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Simple and Effective Masked Diffusion Language Models
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Abstract
While diffusion models excel at generating
high-quality images, prior work reports a sig-
nificant performance gap between diffusion
and autoregressive (AR) methods on language
modeling. In this work, we show that simple
masked discrete diffusion is more performant
than previously thought. We apply an effective
training recipe that improves the performance of
masked diffusion models and derive a simplified,
Rao-Blackwellized objective that results in
additional improvements. Our objective has a
simple form—it is a mixture of classical masked
language modeling losses—and can be used to
train encoder-only language models that admit
efficient samplers, including ones that can gener-
ate arbitrary lengths of text semi-autoregressively
like a traditional language model. On language
modeling benchmarks, a range of masked
diffusion models trained with modern engineering
practices achieves a new state-of-the-art among
diffusion models, and approaches AR perplexity.

1. Introduction
In this work we describe (1) a simple masked diffusion
language modeling (MDLM) framework with a well-
engineered implementation that outperforms all existing
diffusion models across language modeling benchmarks
(LM1B (Chelba et al., 2014), OWT (Gokaslan et al., 2019),
DNA (Schiff et al., 2024)), and that significantly improves
the performance of existing baselines (Austin et al., 2021;
He et al., 2022). Our MDLM framework implements (2a)
a substitution-based parameterization (SUBS) of the reverse
unmasking diffusion process; SUBS allows us to derive (2b)
a simple, continuous-time, Rao-Blackwellized objective
that improves tightness and variance of the ELBO, further
increasing performance. We complement MDLM with

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the ICML 2024 Workshop on
Accessible and Efficient Foundation Models for Biological Discov-
ery. Do not distribute.

Figure 1: (Left) Our proposed masked diffusion language
model (MDLM) is trained using a weighted average of
masked cross entropy losses. (Top Right) In comparison
to masked language models (MLM), MDLM’s objective cor-
respond to a principled variational lower bound, and supports
generation via ancestral sampling. (Bottom Right) Perplexity
(PPL) on One Billion Words benchmark.

Table 1: Test perplexities (PPL; ↓) on LM1B. †Reported in
He et al. (2022). Best diffusion value is bolded.

Parameters PPL (↓)

Ar Transformer-X Base (Dai et al., 2019) 0.46B 23.5
OmniNetT (Tay et al., 2021) 100M 21.5

Dif

BERT-Mouth (Wang & Cho, 2019) 110M ≤142.89
D3PM (absorb) (Austin et al., 2021) 70M ≤77.50
Diffusion-LM (Li et al., 2022)† 80M ≤118.62
DiffusionBert (He et al., 2022) 110M ≤63.78
SEDD (Lou et al., 2023) (33B tokens) 110M ≤ 32.79

Ar
(Retrained)

Transformer (33B tokens) 110M 22.32
Transformer (330B tokens) 20.86

Dif
(Ours)

MDLM (33B tokens) 110M ≤27.04
MDLM (330B tokens) ≤23.00

(3) fast samplers that support semi-autoregressive (SAR)
generation and outperform previous SAR models.

2. Background
2.1. Diffusion Models

Diffusion models are trained to iteratively undo a forward
corruption process q that takes clean data x drawn from
the data distribution q(x) and defines latent variables zt for
t∈ [0,1] that represent progressively noisy versions of x (Ho
et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2020).
The standard forward process for continuous x is

zt=
√
αt ·x+

√
1−αt ·ϵ (1)

1
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where ϵ∼N (0,I) and (αt)t∈[0,1] is a noise schedule, mono-
tonically decreasing in t. The parameterized reverse diffusion
model pθ over x and zt is trained to maximize a variational
lower bound on log-likelihood (ELBO). Given a number
of discretization steps T, defining s(i) = (i − 1)/T and
t(i)= i/T , and using DKL[·] to denote the Kullback–Leibler
divergence, the ELBO equals (Sohl-Dickstein et al., 2015):

Eq

[
logpθ(x|zt(0))︸ ︷︷ ︸

Lrecons

−
T∑

i=1

DKL[q(zs(i)|zt(i),x)∥pθ(zs(i)|zt(i))]︸ ︷︷ ︸
Ldiffusion

]

−DKL[q(zt(T )|x)∥pθ(zt(T ))]︸ ︷︷ ︸
Lprior

(2)

For brevity, we drop i from t(i) and s(i) below; in general,
s will denote the time step before t.

