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Abstract

The vast diversity of styles, domains, and qual-
ity levels present in language model pre-training
corpora is essential in developing general model
capabilities, but efficiently learning and deploy-
ing the correct behaviors exemplified in each
of these heterogeneous data sources is challeng-
ing. To address this, we propose a new method,
termed Metadata Conditioning then Cooldown
(MeCo), to incorporate additional learning cues
during pre-training. MeCo first provides meta-
data (e.g., URLs like en.wikipedia.org)
alongside the text during training, then transi-
tions to a cooldown phase using only standard
text—enabling the model to perform well even
without metadata. MeCo significantly acceler-
ates pre-training across different model scales
(600M to 8B parameters) and training corpora
(C4, RefinedWeb, and DCLM). Notably, a 1.6B
language model trained with MeCo matches the
downstream task performance of standard pre-
training while using 33% less data. Addition-
ally, MeCo allows us to steer language models
by conditioning the inference prompt on either
real or fabricated metadata that encodes the de-
sired output properties—for example, prepend-
ing wikipedia.org to reduce harmful gener-
ations or factquizmaster.com (fabricated)
to improve performance on common knowledge
tasks. We further demonstrate that MeCo is com-
patible with various types of metadata, such as
model-generated topics. MeCo is remarkably sim-
ple, adds no computational overhead, and shows
promise for producing more capable and steer-
able language models. Our models, data, and
code are available at https://github.com/
princeton-pli/MeCo.
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1. Introduction
Language models (LMs) achieve remarkable general-
purpose capabilities by training on vast web-sourced cor-
pora. For instance, Internet documents about Apple CEO
Tim Cook range from memes (“Tim doesn’t cook anymore”)
to biographies (“Tim Cook is the CEO of Apple”). Treating
data from these heterogeneous sources identically causes
two issues: (1) it overlooks crucial contextual signals that
aid comprehension, and (2) it can impede models from
reliably surfacing appropriate behaviors (e.g., humor or fac-
tuality) for downstream tasks.

To provide additional information about each document’s
source, we propose conditioning documents with their cor-
responding metadata during pre-training by prepending the
widely available source URLs to each document. For in-
stance, as shown in Figure 1, adding the source URLs to
Tim Cook documents helps the model distinguish among
a meme, a biography, an interview article, and a financial
report. To ensure the model operates effectively with or with-
out metadata during inference, we implement a cooldown
phase for the final 10% of training, during which we train
on standard data without metadata. We call this pre-training
method Metadata Conditioning then Cooldown (MeCo).

Metadata conditioning has been investigated in various
contexts, such as steering model generations (Keskar
et al., 2019), improving model robustness against malicious
prompts (Korbak et al., 2023a), and enhancing knowledge
memorization in synthetic settings (Allen-Zhu & Li, 2024).
Distinct from prior explorations, our work establishes the
general-purpose utility of this method in two crucial ways.
First, we demonstrate that this paradigm can directly ac-
celerate realistic language model pre-training and improve
downstream performance. Second, the cooldown phase in
MeCo ensures the model can perform inference without
metadata—a key advantage over previous methods. We
outline the contributions of this work below.

1. MeCo substantially accelerates pre-training (§ 3).
We demonstrate that MeCo enables a 1.6B model to
achieve the same average downstream performance as
a standard pre-trained model using 33% less training
data. MeCo exhibits consistent gains across model
scales (600M, 1.6B, 3B, and 8B) and pre-training cor-
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Figure 1: A comparison between data used by standard pre-training and MeCo. The figure on the right demonstrates 5-shot
downstream task performance averaged across 10 tasks (1.6B models; details in §3).

pora (C4, RefinedWeb, and DCLM).

2. MeCo unlocks a new way to steer language mod-
els (§ 4). Prepending appropriate real or fabri-
cated URLs to the prompt during inference can in-
duce desired model behaviors. For example, using
factquizmaster.com (fabricated) can enhance
performance on common knowledge tasks (e.g., a
6% absolute improvement on zero-shot commonsense
question answering), and using wikipedia.org re-
duces the likelihood of toxic generations several-fold
compared to the standard unconditional inference.

3. We ablate the design choices for MeCo (§5.1) and
demonstrate that MeCo is compatible with various
types of metadata (§ 5.2). Ablations using hashed
URLs and model-generated topics show that metadata
primarily serves to group documents by source. As
such, MeCo can effectively incorporate different types
of metadata, including more fine-grained ones, even
when URLs are not available.

Our findings demonstrate that MeCo can significantly im-
prove the data efficiency of language models while adding
minimal computational overhead and complexity to the pre-
training procedure. Moreover, the enhanced steerability
afforded by MeCo holds promise in creating more control-
lable language models, and its general compatibility with
more fine-grained and creative metadata invites further ex-
ploration. Altogether, MeCo is a simple, flexible, and effec-
tive training paradigm that simultaneously enhances both
the utility and steerability of language models.

2. Metadata Conditioning then Cooldown
In this section, we describe our pre-training approach in
detail. We assume each document in the pre-training dataset
is associated with some metadata c. In our main experi-
ments, we use the document URL’s absolute domain name
as c. For example, if the document’s URL is https:

//en.wikipedia.org/wiki/Bill_Gates, then c
is en.wikipedia.org (please refer to §5.2 for ablations
on other URL variants). This URL information is readily
available in many pre-training corpora, since most of them
are derived from CommonCrawl1, an open repository of
web-crawled data.

Our method consists of two training stages (Figure 1):

1. Pre-training with metadata conditioning (first 90%):
The model is trained on a concatenation of the meta-
data and the document, following this template: URL:
en.wikipedia.org\n\n[document]. When
using other types of metadata, URL should be replaced
with the corresponding metadata name. We only calcu-
late the cross entropy loss over the document tokens,
disregarding those from the template or the metadata,
as we found in our preliminary experiments that train-
ing on tokens from the template or the metadata slightly
hurts downstream performance.

2. Cooldown with standard data (last 10%): Models
trained solely on metadata-augmented data exhibit
degraded performance when used without metadata
(please refer to results in Table 4). To ensure general
usage, we train the model on standard pre-training doc-
uments without any metadata during a cooldown stage,
which covers the final 10% of steps in the pre-training
process. The cooldown stage inherits the learning rate
schedule and optimizer states from the metadata con-
ditioning stage—i.e., it initializes the learning rate,
model parameters, and optimizer states from the last
checkpoint of the previous stage and continues adjust-
ing the learning rate according to the schedule during
the cooldown stage. Please refer to § A.3 for more
details.

