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Abstract—Adversarial training, which minimizes
the loss of adversarially-perturbed training examples,
has been extensively studied as a solution to improve
the robustness of deep neural networks. However,
most adversarial training methods treat all training
examples equally, while each example may have a
different impact on the model’s robustness during
the course of adversarial training. A couple of recent
works have exploited such unequal importance of
adversarial samples to the model’s robustness by
proposing to assign more weights to the misclassified
samples or to the samples that violate the margin
more severely, which have been shown to obtain high
robustness against untargeted PGD attacks. However,
we empirically find that they make the feature spaces
of adversarial samples across different classes overlap
and thus yield more high-entropy samples whose
labels could be easily flipped. This makes them more
vulnerable to adversarial perturbations, and their
seemingly good robustness against PGD attacks is
actually achieved by a false sense of robustness.
To address such limitations, we propose simple yet
effective re-weighting scheme that weighs the loss for
each adversarial training example proportionally to
the entropy of its predicted distribution to focus on
examples whose labels are more uncertain.

I. INTRODUCTION

The deep neural networks often output incorrect
predictions even with small perturbations to the
input examples [1], despite their impressive per-
formances in a variety of real-world applications.
This adversarial vulnerability is a crucial problem
in deploying them to safety-critical real-world
applications, such as autonomous driving or medical
diagnosis. To tackle the adversarial vulnerability
problem, various approaches have been proposed
to ensure the robustness of the trained networks
against adversarial attacks [2, 3, 4, 5, 6, 7, 8].

The most promising approach to improve the
adversarial robustness of deep networks is adver-
sarial training, which trains the model to minimize
the loss on the adversarially perturbed examples.
Goodfellow et al. [10], early work on this topic,
propose to train the model with samples attacked
with the Fast Gradient Sign Method (FGSM), which
applies a perturbation to a given clean sample
in the direction of the gradient. Following this
work, various adversarial defense algorithms have
been suggested. For example, Adversarial Training
(standard AT) [2] uses a min-max formulation where
the examples are perturbed with the loss maximiza-
tion objective with the Projected Gradient Descent
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Figure 1: Distribution of the entropy for the
adversarial samples obtained with different re-
weighting methods. Previous re-weighting approach
(MART [5], GAIRAT [9]) induces a large number of high
entropy examples than standard AT [2] which may cause
vulnerability against the targeted attack.

(PGD) attack. Further, TRADES [3] demonstrates
the trade-off between clean accuracy and robustness,
and proposes to minimize the Kullback-Leibler
divergence between the prediction on the clean
example and its adversarial counterpart, to achieve
robustness against adversarial perturbations.

In natural image classification training, some
works have shown that only a small portion of
examples from the training set contribute to the
generalization performance [11], where each sample
has a different impact on the model’s final perfor-
mance. Similarly, it is also natural to assume that
some training examples are more important than
others, in enhancing the adversarial robustness of
the adversarially trained model.

Based on this intuition, previous studies suggest
identifying such robustness-critical instances, to
assign more weights on them during adversarial
training. To name a few, Wang et al. [5] argue
that misclassified clean samples are more important
in achieving robustness and impose larger KL-
divergence regularization on them (MART). On the
other hand, Zhang et al. [9] suggests assigning more
weights to examples that were close to the decision
boundary before the adversarial attack (GAIRAT).
These methods have shown to achieve impressive
robustness against untargeted PGD attacks.

However, we discover that the re-weighting
scheme in MART and GAIRAT creates a false
sense of robustness. In short, while they appear



Figure 2: Overview of EWAT. EWAT weighs more on the uncertain examples which have large entropy (red)
while adjusting relatively low weights on the low entropy examples (blue). For standard AT, weighting is applied on
the cross-entropy loss. For TRADES, weighting is applied on the Kullback-Leibler loss.

more robust against untargeted PGD attacks, they
become more vulnerable to other types of adversar-
ial attacks, such as logit scaling attack [12] and
AutoAttack [13], compared to standard AT. We
further show that these re-weighting schemes make
the feature spaces of adversarial samples belonging
to different classes overlap (Figure 3) and thus
increase the entropy of the adversarially-perturbed
training examples (Figure 1).

Such high-entropy samples are more vulnerable
to targeted adversarial attacks, since their predicted
labels are uncertain, and could be flipped with less
effort. Based on this observation, we propose a
simple yet effective re-weighted adversarial training
method that improves the model’s robustness in
re-weighting against both untargeted attack and
targeted attack, which assigns a weight to each
adversarially-perturbed sample based on the entropy
of its predicted distribution. Specifically, our method
assigns larger weights to training examples with
high entropies (Figure 2).

The experimental validation of our re-weighted
adversarial training scheme, named Entropy-
Weighted Adversarial Training (EWAT), verifies
that it improves the robustness of the existing
adversarially-trained models on multiple benchmark
datasets (MNIST, CIFAR10, and CIFAR100). Our
instance-weighting scheme is simple to implement,
compute, and use, while improving the robustness
without any additional computational cost. In sum-
mary, the contributions of this paper are as follows:

• We show the previous re-weighting schemes
are suboptimal and induce vulnerability against
the AutoAttack and logit scaling attack com-
pared to standard AT.

