING

The most closely related line of work frames contrastive learning within a latent-variable inference
paradigm via Recognition-Parametrised Models (RPMs) (Aitchison & Ganev, [2021; Walker et al.}
2023). Aitchison and Ganev introduce RPMs as a class of Bayesian models whose (unnormalized)
likelihood is defined implicitly through a recognition network (Aitchison & Ganev, [2021). They
show that, under RPMs, the ELBO decomposes into mutual information minus a KL term (up to a
constant), and that for a suitable choice of prior the infinite-sample InfoNCE objective coincides with
this ELBO. Walker et al. consider RPMs by assuming conditional independence of observations given
latent variables, and develop an EM algorithm that achieves exact maximum-likelihood learning for
discrete latents along with principled posterior inference (Walker et al.l 2023).

Other works recast variational inference itself as a contrastive estimation task. Rhodes and Gutmann’s
Variational Noise-Contrastive Estimation (VNCE) derives a variational lower bound to the standard
NCE objective, enabling joint learning of model parameters and latent posteriors in unnormalized
models (Rhodes & Gutmann,|2019). More recently, Ward et al. propose SoftCVI, which treats VI as
a classification problem: they generate “soft” pseudo-labels from the unnormalized posterior and
optimize a contrastive-style objective that yields zero-variance gradients at the optimum (Ward et al.|
2025).
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A.4 DIMENSIONAL COLLAPSE

In contrastive self-supervised learning, several approaches have been proposed to prevent dimen-
sional collapse by regularizing either the embedding projector or the second-order statistics of the
representations. Jing ef al. (Jing et al.| 2021) first demonstrated that, despite the repulsive effect of
negative samples, embeddings can still collapse to a low-dimensional subspace due to a combination
of strong augmentations and implicit low-rank bias in weight updates. They introduced DirectCLR,
which fixes a low-rank diagonal projector during training; this projector enforces the embeddings to
occupy a predetermined subspace and was shown empirically to outperform SimCLR’s learned linear
projector.

Following this, several works have designed novel loss functions that explicitly regularize the
covariance or cross-correlation of the embedding vectors. Ermolov et al. (Ermolov et al.,|2021)) apply
a whitening MSE loss so that positive pairs match under mean-square error while enforcing identity
covariance. Barlow Twins (Zbontar et al., 2021) minimize the deviation of the normalized cross-
correlation matrix from the identity, effectively performing “soft whitening” to reduce redundancy.
VICReg (Bardes et al., [2021) further augments this idea by combining variance, invariance, and
covariance regularizers to avoid collapse without using negative samples; notably, VICReg allows its
two branches to use different architectures or even modalities, enabling joint embedding across data
types. More recently, He et al. (He et al., 2024) showed that orthogonal regularization of encoder
weight matrices preserves representation diversity and prevents collapse.

B PROOFS

B.1 PROOF OF LEMMA[3 1]

Proof. With any auxiliary probability function r(2’|x) and Jensen’s inequality, we have

p(z'|z)p(x|2')

Ea(eio 08 P(@]2)] 2 Eq(aforr(=ie) |08 = 70

()

= Ey(zla)r (2 o) 108 P(2'|2)] + Er (2|2 log p(]2")] + H (r(2|2))

= Eq(z|z)q(z'|2) [log p(2'|2)] + const., (25)
where (a) follows by choosing r(2’|z) = ¢(2’|z). This proves Lemma|3.1] O

B.2 PROOF OF PROPOSITION [3.7]

Proof. Optimal critic (Ma & Collins| [2018) for InfoNCE satisfies that

*(x, z) x log pgfa':?) + a(z), (26)

where «(z) only depends on z. With the optimal critic, we then have

(=20
SN )

j=1¢

Ince(x;2') = —E |log

| p<>]
SN p(zl))

/
—_E|l % +1log N. 27)
N Zj:l p(z|zj)
Given z, since p(z|2}), j € {1,2,---, N} are i.i.d. with E[p(z[z})] = p(z) < oo, the strong law
of large numbers yields
| X
1 —_— / =
]\;gnoo I z;p(z|zj) p(2). (28)
]:
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The continuous mapping theorem then gives

! /
lim log - p]\(,z|zi) — = log p(z|zi). (29)
N N Zj:l p(z\zj) p(2)
Rearranging and taking N — 0o, we obtain
lim {Ixce(a;@') +log N} = lim E llog I%ZM,]
o Moo | A p(zlz))
@ hm log — 1\([ Gdl) ‘|
Nreo WZ] 1p(z|z )
—E { p(z ‘z (30)

where the equality (a) follows by dominated convergence theorem that is verifiable using the fact that

(2|2}
ﬁZj:lp(szj)