We also employ the following techniques in all our exper-
iments, as they enhance the baseline pre-trained models’
performance based on our preliminary experiments: (1) we

1https://commoncrawl.org/.
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Table 1: Our main experimental results of pre-training a 1.6B language model on 160B tokens from DCLM. MeCo
significantly outperforms standard pre-training and achieves equivalent average performance to the 240B-token baseline
while using 33% less data. Interestingly, validation perplexity (PPL) does not correlate with downstream performance.

Model PPL MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard 13.2 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7
+ Data sel. 13.3 37.2 74.6 44.3 62.9 65.5 46.8 74.3 52.4 64.3 37.8 56.0
+ 80B tokens 12.9 37.1 75.2 43.2 64.1 67.7 49.8 74.7 54.9 62.8 37.8 56.7

MeCo 13.3 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7
↑0.2 ↑0.6 ↑1.4 ↓1.0 ↑0.6 ↑5.2 ↓0.9 ↓1.6 ↑2.2 ↑3.3 ↑1.0
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Figure 2: MeCo downstream task performance throughout training (1.6B model on DCLM). Each checkpoint of MeCo
includes a 16B-token cooldown in the end. The total number of tokens used by the baseline and the corresponding MeCo
checkpoints are the same for fair comparison. The reported average numbers are over all 10 tasks. Full results in Table 16.

disable cross-document attention (Dubey et al., 2024; Ding
et al., 2024), which both speeds up the training (25% faster
for a 1.6B model) and improves the downstream perfor-
mance (§B.1); (2) when packing multiple documents into
one sequence, we ensure each sequence starts with a new
document rather than in the middle of one—this may result
in some data being discarded when packing documents to
a fixed length, but it proves beneficial for improving down-
stream performance.

3. MeCo Accelerates LM Pre-training
In this section, we demonstrate that MeCo can significantly
accelerate language model pre-training (§ 3.2). We also
show that MeCo leads to consistent gains across different
model scales (§3.3) and training data (§3.4).

3.1. Experiment setup

We utilize the Llama (Touvron et al., 2023a;b; Dubey et al.,
2024) version of the Transformer architecture (Vaswani
et al., 2017) and the Llama-3 tokenizer for all our experi-
ments. We conduct experiments with four different model
sizes: 600M, 1.6B, 3B, and 8B. The architecture details are
in §A.2. We employ standard optimization settings for lan-
guage models, i.e., AdamW optimizer and cosine learning
rate schedule. We follow Li et al. (2024) for hyperparame-
ters and the details can be found in §A.1. Due to the high
cost associated with pre-training and our limited resources,

we perform only one run for each experiment; however, we
demonstrate in §B.2 that the variance of our experiments
should be low. §A.5 outlines the computational resources
required for our experiments.

Pre-training data. We use the best-performing open-source
pre-training corpus, DCLM-Baseline (Li et al., 2024), for
our main experiments. Additionally, we conduct experi-
ments with two other data sources: a reproduction of Re-
finedWeb (Penedo et al., 2023) from Li et al. (2024) and
the C4 dataset (Raffel et al., 2020). In the paper, we re-
fer to these data sources as DCLM, RefinedWeb, and C4,
respectively. Notably, DCLM is a subset of RefinedWeb,
acquired by using a fastText classifier (Joulin et al., 2017)
for selecting high-quality data (Li et al., 2024). Please refer
to §A.4 for more details.

Evaluation. We adopt the OLMES suite (Gu et al.,
2024) for evaluation, which includes the following tasks:
MMLU (Hendrycks et al., 2021), ARC-Easy (ARC-e; Clark
et al., 2018), ARC-Challenge (ARC-c; Clark et al., 2018),
CommonsenseQA (CSQA; Talmor et al., 2019), HellaSwag
(HSwag; Zellers et al., 2019), OpenBookQA (OBQA; Mi-
haylov et al., 2018), PIQA (Bisk et al., 2020), Social IQA
(SIQA; Sap et al., 2019), and WinoGrande (WG; Sakaguchi
et al., 2021). We also add the popular TruthfulQA dataset
(TruQA; Lin et al., 2022). Throughout the paper, we report
the average performance across all 10 tasks as “Avg.”. Un-
less specified, we always report 5-shot in-context learning
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Figure 3: MeCo results across different model scales (160B tokens from DCLM except for the 8B* model, which is trained
on 80B tokens due to resource constraints). Full results in Table 17. We report the average numbers across all 10 tasks.
MeCo improves models across scales and leads to more gains for billion-parameter models compared to smaller models.
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Figure 4: Results of applying MeCo over different pre-training corpora (1.6B models, 160B tokens). Full results in Table 18.
We report the average numbers across all 10 tasks. MeCo provides consistent gains across different pre-training sources.

results. OLMES enhances evaluation reliability by offer-
ing three key features: (1) it provides manually-curated
in-context examples for each task; (2) it evaluates with both
a multiple-choice format and a cloze format, and takes the
best of two; (3) it applies ablated calibration method (Brown
et al., 2020; Holtzman et al., 2021) to each individual task.
During evaluation, we sample 1,000 examples for each task,
which improves efficiency while providing the same reliable
results as full evaluation.

3.2. MeCo achieves comparable performance to
standard pre-training with 33% less data

Table 1 shows our main results of pre-training a 1.6B lan-
guage model on 160B tokens from DCLM. Besides standard
pre-training (Standard), we also feature two other experi-
ments, both of which use more resources and only serve as
references instead of fair comparisons:

• Data selection (+ Data sel.): We employ the fastText
data selection classifier from Li et al. (2024) to choose
the top 70% documents from a 250B-token pool of
DCLM data—this is similar to the high-quality data
used in Section 5 of Li et al. (2024). According to the
Table 4 from Li et al. (2024), this fastText classifier
achieves state-of-the-art data selection performance.
This method incurs additional computational cost since

the classifier must be applied over the whole corpus.

• Training with more data (+ 80B tokens): We train
a standard model with 240B tokens, with the same
optimization hyperparameters.

We first observe that MeCo achieves significantly better
performance than standard pre-training across most tasks.
Additionally, MeCo surpasses the data selection baseline2;
unlike data selection, our approach does not incur any com-
putational overhead, as it leverages readily available URL
information from the pre-training data. More importantly,
MeCo achieves performance comparable to standard pre-
training while using 33% less data and compute, represent-
ing a substantial gain in data efficiency.