• We discover evidence that previous re-
weighting schemes make samples gather
around the decision boundary with high entropy
that leads to a vulnerability against strong
attacks.

• Based on these observations, we further pro-
pose a surprisingly simple, yet effective en-
tropy weighting scheme that can enhance the
adversarially trained model’s robustness, which

weighs the loss of adversarial samples with
respect to their entropy.

II. RELATED WORK

a) Adversarial robustness: Szegedy et al. [1]
firstly showed that deep neural networks for image
classification are vulnerable to imperceptible small
perturbations applied to input images. To achieve
robustness against such adversarial attacks, Good-
fellow et al. [10] proposed the Fast Gradient Sign
Method (FGSM), which perturbs a target sample
to its gradient direction to increase its loss. Then,
they proposed an adversarial training objective that
aims to minimize the loss of the perturbed samples
as well as clean samples, which have shown to be
effective against such adversarial attacks. Follow-up
works [14, 4, 15] proposed a variety of gradient
attacks that are stronger than FGSM that can be
used for adversarial training, and Madry et al. [2]
proposed a minimax formulation to minimize the
loss of adversarial examples, which are perturbed
to maximize its loss with the projected gradient
method. After a surge of interest in the adversarial
robustness of neural networks, various defense
mechanisms [16, 17, 18] have been proposed to
defend against such adversarial attacks. However,
Athalye et al. [19] showed that many of them except
standard AT, rely on gradient masking, which results
in obfuscated gradient in the representation space,
and are highly vulnerable to stronger attacks that
circumvent it. TRADES [3] propose to minimize the
Kullback-Leibler divergence (KL) between a clean
example and its adversarial counterpart, to enforce
consistency between their predictions, and further
show that there is a theoretical trade-off between
the clean accuracy of a model and its robustness.
Recently, using additional unlabeled data [20, 7] or
using an additional attack mechanism [21] have been
proposed. To utilize the additional data, Carmon
et al. [20] propose to use Tiny ImageNet [22] as
pseudo-label to learn more rich representation of
CIFAR10 [23] dataset that could lead to robust
model (RST). Gowal et al. [7] proposes to use
generative models to artificially increase the size
of the original training set and improve adversarial



robustness with those additionally generated images.
Wu et al. [21] propose a double-perturbation mech-
anism that conducts additional adversarial weight
perturbation (AWP) with conventional adversarial
training. Recently, to overcome the adversarial
overfitting problem, several works [8, 24, 25] have
been proposed. Among them, Rebuffi et al. [8] that
uses data augmentation techniques combined with
model weight averaging outperforms the most.

b) Instance-wise weighting for adversarial
training: While successful in general, none of the
aforementioned works consider the varying impact
of samples on adversarial robustness. A recent
work, Misclassification Aware adveRsarial Training
(MART) [5], focuses on this problem and proposes
to put more weights on the misclassified clean sam-
ples for the KL-divergence regularization, achiev-
ing state-of-the-art robustness against untargeted
PGD attacks. Furthermore, another recent work,
Geometry-aware Instance-Reweighted Adversarial
Training (GAIRAT) [9] proposed a method with a
similar motivation, which weighs the adversarial loss
of each sample based on the clean sample’s distance
to the decision boundary. GAIRAT also achieves
impressive performance against untargeted PGD
attacks. However, these methods make increase the
entropies of the adversarially perturbed samples and
thus make the model to be more vulnerable against
targeted attacks, such as AutoAttack [13] and the
logit scaling attack [12]. We observe that both
re-weighting methods for the adversarial training
largely increase the entropies of the perturbed
examples, which makes the samples more vulnerable
as their predictions are easier to alter.

c) Adversarial attacks: Most of the adversarial
defense mechanisms have been broken with stronger
attacks that were not aware of at the time they were
first introduced. Athalye et al. [19] is an important
work that has helped many researchers to explore
means to achieve fundamental robustness rather
than take advantage of a false sense of security
created with the obfuscated gradients. To verify the
robustness, several adversarial attacks [15, 14, 2]
based on gradients have been proposed. Recently,
Croce and Hein [13] proposed an ensemble attack
that consists of four different attacks (AutoAttack),
namely untargeted APGD-CE, targeted APGD-
DLR, FAB [26] and square attack [27]. APGD-CE
and APGD-DLR are step-size-free variants of the
PGD attack. AutoAttack revealed that most defense
methods are actually more vulnerable than TRADES
if the attacker carries out a targeted attack, which
is a more viable scenario in real-world cases.

A. Preliminaries

In this section, we first recap the adversarial train-
ing (standard AT) [2], TRADES [3] and previous
instance weighting methods for adversarial training
(MART [5], GAIRAT [9]).