N
1
=E |logp(z|2)) —log 1= > p(=l2))
=1

< E[log g(z) — log¢]
<logE[g(z)] —loge

< 00. (€29
Rewriting (30) gives
lim {INCE (.’1}; .’13,) + IOg N}
N—o00
/
—F {log p(zzi)]
p(2)
!
—E {log p(Z |/Z)]
p(2])
=By, (2/2)q0 (=]e) 108 (21]2)] + Eg, (2|2 [log p(2])]
p(zi)
= E(Ie(zﬂfﬂ)%(zlm) [Ing(ZHZ” + qu(Zﬁlm) |:10g ( | ):| + IEqe(Z’Im) [10g (]0( ‘:l:)]
= B (21]2)a0 (21) 108 P(2i|2)] — D(ao(zi|2)|Ip(27)) — H(qe(2|x)). (32)
Substituting z; into 2’, this concludes the proof of Proposition 3.2] O

B.3 FORMAL STATEMENT OF THEOREM [3.3] AND ITS PROOF

In this section, we provide detailed problem setup, formal statement of Theorem [3.3] its extension to
random augmentation, and the proof of Theorem 3.3]

B.3.1 PROBLEM SETUP AND FORMAL STATEMENT OF THEOREM [3.3]

First, we introduce the class of the deep forward neural network with bounded weights and Lipschitz
activations.

Let {z;}Y, C X be independent and identically distributed samples from a distribution D on X'
We consider depth-L feed-forward networks fg : X — R2¢ of the form

fol(x) =ay (@L ap_, (@1 'ozl(@l:c))),

where each activation oy : R% — R% is g,-Lipschitz. For each layer £ = 1,..., L, the weight
matrices lie in

[

o= {OF e R¥Xd=1 1 |@°|5 < py, [|(OF — OF) T l21 < ae}, (33)
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where || - ||2 is the spectral norm and || - ||2,1 is the sum of column-wise ¢ norms, and {©§}_, are
. - L =
fixed reference matrices. Set 2 = [[,_; &, and define

]:E:{f@:@EE}. (34)
In VCL the encoder output splits as
_ (re(x) : d
fe(x) = (5@(93)) . Me,ce : X — R (35)

Given «, the KL regularizer by output of fg(x) in (33) is

D(fe; %) = 53 (Ine @3 + [expco @), - d - (1u.co(@))). (36)

Theorem B.1. Fix § € (0,1). Under the assumptions on {x;}Y | and definitions on Fg and
D(fe;x) @), it holds that

N
sup [EZND D(fe;x) — %ZD(JC@;%’)]
i—1

fe€F=
< o TR (o) v V7S]

&~

with probability at least 1 — J, where

W =maxdy, B, =sup x|z, n= (’)(1 v B Il e U’f).
Le[L] TEX

Random augmentations. One might be concerned that the encoder in (33)) uses raw inputs, whereas
in practice each sample ; is fed through two random augmentations ¢}, ¢/ ~ T (see Section . To
deal with this concern, we show that exactly the same bound of Theorem holds under this more
practical setting.

Let 7 be a distribution over augmentation maps ¢ : X — X. Define the augmented data law
Dang = Lawzp, tNT(t(ac)) = T4D
where 7D denotes the push-forward of the measure D through the (random) map distribution 7.

If
i.id. /
t; ~ T, T; = ti(iL‘i),
then by construction
/ ;o idd.
Ty, ..,y 7 Dayg,

so the conditions of Theorem- [B.T|remain satisfied with D, in place of D.

Corollary B.2. Let {t!}N | and {t!!}Y | be independent samples from T, and set x, = t.(x;),

x) =t} (x;). Under the assumpttons of Theorem- B. 1} with probability at least 1 — § we "have
1 al / "
sup [Em~D,t~TD(f®§t(m)) ~oN (D(fe;x;) + D(fe; x; ))]
fe€F= i=1
5 nB tnf 1(/0504 i / 2/3 /2 1 ( /5>
< ( o= [ ( (ac/pe) ) V- y/log(1 D,
VN Pt
where By = sup  |[t(x)||2
xeX, teT

One might wonder whether B, ; is finite in Corollary In practice, common vision augmenta-
tions—such as random resized cropping and horizontal flips (Krizhevsky et al., 2012} [Perez & Wang|
2017), color jittering (brightness, contrast, saturation perturbations) (Shorten & Khoshgoftaar, 2019}
Chen et al.,|2020), and additive Gaussian blur or noise (Hendrycks et al., [2020)—always produce
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outputs that remain within a bounded neighborhood of the original inputs. For example, cropping a
256 x 256 image to 224 x 224 keeps all pixel values in their original range, and color jitter is applied
with limited intensity so that augmented images lie close in Euclidean norm to the source. Even when
combining multiple operations (as in AugMix), the convex mixtures ensure augmented samples do
not “drift” outside the natural image manifold. Hence, sup,¢ y ;e7 ||t()]|2 remains finite under
these widely adopted schemes.

Before proving Theorem [B.1I] we need to introduce some background on Rademacher complexity,
Dudley’s entropy-integral bound, and Lipschitz of KL divergence, which are necessary in the proof.