We also illustrate the changes in downstream task perfor-
mance throughout the pre-training process in Figure 2. For
MeCo, each checkpoint in the figure includes a cooldown
phase on 16B tokens (10% of the total training tokens).
For instance, the 80B checkpoint consists of 64B tokens of
conditional training followed by 16B tokens of cooldown.

2It is important to note that the DCLM data is already a subset
of the RefinedWeb data selected by this classifier. We do not
claim that MeCo consistently outperforms data selection; rather,
we demonstrate that MeCo can be integrated with data selection to
achieve further improvements, while data selection alone tends to
yield diminishing returns.
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Table 2: Conditional inference further improves MeCo per-
formance (full results in Table 19).

Inference
Pre-training

Standard MeCo

Unconditional 55.7 56.7
Conditional 55.8 ↑0.1 57.2 ↑0.5

We observe that MeCo consistently surpasses the baseline
model, particularly in the later stage of training.

Discussion of perplexity. Table 1 reveals that validation
perplexity does not correlate with downstream performance
in our experiments. Notably, when comparing the 240B
baseline to the 160B MeCo model, the baseline exhibits
much lower perplexity due to the larger data size, yet the two
models achieve similar average downstream performance.
This observation aligns with previous studies (Tay et al.,
2022; Liu et al., 2023; Wettig et al., 2024) indicating that
perplexity is not always a reliable indicator of downstream
performance; the final task performance can be impacted by
other critical factors, such as inductive bias.

3.3. MeCo improves performance across model scales

Figure 3 demonstrates the results across different model
scales (600M, 1.6B, 3B, and 8B). We train all the models
with the same optimization hyperparameters and the same
amount of data (160B on DCLM) except for the 8B model,
which is trained on 80B tokens with a lower learning rate
due to resource constraints and training instability (details
in §A.1).

We first observe that MeCo improves model performance
across all scales. Although the trend is somewhat noisy,
MeCo appears to yield greater improvements for larger mod-
els, with billion-parameter models showing more significant
gains compared to the 600M model. Note that this is a
qualitative observation, as downstream task performance is
known to scale less smoothly compared to pre-training loss.

3.4. MeCo improves performance across different
training corpora

We train 1.6B models on 160B tokens from three different
data sources: C4, RefinedWeb, and DCLM. We present
the results in Figure 4. If we use the average downstream
performance as an indicator for data quality, we can rank
the three data sources as DCLM > RefinedWeb > C4. We
observe that MeCo provides consistent and significant gains
across different data sources, both on the average accuracies
and individual tasks.

4. Conditional Inference Steers Language
Model Generations

MeCo not only improves the general quality of pre-trained
language models (evaluated by standard few-shot down-
stream task performance), but also unlocks the possibility
of steering the model’s generations during inference by con-
ditioning it on particular URLs. We term this paradigm
conditional inference, as illustrated in Figure 5.

Q: What is the circulatory system? A: 

Q: What is the circulatory system? A: 

Unconditional inference prompt 

Conditional inference prompt

URL: www.factquizmaster.com

(does not have to be a real URL)

Figure 5: Illustration of conditional inference: We can con-
dition the model by prepending a URL to the prompt. The
URL does not need to be a real one.

Steering language model generations by conditioning the
model on a “control sequence” has been explored in the past,
either for style control (Keskar et al., 2019) or for avoiding
harmful content (Korbak et al., 2023a). In this section, we
study how combining conditional inference and MeCo (even
with cooldown) can both improve the downstream task per-
formance and reduce the likelihood of harmful generations.

4.1. Conditional inference improves MeCo’s
downstream task performance

In this section, we demonstrate how prepending ap-
propriate URLs to the inputs improves MeCo’s down-
stream performance. We first design a URL for each
downstream task used in our evaluation, for exam-
ple, www.factquizmaster.com for OpenBookQA
and www.socialskillsassessment.com for So-
cial IQA. You can find all the customized URLs in Table 11.
We note that (1) the URLs do not need to be real; (2) we did
not use trial-and-error when choosing the URLs to avoid
overfitting to the test set.

We apply the same set of customized URLs to both the
standard model and MeCo (1.6B, 160B DCLM tokens) and
the results are shown in Table 2. We see that applying con-
ditional inference leads to little difference on the standard
model but a significant improvement on MeCo. Overall,
MeCo with conditional inference achieves 1.5% absolute
improvement compared to standard pre-training with uncon-
ditional inference.

We also explore the impact of different URLs on perfor-
mance, as shown in Table 3. In this experiment, we use
two real URLs: boards.4chan.org, an anonymous im-
ageboard known for its association with offensive content,
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Table 3: Zero-shot evaluation of MeCo (1.6B, 160B DCLM
tokens) with different URLs. We show the delta between
unconditional inference and using URLs.

Inference URLs ARC-e ARC-c CSQA OBQA

Unconditional 69.6 43.2 54.7 48.4
4chan.org 66.7 ↓2.9 41.1 ↓2.1 53.6 ↓1.1 47.8 ↓0.6

factmonster.com 70.7 ↑1.1 45.7 ↑2.5 60.9 ↑6.2 52.4 ↑4.0

and www.factmonster.com, a trivia website. Unlike
our main experiment, we employ zero-shot prompting to
highlight the effects of different URLs. Our findings in-
dicate that selecting an appropriate URL can significantly
enhance zero-shot results compared to using a more ad-
versarial one: for example, using factmonster.com
outperforms 4chan.org by 7.3% on CommonsenseQA.

4.2. MeCo with conditional inference reduces harmful
generations from the model

In addition to improving downstream task performance,
MeCo with conditional inference also reduces harmful gen-
erations. To evaluate the toxicity of model generations, we
follow (Korbak et al., 2023b) to sample 4096 text sequences
from the models, with temperature T = 0.7 and top-p=0.9.
The generated sequences have lengths between 10 and 128
tokens. For unconditional inference, the model is only con-
ditioned on the BOS token. For conditional inference, the
model is conditioned on en.wikipedia.org.

To obtain toxicity scores, we follow the setup in (Korbak
et al., 2023b) and use the toxic comment classifier Detoxify
(Hanu & Unitary team, 2020). We use the unbiased model
from Detoxify, which is based on RoBERTa (Liu et al.,
2019) and trained on a human-labeled dataset of nearly 2
million comments, created for the task of evaluating unin-
tended bias (Borkan et al., 2019). The classifier provides
both general toxicity scores and more granular scores (e.g.,
obscene, insult).

