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ABSTRACT

Federated Learning (FL) faces significant challenges related to communication
efficiency and heterogeneity. To address these issues, we explore the potential of
using low-rank updates. Our theoretical analysis reveals that client’s loss exhibits
a higher rank structure (gradients span higher rank subspaces of Hessian) com-
pared to the server’s loss. Based on this insight, we hypothesize that constraining
client-side optimization to a low-rank subspace could provide an implicit regu-
larization effect. Consequently, we propose FedLoRU, a general low-rank up-
date framework for FL. Our framework enforces low-rank client-side updates and
accumulates these updates to form a higher-rank model. Additionally, variants
of FedLoRU can adapt to environments with statistical and model heterogene-
ity by employing multiple or hierarchical low-rank updates. Experimental results
demonstrate that FedLoRU performs comparably to full-rank algorithms and ex-
hibits robustness to heterogeneous and large numbers of clients.

1 INTRODUCTION

Federated learning (FL, (McMahan et al., 2017)) is a collaborative learning framework designed to
enhance privacy preservation in machine learning applications. This approach has gained impor-
tance due to rising concerns over data privacy, as it allows multiple participants to train a model
collectively without sharing raw data.

While FL offers privacy benefits, it trades off some performance compared to centralized learning.
Two primary factors contributing to this trade-off are communication overhead and heterogeneity.
Despite improvements in computation and memory capacities, communication speeds have only
slightly improved, making communication overhead a major factor in slowing down FL (Zheng
et al., 2020). Additionally, various forms of heterogeneity—statistical, system, and device—further
complicate FL (Ye et al., 2023; Kairouz et al., 2021). These issues are especially pronounced with
a large number of clients, where frequent, less impactful updates slow down training and reduce
performance.

Addressing these challenges is becoming increasingly critical, for example, training large language
models (LLMs) in an FL framework. Utilizing private datasets on edge devices for LLM training
is promising due to the limited availability of public data (Ye et al., 2024). However, this approach
presents significant issues, notably in terms of communication overhead, as edge devices possess
heterogeneous resources and data. Additionally, the need for effective regularization across clients
is required. Consequently, the development of algorithms to tackle these challenges is an essential
problem to bridge the gap between practical and conceptual FL applications.

There has been substantial research focusing on the low-rank characteristics in centralized learning.
By low rank, we refer to gradients spanning a low rank subspace of Hessian at any given weights
or the weight matrix being of the form AB where the number of columns of A is low. By utilizing
low-rank factorized update models such as LoRA (Hu et al., 2021), DyLoRA (Valipour et al., 2022),
and QLoRA (Dettmers et al., 2024), the number of trainable parameters can be reduced, which
helps conserve memory and computational resources. Further observations (Huh et al., 2021; Ji
& Telgarsky, 2018) indicate that over-parameterized models tend to find low-rank solutions, which
provide implicit regularization effects.
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(a) Flow-chart of FedLoRU algorithm

(b) Low-rank factorization methods in pFedLoRU and mFedLoRU

Figure 1: Figure 1(a) provides a flowchart representing the FedLoRU algorithm. In this algorithm,
the model training is conducted solely using rank-r matrices, with communication between the
server and clients being confined to these matrices. Clients incrementally add low-rank update ma-
trices to their local base model W (k) every τ rounds, resulting in a higher-rank model. Figure 1(b)
depicts the utilization of low-rank factorization within the pFedLoRU and mFedLoRU algorithms.
For clarity, the equations assume all α parameters are set to 1.

However, the rank properties of the loss landscape in FL remain under-explored. Here, we first
analyze the difference in the stable rank—defined as the squared ratio of the Frobenius norm to
the spectral norm—between client Hessians and the server Hessian of any weights, discovering that
client exhibits a higher-rank structure. Based on this theoretical insight, we hypothesize that the
higher-rank structure of client’s loss contributes to increased client discrepancy and that restricting
client-side updates could provide an implicit regularization effect across clients. This leads us to the
research question:

Can we use low-rank updates in federated learning to achieve both communication overhead reduc-
tion and regularization effects across clients?

We propose the Federated Low-Rank Updates (FedLoRU) algorithm, which addresses communi-
cation overhead and the challenges posed by a large number of clients by employing client-side
low-rank updates and server-side accumulation of low-rank updates. FedLoRU factorizes client-side
update matrices A and B and applies iterative optimization to these low-rank factorized matrices.
Clients and the server share the factorized matrices, which the server then aggregates. Matrices A
and B are being communicated between the clients and server, rather than the much larger matrix
AB. To make the model’s weight rank high, the server successively accumulates low-rank matrices.
We also generalize the low-rank update strategy within federated learning for various heterogeneous
settings.

Our comprehensive approach underscores the potential of low-rank updates not only to enhance
communication efficiency but also to impose implicit regularization and harmonize the optimization
process across heterogeneous federated learning settings. Our contributions can be summarized as
follows. 1) We propose FedLoRU, the first algorithm using successive low-rank updates for both
pre-training and fine-tuning in federated learning, and introduce variants of FedLoRU for personal-
ization and model heterogeneity settings; 2) We investigate the rank properties of client and server
losses, analytically showing that under stochastic sampling, the rank of the Hessian of the loss
function increases with smaller sample sizes; 3) We provide empirical evidence of the higher rank
structure of client losses and demonstrate that restricting the rank of local updates aids in implicit
regularization; 4) On average, FedLoRU improves state-of-the-art communication-efficient feder-
ated learning algorithms on a variety of datasets, including LLM fine-tuning, and exhibits superior
performance as the number of clients increases.
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2 RELATED WORK

Communication-Efficient Federated Learning Extensive research has addressed communica-
tion challenges in FL (Shahid et al., 2021). FedPAQ (Reisizadeh et al., 2020) and AdaQuantFL
(Jhunjhunwala et al., 2021) employ quantization to reduce the precision of weights, while Fed-
Dropout (Caldas et al., 2018) and FedMP (Jiang et al., 2023) apply pruning to remove less important
weights. Since quantization and sparsification do not alter the core network structure, they can be
easily combined with other algorithms (e.g., FedLoRU) to reduce communication overhead.

In contrast, model compression techniques modify the model structure itself by compressing the
original model before communication and restoring it afterward. FedDLR (Qiao et al., 2021) com-
presses using low-rank approximation for both server-to-client and client-to-server communication
but reverts to the full model for local training. FedHM (Yao et al., 2021) compresses only during
server-to-client communication, where clients train factorized low-rank models that are aggregated
by the server. Although both methods reduce communication overhead, their server-side compres-
sion approaches can lead to performance degradation. To mitigate potential information loss during
server-side compression, we focus on client-side factorization, avoiding compression processes.

Low-rank nature of centralized and federated learning Numerous studies (Gur-Ari et al., 2018;
Li et al., 2018; Sagun et al., 2016) assert that the training process in deep learning inherently pos-
sesses a low-rank nature. Low-Rank Adaptation (LoRA, Hu et al. (2021)) is a representative al-
gorithm that leverages this low-rank characteristic, particularly for fine-tuning tasks, by freezing
pre-trained weights and applying low-rank updates via the decomposition W = W0 +AB, where
W0 ∈ Rm×n, A ∈ Rm×r, B ∈ Rr×n, r ≪ m,n. However, effectively leveraging the low-rank
structure during pre-training remains a challenge, as the weights do not inherently exhibit a low-
rank nature (Yu & Wu, 2023; Zhao et al., 2024). To address this, ReLoRA (Lialin et al., 2023)
seeks to achieve a higher-rank model by accumulating multiple low-rank updates, expressed as
W = W0 +

∑M
i=1 AiBi where Ai ∈ Rm×r, Bi ∈ Rr×n.

In federated learning, some research has aimed to exploit the low-rank nature observed in centralized
learning. LBGM (Azam et al., 2021) and FedLRGD (Jadbabaie et al., 2023) approximate gradients
using past or sampled gradients, assuming gradients lie in a low-rank subspace. However, there
is a noticeable gap in analyzing rank characteristics specific to federated learning. In the context
of federated learning, there is a complex loss landscape involving multiple client-side and a single
server-side optimization, and leveraging a low-rank structure needs to consider their respective rank
structures. To our knowledge, no prior work has examined the rank structure in federated learning
contexts without making very stringent assumptions. Our study is pioneering in addressing this gap,
using analytical results and insights to develop a novel algorithm.

Low-Rank Adaptation in Federated Learning Recent studies have studied the application of
LoRA within federated learning frameworks. Notable algorithms, such as FedLoRA (Wu et al.,
2024; Yi et al., 2023), FFALoRA (Sun et al., 2024), and Hyperflora (Lu et al., 2024), employ LoRA
adapters to facilitate personalization. These methods apply low-rank adaptation to a pre-trained
model during the local personalization training phase. On the other hand, other works (Zhang et al.,
2023; Kuo et al., 2024; Cho et al., 2023) apply LoRA for fine-tuning within federated learning
environments.

These approaches use only one low-rank matrix that restricts the model to a low-rank subspace. In
contrast, we utilize multiple accumulated low-rank matrices allowing the model to achieve higher
rank. Specifically, we extend the concept of LoRA by incorporating client-side low-rank updates
and server-side accumulation to address the low-rank limitation of LoRA as well as the challenges
posed by communication and client-server rank disparity. We also generalize the low-rank strategy
within federated learning for both pre-training and fine-tuning, and for heterogeneous environments.

3 LOW-RANK UPDATES IN FEDERATED LEARNING

In centralized learning, neural network losses exhibit a low-rank structure, indicating that the gradi-
ent lies within the subspace spanned by the k eigenvectors of the Hessian during training (Gur-Ari
et al., 2018). While efforts have been made to utilize this low-rank structure to enhance federated
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learning algorithms, there is a lack of studies analyzing the rank structure of federated learning. In
federated learning, the clients and server have distinct losses, resulting in different rank structures.
Understanding these differing rank structures of client and server losses is crucial for developing
low-rank-inspired algorithms tailored for federated learning.

