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ABSTRACT
Brain-inspired Spiking Neural Networks (SNNs) leverage sparse
spikes to represent information and process them in an asynchro-
nous event-driven manner, offering an energy-efficient paradigm
for the next generation of machine intelligence. However, the cur-
rent focus within the SNN community prioritizes accuracy opti-
mization through the development of large-scale models, limiting
their viability in resource-constrained and low-power edge devices.
To address this challenge, we introduce a lightweight and hardware-
friendly Quantized SNN (Q-SNN) that applies quantization to both
synaptic weights and membrane potentials. By significantly com-
pressing these two key elements, the proposed Q-SNNs substan-
tially reduce both memory usage and computational complexity.
Moreover, to prevent the performance degradation caused by this
compression, we present a newWeight-Spike Dual Regulation (WS-
DR) method inspired by information entropy theory. Experimental
evaluations on various datasets, including static and neuromor-
phic, demonstrate that our Q-SNNs outperform existing methods
in terms of both model size and accuracy. These state-of-the-art
results in efficiency and efficacy suggest that the proposed method
can significantly improve edge intelligent computing.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Spiking Neural Networks, Neuromorphic Datasets, Quantization

1 INTRODUCTION
Brain-inspired spiking neural networks (SNNs) have emerged as
a promising approach for the next generation of machine intel-
ligence. In contrast to traditional deep neural networks (DNNs),
the spiking neuron in SNNs transmits information through sparse
and binary spikes, which converts the computationally intensive
multiply-accumulate (MAC) operations into computationally ef-
ficient accumulate (AC) operations. This energy-efficient charac-
teristic of SNNs has triggered a growing interest in the design of
neuromorphic hardware, including SpiNNaker [30], TrueNorth [1],
Loihi [9], and Tianjic [31], etc. These neuromorphic hardware draw
upon the storage and computing paradigms of the human brain,
enabling the energy efficiency advantages of SNNs to be further
demonstrated. However, despite the energy efficiency of SNNs, their
performance in practical applications requires improvement.
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In recent years, numerous studies have dedicated efforts to craft-
ing expansive and complex network architectures for SNNs, leading
to notable enhancements in performance across various challeng-
ing tasks such as image classification [16, 48], language genera-
tion [3, 53], and object recognition [20, 41]. Despite their commend-
able performance, these studies come at the cost of massive model
parameters and high computational complexity. As a consequence,
these large-scale SNNs sacrifice the inherent energy efficiency ad-
vantages that are closely associated with SNNs, thereby presenting
challenges for their efficient deployment on real-world resource-
constrained edge devices.

There is a growing body of research investigating compression
techniques for large-scale SNNs. These techniques include prun-
ing [7, 11, 49], knowledge distillation [23, 42, 47], neural architec-
ture search [27, 33], and quantization [11, 18, 19, 50]. Quantization
techniques have attracted considerable interest due to their ability
to convert synaptic weights from a high-precision floating-point
representation to a low bit-width integer representation. This con-
version facilitates efficient deployment on resource-constrained
devices by enabling the use of lower-precision arithmetic units,
which are both cheaper and more energy-efficient. Binarization
within this domain stands out for its hardware-friendly feature,
which restricts data to two possible values (-1 and +1), leading to
significant efficiency in terms of storage and computation. However,
existing binarization approaches in SNNs focus solely on quantiz-
ing synaptic weights, overlooking the memory-intensive aspect
associated with membrane potentials [18, 32, 34, 38, 43]. Therefore,
there remains room for further efficiency optimizations. While prior
lightweight research has explored the quantization of membrane po-
tentials [50], the synaptic weights in this work remain non-binary,
which results in a performance gap compared to full-precision SNN
models.

This paper introduces a lightweight spiking neural network
(SNN) architecture called Quantized SNN (Q-SNN) which prior-
itizes energy efficiency while maintaining high performance. We
achieve this by quantizing two key elements within the network,
namely synaptic weights and membrane potentials. This targeted
quantization aims to maximize the energy efficiency of the pro-
posed architecture. In addition, to further enhance performance
within Q-SNNs, we leverage the principles of information entropy
by introducing a novel Weight-Spike Dual Regulation (WS-DR)
method. This method aims to maximize the information content
within Q-SNNs, ultimately leading to improved accuracy. The main
contributions of this work are summarized as follows:

• We introduce a novel SNN architecture, called Q-SNN, de-
signed for efficient hardware implementation and low en-
ergy consumption. Q-SNN achieves this goal by employing
the quantization technique on two key elements of the net-
work: (1) synaptic weights using binary representation and
(2) membrane potentials using low bit-width representation.
This targeted quantization significantly improves the effi-
ciency of the network.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• We analyze how to enhance the performance of Q-SNNs
from the theory of information entropy and propose a novel
Weight-Spike Dual Regulation (WS-DR) method. Inspired
by information entropy theory, WS-DR adjusts the distribu-
tion of both weights and spikes within the network. This
method maximizes the information content within Q-SNNs
and results in improved accuracy.
• We conduct comprehensive experiments on various bench-
mark datasets, including static and neuromorphic, to validate
the efficiency and effectiveness of our method. Experimental
results demonstrate that our method achieves state-of-the-
art results in terms of both efficiency and performance, un-
derscoring its capability to boost the development of edge
intelligent computing.

2 RELATEDWORK
Several compression techniques have been explored to address the
challenges associated with large-scale Spiking Neural Networks
(SNNs). These techniques include pruning, knowledge distillation,
and neural architecture search. Pruning involves removing redun-
dant parameters by eliminating unnecessary nodes or branches
within the network. Existing pruning approaches for SNNs can be
broadly classified into two categories. The first category leverages
established pruning methods developed for Deep Neural Networks
(DNNs) and applies them to SNNs in both spatial and temporal
domains [8, 11, 49]. The second category draws inspiration from
biological processes in the human brain. These bio-inspired pruning
algorithms model the synaptic regrowth process to achieve net-
work compression [5, 6]. Knowledge distillation is a technique that
enables the transfer of knowledge from a larger pre-trained model
to a smaller model. Existing knowledge distillation methods for
SNNs can also be grouped into two main categories. The first cate-
gory uses the knowledge from pre-trained ANNs or SNNs to guide
the training process of smaller student SNN models [23, 42, 47].
However, these methods require the additional computational over-
head of training a large-scale teacher model. The second category,
referred to as self-distillation [13, 14], eliminates the need for a
separate teacher model. In self-distillation, the model acts as its
own teacher and generates the necessary supervisory signals for
training. This approach reduces computational costs by eliminating
the requirement for training an additional teacher model.