B.3.2 BACKROUND: RADEMACHER COMPLEXITY AND DUDLEY’S ENTROPY-INTEGRAL
BOUND

We introduce the background on Rademacher complexity, Dudley’s entropy-integral bound, and
covering number for the function class Fz in (34), which are used in the proof of Theorem[B.1]

Lemma B.3 (Rademacher generalization bound). (Mohri et al., |2012) Let X be a vector space
and D a distribution over X. Let F be a class of functions [ : X — [a,b]. Draw samples
S={z;}), i D", and define the empirical Rademacher complexity

. 1 X
Rs(F) = E, l;telgN;tif(wi)]7 (37

where t; € {—1,1} are independent Rademacher variables. Then for any § € (0, 1), with probability
at least 1 — 6,

N

ool f(z)] — %Z Fla) In(2/9)

< 2R5(F) + 3(b—a) S

sup
fer

Lemma B.4 (Dudley’s entropy-integral bound). (Bartlett et al.||2017, Lemma 8.5) Let X be a vector
space and F a class of functions f : X — R. For a sample S = {x;}\_,, define

1/2
”f”Lz(S) = <§/Zf(fci)2> , Br = ]Sclelg||f||1:2(5)~

i=1

Then the empirical Rademacher complexity of F satisfies

9%5(.7'—) < inf

— a>0 ’

12 [BF
4« =+ \/N/a \/IHN(.F,E,LQ(S)) dE

where N'(F e, Ly(S)) is the covering number of F under the || - ||, s) metric.

Lemma B.5 (Covering-number bound for Fz). (Hieu et al.| 2025| Proposition 4) Let F= be the
class of L-layer neural networks with bounded weights and Lipschitz activation functions, in (34).
Let

be any fixed dataset. Define

L
ﬁ;/?) = Z(az B4 Pz+)2/37
=1

L
pe=p J] (omsm),
m=Il+1
B, = Sup sup Hf(l)*)l(.’B)HQ,
zEX OCE

where f&7!(x) is the output of the first | layers of the network. Then for every € > 0,

64R=

log V(Fa,e, Lo 2(9)) < 2

log((nfE + 7) NW).
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B.3.3 {5-LIPSCHITZNESS OF KL DIVERGENCE

We introduce the Lipschitzness of the KL divergence term D( fe;x) in (36) with respect to the £o
norm when we assume the output of the encoder is bounded by By,. The Lipschitzness of the KL
divergence term is crucial for the proof of Theorem[B.I] We will specify the bound By, later in the
proof of Theorem [B.1]

Lemma B.6 (¢5—Lipschitzness of the KL term). For some constant By, > 0, define
Vs, = {lu;e] eR* : p e R e € RY, ||[p; €]l < Be.},

and let
1 d
D(lse]) = 7 > (1 +exple;) —1—¢;). (38)
j=1

Then, for any two pairs [p; €|, [p'; €'] € Vp,, it holds that

(s = DllusD] < - [Gusel) = ')

27

where n = Br, + (1 + exp(Br))/2.
Proof. Compute the gradient of D([p; €]) in (38) as

u

exp(e)—14
2

VD(jie]) = © (39)

T d

where 14 :=[1,...,1] € R,
!

Fix [p; €], [u'; €] € Vi, arbitrarily. Then, applying Cauchy—Schwarz inequality with the convexity
of D([p; €]) yields

|D([p:e])=D(w's D] < VD(lmse)) " ([wsel=[u'se']) < [[VD(mse))l, ks el [n's€']ll2,

Hence, it suffices to show HVD([M; s])”2 < n/v/d for all [u; €] € Vi, . By (39), triangle inequality
gives

1 1 1
sup  [VD([wsellz < 5 sup lpfz+ 55 sup - [lexp(e)llz + ==
(el Vi, [ieleVa, (el €V, 2Vd
1 1 1
<ZBp+ ——exp(Br) + ——
where in the last inequality, we use |||z < ||[; €]|l2 < Br and
d
Zexp(Qsj) < Vdexp(Bp).
j=1
As % < 1 for any d > 1, we have shown HVD([[J,;E])HQ < n/Vd. O

B.3.4 PROOF OF THEOREM [B.]]
Note that p; bounded spectral norm of weight matrices and o,-Lipschitzness of activation function

for each layer £ € [L] yield

L

sup || fe(®@)|l2 < sup [l - [] peoe - (40)
fe€F=,xeX reX —1

Br
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Therefore, for all x € X, ||[pe(x);co(x)]], <
{5 Lipschitzness of KL divergence in Lemma
as

< By, holds for all ® € Fz. Then, we can apply the
to bound the KL divergence term D(fe; )
[D(fe; ;) —

;) in (36)
D(ferszi)l <n-[lfe(xi) — for(zi)ll,
<n- e | fo(x:) —

fer (i)l A1)
= T lfe —forlliaus,  Vo.for € F5.
Since the bound in (@1) yields
LN
||D(f®)—D(f®/)||L2(5):J Z; (foiw,) — D(fer ))2

N

we have

% Ifo = forlliw s Vo, for € Fa

log NV (A€, L2(S)) < log N (]—": evd

Ta LOO,Q (S)> )
where we define A as the class of KL divergence terms D(fe) in (36), i.e

A:={D(fe): feo € F=}.
Now, we can apply the covering number bound in Lemma [B.5] to bound the covering number
N(Aa €, LQ(S)) a
=2
647" Rz 11nR=
N(A,G,LQ(S)) < T log(( €7Z/E_ + 7) NW)

(42)
Define Ba := supp(sg)ea [|D(fo)llL,(s)- We further bound the empirical Rademacher complexity
Rs(A) by applying the Dudley’s entropy integral Lemma with the bound on covering number
([@2) by the choosing « = ok
Re(a) < 4 12 ™ Vlog (V(D. e, Ly(S)))d
— 4+ —= o , €y €
SYEUNTUNS L VR ’
Vas
4 96nR= 119R=vV N /BA 1
< —+ lo ———— + 7| NW —de
N VNd J & << Nz o e “@3)
@ 4  96nR= 1RV N
D 4 | %Re || (UnR=vN
VN  V/Nd

7 + 7) NW) log(VNBA).