In this section, we theoretically analyze the rank structures in federated learning, particularly com-
paring the stable rank of client and server Hessians. Based on this analysis, we propose FedLoRU,
a novel federated learning algorithm aimed at improving communication efficiency and addressing
performance degradation with a large number of clients. We also present a variant of FedLoRU to
handle model and statistical heterogeneity in federated learning.

3.1 HIGHER RANK NATURE OF CLIENTS IN FEDERATED LEARNING

Notation and problem setup Supposeψ(x,y) is a data generating distribution for an input-output
pair (x,y) ∈ Rdx × Rdy . We consider the problem of finding a prediction function hR(·; ·) :
Rdx ×RR → Rdy parameterized by a R-dim weight vector ωR ∈ RR. Given a loss function ℓ(·, ·) :
Rdy × Rdy → R, the true risk Ltrue(h

R, ωR) =
∫
ℓ(hR(x;ωR),y)dψ(x,y) is defined as the loss

over the data-generating distribution ψ(x,y). The corresponding true Hessian is Htrue(h
R, ωR) =

∇2Ltrue(h
R, ωR). If DN = {(x1,y1), · · · , (xN ,yN )} is a dataset generated from the distribution

ψ, the empirical loss and Hessian for DN are fN (hR, ωR) =
∑

(x,y)∈DN

1
N ℓ(h

R(x;ωR), y) and

HN (hR, ωR) =
∑

(x,y)∈DN

1
N

∂2

∂(ωR)2
ℓ(hR(x;ωR), y).

We consider a random selection of M samples without replacement from DN to form a sub-dataset
DM ⊆ DN . Let fM (hR, ωR) and HM (hR, ωR) denote the loss and Hessian for the sub-dataset
DM . In federated learning, fN can be considered as the loss that the server optimizes, while fM
represents the loss of a local client assuming the homogeneous setting.

For non-zero real numbers θ1, · · · , θk, define ΩR(θ1, · · · , θk) as the family of pairs (hR, ωR),
where hR is an R-dimensional prediction function and ωR is a weight vector, such that
the true Hessian has eigenvalues θ1, · · · , θk. Specifically, ΩR(θ1, · · · , θk) = {(hR, ωR) :
Htrue(h

R, ωR) has eigenvalues θ1, · · · , θk}. Let Ω(θ1, · · · , θk) =
⋃

R ΩR(θ1, · · · , θk), represent-
ing the union of ΩR(θ1, · · · , θk) over all dimensionsR. We aim to show that the difference in stable
rank between the Hessians of a server and a client eventually becomes positive as dimension R
approaches infinity within the space of Ω(θ1, · · · , θk), which contains infinitely many R for which
ΩR(θ1, · · · , θk) ̸= ∅, as proved in Appendix A.1.

Comparing the stable rank of the client and server Hessians Now, we will focus on comparing
the stable rank of the client and server Hessians. For given p, q ∈ N, let θ1 > · · · > θp > 0 >
θp+1 > · · · > θp+q be deterministic non-zero real numbers, and let (hR, ωR) ∈ Ω(θ1, · · · , θp+q)
for some R. To compare the stable rank of Hessians for two datasets DN and DN , we consider the
additive perturbed model of the true Hessian as described by Baskerville et al. (2022):

HN (hR, ωR) = Htrue(h
R, ωR) + ϵR(N), HM (hR, ωR) = Htrue(h

R, ωR) + ϵR(M). (1)

Here, ϵR(N), ϵR(M) ∈ RR×R are defined as random error matrices associated with each Hessian.
These matrices are assumed to be scaled according to ϵR(N) = s(N)XR, where XR ∈ RR×R is a
random real symmetric matrix and s : N→ (0, 1) is a decreasing function.

Another study (Granziol et al., 2022) employs the model HM (hR, ωR) = HN (hR, ωR) + ϵR,
implying a dependency structure between HM and HN . However, their analysis assumes inde-
pendence between these matrices, which is problematic given the underlying model and practical
considerations. In contrast, we address this issue by introducing two decoupled additive perturbed
models. Additionally, while Granziol et al. (2022) investigates outlier eigenvalues, our focus is on
the difference in the rank of the Hessians.

We seek to determine the limiting eigenvalues of the Hessians HN (hR, ωR) and HM (hR, ωR)
in relation to the eigenvalues of Htrue(h

R, ωR). Since (hR, ωR) ∈ ΩR(θ1, · · · , θp+q), the eigen-
values of Htrue(h

R, ωR) are θ1, · · · , θp+q . Next, we need to make some assumptions about the
random error matrix XR. Assume XR is a random real symmetric matrix with eigenvalues
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λ1(X
R), · · · , λR(XR) and a limiting spectral density µ, such that 1

R

∑R
i=1 δ(λ−λi(XR))→ µ(λ),

with convergence in the weak almost sure sense. Examples of matrices exhibiting a well-defined
limiting spectral density include Wigner matrices, Wishart matrices, and Gaussian ensembles. We
assume µ is a compactly supported probability measure on [lµ, rµ] which admits a smooth density
with respect to the Lebesque measure and the eigenvectors of XR obey quantum unique ergodicity
(QUE). For more detail about the QUE condition, we refer to Baskerville et al. (2022). We can now
find the limiting eigenvalues of HN and HM .
Proposition 3.1 (Limiting eigenvalues of HN (modified from Baskerville et al. (2022))). Let R
be any integer such that R ≥ R̄ where R̄ is the smallest integer such that ΩR̄(θ1, · · · , θp+q) is
non-empty. For any pair (hR, ωR) ∈ ΩR(θ1, · · · , θp+q), consider the Hessian additive error model
given by HN (hR, ωR) = Htrue(h

R, ωR)+ϵR(N). If λi(HN (hR, ωR)) denotes the i-th eigenvalue
of HN (hR, ωR), then for i = 1, · · · , p, the following holds:

λi(HN (hR, ωR))→
{
g−1
N (θi) if g−1

N (θi) > UN

UN otherwise
(2)

as R→∞, and for i = 0, · · · , q − 1, we have

λR−i(HN (hR, ωR))→
{
g−1
N (θp+q−i) if g−1

N (θp+q−i) < LN

LN otherwise.
(3)

Here,
g−1
N (θ) = θ + s(N)Rµ(s(N)θ−1) (4)

and UN and LN are lower and upper bounds of the limiting distribution µN of ϵR(N). In addition,
for p < i ≤ P − q, we have λi(HN (hR, ωR))→ {0, LN , UN}.

Convergence in Proposition 3.1 is weak almost sure convergence and Rµ(ω), known as the R-
transform, is defined by Rµ(t) = S−1

µ (t) − 1
t where Sµ(t) is the Stieltjes transform. Compared

to Baskerville et al. (2022), which focuses solely on outlier eigenvalues, we extend the analysis to
bulk eigenvalues and adopt a simpler form of µ. Within the proposition, the i-th largest or small-
est limiting eigenvalues of HN are determined by the values of g−1(θi). If g−1(θi) falls within
the support of the limiting distribution µN , the corresponding limiting eigenvalues converge to the
bounds. If g−1(θi) does not lie within this support, it converges to g−1(θi) itself; these eigenvalues
are typically referred to as outlier eigenvalues in the literature. The detailed proof is provided in
Appendix A.2 and is similar to the proof in Baskerville et al. (2022).

Stable rank To compare the rank properties of Hessians of a client and the server, we use the stable
rank srank(A) =

∥A∥2
F

∥A∥2
2
=

∑n
i=1 σ2

i (A)

σ2
1(A)

, which is the square of the ratio between a matrix’s Frobenius
and spectral norms. Here, n is the rank of matrix A, and σi(A) represents its i-th singular value.
Stable rank serves as a continuous proxy for rank(A) and is known for its robustness against small
perturbations. In fact, stable rank—which emphasizes eigenvalues near the top eigenvalue—can be
considered a more accurate surrogate of the rank structure of the Hessian considering the empirical
evidences that gradients are highly influenced by the top Hessian eigenvector, i.e., the eigenvectors
corresponding to the largest eigenvalues. Additionally, bounds on the stable rank of a weight vector
provide control over model’s complexity (Georgiev et al., 2021).

In the following theorem, we demonstrate that smaller dataset results in a higher limiting stable
rank. Furthermore, given that modern neural network models typically possess a very large number
of parameters, this finding is applicable to contemporary models.
Theorem 3.2 (Higher rank nature of Hessian of smaller dataset). Let N > M > R̄ be any integers
where R̄ is the smallest integer such that ΩR̄(θ1, · · · , θp+q) is non-empty. For any pair (hR, ωR) ∈
ΩR(θ1, · · · , θp+q), let HN (hR, ωR) and HM (hR, ωR) be the Hessians as defined previously. The
difference in the stable rank between HN (hR, ωR) and HM (hR, ωR) converges weakly almost
surely to positive value S(θ1, · · · , θp+q, µ) > 0 as R→∞, i.e.

srank(HM (hR, ωR))− srank(HN (hR, ωR))→ S(θ1, · · · , θp+q, µ) > 0. (5)

Here, the value S(θ1, · · · , θp+q, µ) does not dependent on the sequence (hR, ωR).
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(a) Estimated stable rank for different dataset sizes (b) Comparing test accuracy by number of clients

Figure 2: Figure 2(a) presents a comparison of the estimated stable rank of the Hessian for dataset
sizes of 50 and 500. The estimated stable rank of the Hessian for the dataset size of 50 consistently
exceeds that of the dataset size of 500. For an experiment detail, see Appendix C.3. Figure 2(b)
illustrates the test accuracy of FedAvg and FedLoRU across varying numbers of clients.

Theorem 3.2 implies that individual clients in federated learning, working with smaller datasets,
inherently have higher-rank structures in their local Hessians compared to the server’s Hessian. This
may lead to larger discrepancies across clients due to increased complexity and variability in local
training landscape, causing more divergent optimization paths and complicating the aggregation
process. Our empirical results in Figure 2 further support this by demonstrating that smaller datasets
exhibit higher estimated stable ranks, and as the number of clients increases (i.e., local dataset size
decreases), low-rank updates outperform full-rank updates.