Neural Architecture Search (NAS) is an automated approach
for devising high-performing neural network structures under re-
source constraints. Early NAS applications in SNNs were limited
by their focus on exploring pre-defined network blocks, thereby
hindering the identification of potentially optimal designs beyond
these predefined constraints [29]. To address this limitation, re-
searchers have developed algorithms to search for optimal network
structures across the entire network. These advancements aim to
enable the design of more flexible and potentially more efficient
SNN models [4, 21, 27].

Quantization is a powerful technique for compressing SNN mod-
els. Unlike traditional ANNs which use real-valued activations,
SNNs communicate through binary spikes. Consequently, the main
energy consumption in SNNs is attributed to the use of floating-
point synaptic weights. To address this issue, existing quantized

SNNs mainly focus on reducing the bit-width of weights, typically
down to 2, 4, or 8 bits [7, 11, 40]. However, further reduction to a
single bit, i.e. binary weights, often leads to significant performance
degradation or even failure of training convergence. This challenge
has motivated research on specifically designed binary SNNs. For
instance, Wang et al. [43] proposed a weights-thresholds balance
conversion method to achieve SNNs with binary weights. Qiao et
al. [34] used the surrogate gradient (SG) method to train binary
SNNs for efficient processing of event-based data. Building upon
this work, Jiang et al. [18] introduced a Bayesian-based learning
algorithm that demonstrates superior accuracy and calibration com-
pared to the SG method for binary SNNs. In addition, Kheradpisheh
et al. [19] proposed a temporal-based binary SNN where each neu-
ron fires at most once with learning taking place only upon spike
emission. While these binary SNN approaches offer significant effi-
ciency advantages, they still have limitations. Firstly, these methods
focus solely on quantizing synaptic weights, neglecting the memory
footprint associated with membrane potentials. This presents an
opportunity for further efficiency improvements. Secondly, binary
SNNs often suffer from severe information loss during inference,
resulting in a substantial performance gap when compared to their
full-precision SNN counterparts.

In order to overcome these limitations, we introduce the Quan-
tized SNN (Q-SNN) that quantizes both synaptic weights and mem-
brane potentials to maximize efficiency. Furthermore, to mitigate
the performance gap between Q-SNN and full-precision SNNs,
we leverage the principles of information entropy and propose a
novel Weight-Spike Dual Regulation (WS-DR) method. By integrat-
ing WS-DR, we can train efficient and high-performance Q-SNNs
from scratch, paving the way for deploying SNNs on resource-
constrained devices.

3 PRELIMINARY
3.1 Leaky Integrate-and-Fire model
SNNs rely on spiking neurons as their fundamental processing units.
These models aim to replicate the information processing capabili-
ties of biological neurons. Several prominent examples include the
Hodgkin-Huxley [15], Izhikevich [17], and Leaky Integrate-and-
Fire (LIF) models [45]. Due to its computational efficiency, we adopt
the LIF model. Its membrane potential, a key element of a neuron’s
firing behavior, is mathematically described as,

𝑢𝑙𝑖 [𝑡] = 𝜏𝑢𝑙𝑖 [𝑡 − 1] +
∑︁
𝑗

𝑤𝑙
𝑖 𝑗𝑠

𝑙−1
𝑗 [𝑡], (1)

where 𝜏 is the constant leaky factor, 𝑤𝑙
𝑖 𝑗

is the synaptic weight
between neuron 𝑗 in layer 𝑙 − 1 and neuron 𝑖 in layer 𝑙 , and 𝑠𝑙−1

𝑗
[𝑡]

is the input spike from presynaptic neuron 𝑗 at time 𝑡 . Neuron 𝑖

integrates inputs and emits a spike when its membrane potential
exceeds the firing threshold. Mathematically, the spike generation
function is stated as,

𝑠𝑙𝑖 [𝑡] =
{
1, if 𝑢𝑙

𝑖
[𝑡] ≥ 𝜃,

0, otherwise, (2)

where 𝜃 denotes the firing threshold parameter. Following each
spike emission, the spiking neuron 𝑖 undergoes a reset mechanism
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Figure 1: The overall workflow of the proposed Q-SNN.

that updates its membrane potential. This reset process is mathe-
matically defined as,

𝑢𝑙𝑖 [𝑡] = 𝑢𝑙𝑖 [𝑡] ·
(
1 − 𝑠𝑙𝑖 [𝑡]

)
. (3)

This work uses the hard reset mechanism where the membrane
potential of neuron 𝑖 is reset to zero upon emitting a spike and
remains unchanged in the absence of a spike.

3.2 Surrogate gradient learning method
Training of SNNs requires calculating the gradient of the loss func-
tion with respect to the synaptic weight. The chain rule provides
a powerful tool to achieve this. By applying the chain rule, the
derivative of the loss function 𝐿 with respect to the synaptic weight
𝑤𝑙
𝑖 𝑗
can be decomposed into the following equation,

𝜕𝐿

𝜕𝑤𝑙
𝑖 𝑗

=

𝑇∑︁
𝑡=1

(
𝜕𝐿

𝜕𝑠𝑙
𝑖
[𝑡]

𝜕𝑠𝑙
𝑖
[𝑡]

𝜕𝑢𝑙
𝑖
[𝑡]

𝜕𝑢𝑙
𝑖
[𝑡]

𝜕𝑤𝑙
𝑖 𝑗

+ 𝜕𝐿

𝜕𝑢𝑙
𝑖
[𝑡+1]

𝜕𝑢𝑙
𝑖
[𝑡+1]

𝜕𝑢𝑙
𝑖
[𝑡]

𝜕𝑢𝑙
𝑖
[𝑡]

𝜕𝑤𝑙
𝑖 𝑗

)
. (4)

However, training SNNs presents a distinct challenge compared to
traditional ANNs andDeepNeural Networks (DNNs) due to the non-
differentiable nature of the spiking (i.e. firing) mechanism. Specif-
ically, the term 𝜕𝑠𝑙

𝑖
[𝑡]/𝜕𝑢𝑙

𝑖
[𝑡] represents the gradient of the spike

generation function (described in Eq. 2). This function evaluates
to infinity at the moment of spike emission and to zero elsewhere,
making it incompatible with the traditional error backpropagation
used in ANN/DNN training. To tackle this issue, existing studies
employ surrogate gradients to approximate the true gradient [45].
These surrogate gradients take various shapes, including rectan-
gular [46], triangular [12], and linear [44]. In this paper, we use
the triangular-shaped surrogate gradient which is mathematically
defined as,

𝜕𝑠𝑙
𝑖
[𝑡]

𝜕𝑢𝑙
𝑖
[𝑡]

=𝑚𝑎𝑥

(
0, 𝛽 −

���𝑢𝑙𝑖 [𝑡] − 𝜃 ���) , (5)

where 𝛽 is the factor that defines the range of gradient computation.