Now, we apply the Rademacher generalization bound Lemma with the bound on the empirical
Rademacher complexity in (@3) by letting M = supgez »cx |D(fo;x)|. Hence, it holds that

1N
sup |Ez~p [D(fo;) NZD(fe(mi))|

feeF=
= log2/6
<2 A M
<2Rs(A)+3 5N

8  192)R= 11 R=VN
<—=+——,|log =
\/ VNd

log2/6
NW | log(vVNB My —2212
NG +7> W) og( A)+3 SN

(44)

with probability at least 1 — §

Suppose that the remainder of the proof is conditioned on the event (#4). We will now show the upper
bounds on Ba, M, and Rz in (@4).
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Bound on Ba:  Using /s lipschitzness of D( fe;x;) in Lemma|[B.6| gives
ID(fe;xi)| < nllfe(xi)l2, Ve € Fg, Vz;€S.

This directly gives us

N 5 N
Ba=_sw |3 (Dlfese) <y 5D sup [lfe ()3 45)
i=1 =

D(fe)eA i—1
S nBLa
where By, is defined in (@0).

Bound on M: Upper bound on M can be obtained in a similar way as the bound on B in {@3):

M= suwp [D(fe;x)<n sup |fe(x)|2<nBL. (46)
OcExcX OcE,xeX

Bound on R=: Inthe proof of (Hieu et al.,[2025, Theorem 1), Hieu et al. show an upper bound on
R= which is

. 3/2
Rz <s sup, ]2 HWW (Z(aé//Pe')2/3> : (47)

{=1 =1

For the sake of simplicity, we denote B, = sup,¢ y ||x||2. Putting the bounds (@3)), (46), and
into (@4) provides

Mz

sup |Ez~p [D(fo;x D(fe(x;) ‘
fe€F= i=1
L L 3/2 L log(1/0)
~ O
<0 %\/ log(W)B, [ [ oo (Z (ae/per)’? ) + 0B, [[(peor) gT
N =1 —1 =1
L L 3/2
~ [ 1B [1Zy oepe )3/2
< O o= = / ’ V 10 1 5
< N Z:: ap /per) g(1/0)

C DISCUSSION ON THE APPROXIMATION IN SECTION [3.1]

C.1 DIscUSSION ON (10)
The key step in our decoder-free ELBO maximization is the approximation
qg(z\a:) [1ogp(a:|z)} ~ qu(z|m)q9(z’\m) [1ng(z/|z)} (48)

Lower-bound view. As shown in Lemma3.1] this approximation admits a lower bound up to an
additive constant independent of z:

By (z]a) 108 D(x]2)] > By, (212)q0 (2'|2) [l0g P(2'|2)] + const. 49)

Consequently, maximizing the right-hand side with respect to 6 implicitly maximizes the reconstruc-
tion term E, (x| log p(x | z)], which is the objective of ELBO maximization. Moreover, using
(see Section ﬁb the surrogate is negatively related to InfoNCE:

Eqo (zx)[ log p(x | 2)] ~ —Incr(x;x'), (50)

so minimizing the InfoNCE loss increases the reconstruction term.
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Change-of-variables view. Another perspective on the reconstruction approximation (I0) comes
from a change of variables. Let g be an invertible, differentiable mapping such that & = g(z’). Then,
by the change-of-variables formula,

plx | z) =p(z' | 2) ’dethfl(:v)’ =p(z' | 2) |deth(z’)|_1, (51)

1

where J, and J,-1 denote the Jacobians of g and g~ ", respectively, and 2z’ = g~ (x). Taking

logarithms yields
log p(x | z) =log p(2’ | z) + log|det,—1 (z)| = logp(z" | z) — log|detJy(2)|, (52)
where the second term depends only on x (equivalently, on 2z’) and is independent of z.

Sufficient condition (tightness). If, in addition to invertibility, g is volume-preserving, i.e.,
|dethfl (m)‘ = 1 (equivalently, |detJ,(2’)| = 1) on the data manifold, then the additive term
in (52) vanishes and we obtain the tight equality logp(x | z) = logp(z’ | z). More generally,
when ’deth—l (m)| is approximately constant over the data manifold, the additive term acts as
(approximately) a constant shift independent of z, yielding a tight surrogate for optimization.