3. Simple Masked Diffusion Models
While previous work on discrete diffusion supports general
forward processes (e.g., general Qt in D3PM), absorbing
state (i.e., masking) diffusion consistently achieves the best
performance (Austin et al., 2021; Lou et al., 2023). In this
work, instead of supporting general noise processes, we focus
on masking and derive tight Rao-Blackwellized objectives
that outperform general approaches and do not require
CTMC theory. We denote our overall approach as masked
diffusion (MDLM in the context of language models).

Notation. We denote scalar discrete random variables
with K categories as ‘one-hot’ column vectors and define
V ∈{x∈{0,1}K :

∑K
i=1xi=1} as the set of all such vectors.

Define Cat(·;π) as the categorical distribution overK classes
with probabilities given by π ∈ ∆K , where ∆K denotes
the K-simplex. We also assume that the K-th category
corresponds to a special [MASK] token and let m∈V be the
one-hot vector for this mask, i.e., mK=1. Additionally, let
1= {1}K and ⟨a,b⟩ and a⊙b respectively denote the dot
and Hadamard products between two vectors a and b.

3.1. Interpolating Discrete Diffusion

We restrict our attention to forward processes q that
interpolate between clean data x∈V and a target distribution
Cat(.;π), forming a direct extension of Gaussian diffusion
in (1) given as:

q(zt|x)=Cat(zt;αtx+(1−αt)π), (3)

where αt ∈ [0,1] is a strictly decreasing function in t, with
α0 = 1 and α1 = 0. This implies transition probabilities
q(zt|zs) = Cat(zt; αt|szt + (1 − αt|s)1π

⊤zt) where
αt|s=αt/αs and q(zs|zt,x) is given as:

Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

αtz⊤t x+(1−αt)z⊤t π

)
(4)

See Suppl. 14 for details. While (3) and (4) represent
a special case of the more general diffusion processes
proposed in D3PM (Austin et al., 2021), we show below that
they yield a simplified variational lower bound objective and
admit straightforward continuous time extensions.

3.2. Masked Diffusion

Forward Masking Process In masked (i.e., absorbing
state) diffusion, we setπ=m. At each noising step, the input
x transitions to a ‘masked’ statemwith a probability increas-
ing in t. If an input transitions to m at any time t′, it will
remain in this state for all t>t′ :q(zt |zt′ =m)=Cat(zt;m).
The marginal of the forward process (3) is given by q(zt|x)=
αtx+(1−αt)m. Using properties of the masking process,
the posterior q(zs|zt,x) simplifies (4); see Suppl. A:

q(zs|zt,x)=

{
Cat(zs;zt) zt ̸=m,

Cat
(
zs;

(1−αs)m+(αs−αt)x
1−αt

)
zt=m.

(5)

Reverse Unmasking Process: SUBS Parameterization
The reverse process inverts the noise process defined by q.
We consider both a finite number of steps T , as well as a con-
tinuous time model corresponding to T →∞. We begin with
the discrete-time case for which the generative model is ex-
pressed as pθ(x)=

∫
z
pθ(z1)pθ(x|z0)

∏T
i=1pθ(zs|zt)dz0:T .

We introduce a model xθ(zt, t) : V × [0, 1] → ∆K that
approximates x with a neural network. The specific
parameterization for pθ(zs|zt) that we use is

pθ(zs|zt)=

{
Cat(zs;zt), zt ̸=m,

Cat
(
zs;

(1−αs)m+(αs−αt)xθ(zt,t)
1−αt

)
. zt=m.