4 METHOD
This section introduces the core aspects of our work. First, we
present the design of the proposed lightweight Q-SNN architecture,
focusing on the key element of quantizing both synaptic weights
andmembrane potentials for improving efficiency. Then, we explore
methods for enhancing its performance through an information
theory-based analysis. Leveraging the principles of information
entropy, we present a novel Weight-Spike Dual Regulation (WS-
DR) method to maximize the information content within Q-SNNs,
ultimately leading to improved accuracy.

4.1 Lightweight spiking neural networks
In order to exploit the energy efficiency benefit inherent to SNNs,
we introduce a Quantized SNN (Q-SNN). As shown in Figure 1,
the first characteristic of the proposed Q-SNNs is to quantize the
synaptic weight. The synaptic weights in SNNs are commonly
represented as 32-bit values, which often encounter challenges such
as large storage demands, increased computational complexity, and
high power consumption. Therefore, in Q-SNNs, we quantize the
synaptic weight into a 1-bit representation, which is formulated as,

𝑄𝑤 (𝑤) = 𝛼𝑤 · sign(𝑤), (6)

sign(𝑤) =
{
+1, if 𝑤 ≥ 0,
−1, otherwise, (7)

where𝑤 indicates the 32-bit weight, sign(𝑤) represents the bina-
rization operation of obtaining the 1-bit weight, and 𝛼𝑤 denotes
the scaling factor for synaptic weights. The binarization operation
sign(𝑤) typically suffers from severe information loss, resulting
in performance degradation of Q-SNNs. To overcome this issue, a
channel-wise scaling factor 𝛼𝑤 is introduced to mitigate the im-
pact of information loss, and it is calculated as the average of the
absolute value of weights in each output channel [35].

The second characteristic of the proposed Q-SNNs is to quantize
the memory-intensive membrane potentials in SNNs. As synaptic
weights are reduced to a specific bit width, the membrane potential
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Figure 2: The distribution of spikes 𝑠 in Q-SNNs, we select
the first eight layers in ResNet-19 on CIFAR-10 for display.

begins to emerge as the predominant factor in memory storage and
computational overhead [50]. Therefore, the membrane potential
plays a critical role in improving efficiency, but it is neglected in
existing binary SNNs. Building upon this, we quantize the mem-
brane potential within Q-SNNs to a low bit-width integer, with the
quantization function described as,

𝑄𝑢 (𝑢) =
𝛼𝑢

2𝑘 − 1
round

((
2𝑘 − 1

)
clip

(
𝑢

𝛼𝑢
,−1, 1

))
, (8)

clip(𝑥,−1, 1) =𝑚𝑖𝑛 (𝑚𝑎𝑥 (𝑥,−1) , 1) , (9)

where 𝑢 is the 32-bit membrane potential, 𝑘 denotes the number of
bits assigned to the quantized integer, 𝛼𝑢 is the scaling factor for
membrane potentials, round (·) is a rounding operator, and clip(·)
is a clipping operator saturating 𝑥 within the range [−1, 1]. In
this paper, 𝑘 is set to 2/4/8, and a layer-wise scaling factor 𝛼𝑢 is
determined as the maximum value in each layer.

By integrating Eq. 6 and Eq. 8 into Eq. 1, the membrane potential
of the LIF neuron model can be represented as,

𝑢𝑙𝑖 [𝑡] = 𝜏 ·𝑄𝑢

(
𝑢𝑙𝑖 [𝑡 − 1]

)
+

∑︁
𝑗

𝛼𝑤

(
sign

(
𝑤𝑙
𝑖 𝑗

)
⊕ 𝑠𝑙−1𝑗 [𝑡]

)
. (10)

In this equation, it can be observed that the membrane potential
𝑢𝑙
𝑖
[𝑡 − 1] is quantized to a low bit-width, thereby requiring dimin-

ished storage demands. Furthermore, through the integration of
binary spikes and binary weights, the proposed Q-SNNs can lever-
age cost-effective bitwise operations, i.e., ⊕, to execute the convo-
lutional operation, thereby attaining enhanced computational effi-
ciency in the inference process. In summary, the proposed Q-SNN
architecture maximizes the efficiency benefit inherent to SNNs.

4.2 Analysis of information content in Q-SNNs
While the proposed Q-SNNs exhibit significant energy efficiency,
it must be acknowledged that their task performance lags signifi-
cantly behind that of full-precision SNNs. This performance gap can
be attributed to the limited information representation capability
of Q-SNNs due to the low-precision weights and spiking activities.
To address this challenge, we explore into the concept of informa-
tion entropy and analyze how it can be leveraged to enhance the
performance of Q-SNNs.

In Q-SNNs, the synaptic weight and spike activity are binary
values, i.e., 𝑤 ∈ {−1, 1} and 𝑠 ∈ {0, 1}, both of them follow the
Bernoulli distribution. Taking the binary spike 𝑠 as an example for
analysis, its probability mass function can be expressed as,

𝑓 (𝑠) =
{
𝑝𝑠 , if 𝑠 = 1,
1 − 𝑝𝑠 , if 𝑠 = 0,

(11)

where 𝑝𝑠 ∈ (0, 1) is the probability of 𝑠 being value 1. We measure
the information content carried by 𝑠 using the theory of information
entropy, expressed as,

H(𝑠) = − [𝑝𝑠 ln(𝑝𝑠 ) + (1 − 𝑝𝑠 ) ln(1 − 𝑝𝑠 )] . (12)

From this equation, it can be observed that when 𝑝𝑠 approaches
either 0 or 1, the entropy function H(𝑠) may tend towards its
minimum value 0. To evaluate the information content carried
by 𝑠 in Q-SNNs, we conduct experiments with ResNet-19 on the
CIFAR-10 dataset to obtain 𝑝𝑠 in each layer, as illustrated in Figure 2.
Unfortunately, 𝑝𝑠 in each layer tends towards 0, resulting in severely
limited information content carried by 𝑠 . Even worse, the weight
in Q-SNNs also faces the same challenge.

To enhance the performance of Q-SNN, increasing the informa-
tion content of its binary weights and spike activities is necessary.
Therefore, we analyze what condition 𝑝𝑠 satisfies so that the infor-
mation entropy of binary values is maximized. Maximizing entropy
in this context helps ensure that the quantized weight and mem-
brane potential values are spread out as evenly as possible within
their range. This uniform distribution helps to ensure that the quan-
tized network’s representational capacity is not overly constrained
by the quantization process. It allows the quantized network to
preserve as much information as possible despite the reduced preci-
sion of synaptic weights and membrane potentials in the network.
To achieve this, we need to solve the following equation,

𝑝∗ = argmax
𝑝𝑠

H(𝑠). (13)

By solving Eq. 13, we can determine 𝑝∗ = 0.5. Therefore, we design
a method to regulate the distributions of binary weights and spikes
respectively, enabling their probability to be close to 0.5.