Understanding this phenomenon is crucial for developing more effective federated learning algo-
rithms. By acknowledging the higher rank structure of client’s Hessian, constraining the rank of
client-side optimization can mitigate the discrepancies, especially when local dataset sizes are very
small. In the next section, we introduce an algorithm that leverages this insight.

3.2 FEDERATED LOW-RANK UPDATE (FEDLORU) ALGORITHM

Consider a federated learning system with K clients, where each client k has its own loss function
f (k) : Rm×n → R. The server aims to find a global model W ∈ Rm×n that minimizes the
aggregated loss function f(W ) =

∑K
k=1 p

(k)f (k)(W ), where p(k) is the weight of client k.

Fedeated low-rank update algorithm To enhance communication efficiency, FedLoRU con-
straints clients’ updates to low-rank. Analogous to the LoRA (Hu et al., 2021) approach, at each
iteration, client k holds a frozen local copy of the global model W and performs local training to
find low-rank matrices A(k)

t ∈ Rm×r and B
(k)
t ∈ Rr×n by solving:

A
(k)
t , B

(k)
t = argmin

A, B
f (k)(W + αAB) (6)

where α is a fixed scaling hyperparameter. At the end of each iteration, the server collects A(k)
t and

B
(k)
t and aggregates them by averaging: At =

∑
k∈KM

p(k)A
(k)
t , Bt =

∑
k∈KM

p(k)B
(k)
t . After

the aggregation, the server broadcasts At and Bt to the clients, who continue local training using
these matrices.

However, unlike LoRA, FedLoRU accumulates low-rank updates into the global model after aggre-
gation to achieve a higher-rank global model. Clients subsequently update their local copies of the
global model by W ←W +αAtBt and reset their low-rank matrices. When low-rank updates are
accumulated every τ rounds from the initial global model W , the final global model at round T is
WT = W +

∑T
t=1

t mod τ=0
AtBt.

6
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Algorithm 1 FedLoRU. W is a model, A0,B0 are initial low-rank update matrices, α is a scaling
factor, τ is an accumulation cycle, T is the total training round.

Require: W , A0,B0, α, τ , T .
Initialize: Server sends W to each client.
for t = 1, · · · , T do

Server selects M clients KM and distributes At−1,Bt−1 to clients in KM .
for each client k ∈ KM do

Local training: Find A
(k)
t ,B

(k)
t by solving (6) starting from At−1,Bt−1.

Send A
(k)
t ,B

(k)
t to the server.

end for
Server aggregation: At ←

∑
k∈KM

p(k)A
(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t .

if t mod τ = 0 then
Server distributes At,Bt to all clients .
Each client k updates its local copy of the global model: W ←W + αAtBt.

end if
end for
Return: W + α

∑T
t=1: t mod τ=0 AtBt.

FedLoRU enables training a higher-rank global model alongside low-rank local updates. With each
accumulation of low-rank update matrices, the global model’s rank is incrementally enhanced, en-
abling the initiation of new learning phases. Moreover, constraining the rank of local training intro-
duces a regularization effect, thereby diminishing the discrepancy between updated local models.

Communication overhead FedLoRU reduces communication overhead from Kmn to Kr(m +
n) when r ≪ m or r ≪ n. While we use a low-rank factorized model, alternatives like LoKr or
LoHa can be employed, differing only in the factorization scheme but based on the same principles.
Additionally, since no compression process is involved, there is no additional computation compared
to conventional compression-based communication-efficient federated learning algorithms.

Federated low-rank update for statistical and model heterogeneous setting We develop the
personalized FedLoRU (pFedLoRU) algorithm to address statistical heterogeneity (non-iid) in fed-
erated learning, building on the FedLoRU approach. In pFedLoRU, each client k maintains a local
copy of the global model W , global low-rank matrices A(k) and B(k), and personal matrices L(k)

and U (k). The matrices A(k) and B(k) are shared with the server to update the global model, while
L(k) and U (k) are tailored to adapt to the local distribution. In each round t, client k optimizes the
personal matrices for Eper epochs and the global matrices for Eglobal by solving:

L
(k)
t , U

(k)
t = argmin

L, U
f (k)(W + αglobalAt−1Bt−1 + αperLU) (7)

A
(k)
t , B

(k)
t = argmin

Ā, B̄

f (k)(W + αglobalĀB̄ + αperL
(k)
t U

(k)
t ) (8)

Subsequently, the server collects the global update matrices A
(k)
t and B

(k)
t from the clients, per-

forms aggregation At ←
∑

k∈KM
p(k)A

(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t , and broadcasts At and Bt

to the clients. The clients then accumulate the low-rank updates accordingly as in FedLoRU.

On the other hand, when local clients possess varying hardware resources, it becomes impractical
to use uniform low-rank matrices across all clients. To address this issue, we develop the model-
heterogeneous FedLoRU (mFedLoRU) algorithm, which employs hierarchical low-rank updates that
allows clients to use their adaptive update ranks.

In mFedLoRU, at each round t, each client k receives At−1 and Bt−1 and updates its local copy of
the global model as in FedLoRU. For local training, each client k generates and optimizes the nested
low-rank matrices A(k)

d A
(k)
u and B

(k)
d B

(k)
u by solving:

A
(k)
d ,A(k)

u ,B
(k)
d ,B(k)

u = argmin
Ād,Āu,B̄d,B̄u

f (k)(W +α(At−1+α
(k)
A ĀdĀu)(Bt−1+α

(k)
B B̄dB̄u)). (9)
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Table 1: Top-1 test accuracy comparison with different communication-efficient federated learning
methods under various FL settings. The parameter ratio refers to the proportion of trainable param-
eters in the model compared to the full-rank model used in FedAvg.

(a) Fashion-MNIST

Setting IID - #clients=20 IID - #clients=100 NonIID - #clients=20

Param Ratio 44% 33% 22% 44% 33% 22% 44% 33% 22%
FedLoRA 91.22 90.29 90.15 88.63 88.14 88.01 73.89 74.00 73.19
FedHM 91.16 91.10 90.94 89.43 89.37 88.86 85.15 85.45 85.33
FedLoRU 91.25 91.16 90.59 89.01 88.88 88.37 85.33 80.02 80.17

(b) CIFAR-10

Setting IID - #clients=20 IID - #clients=100 NonIID - #clients=20

Param Ratio 41% 31% 21% 41% 31% 21% 41% 31% 21%
FedLoRA 91.65 88.96 89.35 79.48 85.71 85.06 69.60 66.13 67.61
FedHM 90.76 90.32 90.77 81.41 81.58 82.12 70.55 66.39 65.48
FedLoRU 92.43 90.71 90.85 81.46 86.01 86.10 75.19 69.71 67.88

(c) CIFAR-100

Setting IID - #clients=20 IID - #clients=100 NonIID - #clients=20

Param Ratio 41% 31% 21% 41% 31% 21% 41% 31% 21%
FedLoRA 65.53 57.36 55.14 53.79 52.20 51.20 14.41 10.58 12.97
FedHM 59.43 58.40 58.52 43.35 41.84 41.62 16.88 15.04 14.13
FedLoRU 66.81 60.78 61.42 57.96 53.25 53.53 16.46 15.70 14.52

Here, At−1Bt−1 are the rank-r low-rank matrices, and A
(k)
d A

(k)
u and B

(k)
d B

(k)
u are rank-rA and

rank-rB low-rank matrices used to update At−1 and Bt−1. After local training, the server collects
A

(k)
d ,A

(k)
u , recovers the low-rank update matrix A

(k)
t ← At−1 + α

(k)
A A

(k)
d A

(k)
u , and finally ag-

gregates At ←
∑

k∈KM
p(k)A

(k)
t−1. The same process applies for the low-rank matrices B

(k)
d and

B
(k)
d . A detailed description of pFedLoRU and mFedLoRU algorithm can be found in Appendix B.

4 EXPERIMENTS

In this section, we extensively evaluate FedLoRU on pre-training and fine-tuning on different ho-
mogeneous and heterogeneous settings. We first provide the experiment setup such as baselines and
heterogeneous settings, then move on to the performance evaluation.

4.1 EXPERIMENT SETUP

Datasets and Baseline Algorithms We evaluate our proposed algorithms on four standard
datasets: Fashion MNIST (Xiao et al., 2017), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and Alpaca (Taori et al., 2023). ResNet-10 and ResNet-18 (He et al., 2016) are used for the image
datasets, and LLaMA2-3B (Touvron et al., 2023) is used for the language dataset. We compare Fed-
LoRU with several benchmarks: FedAvg (McMahan et al., 2017), the standard federated learning
algorithm that trains full-rank models; FedLoRA (Zhang et al., 2023), which trains low-rank mod-
ules without accumulating low-rank updates; and FedHM (Yao et al., 2021), the prior state-of-the-art
in communication-efficient federated learning. For pFedLoRU, we compare against pFedLoRA (Wu
et al., 2024), and for mFedLoRU, we compare with the model-heterogeneous version of FedHM.

Implementation During pre-training on the image datasets, we vary the number of clients be-
tween 20 and 400, sampling 50% of clients per round, as is standard in FL literature, with each
client training for 5 local epochs. For fine-tuning the language model, we use 10 clients with a
50% participation and 1 local epoch. The selection of local epochs balances the trade-off between
communication overhead and potential performance degradation. Learning rates are selected via
grid search, and different rank configurations are tested for FedHM, FedLoRA, and FedLoRU. In
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(a) Relative performance by K (b) Communication cost for target accuracy

Figure 3: Figure 3(a) presents the relative difference in test accuracy between two algorithms in
terms of the number of clients K. For example, the ralative difference of FedLoRU to FedAvg
is defined as FedLoRU−FedAvg

FedLoRU . For the detailed number, see Appendix D.4. Figure 3(b) evaluates
different low-rank federated learning algorithms in terms of the communication cost to achieve
target test accuracy. Here, ”X” indicates that the algorithm did not reach the target accuracy.

fact, while we use FedAvg as the training scheme, FedLoRU techniques can be easily integrated into
other federated learning schemes such as FedAdam and FedAdagrad (Reddi et al., 2020). For full
details of the implementation, including choice of α, τ , T , see Appendix C.