This assumption is plausible in practice under the commonly observed dimension-collapse phe-
nomenon: the embeddings 2’ have effective rank (intrinsic dimension) much smaller than the ambient
embedding dimension yet retain nearly all task-relevant information about the features . When the
feature and embedding manifolds have (approximately) the same intrinsic dimension and g behaves
near-isometrically between them, the Jacobian determinant varies weakly, making the surrogate
in (52) tight in practice.

C.2 GAUSSIAN KL SURROGATE FOR PROJECTED-NORMAL KL
We study the tightness of the bound in (T6)), repeated here:
DN (1, K) [ N(0,12)) = D(PA (s, K) || Unif($"71)). (53)

Before analyzing tightness, we note several practical benefits of using the Gaussian KL as a surrogate
for the projected-normal KL:

* Closed form. It is trivial to implement and numerically stable.

* Aligned optima. The Gaussian KL and projected-normal KL share the same minimizer
(e.g.,at u = 0and K = I), so optimizing the surrogate steers the model toward the same
optimum.

« Efficiency. Unlike Monte Carlo or k-NN estimators needed for the projected-normal KL,
the Gaussian KL requires no sampling.

Moreover, the KL term acts only as a regularizer, whereas InfoNCE directly drives semantic similarity;
thus modest approximation error in the KL has limited effect on downstream performance.

We assess tightness by comparing the closed-form Gaussian KL with an estimated projected-normal
KL using a divergence estimator (Wang et al., 2009) in two settings: synthetic data and CIFAR-10
under VCL training.

KL gap on synthetic data. We approximate D (PN (u, K) || Unif(S%~!)) numerically using 10°
samples in dimension d = 128 for random (u, K) draws, with 1 ~ N (0, I;) and

K=1AAT +0.11;, A ~N(0,0.5) Vi, j. (54)

We employ the k-nearest-neighbor divergence estimator (Wang et al.l 2009) with k£ = 1, compute
both the Gaussian KL (analytically) and the projected-normal KL (using the estimator) on the same
samples, and repeat over 20 random trials to reduce variance.

Table 2] reports the gap between the two KLs on synthetic data: the average absolute gap is approxi-
mately 9.49 (about a 10% relative difference). Thus, the Gaussian KL surrogate closely tracks the
projected-normal KL while retaining the practical advantages noted above.
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Table 2: Gaussian KL (G-KL) vs. projected normal KL (PN-KL) on synthetic data.

G-KL PN-KL Gap (G-KL—PN-KL) Ratio (G-KL/PN-KL)

mean 106.86  97.37 9.49 0.91
std 9.56 7.63 - -

KL gap on CIFAR-10. Beyond the synthetic study, we measure the gap during VCL training on
CIFAR-10 using the same experimental settings (Appendix [D.I)); results are shown in Figure[6] After
only a few epochs, the Gaussian KL and the projected-normal KL closely track each other. This
indicates that minimizing the Gaussian-KL surrogate effectively minimizes the projected-normal
KL—the quantity we aim to reduce—while retaining the practical advantages of the surrogate.
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Figure 6: Tracking Gaussian KL (G-KL) and projected normal KL (PN-KL) during VCL training on
CIFAR-10. (a) G-KL vs. PN-KL; (b) Absolute gap, |G-KL — PN-KL|. This shows that minimizing
Gaussian KL leads to minimizing projected normal KL.

D EXPERIMENTS

D.1 TRAINING DETAILS AND HYPERPARAMETERS

Datasets and preprocessing. Experiments are conducted on CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-10C (Hendrycks & Dietterich, [2019), CIFAR-10H (Peterson et al., 2019), CIFAR-
100 (Krizhevsky et al., 2009), STL-10 (Coates et al., [2011)), Tiny-ImageNet (Le & Yang| 2015),
and Caltech-256 (Griffin et al., 2007). Following SimCLR, we sample two views per image via
random resized crop (image size 32 x 32 and scale [0.2, 1.0]), horizontal flip (p=0.5), color jitter
(brightness/contrast/saturation/hue = 0.4, applied with p=0.8), Gaussian blur (kernel size 9), and
random grayscale (p=0.2). Inputs are normalized with dataset-specific means/standard deviations.

Architectures. Encoders are ResNet-18, with embedding dimension d=128.

Optimization. We use AdamW (Loshchilov & Hutter] 2019) with base LR 102 (encoder and
head), weight decay 104, batch size B=512, and T=500 epochs for pretraining and 7' = 100 for
training linear classifier. Temperature for InfoNCE loss is 7=0.07. We set m=1 posterior samples
per view for VSimCLR and VSupCon by default (ablation in Table[d). No momentum encoder or
queue is used; all negatives are in-batch. For training stability, we clip the posterior log-variance
(log 02) to [—5, 5] to bound variances, and clip gradient global norm at 1.0.
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Table 3: Log-determinant of average posterior covariance K for each CIFAR-10 class.