4.3 Weight-Spike dual regulation method
To mitigate the performance degradation caused by information
loss in the quantization process, we propose a Weight-Spike Dual
Regulation method (WS-DR) to increase the information content of
weights and spike activities in Q-SNNs. As analyzed in Sec. 4.2, the
variable obeying the Bernoulli distribution carries the maximum
information content when 𝑝 = 0.5. Therefore, in the following,
we illustrate how to adjust the binary weight and spike activity to
satisfy this condition as much as possible.

We first analyze the regulation for synaptic weights in Q-SNNs.
The objective for the binary weight, denoted as 𝐵𝑤 , to satisfy 𝑝𝑤 =

0.5 implies that it has an equal probability of taking either 1 or -1.
We experimentally observed that the float-point weight in layer 𝑙
before adopting binarization operation generally obeys a Gaussian
distribution N(𝜇𝑙 , 𝜎2𝑙 ). However, the mean value 𝜇𝑙 and standard
deviation 𝜎𝑙 vary across layers. Inspired by this observation, we
implement a normalization technique on float-point weights in
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each layer, as detailed below,

𝑊 𝑙 =
𝑊 𝑙 − 𝜇𝑙

𝜎𝑙
, (14)

where𝑊 𝑙 denotes the tensor of float-point weights in layer 𝑙 . This
equation enables𝑊 𝑙 to obey a standard normal distributionN(0, 1),
with zero serving as the symmetry axis. By subsequently employing
the sign function on𝑊 𝑙 , we can ensure 𝑝𝑤 = 0.5.

We then analyze the regulation for spike activities in Q-SNNs.
Similar to the binary weight 𝐵𝑤 in Q-SNNs, achieving the maximal
information entropy of spike activities implies that each neuron in
Q-SNNs emits a spike with a probability of 1/2 at all possible spike
activity locations, i.e., the firing rate is 50%. This will seriously im-
pair the sparsity characteristic of SNNs and sacrifice their inherent
energy efficiency advantage. Therefore, in Q-SNNs, we design a
loss function to impose a soft regulation on 𝑠 . The goal of this loss
function is to increase the information entropy of 𝑠 per layer as
much as possible, rather than rigidly enforcing its probability to be
0.5. The proposed loss term L𝑠 is defined as,

L𝑠 =
𝐿−1∑︁
𝑙=2
(𝑓𝑙 − 0.5)2 , 𝑓𝑙 =

1
𝑁𝑙 ×𝑇

(
𝑁𝑙∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑠𝑙𝑖 [𝑡]
)
, (15)

where 𝐿 is the total number of layers in the network, 𝑓𝑙 denotes the
firing rate of spiking neurons in layer 𝑙 , 𝑁𝑙 is the number of neurons
in layer 𝑙 , and 𝑇 indicates the simulation time step. The proposed
loss term L𝑠 only regulates the spike distributions in hidden layers,
disregarding the input and output layers as they are correlated with
input data and classification outcomes. Consequently, the overall
loss function is defined as,

L =
1
𝑇

𝑇∑︁
𝑡=1
L𝑐𝑒 (o(𝑡), y) + 𝜆L𝑠 , (16)

where o[𝑡] is the output of Q-SNNs at time 𝑡 and 𝑦 is the target
label. L𝑐𝑒 is the cross-entropy loss for classification, L𝑠 is the soft
regulation term designed to increase the information content of 𝑠 ,
and 𝜆 is a hyperparameter that controls the contribution of L𝑠 . By
integrating the normalization technique on𝑤 and the soft regula-
tion loss term on 𝑠 , the weight and spike in Q-SNNs can carry more
information content, thus mitigating the performance degradation
caused by information loss during the quantization process. Finally,
we summarize the training procedure of our method in Algorithm 1.

5 EXPERIMENTS
In this section, we first outline the experimental setup and imple-
mentation details of the proposed Q-SNN with the WS-DR method.
We then conduct a comprehensive evaluation, comparing the per-
formance and model size of our approach against existing quantized
SNN techniques. Finally, we employ ablation studies to validate the
efficiency and effectiveness of our method.

5.1 Experimental setup
Datasets. We evaluate our method on image classification tasks,

encompassing both static image datasets like CIFAR-10 [22], CIFAR-
100 [22], and TinyImageNet [10], alongside neuromorphic datasets

Algorithm 1 Train a Q-SNN with the Weight-Spike Dual Regula-
tion (WS-DR) method for one epoch.

Input: A Q-SNN model: W = {𝑊 1, · · · ,𝑊 𝐿}; The number of
training iteration in one epoch: 𝐼𝑡𝑟𝑎𝑖𝑛 ; Training dataset.

Output: The Q-SNN model with updated weights.
1: for 𝑖 = 1→ 𝐼𝑡𝑟𝑎𝑖𝑛 do
2: Get a minibatch of training data and target labels (I,Y);
3: Initialize an empty list 𝐹 ;
4: for 𝑙 = 1→ 𝐿 do
5: Regulate the distribution of 32-bit weights:𝑊 𝑙 =

𝑊 𝑙−𝜇𝑙
𝜎𝑙

;
6: Compute 1-bit weights and channel-wise scaling factors:

𝐵𝑤 = sign(𝑊 𝑙 ) , 𝛼𝑤 =
| |𝑊 𝑙 | |1

𝑛 ;
7: for 𝑡 = 1→ 𝑇 do
8: Compute the membrane potential (𝑈 𝑙 [0]=0, 𝑆0 [𝑡]= I):

𝑈 𝑙 [𝑡] = 𝜏𝑈 𝑙 [𝑡 − 1] + 𝛼𝑤
(
𝐵𝑤 ⊕ 𝑆𝑙−1 [𝑡]

)
;

9: Compute a layer-wise scaling factor: 𝛼𝑢 = max
(
𝑈 𝑙 [𝑡]

)
;

10: Quantize the membrane potential to 𝑘 bits:
𝑈 𝑙 [𝑡] ← 𝛼𝑢

2𝑘−1 round
((
2𝑘 − 1

)
clip

(
𝑈 𝑙 [𝑡 ]
𝛼𝑢

,−1, 1
))
;

11: Generate binary spikes via Heaviside step function:
𝑆𝑙 [𝑡] = Heaviside

(
𝑈 𝑙 [𝑡] − 𝜃

)
;

12: end for
13: 𝑆𝑙 = concat

(
𝑆𝑙 [1], · · · , 𝑆𝑙 [𝑇 ]

)
;

14: Compute the firing rate: 𝑓𝑙 = 1
𝑁𝑙×𝑇

(∑𝑁𝑙

𝑖=1
∑𝑇
𝑡=1 𝑆

𝑙
𝑖
[𝑡]

)
;

15: 𝐹 ← 𝐹 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓𝑙 );
16: end for
17: Regulate the distribution of spikes: L𝑠 =

∑𝐿−1
𝑙=2 (𝐹 [𝑙] − 0.5)

2;