We show the averaged toxicity scores over all sam-
pled generations in Figure 6. We observe that using
en.wikipedia.org for conditional inference reduces
the toxicity scores of generations from both the standard pre-
training model and MeCo. Conditional inference is more
effective on MeCo, leading to a significantly lower toxicity
score compared to the baseline.

5. Ablation Studies
5.1. Different strategies for mixing

metadata-conditioned and standard data

In this section, we study the best strategy to mix metadata-
augmented data and standard data. We experiment with

1 20

Standard
inference

Conditional
inference

2.1
1.5

Toxicity

0.2 4

Standard
inference

Conditional
inference

0.5
0.3

Obscene

0.5 10
Toxicity Score (10−3)

Standard
inference

Conditional
inference

1.3
0.7

Insult

Standard MeCo

Figure 6: MeCo with conditional inference (using
en.wikipedia.org) significantly reduces harmful gen-
erations from the model.

four different strategies: only standard data, only metadata-
conditioned data, directly mixing the two sources of data
throughout training (90% URL + 10% standard) and two-
stage training (i.e., first 90% with metadata conditioning
and then 10% standard data)—the last one is MeCo.

Table 4 demonstrates the results of the different mixing
strategies. First, we see that only training on metadata-
conditioned data leads to performance degradation, empha-
sizing the importance of cooldown. While both directly
mixing the two types of data and two-stage training improve
the performance compared to the standard pre-training base-
line, first training on metadata-conditioned data and then
cooldown with standard data leads to better and more con-
sistent gains. We also perform additional ablations on the
length of cooldown in § B.3, which show that 10%-20%
cooldown achieves the best performance (and we use 10%
in our experiments).

5.2. Understanding the role of metadata

To better understand how MeCo works, we experiment with
various types of metadata and present the results in Ta-
ble 5. Below, we describe these metadata types and their
outcomes.

URL variants. We test URL variants that provide more
information (full URLs) and less information (URL suf-
fixes). While full URLs perform similarly to MeCo,
using URL suffixes results in significant performance
degradation, suggesting that absolute domain names (e.g.,
en.wikipedia.org) provide the appropriate granular-
ity as metadata.
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Table 4: Different strategies of mixing metadata-augmented and standard data. Full results in Table 20.

Model ARC-e ARC-c HSwag OBQA 10-Task Avg.

100% standard 75.1 42.7 66.7 46.0 55.7
100% URL 72.4 ↓2.7 28.8 ↓13.9 61.5 ↓5.2 42.6 ↓3.4 50.3 ↓5.4

90% URL + 10% standard 72.5 ↓2.6 43.1 ↑0.4 66.9 ↑0.2 50.0 ↑4.0 56.4 ↑0.7

MeCo 75.7 ↑0.6 44.1 ↑1.4 67.3 ↑0.6 51.2 ↑5.2 56.7 ↑1.0

Table 5: Ablations on using different metadata for MeCo. The average results are over all 10 tasks. Full results in Table 21.

Metadata Examples Avg.

URLs (MeCo) en.wikipedia.org 56.7

Full URLs en.wikipedia.org/wiki/Bill Gates 56.8 ↑0.1

URL suffixes org 56.2 ↓0.6

Top 0.2% URLs (covering 42% texts) en.wikipedia.org or unknown 56.4 ↓0.3

Top 2% URLs (covering 65% texts) en.wikipedia.org or unknown 56.3 ↓0.4

Hashed URLs 7dsjuj3a-olp0 56.7 ↑0.0

Model-generated topics Technology leader biography 56.6 ↓0.1

Top URLs. We retain only the most frequently appearing
URLs from the DCLM data and mark others as “unknown”.
We experiment with two tiers: top 0.2% URLs (each URL
corresponds to roughly more than 1,000 documents, cover-
ing 41.6% of the DCLM data) and top 2% URLs (each URL
corresponds to more than 100 documents, covering 65.1% of
the DCLM data). The URL distribution in DCLM is highly
skewed, with a few top URLs covering a large portion of
the data. Examples of top URLs are shown in Table 15.
This experiment aims to determine whether MeCo primar-
ily benefits from modeling infrequent or high-frequency
URLs. We find that using only top URLs does not match
MeCo’s performance, indicating that MeCo also benefits
from low-frequency URLs.

Hashed URLs. We map each unique URL into a random
string to investigate whether MeCo needs to learn the seman-
tics of URLs or simply recognizes that certain documents
belong to the same groups. Surprisingly, using hashed URLs
achieves performance on par with semantically-meaningful
URLs, indicating that the semantic meaning of the metadata
is not necessary for better pre-trained models—instead, sim-
ply providing signals that group certain documents together
is sufficient for improving pre-training data efficiency.

Model-generated topics. We explore ways of generating
metadata in case readily available metadata is absent or in-
sufficient. We prompt a Llama-3.1-8B-Instruct model to
generate a two-word or three-word topic for each document,
such as “technology leader biography” or “gaming forum”
(more details in §A.6). This is more fine-grained metadata
compared to domains (e.g., “Wikipedia” or “Books”). Note
that prompting models to generate topics is extremely ex-

pensive, taking roughly 1,500 GPU hours, similar to what
is required to pre-train the 1.6B model. Hence, it is not a
practical method but included for analysis purposes. We
observe that using model-generated topics leads to similar
results to our main MeCo model, suggesting that metadata
based on document contents instead of sources is equally
useful, prompting future explorations on more creative ways
of generating metadata.

Our ablations suggest that metadata conditioning improves
pre-training data efficiency by grouping documents together
by source or topic. We propose two preliminary hypothe-
ses as to how metadata conditioning affects model training:
First, the model may automatically learn to prioritize doc-
uments from useful sources or topics, thereby internally
optimizing the mixture of training domains, which has been
shown to be useful during pre-training (Xie et al., 2024;
Jiang et al., 2024). Indeed, Allen-Zhu & Li (2024) also
suggested that language models may autonomously identify
domains rich in knowledge. Second, the model may use
the additional metadata supervision to simply learn more
structured representations of these large corpora, with no
knowledge of the quality of each of the groups. We believe
that the precise mechanism by which MeCo accelerates pre-
training and improves model steerability warrants further
theoretical and empirical study.