Let us denote the dataset D = {X,Y }, where
x ∈ X is a training example and y ∈ Y is its cor-

responding label, and a supervised learning model
fθ : X → Y where θ is the set of the parameters
of the model. Given such a dataset and a model,
adversarial attacks aim toward finding the worst-
case examples by searching for the perturbation
for each example that maximizes the loss within
a certain radius from it (e.g., norm balls). We can
define such adversarial ℓ∞ attacks as follows:

δt+1 = ΠB(0,ϵ)

(
δt+αsign

(
∇δtLCE

(
f(θ, x+δt), y

)))
,

(1)
where B(0, ϵ) is the ℓ∞ norm-ball with radius ϵ, Π
is the projection function to the norm-ball, α is the
step size of the attacks and sign(·) is the sign of the
vector. Further, the perturbation δ is the accumulated
αsign(·) over multiple attack iterations t, and LCE

is the cross-entropy loss. In the case of Projected
Gradient Descent (PGD) [2], the attack starts from
a random point within the epsilon ball and performs
t gradient steps, to obtain a perturbed sample xadv.

The most straightforward way to defend against
such adversarial attacks is to minimize the loss
of adversarial examples, which is often called
adversarial training. The standard AT framework
proposed by Madry et al. [2] solves the following
min-max problem where δ is the perturbation of the
adversarial example of the given input x, and y is
its target class label. Then the loss is:

LAT = max
δ∈B(x,ϵ)

LCE

(
f(θ, x+ δ), y

)
. (2)

Another popular algorithm for adversarial train-
ing, TRADES [3], suggests minimizing the
Kullback-Leibler (KL) divergence between a clean
example and its adversarial perturbation, to enforce
consistency between their predictions while using
cross-entropy loss on clean samples as follow:

LTRADES = LCE

(
f(θ, x), y

)
+ β max

δ∈B(x,ϵ)
LKL

(
f(θ, x)||f(θ, x+ δ)

)
,

(3)
where LKL is KL divergence loss and β is a
parameter to control the trade-off between clean
and adversarial performance.

a) Instance weighting schemes for adversarial
training: Recently, MART [5] proposed a new
weighted adversarial training framework with the
boosted cross entropy loss and the weighted KL
divergence loss. The boosted cross-entropy loss
maximizes the 1− the second highest class proba-
bility, to increase the margin of the classifier. The
weighted KL divergence loss assigns higher weights
to the KL-divergence term, for the samples that
are misclassified before applying the adversarial
perturbations. The loss of MART is defined as
follows:

LMART = LAT − log
(
1−max

k ̸=y
pk(f(θ, x+ δ))

)
+λLKL

(
f(θ, x)||f(θ, x+ δ)

)(
1− py(f(θ, x))

)
,
(4)

where pk is the probability of kth class.



(a) t-SNE of GAIRAT (b) t-SNE of MART (c) t-SNE of standard AT (d) t-SNE of EW-AT

Figure 3: Visualization of the embeddings of adversarial examples from each model. All models are
trained with PreActResNet18. We only visualize train examples from airplane and automobile classes in the CIFAR10.

A recent approach, GAIRAT [9], suggests a loss
weighting scheme based on the clean sample’s
distance to the decision boundary:

LGAIRAT =
γ∑B
i=0 γ

LAT,

γ =

(
1 + tanh

(
ψ + 5(1− 2κ(x, y)/K)

))
2

,

(5)

where B is batch size, and κ(x, y) is geometric
distance of a data point (x, y). κ(x, y) is calculated
as a total number of attack steps minus the least
number of necessary attacked steps to change the
label y of x during the PGD attack Eq. (1). ψ is a
constant hyperparameter and K is the total attack
steps. Therefore, if the sample is already far from
the decision boundary, those samples are not used
during the training. This causes the highly under-
confident model and induces vulnerability against
AutoAttack [13] and logit scaling attack [12].

III. UNEQUAL IMPORTANCE OF EACH SAMPLE
IN ADVERSARIAL TRAINING

In this section, we elaborate on what should be
considered in instance-wise weighted adversarial
training, in order to consider the unequal importance
of each sample to the adversarial robustness of the
model. Moreover, we also show the adversarial
vulnerability of the previous instance weighting
schemes for adversarial training. To be precise,
this vulnerability does not come from any types of
obfuscated gradients introduced in the Athalye et al.
[19], but it also creates a false sense of robustness.

To design the weighting scheme in adversarial
training, we first have to define two conditions.

1) Which criteria should we use to
evaluate the importance of samples

during adversarial training?

2) How can we assign attention/weight to
differently contributed samples?

The previous works answered both questions with
their intuitions and verified their hypotheses with the
empirical results on the PGD attacks. MART [5]
argues that the predictions on the non-perturbed

Table I: Vulnerability loophole in the previous
re-weighted adversarial training methods. We
validate MART and GAIRAT against logit scaling attack
(LS) [12] with α = 10 and the AutoAttack (AA) [13] with
ϵ = 0.031. All models are trained with PreActResNet18
architecture.