18: Compute the loss: L= 1
𝑇

∑𝑇
𝑡=1 L𝑐𝑒 + 𝜆L𝑠 ;

19: Backpropagation and update model parameters;
20: end for

such as DVS-Gesture [2] and DVS-CIFAR10 [24]. These datasets
hold substantial importance within the realms of machine learning
and neuromorphic computing, serving as standard benchmarks for
evaluating diverse methodologies. Before introducing the experi-
ments, we briefly outline each dataset. The CIFAR-10 and CIFAR-
100 are color image datasets, with each dataset containing 50,000
training images and 10,000 testing images. Each image features 3
color channels and a spatial resolution of 32×32 pixels. CIFAR-10
is composed of 10 categories, whereas CIFAR-100 comprises 100
categories. The TinyImageNet dataset is a subset of the ImageNet
dataset, consisting of 200 categories, with each category containing
500 training images and 50 test images. Each image has 3 color
channels and a spatial resolution of 64×64 pixels. The DVS-Gesture
and DVS-CIFAR10 are neuromorphic datasets captured using Dy-
namic Vision Sensor (DVS) event cameras, both featuring a spatial
resolution of 128×128. The DVS-Gesture dataset consists of 1464
samples, with 1176 allocated for training and 288 for testing. The
DVS-CIFAR10 is the most challenging neuromorphic dataset, fea-
turing 9,000 training samples and 1,000 testing samples. During the
preprocessing process of the DVS-CIFAR10 dataset, we apply the
data augmentation technique proposed in [26].
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Table 1: Classification performance comparison on both static image datasets and neuromorphic datasets.

Dataset Method Architecture Learning Bit Width Timestep Accuracy

CIFAR-10

Full-Precision SNN‡ ResNet19 Direct train 32w-32u1 2 96.36%
Roy et al. [36] VGG9 ANN2SNN 1w-32u - 88.27%
Rueckauer et al. [37] 6Conv3FC ANN2SNN 1w-32u - 88.25%
Wang et al. [43] 6Conv3FC ANN2SNN 1w-32u 100 90.19%
Yoo et al. [51] VGG16 ANN2SNN 1w-32u 32 91.51%
Deng et al. [11] 7Conv3FC Direct train 1w-32u 8 89.01%
Pei et al. [32] 5Conv1FC Direct train 1w-32u 1 92.12%
Zhou et al. [52] VGG16 Direct train 2w-32u - 90.93%
Yin et al. [50] ResNet19 Direct train 2w-2u 4 90.79%

Proposed Q-SNN ResNet19 Direct train
1w-8u 2 95.54%
1w-4u 2 95.31%
1w-2u 2 95.20%

CIFAR-100

Full-Precision SNN‡ ResNet19 Direct train 32w-32u 2 79.52%
Roy et al. [36] VGG16 ANN2SNN 1w-32u - 54.44%
Lu et al. [28] VGG15 ANN2SNN 1w-32u 400 62.07%
Wang et al. [43] 6Conv2FC ANN2SNN 1w-32u 300 62.02%
Yoo et al. [51] VGG16 ANN2SNN 1w-32u 32 66.53%
Deng et al. [11] 7Conv3FC Direct train 1w-32u 8 55.95%
Pei et al. [32] 6Conv1FC Direct train 1w-32u 1 69.55%

Proposed Q-SNN ResNet19 Direct train
1w-8u 2 78.77%
1w-4u 2 78.82%
1w-2u 2 78.70%

TinyImageNet

Full-Precision SNN‡ VGG16 Direct train 32w-32u 4 56.77%

Yin et al. [50] VGG16
Direct train 8w-8u 4 50.18%
Direct train 4w-4u 4 49.36%
Direct train 2w-2u 4 48.60%

Proposed Q-SNN VGG16 Direct train
1w-8u 4 55.70%
1w-4u 4 55.20%
1w-2u 4 55.04%

DVS-Gesture

Full-Precision SNN‡ VGGSNN* Direct train 32w-32u 16 97.83%
Pei et al. [32] 5Conv1FC Direct train 1w-32u 20 94.63%
Qiao et al. [34] 2Conv2FC Direct train 1w-32u 150 97.57%
Yoo et al. [51] 15Conv1FC Direct train 1w-32u 16 97.57%

Proposed Q-SNN VGGSNN Direct train
1w-8u 16 97.92%
1w-4u 16 97.57%
1w-2u 16 96.53%

DVS-CIFAR10

Full-Precision SNN‡ VGGSNN Direct train 32w-32u 10 82.10%
Qiao et al. [34] 2Conv2FC Direct train 1w-32u 25 62.10%
Pei et al. [32] 5Conv1FC Direct train 1w-32u 10 68.98%
Yoo et al. [51] 16Conv1FC Direct train 1w-32u 16 74.70%

Proposed Q-SNN VGGSNN Direct train
1w-8u 10 81.60%
1w-4u 10 81.50%
1w-2u 10 80.00%

132w-32u: The model with 32-bit weights and 32-bit membrane potentials.
‡: Self-implementation results with the same experimental setting. ∗VGGSNN: 8Conv1FC.

Implementation details. We first present the architecture em-
ployed for each dataset. For static CIFAR-10 and CIFAR-100 datasets,
we employ the well-established structure of ResNet19. For the
TinyImageNet dataset, we employ the VGG16 structure to facil-
itate comparison with [50]. For DVS-Gesture and DVS-CIFAR10
datasets, we implement the structure of VGGSNN commonly used

in SNNs [12, 39]. Within these architectures, the weights in the first
layer and the last layer are quantized to 8 bit, while the weights in
hidden layers are quantized to 1 bit [25]. Subsequently, we eluci-
date the implementation details within our experiments. We employ
the Adam optimizer for the TinyImageNet dataset while the SGD
optimizer for other datasets, and the batch size is set to 256 for
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Accuracy and model size comparison on CIFAR-10

Figure 3: Comparison of themodel size and accuracy between
the proposed Q-SNN and existing quantized SNN approaches
on the CIFAR-10 dataset.

static image datasets and 64 for neuromorphic datasets. The initial
learning rate is set to 0.1 across all datasets and we adopt a cosine
learning rate decay schedule during training. Moreover, the leaky
factor 𝜏 and the firing threshold 𝜃 of the LIF neuron within Q-SNNs
should be specified, which is set to 0.5 and 1, respectively. The time
step 𝑇 is set to 2 for CIFAR-10 and CIFAR-100, 4 for TinyImageNet,
16 for DVS-Gesture, and 10 for DVS-CIFAR10. The hyperparameter
value for the loss term L𝑠 is set to 1e-3 for all utilized datasets. All
experiments conducted in this paper leverage the PyTorch library,
which is a versatile framework widely adopted in the field of deep
learning research.