6. Related Work

Metadata conditioning. CTRL (Keskar et al., 2019) first
proposed “conditional language models” for controlled gen-
eration: the method prepended the pre-training documents
with “control codes” such as source domains, which allowed

7
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for steering the generation during inference by prompting
the model with different control codes. Dhingra et al. (2022)
used timestamps as the metadata to train time-aware lan-
guage models and Liu et al. (2020) adopted document lan-
guages as the metadata for a multilingual pre-trained model.
Aghajanyan et al. (2022) pre-trained language models on
hyper text, which provided extra metadata such as class
and id, which allowed for conditional inference as well.
Kyrylov & Chaplynskyi (2023) pre-trained language mod-
els on Ukrainian text conditioned on metadata. Weller et al.
(2024) demonstrated that prompting models with text like
“according to Wikipedia” improves their performance. Con-
ditional training was also explored in alignment and prefer-
ence optimization: Korbak et al. (2023a) pre-trained models
with reward model scores as the prefix and Lu et al. (2022);
Liu et al. (2024) conditioned the text on their quality mea-
surements in post-training—both allowed prompting the
model with a high quality score during inference to output
more human-preferred text. Besides, Khalifa et al. (2024)
used a similar idea to inject “document IDs” into the pre-
training corpus to enable training data attribution, though
the “IDs” were appended, instead of prepended.

Recently, Allen-Zhu & Li (2024) investigated language mod-
els’ ability to memorize knowledge by using synthetically
generated biographical data. They trained models on a mix-
ture of such data and unrelated data, and tested models
on recalling the biographical information. They found that
prepending a special token to the biographical data enhanced
the model’s memorization capacity. The authors argued that
this technique helped models recognize high-quality sources
and was analogous to adding URLs to pre-training docu-
ments. However, the controlled setting in Allen-Zhu & Li
(2024) was limited to two synthetic data sources and did not
incorporate real URLs, making it fundamentally different
from our experimental setup and contributions.

We also highlight two concurrent works: Zhu et al. (2025)
and Wang et al. (2025). The former uses synthetic ex-
periments and theoretical analysis to show that context-
enhanced learning—such as prepending metadata—can im-
prove sample efficiency. The latter demonstrates the benefits
of conditional generative modeling when source distribu-
tions share certain similarities.

While our idea and findings echo previous and concurrent
literature, our paper is the first to explore the use of metadata
conditioning in modern-scale LM pre-training and its effect
on downstream task performance. Compared to other types
of metadata explored by prior work, we use URLs as they
can be acquired with no additional cost and they are more
informative than source domains or reward scores.

Selecting pre-training data. The quality of pre-training
corpora is essential for the performance of the resulting

language models. Consequently, there has been a huge
amount of effort invested into improving pre-training data,
starting from heuristic-based filtering (Raffel et al., 2020;
Rae et al., 2021; Laurençon et al., 2022; Penedo et al., 2023;
Soldaini et al., 2024) and deduplication (Lee et al., 2022;
Anil et al., 2023; Touvron et al., 2023a; Abbas et al., 2023).
Recently, model-based data filtering or data selection has
emerged: many works sought to use simple ngram models
to select those that resemble high-quality domains such as
Wikipedia (Brown et al., 2020; Xie et al., 2023; Li et al.,
2024) or to use an existing language model for perplexity
filtering (Wenzek et al., 2020; Muennighoff et al., 2023;
Marion et al., 2023). Gunasekar et al. (2023); Wettig et al.
(2024); Penedo et al. (2024); Dubey et al. (2024) instead
used a large language model to score instances based on
abstract values such as whether they are “educational”—but
these methods introduce considerable overheads as running
these language models over the whole pre-training corpus
is costly and whether they can lead to better performance
under the same computational budget is unclear (Goyal et al.,
2024; Kaddour et al., 2024).

Another line of works aimed to adjust the domain mix-
ture for more data-efficient training (Xie et al., 2024; Xia
et al., 2024; Jiang et al., 2024). However, these models
require an existing domain taxonomy (which is usually very
coarse-grained) and a target loss to optimize for—which
has been shown to not always correlate with downstream
performance (Tay et al., 2022; Liu et al., 2023).

Recently, Wettig et al. (2025) introduced a method for con-
structing domain taxonomies and automatically annotating
pre-training data—with the domain annotations, they fur-
ther explored optimizing domain mixtures for better down-
stream performance. This approach also highlighted the
link between two data selection approaches mentioned be-
fore: applying quality filtering implicitly changes the data
domain mixture. We find a connection to our work as well:
while Wettig et al. (2025) focus on annotating data with
coarse-grained domains, we utilize URLs to provide more
fine-grained domain information.

7. Conclusion
We introduce metadata conditioning then cooldown (MeCo),
an extremely simple method that consistently outperforms
standard pre-training while incurring negligible computa-
tional overhead. MeCo leverages commonly available meta-
data, such as source URLs, by prepending them to pre-
training documents. At the end of training, MeCo removes
the URLs from the data to enable inference without meta-
data. Through comprehensive experiments across various
model scales and training corpora, we demonstrate MeCo’s
effectiveness, achieving up to a 33% speedup in pre-training.
Additionally, we show that prompting MeCo models with
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suitable metadata can further enhance their downstream
performance and mitigate harmful outputs. Our findings
underscore the potential of metadata conditioning to en-
hance data efficiency in pre-training and to develop more
controllable and steerable language models.

Impact Statement
MeCo is a simple, general method that can significantly ac-
celerate language model pre-training, making it highly appli-
cable in both industrial applications and academic research.
MeCo also enables steering language models to output less
harmful content, potentially supporting LM safety research
and the safe deployment of LMs in real-world applications.

Limitations
Due to limited resources and the costly nature of pre-
training, we do not perform multi-run experiments; however,
we show in §B.2 that the variance of our experiments should
be low and our results are significant. All our investigations
are limited to English corpora. We do not study the inter-
play between metadata conditioning and post-training pro-
cedures. We also do not have a mechanistic understanding
of how conditioning on metadata helps improve the down-
stream performance. We hope our results can shed light on
these interesting questions and motivate further research on
metadata conditioning.

Acknowledgments
We acknowledge Angelica Chen, Sanjeev Arora,
Kyunghyun Cho, Yisong Yue, Luca Soldaini, and
members of Princeton Language and Intelligence for their
helpful feedback and discussion. Tianyu Gao is supported
by an IBM PhD Fellowship. This research is funded by the
National Science Foundation (IIS-2211779) and a Sloan
Research Fellowship.