In the statistically heterogeneous setting, we generate disjoint Non-IID client data using a Dirichlet
distribution, Dir(ψ), with a concentration parameter ψ set to 0.5, as described in Hsu et al. (2019).
For the model heterogeneous setting, we simulate virtual environments where each client is assigned
a different nominal rank, thereby restricting them to use low-rank update matrices of varying ranks.
The specific configurations for these settings are detailed in Table A3.

4.2 PERFORMANCE EVALUATION

Performance of Pre-training We evaluate the Top-1 accuracy of models with varying parameter
sizes in both IID and Non-IID scenarios across different federated learning configurations. Table 1
shows the performance of FedLoRU and baseline algorithms.

In our experimental evaluation, FedLoRU consistently achieves competitive or superior accuracy
compared to FedAvg, whose results can be found in Appendix D. Although FedLoRU’s accuracy is
slightly lower than FedAvg’s in most settings, the difference is minimal given the significant reduc-
tion in parameters, with at most a 5% decrease and typically only a 1-2% difference. Notably, in
the CIFAR-10 and CIFAR-100 IID settings with 100 clients, FedLoRU surpasses FedAvg. Overall,
FedLoRU achieves the best accuracy in 20 out of 27 cases and demonstrates improvements over
FedHM ranging from -6% to 33.7%. Additionally, FedLoRU consistently outperforms FedLoRA,
highlighting the effectiveness of accumulating low-rank updates. The client regularization effect of
FedLoRU, as predicted by our theoretical analysis, suggests that using client-side low-rank updates
is particularly beneficial in environments with a large number of clients. This benefit is evident in
experiments under IID conditions with 100 clients, where FedLoRU attains the highest accuracy
among the tested methods.

Scalability and Performance of FedLoRU in Large-Client Federated Learning Table A5 and
Figure 3(a) compare FedAvg and FedLoRU in varying cross-device FL settings, where many small
edge devices collaboratively train a model. As the number of clients increases, the scalability of
algorithms become critical. Our experiments show a sharp decline in FedAvg’s performance, with
Top-1 accuracy dropping from 69.97% at K = 20 to just 21.44% at K = 400. This indicates
FedAvg struggles to maintain accuracy in cross-device FL.

In contrast, FedLoRU outperforms FedAvg as the number of clients increases. While FedAvg
slightly outperforms FedLoRU with smaller numbers of clients (K = 20 and K = 50), FedLoRU
consistently surpasses FedAvg when the client count ranges fromK = 100 toK = 400. The widen-
ing performance gap as K increases highlights FedLoRU’s superior scalability and effectiveness in
large-scale federated learning, especially with extensive client participation.

9
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Figure 4: Loss curve of
FedLoRU and FedLoRA for
fine-tuning LLaMA2-3B.

Performance of LLM Fine-tuning Figure 4 presents the loss
curves of FedLoRA and FedLoRU during the fine-tuning of a
LLaMA2-3B model on the Alpaca dataset. The train loss curves
show that both algorithms achieve similar convergence rates, with
minimal differences in training optimization. However, a notable dis-
tinction emerges in the test loss results, where FedLoRU consistently
outperforms FedLoRA after the 25th communication round.

In this fine-tuning experiment, we accumulate the results every 15
communication rounds. Notably, despite FedLoRU performing an
additional accumulation at round 30, the test loss does not show any
further improvement. This suggests that beyond a certain point, fur-
ther accumulation may not necessarily enhance the model’s general-
ization performance.

Performance of pFedLoRU and mFedLoRU In our experiments,
we evaluate the performance of pFedLoRU and mFedLoRU on statis-
tical heterogeneous and model heterogeneous FL environments. Ta-
ble 2 shows the performance of pFedLoRU and pFedLoRA. Under
both non-IID levels (ψ = 0.1 and ψ = 0.5), pFedLoRU shows a clear
advantage in terms of accuracy compared to pFedLoRA. In addition,
despite having less than half the number of parameters, pFedLoRU
consistently achieves higher accuracy.

Table 2: Comparison of pFedLoRA and pFedLoRU
with varying non-iidness (ψ) on CIFAR100.

Algorithm #params Non-IIDness
ψ = 0.1 ψ = 0.5

pFedLoRA(1) 11.22M 45.36 42.14
pFedLoRA(2) 11.22M 47.45 42.28
pFedLoRU 4.63M 49.65 46.50

Table 3: Comparison of FedHM and mFed-
LoRU in two model-heterogeneous setting.

Dataset Setting FedHM mFedLoRU

CIFAR-10 setting 1 88.09 84.81
setting 2 88.68 84.36

CIFAR-100 setting 1 49.84 51.16
setting 2 50.52 50.89

On the other hands, Table 3 shows the performanec of mFedLoRU and FedHM. FedHM outper-
forms mFedLoRU in both heterogeneous settings (setting 1 and setting 2) for the CIFAR-10 dataset,
indicating that FedHM handles model heterogeneity more effectively for simpler tasks. This sug-
gests that FedHM is better suited for less complex datasets such as CIFAR-10, where its approach
proves more efficient. However, mFedLoRU outperforms FedHM in both heterogeneous settings
for the more complex CIFAR-100 dataset, demonstrating its potential in addressing the model-
heterogeneous problem in federated learning. A key advantage of mFedLoRU is that it does not
require additional computational steps, such as the weight factorization used in FedHM, making it a
more efficient solution in scenarios involving more challenging tasks.

5 CONCLUSION

In this paper, we theoretically show that client-side optimization exhibits a higher-rank structure
compared to server-side optimization and hypothesize that using low-rank updates in client-side op-
timization can promote an implicit regularization effect across clients. We are the first to establish a
theoretical foundation supporting the use of low-rank updates in federated learning. Our proposed
algorithm, FedLoRU, achieves comparable performance to FedAvg while significantly reducing the
number of communicated parameters. Moreover, as the number of clients increases, FedLoRU con-
sistently outperforms FedAvg, highlighting its scalability and effectiveness in large-scale federated
learning environments.

We further extend our approach by introducing two algorithm variants: pFedLoRU and mFedLoRU,
which generalize low-rank updates to address statistical and model heterogeneity, respectively. Fu-
ture work can focus on investigating the relationship between the accumulation schedule and perfor-
mance in FedLoRU, as well as exploring the connection between different ranks and accumulation
schedules to further optimize the algorithm’s efficiency and performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sheikh Shams Azam, Seyyedali Hosseinalipour, Qiang Qiu, and Christopher Brinton. Recycling
model updates in federated learning: Are gradient subspaces low-rank? In International Confer-
ence on Learning Representations, 2021.

Nicholas P Baskerville, Jonathan P Keating, Francesco Mezzadri, Joseph Najnudel, and Diego
Granziol. Universal characteristics of deep neural network loss surfaces from random matrix
theory. Journal of Physics A: Mathematical and Theoretical, 55(49):494002, 2022.

Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low
rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521, 2011.
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A PROOF OF THE MAIN THEOREM

In this section, we provide proofs of Proposition A.4 Proposition 3.1 and Theorem 3.2. We begin by
presenting some lemmas that will be required for our analysis, then proceed to prove the propositions
and the theorem.

Lemma A.1 (Theorem 2.2 from Pielaszkiewicz & Singull (2015)). Let µn be a sequence of proba-
bility measures on R and let gµn denote the Stieltjes transform of µn. Then

a) if µn → µ weakly, where µ is a measure on R, then gµn(z)→ gµ(z) pointwise for any z ∈ {z :
z ∈ C, I(z) > 0}

b) if gµn(z) → g(z) pointwise, for all z ∈ {z : z ∈ C, I(z) > 0}, then there exists a unique
non-negative and finite measure such that g = gµ and µn → µ weakly

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lemma A.2 (Theorem 3.4 from Baskerville et al. (2022)). Let X be an N ×N real symmetric ran-
dom matrix and let D be an N ×N symmetric matrix(deterministic or random). Let µ̂X , µ̂D be the
empirical spectral measures of the sequence of matrices X,D and assume there exist deterministic
limit measures µX , µD. Assume that X has QUE and µ̂X concentrates in the sense that

P(W1(µ̂X , µX) > δ) ≤ e−Nτf(δ)

where τ > 0 and f is some positive increasing function. Then H = X +D has a limiting spectral
measure and it is given by the free convolution µXµD

Lemma A.3 (Weyl’s inequality). For Hermitian matrices A,B ∈ CR×n and i, j ∈ {1, c . . . , n},
λi+j−1(A+B) ≤ λi(A) + λj(B), i+ j ≤ n+ 1, (10)
λi+j−n(A+B) ≥ λi(A) + λj(B), i+ j ≥ n+ 1, (11)

where λi(A) is i-th eigenvalue of A.

A.1 FURTHER DISCUSSION ON Ω(θ1, · · · , θk).

In our theoretical analysis, we show the difference in stable rank between the Hessians of a server
and a client eventually becomes positive as dimension R approaches infinity within the space of
Ω(θ1, · · · , θk). In this section, we will discuss about the richness of Ω(θ1, · · · , θk) and characteris-
tics of ΩR(θ1, · · · , θk). They are defined as:

ΩR(θ1, · · · , θk) = {(hR, ωR) : Htrue(h
R, ωR) has eigenvalues θ1, · · · , θk}, (12)

Ω(θ1, · · · , θk) =
⋃
R

ΩR(θ1, · · · , θk). (13)

In fact, the set of all possible pairs (hR, ωR) is represented by the union over all dimensions R,
integers k ≤ R, and non-zero real values θ1, · · · , θk as follows:

{(hR, ωR) : dimension R <∞} =
∞⋃

R=1

R⋃
k=1

⋃
(θ1,··· ,θk)∈Rk

ΩR(θ1, · · · , θk).