5.2 Comparative study
We compare the performance and model size of Q-SNNs with ex-
isting quantized SNN methods to prove the effectiveness and ef-
ficiency of our method, respectively. Our experiments across all
datasets involve three bit-width configurations: 1w-8u, 1w-4u, and
1w-2u, where ‘1w-8u’ signifies that the Q-SNN utilizes 1-bit synap-
tic weights and 8-bit membrane potentials.

We first analyze the performance comparison results. As shown
in Table 1, when compared with ANN2SNN learning algorithms
that necessitate a large time step to guarantee lossless conversion
(i.e., Wang et al. [43] set it to 100 on CIFAR-10 and 300 on CIFAR-
100), the proposed Q-SNNs trained from scratch require fewer time
steps to attain top-1 performance, such as 2 on CIFAR datasets
and 4 on TinyImageNet dataset. When compared with direct learn-
ing algorithms, our work also achieves the top-1 accuracy on all
datasets, i.e., 95.54% on CIFAR-10 under 1w-8u, 78.82% on CIFAR-
100 under 1w-4u, 55.70% on TinyImageNet under 1w-8u, 97.92%
on DVS-Gesture under 1w-8u, and 81.60% on DVS-CIFAR10 under
1w-8u. Moreover, it can be observed from Table 1 that the pro-
posed Q-SNNs demonstrate comparable performance to that of
full-precision SNNs with extremely compressed bit width across
all datasets. Noteworthy, on the DVS-Gesture dataset, Q-SNN con-
figured with 1w-8u achieves an accuracy of 97.92%, surpassing the
corresponding full-precision SNN model. This superiority can be

Table 2: Comparison of the memory footprint between the
proposed Q-SNNs and full-precision SNNs. The value in
brackets is the reduction in memory footprint relative to
full-precision SNNs.

Batch Bit Width ResNet19 VGG16 VGGSNN

ba
tc
h=

1 32w-32u 50.80 (-0.00%) 59.16 (-0.00%) 37.44 (-0.00%)
1w-8u 1.75 (-96.56%) 1.96 (-96.69%) 1.31 (-96.50%)
1w-4u 1.68 (-96.69%) 1.93 (-96.74%) 1.25 (-96.66%)
1w-2u 1.65 (-96.75%) 1.91 (-96.77%) 1.21 (-96.77%)

ba
tc
h=

64 32w-32u 83.83 (-0.00%) 75.67 (-0.00%) 70.47 (-0.00%)
1w-8u 10.0 (-88.07%) 6.09 (-91.95%) 9.57 (-86.42%)
1w-4u 5.81 (-93.07%) 3.99 (-94.73%) 5.38 (-92.37%)
1w-2u 3.72 (-95.56%) 2.94 (-96.11%) 3.28 (-95.35%)

ba
tc
h=

25
6 32w-32u 184.49 (-0.00%) 126.01 (-0.00%) 171.13 (-0.00%)

1w-8u 35.17 (-80.94%) 18.67 (-85.18%) 34.74 (-79.70%)
1w-4u 18.40 (-90.03%) 10.28 (-91.84%) 17.96 (-89.51%)
1w-2u 10.01 (-94.57%) 6.09 (-95.17%) 9.57 (-94.41%)

attributed to the dataset’s simplicity and abundant noise, where
the Q-SNN utilizing a low bit-width representation demonstrates
robustness.

In addition to the outstanding performance, our method also
demonstrates a compact model size. We evaluate the model size of
the proposed Q-SNN alongside existing quantized SNN methods on
the CIFAR-10 dataset, with the results illustrated in Figure 3. Clearly,
Q-SNN stands out with the smallest model size of 1.62MB and the
highest accuracy of 95.20%.When compared with the work [50] that
employs the same architecture of ResNet19, our method demon-
strates a remarkable 56.22% reduction in model size and a 4.41%
increase in accuracy with fewer time steps. In conclusion, our work
further exploits the efficiency advantage inherent to SNNs while
upholding superior performance, offering substantial advantages
and potential for flexible deployment in real-world resource-limited
scenarios.

5.3 Ablation study
We conduct ablation experiments to validate the efficiency of Q-
SNN and the effectiveness of the WS-DR method, respectively. All
ablation experiments are performed on the CIFAR-10 dataset with
the architecture of ResNet19, and experimental setups follow the
description in Sec. 5.1.

We first validate the efficiency of the proposed Q-SNN. As il-
lustrated in Table 2, we compute the memory footprint of our
method under different architectures and bit-width configurations,
obtaining two conclusions. Firstly, the proposed Q-SNN typically
realizes a significant reduction in memory footprint compared to
full-precision SNNs. For instance, employing the ResNet19 archi-
tecture with the batch size of 1, the Q-SNN with 1w-8u, 1w-4u, and
1w-2u achieves memory footprint reduction of 96.56%, 96.69%, and
96.75% respectively when compared with the full-precision SNN.
Secondly, the benefit of the membrane potential quantization is
positively correlated with the batch size. Taking VGGSNN as an
example, when the batch size is set to 1, the compression of themem-
brane potential from 8 bit to 2 bit only yields a memory footprint
reduction from 96.50% to 96.77%. In contrast, when the batch size is
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Figure 4: (a) The distribution of synaptic weights in Q-SNN after applying the WS-DR method. (b) The distribution of spike
activities in Q-SNN after applying the WS-DR method. These subfigures are plotted based on obtained results in the first eight
layers of ResNet19 on the CIFAR-10 dataset.

Q-SNN Q-SNN+WS-DR FP SNN90
92
94
96
98

Accura
cy(%) 93.42%

95.20% 96.36%
Ablation study for the WS-DRBit Width: 1w-2uBit Width: 32w-32u

Figure 5: Ablation study for the WS-DR method, where ‘FP
SNN’ denotes the full-precision SNN.

set to 256, the corresponding memory footprint reduction increases
from 79.70% to 94.41%, underscoring the importance of membrane
potential quantization. In summary, the proposed Q-SNNs have
maximized the energy efficiency of the network by considering
the quantization of both synaptic weights and memory-intensive
membrane potentials.

We now validate the effectiveness of the proposedWS-DRmethod.
As depicted in Figure 4, we plot the distribution of weights and spike
activities in the first eight layers of ResNet-19 after applying the
WS-DR method, respectively. It can be observed from in Figure 4(a)
that the synaptic weights display a uniform distribution, with the
probability 𝑝𝑤 approaching 0.5, so the𝑤 in Q-SNNs have carried
a greater amount of information. Moreover, it can be seen from
Figure 4(b) that the probability 𝑝𝑠 becomes larger than Figure 2,
thus also demonstrating the increased information content for 𝑠 in
Q-SNNs. In addition to the enhanced information content, we also
compare the performance of three models: pure Q-SNN, Q-SNN
integrated with the WS-DR method, and full-precision SNN. As
illustrated in Figure 5, under the configuration of 1w-2u, the Q-SNN
integrated with the WS-DR method achieves an accuracy of 95.20%,
surpasses that of Q-SNNwithout using theWS-DRmethod by 1.78%.