Index Class log det(K)
0 airplane -182.207
1 automobile -181.691
2 bird -183.713
3 cat -191.317
4 deer -184.969
5 dog -185.432
6 frog -182.125
7 horse -179.331
8 ship -185.991
9 truck -188.179

D.2 ADDITIONAL RESULTS ON DIMENSION COLLAPSE

In addition to the singular spectrum of VCL embeddings on CIFAR-10 and CIFAR-100 in Figure 3]
Figure [7] reports results on Caltech-256 and Tiny-ImageNet. In both datasets, VCL mitigates the
dimension-collapse phenomenon commonly observed in contrastive learning.

175 — SimCLR 400 — SimCLR

VSimCLR VSimCLR
350

= = =
o N o
S o =}

w

=3

S

Singular Values
N
a

Singular Values
~
(=3
o

3
1=}

N
o

wu

o

=T

0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Singular Value Rank Index Singular Value Rank Index
(a) Caltech-256 (b) Tiny-ImageNet

Figure 7: Singular-value spectrum of the embedding covariance on Cartech-256 and Tiny-ImageNet.
VSimCLR mitigates dimensional collapse on both datasets.

D.3 DISTRIBUTIONAL CONTRASTIVE LOSS

In addition to the contrastive loss on embeddings, it is worthwhile to contrast the posterior distributions
within the VCL framework. Specifically, we aim to pull together the posteriors corresponding to
different augmentations of the same input and to push apart posteriors from distinct inputs. To
incorporate this into VCL, we introduce the DistNCE loss, a contrastive objective over posterior
parameters, defined as

exp(s(6,6™))

Zexp(s(é), F)j)) 43

Dpistncr(f) = —E |log

where 6 denotes the posterior parameters (g, K ), 0T is the positive-pair parameter for the same input,
and {0}, are negative-pair parameters from other inputs. The expectation is taken over the joint
distribution p(6, 0) [, p(0;).

Moreover, we increase the number of posterior samples used for the InfoNCE loss. Specifically, we
draw m samples {z(k)}’,;”:1 from each posterior, resulting in an m-fold increase in effective batch
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Table 4: Classification accuracy on STL10 with different number of embedding generation from
posterior. We report top-1 and top-5 accuracies of SimCLR, VSimCLR, SupCon, and VSupCon
across the datasets with different m and DistNCE (33).

METHOD STL10
Torl  TopP5
SIMCLR 60.44 95.80
VSIMCLR (m = 1) 60.11  92.00
VSIMCLR (m = 4) 57.86  88.29
VSIMCLR (m = 16) 59.13  92.85
VSIMCLR (m = 64) 56.91 86.63
VSIMCLR wiTH DISTNCE (33) 36.54  80.25
VSIMCLR (ASYM) 57.38 88.78
~SveCoNn 75.88 7588
VSUPCON (m = 1) 75.76  96.99
VSUPCON (m = 4) 74.35 97.14
VSUPCON (m = 16) 76.11  98.39
VSuPCON (m = 64) 77.96 98.44

size, and compute the InfoNCE loss over this enlarged set of embeddings. The classification results
are reported in Table 4]

We also evaluate the performance of the asymmetric lower bound (I8) (denoted ASYM) in place of
the symmetrized objective (I9). These results are also shown in Table[d]

From these experiments, we did not observe any significant differences when applying DistNCE (53)),
using the asymmetric loss, or sampling multiple embeddings per posterior. Based on these findings,
we proceed with the basic VCL variants from the main text for all subsequent experiments.

D.4 EFFECT OF KL REGULARIZER ON CLASSIFICATION

As shown in Table[I] VSupCon exhibits reduced classification accuracy on some datasets, whereas
VSimCLR remains stable. We attribute this degradation to two factors:

1. VSimCLR’s objective coincides with the VCL objective in (T9)), but VSupCon’s does not,
creating a mismatch that can impede proper ELBO maximization.

2. SupCon optimizes embeddings directly for classification; adding a KL term can conflict
with this objective.

We therefore hypothesize that weakening the KL regularizer improves VSupCon’s accuracy. To test
this, we scale the KL term by 3 € {1,107%,1072,1073},

LY (B) = L3 + BDki(qa(2 | 2) || p(2)), (56)

and evaluate the resulting embeddings. In Table 5] as expected, smaller 3 (i.e., a weaker KL effect)
yields higher accuracy. Thus, for pure classification tasks, SupCon may not benefit from a VCL
variant unless the KL weight is carefully tuned.

D.5 IMPLICATIONS OF DISTRIBUTIONAL EMBEDDINGS

Distributional (probabilistic) embeddings provide useful capabilities, including uncertainty quantifi-
cation and probability-based distances between samples and classes. We analyze them along three
axes: uncertainty, typicality, and out-of-distribution (OOD) behavior.

Posterior covariance vs. uncertainty. As shown in Figure 8] different samples exhibit varying
degrees of posterior dispersion (e.g., the log-determinant of the covariance, log det(K)), which
can serve as an uncertainty measure. To examine how uncertainty and posterior covariance are
related, we conduct experiments on two benchmark datasets, CIFAR-10H (Peterson et al.,|2019) and
CIFAR-10C (Hendrycks & Dietterichl [2019):
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Table 5: Classification accuracy on STL10 with different number of embedding generation from
posterior. We report top-1 and top-5 accuracies of SimCLR, VSimCLR, SupCon, and VSupCon
across the datasets with different m and DistNCE (53).