Thus, for any given pair (hR, ωR), there exist θ1, · · · , θk such that (hR, ωR) ∈ ΩR(θ1, · · · , θk).
According to the following proposition, either the set Ω(θ1, · · · , θk) is empty or there exist infinitely
many values of R for which ΩR(θ1, · · · , θk) ̸= ∅.
Proposition A.4. Let θ1, · · · , θk be fixed non-zero real numbers, and suppose there exists R̃ > k

such that ΩR̃(θ1, · · · , θk) is non-empty. Then there are infinitely many R such that ΩR(θ1, · · · , θk)
is non-empty. In particular, ΩR(θ1, · · · , θk) is non-empty for all R ≥ R̃.

Proof. Suppose (hR̃, ωR̃) ∈ ΩR̃(θ1, · · · , θk), i.e., Htrue(h
R̃, ωR̃) has non-zero eigenvalues

θ1, · · · , θk. To construct a prediction function hR̃+1 and a weight ωR̃+1 of dimension R̃ + 1 such
that the true Hessian retains the same non-zero eigenvalues, define:

hR̃+1(ωR̃, z) = hR̃(ωR̃) + gR̃+1(ωR̃, z) (14)

ωR̃+1 = (ωR̃, z) (15)

where ∇2
∫
ℓ(gR̃+1(x; (ωR̃, z)),y)dψ(x,y) = 0 ensures that the second derivative with respect

to the new function gR̃+1 vanishes. Thus, since hR̃+1 and hR̃ share the same true Hessian, except
for the intersecting zero-row and zero-column—which have no impact on the eigenvalues of the
Hessian—it follows that (hR̃+1, ωR̃+1) ∈ ΩR̃+1(θ1, · · · , θk). Specifically, if we consider feed-
forward neural networks as prediction functions, one can easily construct a larger neural network that
maintains the same non-zero eigenvalues by adding an additional neuron with a single connection
to a neuron in the previous layer. This additional neuron does not affect the final output, thereby
preserving the desired eigenvalue properties.

14
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A.2 PROOF OF PROPOSITION 3.1

To prove Proposition 3.1, we decompose the eigenvalue analysis into two distinct parts. First, we
demonstrate that the i-th eigenvalues, where i ∈ {p + 1, · · · , P − q − 1}, converge to the upper
or lower bounds of the spectral density of µN . This portion of the proof parallels the approach em-
ployed by Benaych-Georges & Nadakuditi (2011). Second, we show that the remaining eigenvalues
converge to the Stieltjes transformation. This part of the proof follows the methodology outlined by
Baskerville et al. (2022).

Proof. In the proof, we drop dependency on (hR, ωR) since it is clear. First, consider λi(HN )
where p < i < R− q. By using Lemma A.3, we have

λi(HN ) ≤ λ1+i−j(Htrue) + λ1+i−k(ϵ(N)), i ≤ R, i = j + k − 1, j, k ∈ {1, · · · , R} (16)
λi(HN ) ≤ λR+i−j(Htrue) + λR+i−k(ϵ(N)), i ≥ 1, i = j + k −R, j, k ∈ {1, · · · , R} (17)

If we put k = 1 + p on (16) and k = R − q on (17), since λ1+p(Htrue) = 0 and λR−q(Htrue) = 0,
we deduce

λi+q(ϵ(N)) ≤ λi(HN ) ≤ λi−p(ϵ(N)), ∀i ∈ {1, · · · , R} (18)

where λk(ϵ(N)) = −∞ if k > R and +∞ if k ≤ 0. Additionally, since ϵ(N) has the limiting
spectral density µN and LN , UN are lower and upper bound of µN , we have for all 1 ≤ i ≤ R,

lim inf
R→∞

λi(ϵ(N)) ≥ UN and lim sup
R→∞

λR+1−i(ϵ(N)) ≤ LN (19)

λ1(ϵ(N))→ UN and λP (ϵ(N))→ LN (20)

From the above relations, it follows that for all fixed 1 ≤ i ≤ R, λi(ϵ(N)) → UN and
λR+1−i(ϵ(N))→ LN . By (18), we have

lim inf
n→∞

λi(HN ) ≥ UN and lim sup
n→∞

λi(HN ) ≤ LN (21)

and for all i > p (resp. i ≥ q) fixed, we have

λi(HN )→ UN (resp. λR−i(HN )→ LN ) (22)

Now, we are going to prove the remaining eigenvalues λi(HN ), where i ∈ {1, · · · , p, R − q +
1, · · ·R}. Note that, since p+q ≪ R whenR is large enough, the limiting spectral density ofHtrue

converges to ν = δ0.

Consider λi(HN ) where i ≤ p or i ≥ R − q. By the Lemma A.2, the limiting spectral density
µHN

of HN is µNν where µN is the limiting spectral density of ϵ(N). Then by the Lemma A.1,
the Stieltjes transform gµHN

(z) converges pointwise to gνµN
(z) for any z ∈ {z : z ∈ C, I(z) > 0}.

Therefore, we have

ĝHN (hR,ωR)(z) = gµHN
(hR,ωR)(z) + o(1)

= gµN (hR,ωR)ν(hR,ωR)(z) + o(1)

= gν(hR,ωR)(k(z)) + o(1)

= ĝHtrue(hR,ωR)(k(z)) + o(1)

(23)
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where k is the subordination function such that gµNν(z) = gν(k(z)).

Let λ ∈ R\supp(µNν) be an eigenvalue of HN . Then ĝHN
has a singularity at λ, thus ĝHtrue has a

singularity at k(λ), thus, for any R, this singularity should persist and k(λ) must coincide with one
of the outliers ofHN , i.e., θi is an outlier eigenvalue ofHtrue if and only if there exists an eigenvalue
λ of HN contained in R\supp(µNν) such that k(λ) = θi. Thus, we can write the outliers of HN as

{k−1(θj) : k
−1(θj) ∈ R\supp(µNν)} (24)

Note that supp(µNν) = supp(µNδ0) = supp(µN ). Now, we want to find the form of k−1(θj).
From the subordination function relation, we have

k−1(θ) = g−1
µNν(gν(θ))

= RµN
(gν(θ) + g−1

ν (gν(θ))

= RµN
(1/θ) + θ

(25)

Note that by the definition of Stieltjes transformation andR-transform gν(θ) = gδ0(θ) = 1/θ.

Let m(µ)
n be the n-th moment of a distribution µ and C(µ)

n be the n-th cumulant of µ. Then we have
the relationship between m(µ)

n and C(µ)
n ([3]) as

m(µ)
n =

n∑
r=1

∑
0≤i1,··· ,ir≤n−r
i1+···+ir=n−r

C(µ)
r

[
Πr

j=1m
(µ)
ij

]
(26)

Therefore, from the moment’s scaling property, mµN
n = s(N)nmµ

n, we can deduce the scaling
relation property of the cumulants, C(µN )

n = s(N)nC
(µ)
n , therefore we have the scaling property of

R-transform:

RµN
(θ) = s(N)Rµ(s(N)θ) (27)

Finally, we have a expression for the outliers of HN as

k−1(θ) = s(N)Rµ(s(N)/θ) + θ (28)

A.3 PROOF OF THEOREM 3.2

Proof. Suppose α and β be the size of sets {i > p : λi(HN ) → UN} and {i ≥ q : λR−i(HN ) →
LN} respectively, and aN and bN be integers such that

g−1
N (θaN

) >UN > g−1
N (θaN+1)

g−1
N (θp+q−bN ) >LN > g−1

N (θp+q−bN+1)
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and we can define aM and bM in the similar manner. Then we have

aN︷ ︸︸ ︷
θ1 > · · · > θaN

>

p−aN︷ ︸︸ ︷
θaN+1 > · · · > θp > 0 >

q−bN︷ ︸︸ ︷
θp+1 > · · · > θp+q−bN >

bN︷ ︸︸ ︷
θp+q−bN+1 > · · · > θp+q

(29)
aM︷ ︸︸ ︷

θ1 > · · · > θaM
>

p−aM︷ ︸︸ ︷
θaM+1 > · · · > θp > 0 >

q−bM︷ ︸︸ ︷
θp+1 > · · · > θp+q−bM >

bM︷ ︸︸ ︷
θp+q−bM+1 > · · · > θp+q

(30)

WLOG, we can assume ∥θ1∥ > ∥θp+q∥ and define g−1
M (θj) = θj + s(M)Rµ(s(M)θ−1

j ). We will
consider the limiting stable rank of the Hessians. From Proposition 3.1, the stable ranks of Hessians
converges to the limiting stable ranks ˆsrank(HN ) and ˆsrank(HM ). Since aN > aM and bN < bM ,
we can express the difference of the limiting stable rank of HN and HM as

ˆsrank(HM )− ˆsrank(HN )

=

aM∑
j=2

{(
g−1
M (θj)

g−1
M (θ1)

)2

−
(
g−1
N (θj)

g−1
N (θ1)

)2
}

+

aN∑
j=aM+1

{(
UM

g−1
M (θ1)

)2

−
(
g−1
N (θj)

g−1
N (θ1)

)2
}
+

p+α∑
j=aN+1

{(
UM

g−1
M (θ1)

)2

−
(

UN

g−1
N (θ1)

)2
}

+

bM∑
j=1

{(
g−1
M (θp+q+1−j)

g−1
M (θ1)

)2

−
(
g−1
N (θp+q+1−j)

g−1
N (θ1)

)2
}
+

bN∑
j=bM+1

{(
LM

g−1
M (θ1)

)2

−
(
g−1
N (θp+q+1−j)

g−1
N (θ1)

)2
}

+

q+β∑
j=bN+1

{(
LM

g−1
M (θ1)

)2

−
(

LN

g−1
N (θ1)

)2
}
(31)

We have six summation terms in (31) and will show each term is negative.