Notably, the performance of our model is comparable to the full-
precision SNN of 96.36% by only using 1-bit synaptic weights and
2-bit membrane potentials. Therefore, theWS-DRmethod enhances
the information content of both synaptic weights𝑤 and spike ac-
tivities 𝑠 in Q-SNNs, thereby resulting in performance comparable
to that of full-precision SNN.

6 CONCLUSION
Spiking neural networks have emerged as a promising approach
for next-generation artificial intelligence due to their sparse, event-
driven nature and inherent energy efficiency. However, the pre-
vailing focus within the SNN research community on achieving
high performance by designing large-scale SNNs often overshad-
owed the energy-efficiency benefits inherent to SNNs. While efforts
have been made to compress such large-scale SNNs by quantiz-
ing synaptic weights to lower bit widths, existing methods faced
two main limitations. Firstly, they tend to overlook the memory
footprint associated with membrane potentials in SNNs, leaving
scope for further efficiency improvements. Secondly, the employed
quantization on weights often leads to performance degradation of
the quantized SNNs compared to their full-precision counterparts.
This work introduced an efficient and effective Quantized SNN
(Q-SNN) architecture to address these limitations. The proposed
Q-SNN used efficient 1-bit weights and low-precision (2/4/8-bit)
membrane potentials to further maximize SNN efficiency. In addi-
tion, inspired by information entropy theory, we proposed a novel
Weight-Spike Dual Regulation (WS-DR) method to mitigate the
performance degradation caused by quantization. This enabled the
training of high-performance Q-SNNs from scratch. Experimental
evaluations on static and neuromorphic datasets demonstrated that
the proposed Q-SNN with WS-DR achieved state-of-the-art results
in efficiency and performance compared to existing quantized SNN
approaches. The obtained results demonstrate the potential of the
proposed Q-SNNs in facilitating the widespread deployment of
neuromorphic intelligent systems and advancing the development
of edge intelligent computing.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Q-SNNs: Quantized Spiking Neural Networks ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John

Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam,
et al. 2015. Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE transactions on computer-aided design of
integrated circuits and systems 34, 10 (2015), 1537–1557.

[2] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry,
Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau,
Marcela Mendoza, et al. 2017. A low power, fully event-based gesture recogni-
tion system. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 7243–7252.

[3] Malyaban Bal and Abhronil Sengupta. 2023. Spikingbert: Distilling bert to
train spiking language models using implicit differentiation. arXiv preprint
arXiv:2308.10873 (2023).

[4] Kaiwei Che, Luziwei Leng, Kaixuan Zhang, Jianguo Zhang, Qinghu Meng, Jie
Cheng, Qinghai Guo, and Jianxing Liao. 2022. Differentiable hierarchical and
surrogate gradient search for spiking neural networks. Advances in Neural
Information Processing Systems 35 (2022), 24975–24990.

[5] Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. 2021.
Pruning of deep spiking neural networks through gradient rewiring. arXiv
preprint arXiv:2105.04916 (2021).

[6] Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong
Tian. 2022. State transition of dendritic spines improves learning of sparse
spiking neural networks. In International Conference on Machine Learning. PMLR,
3701–3715.

[7] Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. 2021. Spatio-temporal
pruning and quantization for low-latency spiking neural networks. In 2021 Inter-
national Joint Conference on Neural Networks (IJCNN). IEEE, 1–9.

[8] Sayeed Shafayet Chowdhury, Nitin Rathi, and Kaushik Roy. 2022. Towards
ultra low latency spiking neural networks for vision and sequential tasks using
temporal pruning. In European Conference on Computer Vision. Springer, 709–726.

[9] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
Ieee Micro 38, 1 (2018), 82–99.

[10] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[11] Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li,
and Yuan Xie. 2021. Comprehensive snn compression using admm optimization
and activity regularization. IEEE transactions on neural networks and learning
systems 34, 6 (2021), 2791–2805.

[12] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. 2022. Temporal
efficient training of spiking neural network via gradient re-weighting. arXiv
preprint arXiv:2202.11946 (2022).

[13] Yiting Dong, Dongcheng Zhao, and Yi Zeng. 2024. Temporal knowledge sharing
enable spiking neural network learning from past and future. IEEE Transactions
on Artificial Intelligence (2024).

[14] Yufei Guo,Weihang Peng, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Xuhui Huang,
and Zhe Ma. 2023. Joint a-snn: Joint training of artificial and spiking neural
networks via self-distillation and weight factorization. Pattern Recognition 142
(2023), 109639.

[15] A. L. Hodgkin and A. F. Huxley. [n. d.]. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
Physiology ([n. d.]), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

[16] Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. 2024. Advancing Spiking
Neural Networks Toward Deep Residual Learning. IEEE Transactions on Neural
Networks and Learning Systems (2024).

[17] Eugene M Izhikevich. 2003. Simple model of spiking neurons. IEEE Transactions
on neural networks 14, 6 (2003), 1569–1572.

[18] Hyeryung Jang, Nicolas Skatchkovsky, and Osvaldo Simeone. 2021. BiSNN:
training spiking neural networks with binary weights via bayesian learning. In
2021 IEEE Data Science and Learning Workshop (DSLW). IEEE, 1–6.

[19] Saeed Reza Kheradpisheh, Maryam Mirsadeghi, and Timothée Masquelier. 2022.
Bs4nn: Binarized spiking neural networks with temporal coding and learning.
Neural Processing Letters 54, 2 (2022), 1255–1273.

[20] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. 2020. Spiking-
yolo: spiking neural network for energy-efficient object detection. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 34. 11270–11277.

[21] Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Ruokai
Yin, and Priyadarshini Panda. 2022. Exploring lottery ticket hypothesis in spiking
neural networks. In European Conference on Computer Vision. Springer, 102–120.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[23] Ravi Kumar Kushawaha, Saurabh Kumar, Biplab Banerjee, and Rajbabu Velmuru-
gan. 2021. Distilling spikes: Knowledge distillation in spiking neural networks. In
2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 4536–4543.

[24] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. 2017. Cifar10-
dvs: an event-stream dataset for object classification. Frontiers in neuroscience 11
(2017), 244131.

[25] Yuhang Li, Xin Dong, and Wei Wang. 2019. Additive powers-of-two quantization:
An efficient non-uniform discretization for neural networks. arXiv preprint
arXiv:1909.13144 (2019).

[26] Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller, and Priyadarshini
Panda. 2022. Neuromorphic data augmentation for training spiking neural
networks. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part VII. Springer, 631–649.

[27] Qianhui Liu, Jiaqi Yan, Malu Zhang, Gang Pan, and Haizhou Li. 2024. LitE-SNN:
Designing Lightweight and Efficient Spiking Neural Network through Spatial-
Temporal Compressive Network Search and Joint Optimization. arXiv preprint
arXiv:2401.14652 (2024).