B ToP-1 ACCURACY TOP-5 ACCURACY
1 47.90 72.34
0.1 47.24 71.90
0.01 50.35 73.27
0.001 51.34 73.09

airplane automobile

-460.95 -455.06
-

:

Figure 8: Sample images from the CIFAR-10, organized by class (columns) and sorted by their
corresponding log det(K) (rows). In each column, the top image has the highest log det(K), the
bottom image the lowest; the overlaid numbers indicate each image’s log det(K).

¢ CIFAR-10H: The test set provides soft labels (Ishida et al., 2023}, Jeong et al., 2023}, [20244)
aggregated from multiple annotators. Using these soft labels, we compute the per-sample
label entropy as a measure of uncertainty about the underlying class.

* CIFAR-10C: The test set provides systematically corrupted images with multiple corruption
types and severities (higher severity = stronger corruption), which induces greater label
ambiguity and thus higher uncertainty.

Beyond comparing log det(K') with label entropy in Figure EI, we also compare the trace of K
(denoted tr(K)) against label entropy in Figure In both cases, we observe a negative slope under
a first-order linear fit. This indicates that VSimCLR assigns lower posterior dispersion to inputs with
greater label uncertainty. Conversely, inputs that humans classify unambiguously—i.e., prototypical
class examples—exhibit posteriors with larger dispersion, suggesting their latent representations span
a broader region of the class-specific embedding space; ambiguous or outlier inputs yield smaller
dispersion, reflecting more concentrated latent distributions.

A similar pattern appears in Figures [5| and which relate log det(K) to corruption severity on
CIFAR-10C. We train VSimCLR and VSupCon on CIFAR-10 and evaluate their embeddings on
CIFAR-10C. Because higher severity entails stronger corruption and greater label ambiguity, these
figures further support the finding that posterior covariance dispersion is negatively correlated with
uncertainty. Tables andreport the mean log det(X) for each corruption type and severity level.

This counterintuitive observation—that typical (i.e., common) samples exhibit larger posterior dis-
persion—parallels the concurrent findings of Guth et al. 2025), albeit under different
settings: (i) Quantity: we analyze latent-space posterior dispersion via log det/, whereas they study
input-space marginal density p(x); (ii) Observation: typical samples have larger log detK (ours),
while they have lower p(z) (theirs). Although these quantities live in different spaces, both results
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Figure 9: Posterior dispersion versus label ambiguity. Each point plots log det(K') against the entropy
of class probabilities from CIFAR-10H, with a first-order linear fit (red line).
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Figure 10: Relationship between posterior dispersion and label ambiguity. Each point plots the trace
of K (tr(K)) against the entropy of human-annotated class probabilities from CIFAR-10H
2019), with a first-order linear fit (red line). Similar to the result in Figure[9} the dispersion is
negatively correlated with label ambiguity.

indicate that typical samples are not the highest-density points. In our case, typical images yield
larger dispersion and atypical images smaller dispersion; since dispersion is inversely related to peak
density, our result is consistent with Guth et al. Hence, in both settings, “typical” # “highest-density.”
Consequently, posterior dispersion serves as a useful uncertainty signal; see Table [] for an application
under label scarcity.

CIFAR-10C: log det{K) by corruption and severity Change i dispersion from severity 1 to 5 (sorted) 10g det(K) vs. severity (top-6 most changing corruptions)
s e e e

Coruption type
og det(K)

- -15 -10 -5
Severity Change in log det(K) (severity 5 - severty 1)

(a) log det(K) heatmap (b) Change in logdet(K) from (c) logdet(K) vs. severity (top-6
severity 1 to 5 (sorted) most changing corruptions)

Figure 11: log det(K) of VSupCon embeddings on CIFAR-10C (Hendrycks & Dietterichl [2019)
under different corruption types and severities. “Severity” denotes the corruption level. The observed
negative correlation between log det(K) and severity is consistent with our finding that more uncertain
samples exhibit smaller posterior covariance dispersion. Exact log det(K') values are in Table
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Table 6: Classification accuracy on CIFAR-100 with label scarcity. We use ResNet-18 back-bone and
same augmentations for all experiments. We sample the labelled subset once and report the mean
accuracy of five runs with (standard error).

METHODS 1 LABELS / CLASS 3 LABELS / CLASS 5 LABELS / CLASS 10 LABELS / CLASS 20 LABELS / CLASS
SIMCLR 12.22 (0.12) 21.37 (0.15) 26.37 (0.01) 33.09 (0.11) 38.00 (0.06)
VSIMCLR 15.57 (0.09) 25.70 (0.19) 30.89 (0.11) 37.40 (0.08) 42.13 (0.10)
VSIMCLR+WT 15.97 (0.08) 26.07 (0.20) 31.12 (0.06) 37.48 (0.08) 42.36 (0.03)

T SupCoN ~ T | T 71.55(0.04) T T T 71.56(0.05) T 71.64(0.02) ~ ~ T 71.65(0.03) ~ ~ T 7207(0.05
VSUPCON 71.77 (0.12) 71.79 (0.10) 71.96 (0.09) 72.07 (0.05) 72.16 (0.04)
VSUPCON+WT 71.87 (0.02) 71.78 (0.07) 71.94 (0.07) 72.07 (0.07) 72.16 (0.06)

Table 7: Average log detK of VSimCLR embeddings on CIFAR-10C for each corruption type and
severity (higher severity = stronger corruption).