(6)

In order for pθ(zs|zt) to be a valid probability, xθ(zt, t)
must satisfy two requirements. We implement these as
substitutions to the output of xθ(zt, t), hence we call our
parameterization SUBS.

Zero Masking Probabilities First, notice that by defini-
tion, ⟨x,m⟩=0. For this reason, we design the denoising net-
work such that ⟨xθ(zt),m⟩=0, i.e., we substitute the logit in-
dex corresponding to the [MASK] token with −∞. This prop-
erty enables the simplified expression of (6) (Suppl. A.3.2)
and ensures that case 2 in (6) is a valid probability.

Carry-Over Unmasking Second, if zt is unmasked, then
we desire xθ(zt,t)= zt, i.e., unmasked latents are ‘carried
over’. We accomplish this by substituting the output of our
network to simply copy unmasked inputs. This ensures that
case 1 in (6) always holds, and furthermore reduces Lrecons
to 0.

2
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3.3. Rao-Blackwellized Likelihood Bounds

Recall from (2) that the diffusion traning objective has the
form Lrecons +Ldiffusion +Lprior. For the simplified reverse
process in (6), the discrete-time diffusion loss for finite T
simplifies to (Suppl. B.1):

Ldiffusion=

T∑
i=1

Eq

[
αt(i)−αs(i)

1−αt(i)
log⟨xθ(zt(i)),x⟩

]
. (7)

Note that this objective is simpler and more well-
behaved than the expression one would obtain for
DKL(q(zs|zt, x)∥pθ(zs|zt)) under the parameterization
induced by using pθ(zs|zt) = q(zs|zt,x= xθ(zt,t)) from
(4), which is similar to what is used by D3PM (Austin et al.,
2021) (see Suppl. 27):[

αs−αt

1−αt
log

αt⟨xθ(zt),m⟩+(1−αt)

(1−αt)⟨xθ(zt),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt),m⟩+(1−αs))

]
⟨zt,m⟩. (8)

We refer to the process of obtaining (7) in lieu of (8) as a
form of Rao-Blackwellization.

3.4. Continuous-Time Likelihood Bounds

Previous works have shown empirically and mathematically
that increasing the number of steps T yields a tighter ap-
proximation to the ELBO (Kingma et al., 2021). Following
a similar argument, we form an continuous extension of (7)
by taking T →∞ (see Suppl. B.2), which yields

L∞
diffusion=Eq

∫ t=1

t=0

α′
t

1−αt
log⟨xθ(zt),x⟩dt (9)

3.5. Masked Diffusion Language Models

Next, we apply masked diffusion to language modeling over
sequences x1:L of L tokens, with xℓ denoting the ℓ-th token.
We make the assumption that the forward noising process
is applied independently across a sequence and that, condi-
tioned on a sequence of latents z1:Lt , the denoising process
factorizes independently across tokens, i.e., pθ(z1:Ls |z1:Lt )=∏L

ℓ=1pθ(z
ℓ
s |z1:Lt ). Thus, we use a single model to compute

xℓ
θ(z

1:L
t ,t) for each ℓ from a masked sequence zt, optimizing:

L∞
diffusion=Eq

∫ t=1

t=0

α′
t

1−αt

∑
ℓ

log⟨xℓ
θ(zt),x

ℓ⟩dt (10)

Interestingly, our objective has a simple form: it is the
weighted average of masked language modeling (MLM)
losses (Devlin et al., 2018). Thus our work establishes
a connection between generative diffusion models and
encoder-only BERT models. Our objective enables
principled selection of a (randomized) masking rate, and
also endows BERT-style models with principled generation
capabilities, see Sec. 6.

4. Inference and Sampling
in Masked Diffusion Language Models

4.1. Efficient Ancestral Sampling

To generate a sequence of length L, the reverse diffusion
process starts with the sequence z1:Lt=1 where zℓt=1=m, ∀ℓ∈
{1,...,L}. Then the subsequent latents, z1:Lt are generated
by discretizing the reverse diffusion process with some finite
T. Given z1:Lt , we construct z1:Ls by sampling each token zℓs
independently from the distribution pθ(z

ℓ
s|z1:Lt ) given in (6).