References
Abbas, A., Tirumala, K., Simig, D., Ganguli, S., and Mor-

cos, A. S. SemDeDup: Data-efficient learning at web-
scale through semantic deduplication. arXiv preprint
arXiv:2303.09540, 2023.

Aghajanyan, A., Okhonko, D., Lewis, M., Joshi, M., Xu,
H., Ghosh, G., and Zettlemoyer, L. HTLM: Hyper-text
pre-training and prompting of language models. In Inter-
national Conference on Learning Representations, 2022.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part
3.3, knowledge capacity scaling laws. arXiv preprint
arXiv:2404.05405, 2024.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. PaLM 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Bisk, Y., Zellers, R., Le bras, R., Gao, J., and Choi, Y. PIQA:
Reasoning about physical commonsense in natural lan-
guage. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7432–7439, 2020.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasser-
man, L. Nuanced metrics for measuring unintended
bias with real data for text classification. In Companion
Proceedings of The 2019 World Wide Web Conference,
WWW ’19, pp. 491–500, New York, NY, USA, 2019.
Association for Computing Machinery.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? Try ARC, the AI2 reasoning chal-
lenge. CoRR, arXiv:1803.05457, 2018.

Dhingra, B., Cole, J. R., Eisenschlos, J. M., Gillick, D.,
Eisenstein, J., and Cohen, W. W. Time-aware language
models as temporal knowledge bases. Transactions of the
Association for Computational Linguistics, 10:257–273,
2022.

Ding, H., Wang, Z., Paolini, G., Kumar, V., Deoras, A., Roth,
D., and Soatto, S. Fewer truncations improve language
modeling. In Forty-first International Conference on
Machine Learning, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The Llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Goyal, S., Maini, P., Lipton, Z. C., Raghunathan, A., and
Kolter, J. Z. Scaling laws for data filtering– data cura-
tion cannot be compute agnostic. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 22702–22711, June 2024.

Gu, Y., Tafjord, O., Kuehl, B., Haddad, D., Dodge, J., and
Hajishirzi, H. Olmes: A standard for language model
evaluations. arXiv preprint arXiv:2406.08446, 2024.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,
Y. T., and Li, Y. Textbooks are all you need, 2023.

9



Metadata Conditioning Accelerates Language Model Pre-training

Hanu, L. and Unitary team. Detoxify. Github.
https://github.com/unitaryai/detoxify, 2020.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Holtzman, A., West, P., Shwartz, V., Choi, Y., and Zettle-
moyer, L. Surface form competition: Why the highest
probability answer isn’t always right. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 7038–7051, 2021.

Jiang, Y., Zhou, A., Feng, Z., Malladi, S., and Kolter, J. Z.
Adaptive data optimization: Dynamic sample selection
with scaling laws. arXiv preprint arXiv:2410.11820,
2024.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag
of tricks for efficient text classification. In Proceedings
of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2,
Short Papers, pp. 427–431, 2017.

Kaddour, J., Key, O., Nawrot, P., Minervini, P., and Kusner,
M. J. No train no gain: Revisiting efficient training algo-
rithms for transformer-based language models. Advances
in Neural Information Processing Systems, 36, 2024.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C.,
and Socher, R. Ctrl: A conditional transformer lan-
guage model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Khalifa, M., Wadden, D., Strubell, E., Lee, H., Wang, L.,
Beltagy, I., and Peng, H. Source-aware training enables
knowledge attribution in language models. In First Con-
ference on Language Modeling, 2024.

Korbak, T., Shi, K., Chen, A., Bhalerao, R. V., Buckley,
C., Phang, J., Bowman, S. R., and Perez, E. Pretrain-
ing language models with human preferences. In Inter-
national Conference on Machine Learning, pp. 17506–
17533, 2023a.

Korbak, T., Shi, K., Chen, A., Bhalerao, R. V., Buck-
ley, C., Phang, J., Bowman, S. R., and Perez,
E. Pretraining language models with human prefer-
ences. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 17506–17533. PMLR, 23–
29 Jul 2023b. URL https://proceedings.mlr.
press/v202/korbak23a.html.

Kyrylov, V. and Chaplynskyi, D. GPT-2 metadata pre-
training towards instruction finetuning for Ukrainian. In
Proceedings of the Second Ukrainian Natural Language
Processing Workshop (UNLP), pp. 32–39, 2023.
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A. Experiment Details
A.1. Hyperparameters

Table 6 shows the hyperparameter settings used in our experiments. We follow Li et al. (2024) for the high learning rate and
weight decay except for the 8B model, which requires a lower learning rate for numerical stability.

Hyperparameters Values

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 3e− 3 (5e− 4 for the 8B model)
Weight decay 0.033 (0.1 for the 8B model)
Batch size 4M tokens
Warmup 5% linear warmup
Schedule Cosine decay to 10% of the peak learning rate
Seq length Pack to 8192 tokens

Table 6: Hyperparameter settings for our experiments.

A.2. Model configurations

We use the Llama variant (Touvron et al., 2023a) of Transformers (Vaswani et al., 2017) for our experiments. All models use
the Llama-3 tokenizer (Dubey et al., 2024). We add a BOS and an EOS token at the beginning and end of every document.
The detailed configurations are specified in Table 7.

#Param #Layers Hidden Intermediate #Heads Head Dim

600M 24 1024 4096 16 64
1.6B 24 2048 5504 16 128

3B 28 3072 8192 24 128
8B 32 4096 14336 32 128

Table 7: Model configurations for our experiments.

A.3. Cooldown details

The metadata conditioning stage (90%) and the cooldown stage (10%) share the same learning rate schedule—i.e., the
metadata conditioning stage will end at the 90% of the learning rate schedule and the cooldown stage will resume from
that same point on the schedule and continue the learning rate decay. It also inherits all the optimizer states. To ensure the
cooldown stage does not see repeated data as the conditional training stage, we use a different subset of data for cooldown
for all our DCLM experiments.

For our 8B experiments (80B tokens), due to the checkpoint saving configuration, we performed a 10B-token cooldown
(12.5% instead of 10% of the total training).

A.4. Dataset details

Table 8 shows the dataset details for our pre-training experiments.