Method PGD LS AA

GAIRAT [9] 55.16 31.78 22.37
MART [5] 57.08 48.70 46.79

standard AT [2] 53.96 51.26 48.16
+ Ours (EW-AT) 53.49 51.81 49.20
TRADES [3] 53.95 50.10 49.30
+ Ours (EW-TRADES) 53.83 50.13 49.90

samples are important criteria to measure the sample-
wise importance in adversarial training. Thus,
MART assigns more adversarial attention to KL loss
that has low confidence before perturbation Eq. (4).
GAIRAT [9], on the other hand, hypothesizes that
the number of steps to perturb the given sample is an
important measure of its importance in adversarial
training. Thus, GAIRAT assigns more attention to
the adversarial samples that violate the margin more,
as in Eq. (5).

However, we empirically find that the perfor-
mance achieved by weighting only improves un-
targeted PGD attacks. Yet, both methods achieve
lower performance compared to standard AT against
logit scaling attack [12] and AutoAttack [13] (see
Table I). Thus, while they appear to be more robust
than standard AT, they are actually more vulnerable.
We further examine why the previous weighting
schemes are vulnerable to non-PGD attacks, by vi-
sualizing the t-SNE embeddings of the adversarially
perturbed training samples in Figure 3. As shown
in Figure 3, adversarial examples generated by
GAIRAT and MART for two different classes have
large overlaps, while the t-SNE of the adversarial
samples trained with standard AT shows clear
separation.

This is because the previous weighting schemes
make the model only focus on certain samples
that they deem difficult, making the prediction on
others more uncertain. This will make the entropy
of the predictive distribution of such samples to
be high. This is shown in Figure 4, where MART
and GAIRAT have more than double the number of
‘high-entropy’ samples (> 1.5). It is evident that
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Figure 4: Percentage of high entropy samples (>1.5)
in the test set from standard AT, EW-AT, MART, and
GAIRAT which shows a correlation to the performance
of AutoAttack.

such high-entropy samples will be more prone to
make wrong predictions if they are perturbed only a
little to a manifold of another class that is predicted
high, thus making them more vulnerable to targeted
attacks, such as AutoAttack. This suggests that if
we can minimize the existence of such high-entropy
samples, the model’s robustness will be improved.

We want to emphasize that despite the philosophy
of MART, and GAIRAT (i.e., specific examples
contribute more to the adversarial robustness) is a
proper suggestion for only untargeted PGD attacks,
but those re-weighting can lead to a vulnerability
against another type of attack. We presume that
misconstrued re-weighting formulation leads to a
false sense of robustness. Therefore, we further
propose a legitimate strategy to re-weight the
adversarial training that is robust against strong
attacks.

IV. ENTROPY IN RE-WEIGHTED ADVERSARIAL
TRAINING

We now describe our observation and additionally
proposed method to overcome previous re-weighting
approach, Entropy-Weighted Adversarial Training
(EWAT). EWAT weighs the loss of each adversarial
example based on its entropy of the predictive
distribution (Algorithm 1).

In the previous section, we showed that GAIRAT
and MART make many of its adversarial sam-
ples have relatively high entropies compared to
adversarial samples from standard AT, as shown
in Figure 1, and that this makes them vulnerable
against AutoAttack [13] (Figure 4). They have
created more vulnerable samples while trying to
focus on samples they deem as important, by
assigning relatively smaller weights to other samples,
making the prediction confidence on them low.

Further, we also observe the percentage of high
entropy samples in the correctly classified sets from
several conventional models (Figure 5123). Notably,

1The pre-trained network of RST [20] is from https://github.
com/yaircarmon/semisup-adv

2The pre-trained network of AWP [21] is from https://github.
com/csdongxian/AWP

3The pre-trained network of MART-RST [5] is from https:
//github.com/YisenWang/MART
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Figure 5: Correlation between high entropy samples
and robustness against AutoAttack. The percentage is
calculated as a portion of the top 30% high entropy in
correctly classified samples.

a model that is more robust against AutoAttack can
easily classify the samples that are large entropy.
All of this empirical evidence suggests that the ratio
of high entropy samples is highly related to the
model’s robustness. Also, the entropy is a more
direct measure of a sample’s robustness, unlike
its distance to the margin (GARIAT) or whether
the sample is predicted incorrectly (MART), since
a high entropy sample’s predicted label could be
altered more easily. Thus, we propose to consider the
entropy of each adversarially perturbed sample as a
criterion to measure its vulnerability and propose a
loss weighting scheme based on the entropy.

a) Entropy: The entropy E is a measurement
of the state of uncertainty and randomness. The
entropy for an adversarial sample xadv for classifi-
cation tasks can be defined as follows:

E(θ, xadv) :=

−
C∑

j=1

pj(f(θ, x
adv)/τ) log

(
pj(f(θ, x

adv)/τ)
)
,

(6)
where pj stands for the jth class probability of
f(θ, xadv), C is the number of classes and τ is
temperature scaling factor where we set as 1. We can
control τ to affect the E by making the predictive
distribution to be sharper or smoother.

b) Entropy-based sample weighting: We now
propose an additional entropy-weighted loss term for
adversarial training, which weighs each adversarial
example by its entropy.