(i) Consider the first term in (31):

S1 =

aM∑
j=2

{(
g−1
M (θj)

g−1
M (θ1)

)2

−
(
g−1
N (θj)

g−1
N (θ1)

)2
}

We will show each term Fj =
(

g−1
M (θj)

g−1
M (θ1)

)2
−
(

g−1
N (θj)

g−1
N (θ1)

)2
in the summation is negative. We can

expand Fj as follow:

Fj =

(
g−1
M (θj)

g−1
M (θ1)

)2

−
(
g−1
N (θj)

g−1
N (θ1)

)2

=

(
g−1
M (θj)

g−1
M (θ1)

+
g−1
N (θj)

g−1
N (θ1)

)(
g−1
M (θj)

g−1
M (θ1)

−
g−1
N (θj)

g−1
N (θ1)

)
=

(
g−1
M (θj)

g−1
M (θ1)

+
g−1
N (θj)

g−1
N (θ1)

)(
g−1
M (θj)g

−1
N (θ1)− g−1

N (θj)g
−1
M (θ1)

g−1
M (θ1)g

−1
N (θ1)

) (32)

To verify the sign of Fj , we have to focus on the numerator of the second part of multiplicative term.
We can simplify the numerator part as

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

g−1
M (θj)g

−1
N (θ1)− g−1

N (θj)g
−1
M (θ1)

= θ1
{
s(N)Rµ(s(N)θ−1

j )− s(M)Rµ(s(M)θ−1
j )
}
+ θj

{
s(M)Rµ(s(M)θ−1

1 )− s(N)Rµ(s(N)θ−1
1 )
}

+ s(N)s(M)
{
Rµ(s(M)θ−1

1 )Rµ(s(N)θ−1
j )−Rµ(s(N)θ−1

1 )Rµ(s(M)θ−1
j )
}

Consider the term:
Fj,1 = θ1

{
s(N)Rµ(s(N)θ−1

j )− s(M)Rµ(s(M)θ−1
j )
}
+θj

{
s(M)Rµ(s(M)θ−1

1 )− s(N)Rµ(s(N)θ−1
1 )
}

We know the R-transform can be expressed as power series as

Rµ(s(N)θ−1) =

∞∑
n=1

C(µ)
n

(
s(N)

θ

)n−1

where C(µ)
n is the n-th cumulant of µ. Then we can calculate Fj,1 as

Fj,1 =

∞∑
n=1

C(µ)
n (s(N)n − s(M)n) θ1 · (1/θj)n−1 −

∞∑
n=1

C(µ)
n (s(N)n − s(M)n) θj · (1/θ1)n−1

=

∞∑
n=1

C(µ)
n (s(N)n − s(M)n)

(
θ1 ·

(
1

θj

)n−1

− θj ·
(

1

θ1

)n−1
)

Since θ1 > θj and s(N) < s(M), we can easily show that Fj,1 is negative. Next, consider the term:

Fj,2 = Rµ(s(N)θ−1
j )Rµ(s(M)θ−1

1 )−Rµ(s(M)θ−1
j )Rµ(s(N)θ−1

1 )

By using the power series expression ofR-Transform, we have

Fj,2 =

∞∑
n=1

C(µ)
n

(
s(M)

θ1

)n−1 ∞∑
n=1

C(µ)
n

(
s(N)

θj

)n−1

−
∞∑

n=1

C(µ)
n

(
s(N)

θ1

)n−1 ∞∑
n=1

C(µ)
n

(
s(M)

θj

)n−1

We know that when
∑∞

1 an and
∑∞

1 bN converges, then

∞∑
1

an

∞∑
1

bn =

∞∑
n=1

n∑
k=1

akbn−1+1

Therefore, we have

Fj,2 =

∞∑
n=1

n∑
k=1

C
(µ)
k C

(µ)
n−k+1

(
s(N)

θj

)k−1(
s(M)

θ1

)n−k

−
∞∑

n=1

n∑
k=1

C
(µ)
k C

(µ)
n−k+1

(
s(M)

θj

)k−1(
s(N)

θ1

)n−k

=

∞∑
n=1

n∑
k=1

C
(µ)
k C

(µ)
n−k+1

{(
s(N)

θj

)k−1(
s(M)

θ1

)n−k

−
(
s(M)

θj

)k−1(
s(N)

θ1

)n−k
}
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If we let T (n) =
∑n

k=1 C
(µ)
k C

(µ)
n−k+1

{(
s(N)
θj

)k−1 (
s(M)
θ1

)n−k

−
(

s(M)
θj

)k−1 (
s(N)
θ1

)n−k
}

, we

can write Fj,2 =
∑∞

n=1 T (n). We will show Fj,2 is negative by showing each T (n) is negative for
n = 2m and n = 2m+ 1, where m ∈ N. For n = 2m (m ∈ N),

T (n) = T (2m) =

2m∑
k=1

C
(µ)
k C

(µ)
2m−k+1

{(
s(N)

θj

)k−1(
s(M)

θ1

)2m−k

−
(
s(M)

θj

)k−1(
s(N)

θ1

)2m−k
}

=

m∑
k=1

[
C

(µ)
k C

(µ)
2m−k+1

{(
s(N)

θj

)k−1(
s(M)

θ1

)2m−k

−
(
s(M)

θj

)k−1(
s(N)

θ1

)2m−k
}

− C(µ)
2m−k+1C

(µ)
k

{(
s(N)

θj

)2m−k (
s(M)

θ1

)k−1

−
(
s(M)

θj

)2m−k (
s(N)

θ1

)k−1
}]

=

m∑
k=1

C
(µ)
k C

(µ)
2m−k+1

(
s(N)k−1s(M)2m−k − s(M)k−1s(N)2m−k

)( 1

θk−1
j θ2m−k

1

− 1

θ2m−k
j θk−1

1

)

We can easily show two conditions:

s(N)k−1s(M)2m−k − s(M)k−1s(N)2m−k > 0 ⇐⇒ 2m− 2k + 1 > 0

1

θk−1
j θ2m−k

1

− 1

θ2m−k
j θk−1

1

> 0 ⇐⇒ 2m− 2k + 1 < 0

Therefore, we can deduce T (2m) is negative.

For n = 2m+ 1 (m ∈ N),

T (n) = T (2m+ 1) =

2m+1∑
k=1

C
(µ)
k C

(µ)
2m−k+2

{(
s(N)

θj

)k−1(
s(M)

θ1

)2m−k+1

−
(
s(M)

θj

)k−1(
s(N)

θ1

)2m−k+1
}

(m+ 1)-th term of T (2m+ 1) is zero since it is symmetric, thus we can write T (2m+ 1) as

T (2m+1) =

m∑
k=1

C
(µ)
k C

(µ)
2m−k+2

(
s(N)k−1s(M)2m−k+1 − s(M)k−1s(N)2m−k+1

)( 1

θk−1
j θ2m−k+1

1

− 1

θ2m−k+1
j θk−1

1

)

We can show T (2m+ 1) is negative as similar way of T (2m). Therefore, Fj is negative.

(ii) Consider the second term in (31):

S2 =

aN∑
j=aM+1

{(
UM

g−1
M (θ1)

)2

−
(
g−1
N (θj)

g−1
N (θ1)

)2
}

We will show S2 is negative by showing each term in the summation Gj =

U2
M

{θ1+s(M)Rµ(s(M)θ−1
1 }2

−
{

θj+s(N)Rµ(s(N)θ−1
j )

θ1+s(N)Rµ(s(N)θ−1
1 )

}2

is negative. Since θj + s(M)Rµ(S(M)θ−1
j ) >

UM for all j ∈ {aM + 1, · · · , aN}, we have Gj < Fj < 0. Therefore, S2 is negative.
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(iii) Consider the third term in (31):

S3 =

p+α∑
j=aN+1

{(
UM

g−1
M (θ1)

)2

−
(

UN

g−1
N (θ1)

)2
}

= (p+ α− aN − 1)

(
U2
M{

θ1 + s(M)Rµ(s(M)θ−1
1

}2 − U2
N{

θ1 + s(N)Rµ(s(N)θ−1
1

}2
)

By using the fact UN/s(N) = UM/s(M), we can write the above term as

S3 = (p+ α− aN − 1)

(
U2
M{

θ1 + s(M)Rµ(s(M)θ−1
1

}2 − U2
M{

θ1 + s(N)Rµ(s(N)θ−1
1

}2 s(N)2

s(M)2

)

By using the power series expansion of R-Transform, we can easily show that Q = 0. For fourth,
fifth, and sixth terms in (31), they are negative in similar way of (i), (ii), and (iii). Therefore,
ˆsrank(HM )− ˆsrank(HN ) is negative.

B DETAIL OF THE ALGORITHMS

In this section, we provide a detailed explanation of personalized version and model-heterogeneous
version , including the datasets and hyperparameters used. The implementation is based on PyTorch.

B.1 PERSONALIZED FEDERATED LOW-RANK UPDATES (PFEDLORU)

Algorithm 2 pFedLoRU. W is a model, A0,B0 are initial global low-rank update matrices, L0,U0

are initial personal low-rank update matrices, αglobal, αper are the scaling factors, τ is an accumula-
tion cycle, T is the total training round

Require: W , L0, U0, A0, B0, αglobal, αper, τ , T
Initialize: Server sends W to each client.
for t = 1, · · · , T do

Server selects M clients KM and distributes At−1,Bt−1 to the clients in KM .
for each client k ∈ KM do

Local training:
Find L

(k)
t ,U

(k)
t by solving (7) starting from W + αglobalAt−1Bt−1 + αperL

(k)
t−1U

(k)
t−1.

Find A
(k)
t ,B

(k)
t by solving (8) starting from W + αglobalAt−1Bt−1 + αperL

(k)
t U

(k)
t .