4.2. Semi-Autoregressive
Masked Diffusion Language Models

Our method also admits an effective semi-autoregressive
(SAR) decoding method that allows the model to generate
sequences of arbitrary length. Let x̃1:L represent the output
from sampling a sequence of L tokens using the reverse
diffusion process described above. To generate additional
L′<L tokens, we propose a generation algorithm in which
the latter L−L′ tokens x̃L′:L−L′

are used as a prefix for
an additional round of generation. Given the carry-over
unmasking described in Sec. 3.2, these prefix tokens will
simply be copied over at each decoding step. The remaining
tokens are generated as above with zℓs ∼ pθ(z

ℓ
s | zL

′:L+L′

t )

for all ℓ ∈ {L+1, ...L+L′}, with zL
′:L−L′

1 initialized to
x̃L′:L−L′

as opposed to being initialized as masked tokens
m. At the end of this process, we have produced L+ L′

tokens concat[x̃1:L, x̃L+1:L+L′
], where concat[·] denotes

concatenation along the sequence length dimension. This
process can repeat indefinitely, with the prefix shifted for
every new round of generation.

5. Experiments
The experiment setup is described in Suppl. C.1

5.1. Masked Diffusion Language Models

Likelihood Evaluation On LM1B, MDLM outperforms
all previous diffusion methods (Table 1). Compared to the
SEDD baseline reported by Lou et al. (2023), trained for
66B tokens, MDLM, which we train for the same amount,
achieves a 17% improvement on the perplexity bound. Fi-
nally, MDLM gets within 14% of an AR baseline and contin-
ues to improve with more training. We see the same trend for
models trained on OWT, a larger dataset, shown in Table 9 –
MDLM outperforms prior diffusion methods, closing the gap
towards AR models. Results on OWT time step conditioning
are in Table 6, Suppl. C.5 where we find that models trained
with and without time conditioning attain similar perplexities.
Additionally, Figure 2 demonstrates the reduced variance
we achieve from our objective, when compared to previous
masked diffusion models, such as SEDD (Lou et al., 2023).

3
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Table 2: Genomic Benchmarks. Top-1 accuracy (↑) across 5-fold cross-validation (CV) for a pre-trained AR Mamba, and
pre-trained Caduceus model fine-tuned with different diffusion parameterizations. Best values per task are bolded and second
best are italicized. Error bars indicate difference between maximum and minimum values across 5 random seeds used for CV.

Model / Fine-Tuning (Params) Mamba / AR (465K) Caduceus / MLM (467K) Caduceus / Plaid (507k) Caduceus / SEDD (467k) Caduceus / MDLM (467k)

Mouse Enhancers 0.763 {±0.008} 0.810 {±0.016} 0.745 {±0.079} 0.784 {±0.058} 0 .795 {±0.029}
Coding vs. Intergenomic 0.897 {±0.004} 0.913 {±0.003} 0 .908 {±0.003} 0.913 {±0.005} 0.913 {±0.003}
Human vs. Worm 0.967 {±0.002} 0 .970 {±0.002} 0.971 {±0.001} 0 .970 {±0.003} 0 .970 {±0.003}
Human Enhancers Cohn 0.734 {±0.027} 0.737 {±0.001} 0 .743 {±0.010} 0.746 {±0.015} 0 .743 {±0.016}
Human Enhancer Ensembl 0.856 {±0.003} 0.907 {±0.000} 0.885 {±0.003} 0 .905 {±0.006} 0.899 {±0.004}
Human Regulatory 0.861 {±0.008} 0.874 {±0.003} 0 .868 {±0.010} 0.828 {±0.037} 0 .868 {±0.004}
Human OCR Ensembl 0.806 {±0.005} 0 .821 {±0.000} 0.820 {±0.004} 0.816 {±0.008} 0.823 {±0.008}
Human NonTATA Promoters 0.926 {±0.008} 0 .935 {±0.014} 0 .935 {±0l007} 0 .935 {±0.014} 0.940 {±0.007}