The entropy value of each training example
continuously changes during the course of training.
This is beneficial since the weighting changes
adaptively, such that it focuses on the most uncertain
samples at each iteration. However, one caveat here
is that entropies of all samples will go low as the
model trains on, which will simply have small or
no effects on weighting. Since this will be the same
as non-weighted training at the end, we normalize
the entropy weights with the batch mean of the
entropy at each iteration. Formally, for a given batch
of adversarial examples B := {(xadvi , yi)}mi=1, we
define the entropy weighting (went

i ) for a given

https://github.com/yaircarmon/semisup-adv
https://github.com/yaircarmon/semisup-adv
https://github.com/csdongxian/AWP
https://github.com/csdongxian/AWP
https://github.com/YisenWang/MART
https://github.com/YisenWang/MART


Algorithm 1 Entropy weighted adversarial training
for standard AT [2]

Input: Dataset D, parameters of model θ, model
f , number of epochs T, batch size m, number of
batches M, Cross-entropy loss LCE, number of
classes C

for epoch = 1, · · · , T do
for mini-batch = 1, · · · , M do

Sample mini-batch from training set (D):
{(xi, yi)}mi=1

Generate adversarial examples xadvi

Calculate entropy E for weighting

E(θ, xadvi ) =
−
∑C

j pj(f(θ, x
adv
i )) log(pj(f(θ, x

adv
i )))

η = 1
m

∑m
i=1 E(θ, xadvi )

wi
ent = E(θ, xadvi )/η

Calculate total loss
LEW-AT = LAT +went · LCE(f(θ, x

adv), y)

Take gradient descent with respect to the
model parameters

end for
end for

instance xadvi as follows:

went
i :=

1

η
· E(θ, xadvi ), (7)

where η :=
∑

xadv∈B E(θ, xadv)/B is the batch
mean of the predicted entropy. The final objective
consisting of the original adversarial training loss
and entropy weighted cross-entropy loss is as
follows:

LEnt-AT := went · LCE

(
f(θ, xadv), y

)
,

LEW-AT := LAT + LEnt-AT

= (1 + went) · LCE

(
f(θ, xadv), y

)
.

(8)

For the TRADES loss, the overall weighted loss
is as follows:

LEnt-TRADES := went · LKL

(
f(θ, x)||f(θ, xadv)

)
,

LEW-TRADES := LTRADES + LEnt-TRADES

= LCE

(
f(θ, x), y

)
+ (β + went) · LKL

(
f(θ, x)||f(θ, xadv)

)
.

(9)

V. EXPERIMENTS

In this section, we first validate our entropy-
weighted adversarial training against the PGD attack,
logit scaling attack [12], and AutoAttack [13]. Then,
we examine the effect of temperature scaling (Sec-
tion V-C), which is the only parameter our model
has. Moreover, we report the results of the generality
of our model on multiple benchmark datasets and
utilizing unlabeled data (Section V-D0a).

A. Experimental Setup.

Dataset description. For experiments, we use
CIFAR10, CIFAR100, and MNIST. CIFAR10 and
CIFAR1004 consist of 50,000 training images
and 10,000 test images with 10 and 100 classes,
respectively. All CIFAR images are 32×32×3
resolution (width, height, and channel). MNIST
dataset contains hand-written digits, ranging from
0 to 9. MNIST contains a training set of 60,000
examples and a test set of 10,000 examples, where
each image has 28×28×1 resolution (width, height,
and channel). For the additional dataset in Ta-
ble 5, we utilize the 500K unlabeled data from
TinyImages (with pseudo-labels)5. The pickle file
consists of 500K unlabeled TinyImageNet. TinyIm-
ageNet has 100,000 training with 200 image classes.
Training detail.

• MNIST. For all methods compared, we train
the network with ℓ∞ attacks with the attack
strength of ϵ = 0.3 and the step size of α =
0.01, with the number of inner maximization
iterations set to K = 40. For optimization, we
train every model for 100 epochs using the
SGD optimizer with the weight decay of 1e−4
and the momentum of 0.9. As for learning rate
scheduling, we use the decay of 0.1 at the 20th

and 40th epoch with the initial learning rate
of 0.01.

• CIFAR. For all methods, we train the network
with ℓ∞ attacks with the attack strength of
ϵ = 8/255 and the step size of α = 2/255,
with the number of inner maximization iter-
ation set to K = 10. For the optimization,
we train every model for 100 epochs using
the SGD optimizer with the weight decay of
5e−4 and the momentum of 0.9. For learning
rate scheduling, we use the decay of 0.1 at the
100th and 105th epoch with the initial learning
rate of 0.1.

• Hyperparameters. When setting the hyper-
parameters for baselines, we follow their
official settings in the original papers. For
TRADES [3], we set β as 6.0, and for EW-
TRADES we set β as 5.5. In MART [5], we set
λ as 6.0. In GAIRAT [9], we set ψ as −1.0.