[28] Sen Lu and Abhronil Sengupta. 2020. Exploring the Connection Between Binary
and Spiking Neural Networks. Frontiers in Neuroscience 14 (2020). https://doi.
org/10.3389/fnins.2020.00535

[29] Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, and
Sungroh Yoon. 2022. Autosnn: Towards energy-efficient spiking neural networks.
In International Conference on Machine Learning. PMLR, 16253–16269.

[30] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco Galluppi,
Cameron Patterson, David R Lester, Andrew D Brown, and Steve B Furber. 2013.
SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network
simulation. IEEE Journal of Solid-State Circuits 48, 8 (2013), 1943–1953.

[31] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, ShuangWu, Guanrui
Wang, Zhe Zou, Zhenzhi Wu, Wei He, et al. 2019. Towards artificial general
intelligence with hybrid Tianjic chip architecture. Nature 572, 7767 (2019), 106–
111.

[32] Yijian Pei, Changqing Xu, Zili Wu, and Yintang Yang. 2023. ALBSNN: ultra-low
latency adaptive local binary spiking neural network with accuracy loss estimator.
Frontiers in Neuroscience 17 (2023), 1225871.

[33] Rachmad Vidya Wicaksana Putra and Muhammad Shafique. 2024. SpikeNAS: A
Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural
Network Systems. arXiv preprint arXiv:2402.11322 (2024).

[34] GC Qiao, Ning Ning, Yue Zuo, SG Hu, Qi Yu, and Yecheng Liu. 2021. Direct
training of hardware-friendly weight binarized spiking neural network with
surrogate gradient learning towards spatio-temporal event-based dynamic data
recognition. Neurocomputing 457 (2021), 203–213.

[35] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525–542.

[36] Deboleena Roy, Indranil Chakraborty, and Kaushik Roy. 2019. Scaling deep spik-
ing neural networks with binary stochastic activations. In 2019 IEEE International
Conference on Cognitive Computing (ICCC). IEEE, 50–58.

[37] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-
Chii Liu. 2017. Conversion of Continuous-Valued Deep Networks to Efficient
Event-Driven Networks for Image Classification. Frontiers in Neuroscience 11 (12
2017). https://doi.org/10.3389/fnins.2017.00682

[38] Clemens JS Schaefer, Pooria Taheri, Mark Horeni, and Siddharth Joshi. 2023.
The hardware impact of quantization and pruning for weights in spiking neural
networks. IEEE Transactions on Circuits and Systems II: Express Briefs (2023).

[39] Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. 2023. Towards Energy
Efficient Spiking Neural Networks: An Unstructured Pruning Framework. In The
Twelfth International Conference on Learning Representations.

[40] Martino Sorbaro, Qian Liu, Massimo Bortone, and Sadique Sheik. 2020. Opti-
mizing the energy consumption of spiking neural networks for neuromorphic
applications. Frontiers in neuroscience 14 (2020), 516916.

[41] Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and
Guoqi Li. 2023. Deep directly-trained spiking neural networks for object detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 6555–
6565.

[42] Sugahara Takuya, Renyuan Zhang, and Yasuhiko Nakashima. 2021. Training
low-latency spiking neural network through knowledge distillation. In 2021 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS). IEEE, 1–3.

[43] Yixuan Wang, Yang Xu, Rui Yan, and Huajin Tang. 2020. Deep spiking neural
networks with binary weights for object recognition. IEEE Transactions on
Cognitive and Developmental Systems 13, 3 (2020), 514–523.

[44] Wenjie Wei, Malu Zhang, Jilin Zhang, Ammar Belatreche, Jibin Wu, Zijing Xu,
Xuerui Qiu, Hong Chen, Yang Yang, and Haizhou Li. 2024. Event-Driven Learning
for Spiking Neural Networks. arXiv preprint arXiv:2403.00270 (2024).

[45] Yujie Wu, Lei Deng, Guoqi Li, and Luping Shi. 2018. Spatio-temporal backprop-
agation for training high-performance spiking neural networks. Frontiers in
neuroscience 12 (2018), 323875.

[46] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. 2019. Direct
training for spiking neural networks: Faster, larger, better. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 33. 1311–1318.

[47] Qi Xu, Yaxin Li, Xuanye Fang, Jiangrong Shen, Jian K Liu, Huajin Tang, and
Gang Pan. 2023. Biologically inspired structure learning with reverse knowledge

https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.3389/fnins.2020.00535
https://doi.org/10.3389/fnins.2020.00535
https://doi.org/10.3389/fnins.2017.00682


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

distillation for spiking neural networks. arXiv preprint arXiv:2304.09500 (2023).
[48] Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian,

Bo Xu, and Guoqi Li. 2023. Attention spiking neural networks. IEEE transactions
on pattern analysis and machine intelligence (2023).

[49] Ruokai Yin, Youngeun Kim, Yuhang Li, Abhishek Moitra, Nitin Satpute, Anna
Hambitzer, and Priyadarshini Panda. 2023. Workload-balanced pruning for sparse
spiking neural networks. arXiv preprint arXiv:2302.06746 (2023).

[50] Ruokai Yin, Yuhang Li, Abhishek Moitra, and Priyadarshini Panda. [n. d.]. MINT:
Multiplier-less INTeger Quantization for Energy Efficient Spiking Neural Net-
works. ([n. d.]).

[51] Donghyung Yoo and Doo Seok Jeong. 2023. CBP-QSNN: Spiking Neural Networks
Quantized Using Constrained Backpropagation. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems 13, 4 (2023), 1137–1146. https://doi.org/10.
1109/JETCAS.2023.3328911

[52] Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T. Chandrasekaran, and Arindam
Sanyal. 2021. Temporal-Coded Deep Spiking Neural Network with Easy Training
and Robust Performance. In 35th AAAI Conference on Artificial Intelligence, AAAI
2021 (35th AAAI Conference on Artificial Intelligence, AAAI 2021). Association for
the Advancement of Artificial Intelligence, 11143–11151.

[53] Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. 2023. Spikegpt:
Generative pre-trained language model with spiking neural networks. arXiv
preprint arXiv:2302.13939 (2023).

https://doi.org/10.1109/JETCAS.2023.3328911
https://doi.org/10.1109/JETCAS.2023.3328911

	Abstract
	1 Introduction
	2 Related work
	3 Preliminary
	3.1 Leaky Integrate-and-Fire model
	3.2 Surrogate gradient learning method

	4 Method
	4.1 Lightweight spiking neural networks
	4.2 Analysis of information content in Q-SNNs
	4.3 Weight-Spike dual regulation method

	5 Experiments
	5.1 Experimental setup
	5.2 Comparative study
	5.3 Ablation study

	6 Conclusion
	References