Send A
(k)
t ,B

(k)
t to the server.

end for
Server aggregation: At ←

∑
k∈KM

p(k)A
(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t .

if t mod τ = 0 then
Server distributes At,Bt to all clients .
Each client k updates its local copy of the global model: W ←W + αglobalAtBt

end if
end for
Return: W +

∑T
t=1: t mod τ=0 AtBt +L

(k)
T U

(k)
T for all client k

The pFedLoRU algorithm enables each client k to train a personalized model adapted to its data
distribution. In pFedLoRU, client k retains global low-rank update matrices A(k) and B(k) for
updating the shared model, as well as personalized low-rank update matrices L(k) and U (k) for
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learning the personalized model. The communication between the server and clients involves only
the low-rank matrices A(k) and B(k), which substantially reduces communication overhead. These
matrices, A(k) and B(k), are aggregated to update the local copy of the global model W . Finally,
each client possesses a personalized model of the form W +L(k)U (k).

In practice, since the global model incorporates general knowledge from the all clients’ dataset, and
the personalized model is essentially a fine-tuned version of the global model, we typically assign
higher ranks to A(k) and B(k). Additionally, although we use the same rank for L(k) and U (k)

across all clients in our experiments, each client can, in practice, use different ranks based on the
complexity and size of their local dataset. It is also noteworthy that different ranks for A(k) and
B(k) can be employed by integrating pFedLoRU and mFedLoRU.

B.2 MODEL-HETEROGENEOUS FEDERATED LOW-RANK UPDATES (MFEDLORU)

Algorithm 3 mFedLoRU. W is a model, A0,B0 are initial low-rank update matrices, α, α(k)
A , α

(k)
B

are scaling factors, τ is an accumulation cycle, T is the total training round.

Require: W , A0, B0, α, α(k)
A , α(k)

B , τ , T
Initialize: Server sends W to each client.
for t = 1, · · · , T do

Server selects M clients KM and distributes At−1,Bt−1.
for each client k ∈ KM do

Initializes nested low-rank updates A(k)
d , A(k)

u and B
(k)
d , B(k)

u .
Local training:
Find A

(k)
d , A(k)

u , B(k)
d , B(k)

u by solving (9)
starting from W + α(At−1 + α

(k)
A A

(k)
d A

(k)
u )(Bt−1 + α

(k)
B B

(k)
d B

(k)
u ).

Sends A(k)
d A

(k)
u and B

(k)
d B

(k)
u to the server.

end for
Recover rank-r low-rank updates from hierarchical low-rank updates:
A

(k)
t ← At−1 + α

(k)
A A

(k)
d A

(k)
u , B

(k)
t ← Bt−1 + α

(k)
B B

(k)
d B

(k)
u .

Server aggregation: At ←
∑

k∈KM
p(k)A

(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t .

if t mod τ = 0 then
Server distributes At,Bt to all clients.
Each client k updates its local model: W ←W + αAtBt.

end if
end for
Return: W +

∑T
t=1: t mod τ=0 AtBt.

Model-heterogeneous FedLoRU (mFedLoRU) algorithm enables each client k to utilize a rank tai-
lored to its resource constraints. Similar to FedLoRU, client k maintains low-rank update matrices
A(k) ∈ Rm×r and B(k) ∈ Rr×n, but employs recursive low-rank updates during training. Each
client k decides whether to use nested low-rank updates or not. If a client opts out of nested low-
rank updates, it updates its low-rank modules like in FedLoRU. However, if client k chooses nested
low-rank updates, it determines the locally adapted rank r(k)A , r

(k)
B < r based on its resources. At

each round, it initializes nested low-rank update matrices A
(k)
d ∈ Rm×r

(k)
A , A(k)

u ∈ Rr
(k)
A ×r and

B
(k)
d ∈ Rr×r

(k)
B , B(k)

u ∈ Rr
(k)
B ×n such that A(k)

d A
(k)
u = 0 and B

(k)
d B

(k)
u = 0. After local training

by solving (9), we can update client k’s original low-rank matrices as follows:

A(k) ← A(k) + α
(k)
A A

(k)
d A(k)

u , B(k) ← B(k) + α
(k)
A B

(k)
d B(k)

u (33)

After local training, to reduce communication overhead, the client does not recover its original low-
rank matrices directly. Instead, it sends the nested low-rank matrices to the server, which recovers
them into rank-r low-rank matrices A(k) ← A+ α

(k)
A A

(k)
d A

(k)
u , and B(k) ← B + α

(k)
B B

(k)
d B

(k)
u ,

and then performs aggregation using these rank-r low-rank matrices as in FedLoRU. By using this
strategy, the communication overhead is reduced from 2mn to r(m+n)+ rA(m+ r)+ rB(n+ r).
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B.3 PERSONALIZED FEDERATED LOW-RANK ADAPTATION (PFEDLORA)

Algorithm 4 pFedLoRA. W is a model, L0,U0 are initial personal low-rank update matrices, αper
is the scaling factor, T is the total training round.

Require: W , L0, U0, αper, T .
for t = 1, · · · , T do

Server selects M clients KM and distributes Wt−1 and client k initializes it
as a local copy of the global model.
for each client k ∈ KM do

Local training - pFedLoRA(1):
Find L

(k)
t ,U

(k)
t by solving (34) starting from Wt−1 + αperL

(k)
t−1U

(k)
t−1.

Find W
(k)
t by solving (35) starting from Wt−1 + αperL

(k)
t U

(k)
t .

Local training - pFedLoRA(2):
Find W

(k)
t ,L

(k)
t ,U

(k)
t together by solving (36) starting from Wt−1 + αperL

(k)
t−1U

(k)
t−1.

Send W
(k)
t to the server.

end for
Server aggregation: Wt ←

∑
k∈KM

p(k)W
(k)
t .

end for
Return: WT +L

(k)
T U

(k)
T for all client k.

We outline two variants of the personalized FedLoRA algorithm here. Both versions of pFedLoRA
follow a similar framework, where each client maintains a full-rank global model W and its own
personalization modules L(k) and U (k).

In pFedLoRA(1), the first variant, as suggested by Wu et al. (2024) and other FedLoRA algorithms,
the personalization modules are optimized separately from the global model. Specifically, the al-
gorithm first optimizes the personalization modules for Eper and subsequently optimizes the global
full-rank model for Eglobal by solving:

L
(k)
t ,U

(k)
t = argmin

L,U
f (k)(Wt−1 + αperLU) (34)

W
(k)
t = argmin

W
f (k)(W + αperL

(k)
t U

(k)
t ) (35)

However, pFedLoRA(1) has been found to be less effective compared to our modified version pFed-
LoRA(2). The second variant, pFedLoRA(2), optimizes both the personalization modules and the
global full-rank model simultaneously for E = Eper + Eglobal by solving:

W
(k)
t ,L

(k)
t ,U

(k)
t = argmin

W ,L,U
f (k)(W + αperLU) (36)

C DETAIL OF THE EXPERIMENT SETTING

In this section, we provide a detailed explanation of the experiments, including the datasets and
hyperparameters used. The implementation is based on PyTorch.

C.1 DATASETS AND MODELS

The federated learning experiments were performed using four datasets: Fashion-MNIST (FMNIST,
Xiao et al. (2017)), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Alpaca (Taori et al., 2023).
Detailed statistics for these datasets are provided in Table A1. The Alpaca dataset, consisting of
52,000 instruction and demonstration samples, was divided into 50,000 instances for training and
2,000 for testing in our fine-tuning experiment.
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Table A1: Description of datasets used in the experiments

Total Samples Samples per class
Dataset Number of Classes Training Validation Training Validation

FMNIST 10 60000 10000 6000 1000
CIFAR-10 10 50000 10000 5000 1000
CIFAR-100 100 50000 10000 500 100
Alpaca - 50000 2000 - -

We construct datasets for clients by evenly splitting the training data among K clients in a statisti-
cally homogeneous (i.e., iid) federated learning setting. For the heterogeneous statistical setting, we
follow the procedure outlined in Hsu et al. (2019), which involves applying latent Dirichlet alloca-
tion (LDA) over the dataset labels to create clients’ datasets. In this approach, each client is assigned
a multinomial distribution over the labels, from which its examples are sampled. The multinomial
distribution is drawn from a symmetric Dirichlet distribution with parameter ψ. For the non-iid
setting, we use ψ = 0.5 to simulate a severely heterogeneous environment.

Table A2: ResNet-10 and ResNet-18 architecture for image classification datasets.

Layer Name ResNet-10 ResNet-18
conv1 3×3, 64, stride 1, padding 1 3×3, 64, stride 1, padding 1

layer1
[

3× 3, 64
3× 3, 64

]
× 1

[
3× 3, 64
3× 3, 64

]
× 2

layer2
[

3× 3, 128
3× 3, 128

]
× 1

[
3× 3, 128
3× 3, 128

]
× 2

layer3
[

3× 3, 256
3× 3, 256

]
× 1

[
3× 3, 256
3× 3, 256

]
× 2

layer4
[

3× 3, 512
3× 3, 512

]
× 1

[
3× 3, 512
3× 3, 512

]
× 2

Table A2 illustrates the model architectures used in the experiments on Fashion MNIST (FMNIST),
CIFAR-10, and CIFAR-100. We employ ResNet-10 for FMNIST and ResNet-18 (Krizhevsky et al.,
2009) for CIFAR-10 and CIFAR-100. Each ResNet model includes a fully connected layer at the
end, and the total number of model parameters varies slightly depending on the number of classes in
the dataset. The parameter counts for the original models are as follows: ResNet-10 with 10 classes
has 4.90M parameters; ResNet-18 with 10 classes has 11.17M parameters; and ResNet-18 with 100
classes has 11.22M parameters. For fine-tuning on Alpaca, we utilize the pre-trained LLaMA2-3B
model (Touvron et al., 2023).

C.2 IMPLEMENTATION AND TRAINING DETAILS

Detailed implementation of FedLoRA, FedLoRU, and FedHM In FedLoRA, FedLoRU,
FedHM, and their variant algorithms, we apply low-rank factorization to the convolutional layers in
ResNet-based models and to the self-attention modules in LLaMA2-3B. Specifically, for ResNet10
and ResNet18, we factorize the convolutional layers in layer1 through layer4, and for LLaMA2-3B,
we factorize the self-attention modules in q proj, k proj, v proj, and o proj. We explore various
low-rank configurations, setting the ranks of the factorized modules to 16, 32, 64, and 128 for Fed-
LoRA and FedLoRU. We use rank r = 128 as the largest rank since our initial experiments showed
it to have the best performance/memory trade-off. For FedHM, since its factorization scheme dif-
fers from that of FedLoRA and FedLoRU, we determine equivalent rank factors that yield the same
number of trainable parameters as the ranks used in FedLoRA and FedLoRU.