Evaluation detail.
• ℓ∞ attack. For all ℓ∞ attacks used in the test

phase, we use the attack strength of ϵ = 8/255
and the step size of α = 2/255 with the
number of inner maximization iteration set to
K = 10 for PGD10. For PGD20 We use the
α = ϵ/10 with K = 20, respectively.

• Logit scaling attack. We further test our
EWAT against Logit scaling attack [12] that the
previous instance-weighted method is vulnera-

4The full dataset of CIFAR can be downloaded at http://www.
cs.toronto.edu/∼kriz/cifar.html.

5The unlabeled pickle file can be downloaded at https://github.
com/yaircarmon/semisup-adv.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/yaircarmon/semisup-adv
https://github.com/yaircarmon/semisup-adv


Table II: Results against ℓ∞ attack in CIFAR10
with PreActResNet18. Clean denotes the accuracy on
natural images. The robust accuracy against AutoAttack
(AA) is calculated against ϵ = 0.031. We report the mean
performance and standard deviations of 5 multiple random
seed runs.

Method Clean AA

standard AT [2] 82.90 (± 0.43) 48.69 (± 0.41)
+ Ours (EW-AT) 82.46 (± 0.56) 49.18 (± 0.12)

TRADES [3] 81.55 (± 0.21) 49.48 (± 0.15)
+ Ours (EW-TRADES) 81.02 (± 0.34) 49.83 (± 0.25)

ble. Logit scaling attack is multiplying constant
in the logit with α as follow:

δt+1 = ΠB(0,ϵ)(
δt + psign

(
∇δtLCE

(
αf(θ, x+ δt), y

)))
,

(10)
where B(0, ϵ) is the ℓ∞ norm-ball with radius
ϵ, Π is the projection function to the norm-ball,
p is the step size of the attacks and sign(·) is
the sign of the vector. We set α as 10 for testing
in Table 1. When α is 1, the logit scaling attack
is the same as the PGD attack.

• AutoAttack. We further test our EWAT against
AutoAttack (AA) [13]. AutoAttack is an en-
semble attack that consists of four different
attacks (APGD-CE, APGD-T, FAB-T [26], and
Square [27]). APGD-T and FAB-T are targeted
attacks and Square is a black box attack6.

Resource description. All experiments are con-
ducted with a single GPU (NVIDIA RTX 2080
Ti), except for the TRADES experiments with
WideResNet in Table III. For WideResNet TRADES,
two GPUs (NVIDIA RTX 2080 Ti) are used. All
experiments are processed in Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20GHz.

B. Validation of Entropy Weighted Adversarial
Training

a) Against standard attacks: Our entropy
weighted adversarial training improves upon the
baselines, outperforming standard AT model by
0.51%, and TRADES by 0.45%, with the PreAc-
tResNet18 model (Table II) against AutoAttack.
Moreover, with WideResNet34-10 (Table III), our
weighting achieves the performance gains of 0.44%
and 0.76% over standard AT and TRADES against
AutoAttack, respectively. Considering that TRADES
is considered as powerful by making 1% improve-
ment over the standard AT, this is a meaningful
improvement of the robust accuracy. On the contrary,
GAIRAT and MART achieve lower robustness over
standard AT against AutoAttack, although they
attempted to improve upon the standard AT model
by the proposed weighting schemes.

In practice, we cannot assume that the attacker
will only use a single type of attack, and thus the

6AutoAttack https://github.com/fra31/auto-attack

most important measure of robustness is the robust
accuracy against the strongest attack, which is the
AutoAttack in this case. Our EWAT shows high
robustness against this worst-case attack, although
it also obtains comparable performance to baselines’,
against the PGD attacks.

b) Against logit scaling attack and AutoAttack:
Previous weighting methods, MART and GAIRAT,
suffer from low robustness against logit scaling
attack [12] and AutoAttack. However, our model
demonstrates improved robustness against both
types of attacks (Table I) and does not suffer from
the vulnerability loophole, unlike the existing loss
weighting schemes.

c) Verification of obfuscated gradient: We test
our model against ℓ∞ attack with larger PGD steps
K = 10, 100 to check whether the obfuscated
gradient occurs during the PGD attacks (Table III).
We vary the step size α = ϵ/(K/2). Our model
retains robustness even with the different number of
steps. While EWAT has no mechanism for gradient
obfuscation, this empirical result further shows
evidence that it does not benefit from the obfuscated
gradient on PGD.

C. Effect of temperature scaling

We further examine the effects of simple tem-
perature scaling, which is the only hyperparameter
EWAT has (and is set to 1 by default), as it affects
the entropy by making the predictive distribution
sharper or smoother. We report the effect of different
temperature values on our method’s robust accuracy
(Table IV). We observe that increasing the tempera-
ture value, which increases the overall entropy of
all samples, improves the performance of EWAT.
However, increasing the temperature to an overly
high value will result in almost equal weights and
make the weighting scheme meaningless. Therefore,
in CIFAR10, τ = 5 is the optimal constant for the
highest robustness.