Dataset Description

C4 The SlimPajama (Soboleva et al., 2023) C4 subset
RefinedWeb DCLM-reproduced (Li et al., 2024) RefinedWeb
DCLM DCLM-Baseline, which is a filtered version of DCLM-reproduced RefinedWeb

Table 8: Pre-training dataset details.
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A.5. Experimental resource

Table 9 shows the resources required to train the models in our experiments. Our main models (1.6B, 160B tokens) take
roughly 2 days to train on 32 H100 GPUs.

#Params 600M 1.6B 1.6B 3B 8B
#Tokens 160B 160B 240B 160B 80B

#GPU hours 776 1536 2304 3085 3905

Table 9: Resources required to train the models in our experiments (H100 GPU hours).

A.6. Prompts for model-generated topics

Table 10 shows the prompt used for generating topics. We prompt a Llama-3.1-8B-Instruct model to generate topics. We
only use the first 1024 tokens from the document as the snippet. We use greedy decoding.

Based on the given sampled snippet from a document (could be a webpage, a book, a
codebase, a paper, or anything else), write a domain keyphrase (within 4 words; for
example, code, international news, food blog, biography, science fiction, politics essay,
gaming forum, algebra quiz, physics textbook, restaurant advertisement, religous story,
etc.) for the document. The "domain keyphrase" should consider both the topics and the
genre/source of the document.

*** Start of the snippet ***

{{snippet}}

*** End of the snippet ***

Now output the domain (do not output other things):

Table 10: The prompt for generating topics.

A.7. Customized URLs for conditional inference

Table 11 shows the customized URLs for conditional inference.

Tasks Customized URLs

MMLU www.testprepportal.com
ARC-Easy www.sciencestudyquiz.com
ARC-Challenge www.sciencestudyquiz.com
CommonsenseQA www.quizsmart.com
HellaSwag www.wikihowquiz.com
OpenBookQA www.factquizmaster.com
PIQA www.basicknowledgequiz.com
Social IQA www.socialskillsassessment.com
WinoGrande www.testpreppractice.com
TruthfulQA www.factcheckfun.com

Table 11: Customized URLs for conditional inference.

B. Additional Experiments
B.1. Cross-document attention ablation

Table 12 shows a comparison between enabling and disabling cross-document attention. Disabling cross-document attention
leads to significant speedups for our training (for a 1.6B model, it is 25% faster). We also see that it brings a considerable
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performance improvement on the vanilla model. Interestingly, the average performance does not differ much between two
different attention patterns for MeCo, suggesting that prepending the URLs to the document helps the model learn the noisy
cross-document attention. Based on these results, all other experiments in this paper disable cross-document attention.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7
+Cross-doc attn 36.3 73.4 41.6 63.2 65.5 46.0 73.6 52.4 61.3 36.7 55.0

MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7
+Cross-doc attn 35.5 72.7 45.4 66.3 66.1 51.8 74.4 52.8 62.4 38.2 56.6

Table 12: Cross-document attention ablation (160B tokens, 1.6B parameters).

B.2. Experiment variance

Due to the nature of pre-training experiments and the high cost associated with it, we perform single runs for all our
experiments and do not report their standard deviations. However, we provide a reference point here for estimating the
variance of our experiments. We take the 90% checkpoint of the 1.6B-parameter, 160B-token standard pre-training model,
and continue the rest 10% of the training with three disjoint sets of data. Table 13 shows their performance. We see that
while some individual tasks show performance differences, the standard deviation of the average performance is very low
(0.1%), demonstrating that the average performance across our selected tasks is an indicative and stable metric.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard run 1 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7
Standard run 2 36.2 73.9 43.4 63.1 67.5 46.2 74.2 53.2 62.0 35.5 55.5
Standard run 3 36.3 73.8 43.2 63.4 67.5 45.8 74.5 54.2 62.8 34.7 55.6
Avg. 36.2 74.3 43.1 63.8 67.2 46.0 74.3 53.9 62.3 35.1 55.6
Std. ±0.1 ±0.7 ±0.4 ±0.9 ±0.5 ±0.2 ±0.2 ±0.6 ±0.5 ±0.4 ±0.1

Table 13: Multiple runs of the baseline model (1.6B parameters, 160B tokens from DCLM). The average performance
across runs shows low variance.

B.3. Cooldown length ablation

Table 14 shows the performance of different cooldown lengths. We see that performing a 10% and 20% cooldown achieves
similar results, while further increasing the length hurts the performance. For simplicity, we use 10% cooldown for all our
experiments. We note that the best cooldown length can vary across different numbers of parameters, total numbers of
training tokens, and the pre-training corpora; however, performing such a fine-grained search across all different settings is
intractable.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

10% cooldown 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7
20% cooldown 36.5 74.7 46.0 64.2 67.1 49.4 73.6 53.3 64.3 39.0 56.8
30% cooldown 36.7 74.8 45.0 60.9 67.5 49.0 74.2 51.6 62.8 39.2 56.2

Table 14: Ablations on different cooldown lengths (1.6B parameters, 160B tokens).

C. DCLM URL Distributions
Table 15 shows the top 50 URLs from DCLM and the corresponding document ratios.

D. Full Results
Table 16, Table 18, Table 17, Table 20, Table 21, and Table 19 show the detailed results of experiments reported in our main
paper.
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URLs Document ratios

en.wikipedia.org 0.256%
stackoverflow.com 0.240%
www.theguardian.com 0.207%
www.urbandictionary.com 0.149%
www.fanfiction.net 0.148%
www.businessinsider.com 0.139%
gizmodo.com 0.123%
everything2.com 0.119%
www.physicsforums.com 0.100%
www.reference.com 0.090%
www.theatlantic.com 0.087%
www.mumsnet.com 0.086%
superuser.com 0.086%
chowhound.chow.com 0.085%
www.huffingtonpost.com 0.082%
serverfault.com 0.082%
www.engadget.com 0.079%
math.stackexchange.com 0.078%
www.nytimes.com 0.075%
news.bbc.co.uk 0.073%
gawker.com 0.071%
tvtropes.org 0.069%
www.instructables.com 0.069%
www.fool.com 0.068%
www.enotes.com 0.067%
townhall.com 0.067%
slashdot.org 0.066%
www.foxnews.com 0.066%
kotaku.com 0.066%
articles.chicagotribune.com 0.064%
www.reddit.com 0.063%
www.complex.com 0.063%
jezebel.com 0.062%
www.gamefaqs.com 0.061%
www.aljazeera.com 0.061%
askubuntu.com 0.061%
abcnews.go.com 0.060%
mathoverflow.net 0.058%
www.csmonitor.com 0.058%
articles.latimes.com 0.058%
www.bookrags.com 0.057%
lifehacker.com 0.057%
www.sfgate.com 0.057%
jalopnik.com 0.057%
www.ancestry.com 0.057%
www.nifty.org 0.057%
www.theregister.co.uk 0.057%
www.osnews.com 0.056%
www.cnet.com 0.055%
www.ign.com 0.055%