We employ two strategies for initializing the low-rank update matrices in FedLoRU. For random ini-
tialization, as adopted in Hu et al. (2021), we initialize A with a random Gaussian distribution and
set B to zero, ensuring that AB is zero at the start. Alternatively, for momentum initialization, we
retain the existing weights of the matrices, continuing to use the previous low-rank update matrices.
This approach leverages momentum effects as described in the ReLoRA(Lialin et al., 2023). The
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scheduling of accumulations is also critical due to the varying nature of the training phases across
different rounds; in this study, we employ periodic accumulation with the accumulation cycle deter-
mined through a grid search over the values {20, 30, 40, 50, 60, 70, 80}, though this area warrants
further investigation. We assess the performance by evaluating Top-1 test accuracy across experi-
ments. In the non-iid setting, due to significant fluctuations in performance, we report the average
of the last five test accuracy values.

Federated learning setting The federated learning experiments were conducted using four
datasets: FMNIST, CIFAR-10, CIFAR-100, and Alpaca. The client sampling rate, representing
the proportion of clients selected per communication round, was set at 0.5 for all datasets. Each
client performed 5 local epochs per communication round on the image datasets with a batch size of
32, while client performed 1 local epochs on Alpaca with a batch size of 16.

For training FMNIST, CIFAR-10, and CIFAR-100, we utilized stochastic gradient descent (SGD)
with a momentum of 0.9 as the local optimizer. The learning rate was selected through a grid search
over 0.3, 0.2, 0.1, 0.05, 0.01, and a Cosine-Annealing learning rate scheduler was applied throughout
the training process, with a minimum learning rate of 0.001 and a cycle step set to 50 or the total
number of communication rounds. For fine-tuning LLaMA2-3B, we used AdamW (Loshchilov,
2017) as the local optimizer, with a learning rate of 3e-4 and betas set to (0.9, 0.999), without
employing a learning rate scheduler.

Fine-tuning setting We assess the fine-tuning performance of FedLoRA and FedLoRU using two
different ranks, 8 and 16. For the low-rank matrix factorization of LLaMA2-3B, we employ the
PEFT library (Mangrulkar et al., 2022). The percentage of trainable parameters is 0.124% for rank
8 and 0.248% for rank 16.

Model heterogeneous setting Here we describe the model heterogeneous settings used in our
experiments. To simulate varying client capabilities, we tested two different model heterogeneous
configurations in mFedLoRU experiments where the clients had different ranks, denoted as r, which
reflect the computational resources or constraints of each client. For FedHM, we match the number
of trainable parameters corresponding to the model with specific rank in mFedLoRU experiments.

Table A3: Detailed model heterogeneous settings in our experiments. Both settings include total 20
clients.

Rank of a client r = 128 r = 64 r = 32 r = 16

#Clients setting 1 5 5 5 5
setting 2 - 6 6 7

The motivation behind these settings was to establish a challenging model heterogeneous environ-
ment. This is particularly important as we observed that FedLoRU with r = 128 produces similar
results to FedAvg with a full-rank model. Therefore, these configurations were designed to test the
algorithm’s adaptability under more demanding and diverse client conditions. In addition, we set αA

and αB to satisfy αA/rA = αA/rB = 1/2, as our empirical observations indicate that the choice of
α values in the range of 1/4 to 1 has minimal effect on overall performance.

C.3 DETAIL OF THE ESTIMATED STABLE RANK EXPERIMENT

We conduct an experiment to support our theoretical analysis that the Hessians of loss functions
trained on smaller datasets exhibit larger stable ranks. In this experiment, we randomly select either
50 or 500 samples from the CIFAR-100 dataset and train a ResNet-18 model using only these 50 or
500 samples. Every 5 epochs, we compute an estimated stable rank of the Hessian, as calculating
the true stable rank is computationally challenging due to the need to determine all singular values.
Instead, we estimate the empirical spectral density using pyhessian (Yao et al., 2020), which provides
the empirical singular values σi(H) of a Hessian H and their corresponding densities p(σi), i =
1, · · · , Q. Based on this, we calculate the estimated stable rank as follows:
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ˆsrank(H) =

∑Q
i=1 p(σi) σ

2
i (H)

p(σ1) σ2
1(H)

(37)

Figure 2(b) shows the results of the experiment, demonstrating that the Hessians trained on the
smaller dataset (n = 50) consistently exhibits higher estimated stable ranks compared to those
trained on the larger dataset (n = 500).

D FURTHER DISCUSSION ON EXPERIMENT RESULTS

In this section, we present learning curve plots and additional experimental results that were not
included in the main text. Furthermore, we provide a more detailed analysis and discussion of the
experimental outcomes.

D.1 EXPERIMENT RESULTS FOR FEDAVG

To emphasize the comparison between FedLoRU and other communication-efficient federated learn-
ing algorithms, we have excluded the FedAvg experiment results from the main text. The FedAvg
outcomes are instead provided in Table A4.

Table A4: Top-1 test accuracy of FedAvg under different federated learning settings and datasets

Dataset FMNIST CIFAR-10 CIFAR-100

FL setting
IID - K=20 91.81 93.48 69.97

IID - K=100 90.19 85.14 55.14
NonIID - K=20 80.03 79.65 19.18

From Table 1 and Table A4, we observe that FedAvg consistently performs well across different
datasets and settings, but its performance tends to drop as the number of clients increases and in
non-IID scenarios. For example, in the CIFAR-100 dataset under the IID setting with 100 clients,
FedAvg achieves a test accuracy of 55.14%, while its accuracy drops significantly to 19.18% in
the non-IID setting with 20 clients. This illustrates FedAvg’s limitations in handling large client
numbers and heterogeneous data distributions.

In comparison, FedLoRU demonstrates competitive performance relative to FedAvg. While Fed-
LoRU is at most 5% less accurate than FedAvg in some cases, it sometimes outperforms FedAvg,
particularly in scenarios with a larger number of clients. For instance, in the CIFAR-100 IID setting
with 100 clients, FedLoRU achieves a test accuracy of 57.96%, which surpasses FedAvg’s accuracy
of 55.14%. This suggests that FedLoRU’s low-rank update approach scales better with an increasing
number of clients and is more robust in large-scale federated learning environments.

D.2 LEARNING CURVE PLOTS FOR IID SETTING

We present the test accuracy curves for experiments conducted under a statistically homogeneous
setting. Figure A1 and Figure A2 shows the test accuracy w.r.t. communication round under iid
setting. The fluctuations observed in the graphs are attributable to the use of a cosine-annealing
learning rate scheduler.

D.3 DISCUSSION ON COMMUNICATION COST

One of the main motivation of FedLoRU is to reduce the communication cost by using low-rank
updates while maintaining reasonable performances. When the original weight matrix W ∈ Rm×n

requires mn parameters to be communicated, FedLoRU with rank r requires r(m+ n) parameters.
Additionally, as we can see in Figure A1 and Figure A2, convergence speed is similar to FedAvg,
resulting much lower communication overheads.

Building on the motivation to reduce communication costs, Figure 3(b) compares the communi-
cation overheads across several federated learning algorithms—FedAvg, FedHM, FedLoRA, and
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(a) FMNIST - IID - K=20 (b) CIFAR-10 - IID - K=20 (c) CIFAR-100 - IID - K=20

Figure A1: The test accuracy v.s. communication round under IID and K=20 setting.

(a) FMNIST - IID - K=100 (b) CIFAR-10 - IID - K=100 (c) CIFAR-100 - IID - K=100

Figure A2: The test accuracy v.s. communication round under IID and K=100 setting.

FedLoRU—using the CIFAR-10 and CIFAR-100 datasets. The figure evaluates the communication
cost in gigabytes (GB) required to reach specific target test accuracy (denoted as T%) for different
numbers of clients (K) and datasets. We compute the communication cost as 2 × (#clients) × (par-
ticipation rate)× (#parameters)× (parameter memory size)× (#round). It is evident that FedLoRU
consistently achieves significantly lower communication costs compared to the other methods.

D.4 RELATIVE DIFFERENCE IN PERFORMANCE IN TERMS OF THE NUMBER OF CLIENTS

Table A5 presents a comparison of test accuracy between FedAvg, FedLoRA, and FedLoRU across
varying client numbers, illustrating the relative performance of these algorithms as the number of
clients increases. FedLoRU consistently outperforms FedAvg when the number of clients exceeds
100, demonstrating its scalability and effectiveness in cross-device federated learning environments.
Interestingly, even FedLoRA, which does not accumulate low-rank updates as in FedLoRU, outper-
forms FedAvg, particularly when the number of clients reaches 200 and above. This result suggests
that simply adopting low-rank updates in cross-device FL can significantly improve performance.
These findings align with our theoretical insights, highlighting the potential benefits of leveraging
low-rank structures in federated learning, even without the accumulation strategy employed by Fed-
LoRU.

Table A5: A comparison between FedAvg, FedLoRA, and FedLoRU accuracy across varying client
numbers. The ratio is the relative difference in accuracy between two algorithms. Here, we compute
the ratio of FedLoRA and FedLoRU compared to FedAvg. For example, ratio of FedLoRU is defined
as Ratio = FedLoRU−FedAvg

FedLoRU .

FedLoRA FedLoRU
#Clients FedAvg acc ratio acc ratio

20 69.97 65.53 -0.063 66.81 -0.046
50 64.68 59.87 -0.074 62.45 -0.034

100 55.14 53.79 -0.024 57.96 +0.051
200 38.85 42.42 +0.092 44.85 +0.154
300 24.94 32.69 +0.311 36.79 +0.475
400 21.44 31.41 +0.465 35.86 +0.673
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