D. Generality of EWAT

a) Results on multiple benchmarks datasets:
We validate our methods on multiple benchmark
datasets. In Table V, EWAT consistently improve
upon standard AT and TRADES against AutoAttack
on MNIST [28], and CIFAR100 [23]. Compared
to the margin-based methods, our model does not
require any warm-up epochs for weighting instances,
even on larger datasets such as CIFAR100. This is
because it relies on entropy, which can be computed
easily and is well defined regardless of the training
stage, unlike other values, such as distance to the
(estimated) margins. Moreover, our methods work
better on a larger dataset (CIFAR100) with more
number of classes (100), on which the model’s
predictions could be more uncertain, due to the
increased confusion across the classes, than on a
smaller dataset (MNIST) with few classes (10).

https://github.com/fra31/auto-attack


Table III: Results against ℓ∞ attack in CIFAR10 with WideResNet34-10. Clean denotes the accuracy on
natural images. Best and Last stand for the best robust accuracy, and the accuracy at the last epoch, against PGD
with ϵ = 8/255, respectively. For the AutoAttack (AA), we use the threat model with ϵ = 0.031.

Last Best

Method Clean PGD10 Clean PGD100 AA

GAIRAT [9] 85.24 52.97 86.16 57.37 42.28
MART [5] 83.72 55.73 82.85 59.30 51.39

standard AT [2] 87.38 54.21 85.84 56.17 52.07
+ Ours (EW-AT) 86.97 54.69 85.39 55.54 52.51

TRADES [3] 85.62 57.32 85.62 57.54 53.82
+ Ours (EW-TRADES) 83.11 57.84 82.54 58.27 54.58

Table IV: Temperature scaling. τ is parameter for
temperature scaling. The reported results are robust accu-
racies against the ℓ∞-AutoAttack (AA) with ϵ = 0.031
on CIFAR10.

Method τ Clean AA

standard AT - 81.62 48.16

Ours (EW-AT)

τ = 0.5 82.92 48.85 (+0.69)
τ = 1.0 83.01 49.20 (+1.04)
τ = 5.0 81.69 49.31 (+1.14)
τ = 10.0 81.88 49.26 (+1.00)
τ = 20.0 82.93 49.09 (+0.93)

E. Results of other types of attacks

We test our model against CW-ℓ∞ [15] and Deep-
Fool [14] attacks using the Adversarial Robustness
Toolbox (v1.7) 7 and Foolbox (v3.0) 8. We set the
epsilon to 8/255 for both attacks. These are weak
attacks and the robust accuracy against them is less
meaningful, as shown with the PGD experiments
with the baselines MART and GAIRAT. Our main
focus is rather on the defense against a stronger
ensemble attack, AutoAttack, since what matters
more for adversarial robustness is the worst-case
performance as the attacker can use any arbitrary
attacks.

F. Utility of additional unlabeled data

Several recent works have shown that utilizing
additional unlabeled data can improve the adver-
sarial robustness [20]. To test our method under
this scenario, we follow the settings from Carmon
et al. [20] by utilizing the 500K unlabeled Tiny
ImageNet dataset [22] as the pseudo-label dataset,
to adversarially train a WideResNet 28-10 [29].
With the unlabeled data, our approach also obtains
improved performance on clean examples and ℓ∞-
attacked images than the previous weighting scheme,
and RST against AutoAttack (Table VIII). One thing
to note is that using unlabeled data also enhances
the robustness of MART [5] and GAIR-RST [9]9

against AutoAttack.

7Adversarial Robustness Toolbox https://adversarial-
robustness-toolbox.readthedocs.io/en/latest/#

8Foolbox, https://github.com/bethgelab/foolbox
9In the official code in GAIRAT, GAIR-RST* is trained with

RST attack and CW attack which is not a fair comparison to
RST, MART or Ours. Therefore, we re-trained GAIR-RST with
RST’s official setting.

VI. WHY PREVIOUS RE-WEIGHTING METHOD IS
VULNERABLE AGAINST AUTOATTACK WHILE

OUR RE-WEIGHTING IS ROBUST?

We empirically find that our re-weighting can
achieve better performance against AutoAttack
while the previous re-weighting can not. We suspect
there mainly exist two reasons, (a) informative
standard (i.e., entropy), and (b) correct formulation
(i.e., giving large weight to high entropy samples).

Entropy, margin, confidence, and probability
share similar characteristics in deep neural network
training. When the sample is close to the deci-
sion boundary, its entropy is large, the margin is
small, confidence is low, and probability is small,
respectively. However, margin, confidence, and
probability contain information between only two
primary classes, the top 1 and top 2 classes. On the
other hand, entropy contains information between
all classes which has the benefit to have more
information to use as weight than other standards.