Table 15: Top 50 URLs from DCLM.
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#Tokens MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard

16B 30.4 62.8 34.2 56.0 48.7 43.8 69.9 47.2 55.2 39.1 48.7
32B 32.1 66.8 37.3 60.0 55.9 45.2 70.3 46.7 56.5 38.6 50.9
48B 34.1 67.4 40.0 60.9 58.0 50.2 71.8 52.5 57.3 38.3 53.1
64B 34.0 69.2 39.8 61.6 59.8 46.8 72.7 50.2 59.2 36.3 53.0
80B 34.9 72.5 41.4 58.6 62.8 48.4 72.8 52.7 60.8 35.5 54.0
96B 34.9 71.2 40.2 62.1 63.5 45.8 72.4 53.5 60.4 36.4 54.0
112B 35.6 72.1 42.2 62.9 64.9 44.6 73.3 52.6 60.1 34.6 54.3
128B 35.9 73.5 42.5 62.8 64.5 44.2 73.1 53.9 61.0 35.3 54.7
144B 36.1 73.9 41.1 60.6 66.6 46.6 73.5 53.9 61.6 35.5 55.0
160B 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7

MeCo

16B 30.4 62.8 34.2 56.0 48.7 43.8 69.9 47.2 55.2 39.1 48.7
32B 32.5 66.0 38.7 58.2 53.9 44.6 70.6 49.4 56.2 41.8 51.2
48B 34.0 68.9 43.0 59.2 57.8 48.2 71.6 50.4 57.9 41.2 53.2
64B 34.2 70.6 41.9 62.6 60.4 46.0 72.1 50.5 59.1 40.1 53.8
80B 34.3 72.4 44.0 61.7 61.9 46.6 72.6 49.4 60.7 39.1 54.3
96B 34.9 72.5 44.3 63.1 64.1 48.2 72.9 49.5 61.7 38.7 55.0
112B 35.4 73.6 44.4 63.6 64.4 47.6 72.4 51.4 63.2 37.8 55.4
128B 35.7 74.6 44.5 64.9 66.9 49.4 73.0 51.5 63.0 37.5 56.1
144B 36.1 75.6 44.8 63.6 67.3 50.0 73.8 52.1 63.7 38.0 56.5
160B 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

Table 16: Intermediate checkpoint results for the 1.6B-parameter, 160B-token runs. For all MeCo checkpoints, we perform
a 16B-token cooldown (i.e., the 64B checkpoint is 48B metadata conditioning training + 16B cooldown).

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

600M model, 160B tokens from DCLM

Standard 32.7 67.5 38.2 58.8 56.4 45.0 71.2 47.9 57.6 39.2 51.5
MeCo 32.8 67.6 37.0 62.0 54.2 47.2 71.0 49.6 57.1 37.9 51.7

1.6B model, 160B tokens from DCLM

Standard 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7
MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

3B model, 160B tokens from DCLM

Standard 39.8 76.8 48.3 66.0 74.1 49.0 76.9 56.0 66.5 38.1 59.2
MeCo 39.7 78.6 48.5 71.0 73.6 51.8 77.0 55.5 65.9 36.4 59.8

8B model, 80B tokens from DCLM†

Standard 39.2 73.3 46.0 66.0 72.8 48.8 76.1 54.8 66.2 35.2 57.8
MeCo 39.5 77.1 44.8 68.8 71.2 52.6 75.8 53.8 65.2 35.0 58.4

Table 17: Results with different numbers of parameters. All experiments use the same hyperparameters except for the 8B
model†, which uses a smaller learning rate and fewer tokens due to training instability and limited compute resources.
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Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

1.6B model, 160B tokens from C4

Standard 31.0 59.8 36.1 55.8 64.9 42.8 72.5 49.7 60.0 32.0 50.5
MeCo 31.9 62.0 37.8 54.3 63.6 43.6 74.0 50.0 58.9 39.5 51.6

1.6B model, 160B tokens from RefinedWeb

Standard 32.4 68.6 37.1 61.2 63.9 46.8 73.9 51.2 59.7 36.7 53.2
MeCo 32.5 69.4 38.0 61.4 64.3 48.2 73.6 53.6 60.6 38.9 54.0

1.6B model, 160B tokens from DCLM

Standard 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7
MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

Table 18: Detailed results on different pre-training corpora.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Conditional Inference

Standard 36.1 73.8 42.4 66.1 66.6 46.2 73.4 53.5 62.6 37.1 55.8
MeCo 36.3 74.2 44.6 65.2 67.6 51.6 73.4 53.2 66.0 40.1 57.2

Table 19: Full results of using conditional inference (1.6B parameters, 160B tokens).

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7
100% URL 33.9 72.4 28.8 37.2 61.5 42.6 72.9 52.1 60.5 41.0 50.3
90% URL + 10% Standard 36.4 72.5 43.1 63.7 66.9 50.0 75.7 53.1 62.8 39.9 56.4
MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

Table 20: Different strategies of mixing metadata-augmented and standard data.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

URLs (MeCo) 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7
Full URLs 36.7 75.4 43.9 68.3 66.5 51.2 74.0 52.9 63.2 35.6 56.8
URL suffix 36.2 73.9 42.7 65.2 67.7 49.0 73.1 53.6 62.1 38.1 56.2
Top 0.2% URLs 36.2 76.6 44.1 66.9 66.3 47.6 74.5 53.7 63.1 35.3 56.4
Top 2% URLs 36.5 73.5 44.8 65.4 65.8 48.2 74.3 53.4 64.3 36.9 56.3

Hashed URLs 36.4 73.7 44.2 64.6 67.2 51.8 74.3 54.8 62.5 37.9 56.7

Topics 36.3 74.5 45.3 64.5 67.4 48.2 74.2 53.5 63.1 38.6 56.6

Table 21: Experiment results on using different types of metadata.
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