Corruption Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
gaussian_noise -187.74 -189.85 -192.23 -193.05 -193.70
shot_noise -187.49 -188.11 -190.18 -190.95 -191.97
impulse_noise -188.25 -190.71 -192.61 -194.66 -194.82
speckle_noise -187.59 -188.64 -189.21 -189.93 -190.48
defocus_blur -184.41 -183.84 -182.67 -187.67 -186.76
glass_blur -192.35 -191.76 -192.03 -194.36 -193.98
motion_blur -185.83 -187.53 -189.88 -189.78 -191.94
zoom_blur -185.95 -183.85 -183.86 -183.75 -185.07
gaussian_blur -184.43 -182.83 -182.11 -183.47 -191.56
Snow -186.92 -189.86 -190.48 -193.08 -193.89
frost -188.43 -190.13 -192.08 -192.16 -193.85
fog -185.61 -187.61 -189.65 -193.37 -204.82
brightness -184.89 -185.43 -186.17 -187.16 -189.70
saturate -186.40 -191.14 -185.02 -186.36 -187.87
spatter -186.32 -188.43 -191.12 -188.88 -191.03
contrast -185.67 -188.03 -189.84 -192.59 -200.25
elastic_transform -185.66 -185.12 -184.95 -189.66 -195.31
pixelate -185.10 -186.44 -187.62 -188.58 -189.46
jpeg_compression -182.94 -183.30 -183.73 -184.38 -185.28

Class-wise average posterior parameters. Figure[I2]reports class-wise averages of the posterior
parameters—the mean norm ||u|| and the covariance dispersion log detK—for VSimCLR and
VSupCon. Classes exhibit distinct dispersion profiles. Despite being trained independently, the two
methods yield similar class-wise patterns in both quantities: for example, the cat and dog classes
show comparatively lower ||| and log detK, whereas truck attains the largest || || Table 3| provides
detailed per-class log det K values.

Posterior on in-distribution vs. out-of-distribution. We compare per-sample posterior parameters
under VSimCLR for in-distribution (ID; CIFAR-10) versus out-of-distribution (OOD; SVHN (Netzer|
et al.,2011)) inputs. VSimCLR is trained on the CIFAR-10 training set, after which we extract (u, K)
on the CIFAR-10 and SVHN test sets. Figureplots the pairs (|||, log detK) for each dataset;
black markers denote dataset-wise means. While the mean values avg(||u||) and avg(log detK)
are similar across CIFAR-10 and SVHN, the SVHN points exhibit substantially greater spread
(dispersion) across samples, indicating a broader posterior-parameter distribution for OOD data.
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Table 8: Average log det K of VSupCon embeddings on CIFAR-10C for each corruption type and
severity (higher severity = stronger corruption).
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Figure 12: Norm of the posterior mean ||p|| versus the log-determinant of the covariance log det(

2.6+

Corruption Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
gaussian_noise -98.85 -105.28 -109.87 -111.50 -112.42
shot_noise -95.76 -99.39 -106.47 -108.50 -110.77
impulse_noise -96.94 -103.24 -109.20 -117.34 -120.23
speckle_noise -95.73 -101.21 -103.87 -107.95 -110.44
defocus_blur -91.95 -91.90 -92.33 -93.94 -97.03
glass_blur -111.32 -111.29 -109.63 -118.74 -117.08
motion_blur -93.95 -96.48 -100.86 -100.96 -105.21
zoom_blur -93.66 -92.94 -93.67 -94.06 -96.29
gaussian_blur -91.95 -92.31 -93.14 -94.40 -98.17
SNOw -95.28 -100.62 -100.32 -101.30 -103.04
frost -93.98 -96.23 -100.71 -101.33 -105.15
fog -92.33 -93.25 -95.34 -08.54 -109.05
brightness -92.04 -92.06 -92.16 -92.40 -93.11
saturate -93.05 -93.80 -92.14 -92.82 -94.02
spatter -93.86 -97.46 -100.59 -100.27 -106.63
contrast -92.14 -92.54 -93.10 -94.30 -101.31
elastic_transform -95.01 -94.65 -94.96 -100.26 -106.89
pixelate -93.06 -94.88 -96.53 -101.58 -106.43
jpeg_compression -95.47 -98.31 -99.28 -100.59 -102.32
truck 5] truck‘
’ aut(shié ile
7.44
frhorse
7.3
airplane
Shipdeer 7.24 deer
automobile =3
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(a) VSimCLR

(b) VSupCon

K),

averaged per class. Both p and K are computed by averaging over all samples belonging to the same

class.
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Figure 13: Posterior parameters of CIFAR-10 and SVHN datasets. We use the same encoder of

VSimCLR trained with CIFAR-10.
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