Moreover, we presume previous weighting formu-
lations have misconstruction standards for already
misclassified samples. Our weighting scheme shares
the same philosophy with the samples that are
still in the correct class cluster which is weighing
more on difficult samples that are close to the
decision boundary. However, there is a difference in
weighting design for already misclassified attacked
samples. Previous re-weighting focused on the
samples that are far from the decision boundary
which largely violated the boundary. However, our
re-weighting focus on samples that are close to
the decision boundary (i.e., large entropy samples).
We believe focusing on samples that have more
probability to learn during the training is a better
strategy while focusing on largely violated samples.

VII. DOES THE RE-WEIGHTING METHOD
EXHIBIT GOOD CALIBRATION AND CONFIDENCE?

To further evaluate our model, we test models’
calibration using the expected calibration error
(ECE) method proposed by Guo et al. [30]. As
shown in Table VII, our model demonstrates the best
calibration performance on adversarial examples.
However, compared to the AT model, our model
does not appear to be as well calibrated on clean
examples. We believe this may be due to the fact



Table V: Results against ℓ∞ attack in MNIST, and CIFAR100. Clean denotes the accuracy of the
natural images. For the AutoAttack (AA), we use the threat model with ϵ = 0.031.

MNIST CIFAR100

Method Clean AA Clean AA

standard AT [2] 98.74 88.51 55.72 24.09
+ Ours (EW-AT) 98.97 88.43 (-0.08) 57.71 24.57 (+0.48)

TRADES [3] 98.37 89.30 57.78 25.06
+ Ours (EW-TRADES) 97.46 89.71 (+0.41) 55.42 25.66 (+0.60)

Table VI: Results against CW-ℓ∞ and DeepFool
in CIFAR10. We test our model against CW-ℓ∞ and
DeepFool attacks using the Adversarial Robustness
Toolbox (v1.7) and Foolbox (v3.0).

Method CW-ℓ∞ DeepFool

standard AT 51.21 53.47
+ Ours (EW-AT) 51.52 53.58
TRADES 51.13 57.20
+ Ours (EW-TRADES) 51.48 57.43

Table VII: Results of calibrated performance. We
test our model to see if weighting scheme somehow
calibrated the model. We report expected calibration
error (ECE) of clean examples and adversarial
examples and mean confidence of each models.

Clean ECE Adversarial ECE Mean Confidence

standard AT 14.27 5.04 0.70
EW-AT 15.76 3.75 0.74
MART 23.75 11.04 0.59
GAIRAT 43.87 25.77 0.38

that our model places greater weight on adversarially
high entropy examples, which could potentially lead
to better calibration only on adversarial examples.
In addition, we found that our model has relatively
higher average confidence compared to the baseline
models (Table VII). The higher average confidence
may contribute to better robustness against targeted
attacks, as it becomes more difficult to maximize the
confidence of high confidence instances to different
classes.

VIII. DISCUSSION

In this paper, we showed that existing weighting
schemes for adversarial training yield high-entropy
examples with uncertain predictions, thus making
them vulnerable to targeted attacks such as Au-
toAttack. Based on this observation, and the direct
association of the entropy to its vulnerability to
targeted attacks, we propose to focus on the entropy
of each sample in the adversarial training: Entropy-
Weighted Adversarial Training (EWAT). EWAT is
a simple yet effective weighted adversarial training
scheme that weighs each instance by its entropy.
We show that simple entropy weighting in various
datasets, architecture, and experimental settings (e.g.
adversarial method, and additional dataset) helps to
improve the robustness. EWAT is simple and can

Table VIII: Results of using unlabeled data
against ℓ∞ AutoAttack in CIFAR10. ∗ indicate
performance which is calculated by official check-
points provided by Carmon et al. [20], Wang et al.
[5] and Zhang et al. [9]. GAIR-RST w/o * is
reproduced results with same condition as RST.
Clean denotes the accuracy of the natural images.
For the AutoAttack (AA), we use the threat model
with ϵ = 0.031.

Method Clean AA

RST∗ [20] 89.69 59.38
+ MART∗ [5] 87.50 56.29 (-3.09)
+ GAIR-RST∗ [9] 89.36 59.64 (+0.26)
+ GAIR-RST [9] 90.63 50.64 (-8.74)
+ EW-TRADES (τ=1.0) 89.92 59.64 (+0.26)
+ EW-TRADES (τ=2.0) 89.48 59.75 (+0.37)

be used to weigh the instance-wise adversarial loss
of any conventional adversarial training algorithms,
such as standard AT and TRADES. Moreover, while
the existing instance weighting scheme for adversar-
ial training suffers from vulnerability against logit
scaling attack and AutoAttack, entropy is the key to
weighing the examples more robustly against them
over standard AT and TRADES with even weights
across the samples. Further, EWAT also achieves
competitively robust accuracy against untargeted
PGD attacks to standard AT and TRADES. We
show interesting findings of entropy in adversarial
learning and show a simple manner to leverage
the weighting against several attacks robustly. We
believe that we have provided a novel empirical
study that shows the vulnerabilities of existing
weighting schemes, as well as new insights that link
the sample’s uncertainty to its vulnerability against
targeted attacks, which may lead to follow-up works
that exploit our findings.
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