Zero-Shot Likelihood Evaluation We also explore
models’ ability to generalize by taking models trained on
OWT and evaluating how well they model unseen datasets.
MDLM consistently outperforms the SEDD diffusion
parameterization on all datasets. In some cases, e.g., for
Lambada and Scientific Papers, MDLM attains better
perplexity than AR. Details in Suppl. C.6.

Downstream Task Evaluation In Table 8, we find that
BERT fine-tuned with MDLM to be a generative model
results in strong perplexities while preserving performance
on downstream tasks.

Semi-Autoregressive Modeling To test the SAR decoding
algorithm presented in Sec. 4.2, we compare to SSD-LM
(Han et al., 2022). In Table 11, we find that in addition
to achieving better generative perplexity, MDLM enables
∼25-30x faster SAR decoding relative to SSD-LM (details
in Suppl. C.10).

5.2. Masked Diffusion DNA Models

We also explore the use of our generative formulation in
conjunction with Structured State Space models (Gu et al.,
2021). Namely, we build on the recently proposed Caduceus
(Schiff et al., 2024) model, which uses as a backbone the
data-dependent SSM Mamba block (Gu & Dao, 2023).
We pre-train the encoder-only Caduceus (Schiff et al.,
2024), which is an MLM, on the HG38 human reference
genome (Consortium, 2009) and perform fine-tuning using
our diffusion parameterization. We use a context length of
1024 tokens and follow Schiff et al. (2024) for the experimen-
tal setup, other than learning rate which was reduced to 1e-3.
See Suppl. I.4 for full experimental details. We assess both
generative performance using perplexity and downstream
performance on Genomics Benchmarks (Grešová et al.,
2023) across language diffusion paradigms and AR models.

Generative Performance We fine-tune the Caduceus
MLM across diffusion parameterizations and compare
perplexities against AR models. We report perplexity values

in Table 3. MDLM outperforms all other diffusion language
modeling schemes.

Table 3: Test perplexities (PPL; ↓) of generative fine-tuning
of the Caduceus MLM (Schiff et al., 2024) on the HG38
reference genome. Best diffusion model values are bolded.
Error bars indicate the difference between the maximum and
minimum values across 5 random seeds used for fine-tuning.
† denotes retrained models.

Params PPL (↓)

AR† Mamba 465K 3.067 ± .0104
HyenaDNA 433K 3.153 ± .001

Dif †
Plaid 507K ≤ 3.240 ± .005
SEDD 467K ≤ 3.216 ± .003

Dif (Ours) MDLM 467K ≤ 3.199 ± .010

Downstream Task Fine-tuning We perform downstream
evaluation with the Genomics Benchmarks (Grešová et al.,
2023), a recently proposed benchmark with eight regulatory
element classification tasks. As shown in Table 2, our
generative fine-tuning paradigm preserves or improves
upon downstream performance from MLM pre-training.
Absorbing-state diffusion methods outperform Plaid across
tasks except for the simplest task Human vs. Worm, where
all methods have roughly the same performance. For tasks
where the input is a biased subsample of the full genome,
we observe that the correlation between perplexity and
downstream performance is weaker; see Suppl. I.4.

6. Conclusion
Conclusion In this work, we explore masked diffusion.
With a well-engineered implementation that supports a sim-
ple variational objective, we attain state-of-the-art diffusion
perplexities on language benchmarks and demonstrate how
to efficiently convert BERT-style encoders into generative
models.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Simple and Effective Masked Diffusion Language Models

References
Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow,

and Rianne Van Den Berg. Structured denoising diffusion
models in discrete state-spaces. Advances in Neural Infor-
mation Processing Systems, 34:17981–17993, 2021.

Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R
Ledsam, Agnieszka Grabska-Barwinska, Kyle R Taylor,
Yannis Assael, John Jumper, Pushmeet Kohli, and
David R Kelley. Effective gene expression prediction
from sequence by integrating long-range interactions.
Nature methods, 18(10):1196–1203, 2021.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas
Rainforth, George Deligiannidis, and Arnaud Doucet. A
continuous time framework for discrete denoising models.
Advances in Neural Information Processing Systems, 35:
28266–28279, 2022.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
One billion word benchmark for measuring progress in
statistical language modeling, 2014.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog
bits: Generating discrete data using diffusion models
with self-conditioning. arXiv preprint arXiv:2208.04202,
2022.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung
Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian.
A discourse-aware attention model for abstractive
summarization of long documents. Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
2018. doi: 10.18653/v1/n18-2097. URL http:
//dx.doi.org/10.18653/v1/n18-2097.

Genome Reference Consortium. Genome reference
consortium human build 37 (grch37. Database (GenBank
or RefSeq), 2009.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context.
arXiv preprint arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Sander Dieleman, Laurent Sartran, Arman Roshannai,
Nikolay Savinov, Yaroslav Ganin, Pierre H Richemond,
Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan,
et al. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, 2022.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie
Tellex. Openwebtext corpus. http://Skylion007.
github.io/OpenWebTextCorpus, 2019.

Katarína Grešová, Vlastimil Martinek, David Čechák,
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Simple and Effective Masked Diffusion Language Models

A. Discrete time ELBO
This section is organized as follows: First, we derive the expressions for the true posterior and the approximate posterior as
outlined in Suppl. A.2. We then simplify these expressions specifically for the case of absorbing state diffusion in Suppl. A.3.
Finally, we derive the expression for the ELBO for absorbing state diffusion in Suppl. A.3.3.

A.1. Discrete Diffusion Models

Applications of diffusion modeling to discrete data can be broken into two broad categories. First are works that embed discrete
structures in continuous space and then perform the Gaussian diffusion defined above on these continuous representations
(Chen et al., 2022; Dieleman et al., 2022; Gulrajani & Hashimoto, 2024; Han et al., 2022; Li et al., 2022; Lovelace et al.,
2024; Strudel et al., 2022). More related to our method are works that define a diffusion process directly on discrete structures.
D3PM (Austin et al., 2021) introduces a framework with a Markov forward process q(zt|zt−1)=Cat(zt;Qtzt−1) defined
by the multiplication of matrices Qt over T discrete time steps. This process induces marginals

q(zt|x)=Cat(zt;Q̄tx)=Cat(zt;Qt ·Qt−1···Q1x) (11)

that represent the discrete-state form of (1). Extending this formalism to continuous time (as in (1)) relies on continuous
time Markov chain (CTMC) theory (Campbell et al., 2022). The CTMC framework in turns leads to generalizations of
the score matching perspective on diffusion modeling (Song & Ermon, 2019) to discrete data (Lou et al., 2023; Sun et al.,
2022). Notably, SEDD (Lou et al., 2023) connects score-based approaches with ELBO maximization, enabling performant
likelihood-based training of score-based models.

A.2. Generic case

A.2.1. q(zs|zt,x)

Given the state transition matrix Qt, prior π, and the latent variables zs and zt, where s < t, the forward process defined
in (11) has the following posterior (Austin et al., 2021):

q(zs|zt,x)=Cat

(
zs;

Q̄t|szt⊙Q̄⊤
s x

z⊤t Q̄
⊤
t x

)
(12)

Q̄t|s=αt|sIn+(1−αt|s)1π
⊤ (13)

which we simplify to the following:

q(zs|zt,x)

=Cat

(
zs;

[αt|sIn+(1−αt|s)1π
⊤]zt⊙[αsIn+(1−αs)1π

⊤]⊤x

z⊤t [αtIn+(1−αt)1π⊤]⊤x

)

=Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

z⊤t [αtx+(1−αt)π1⊤x]

)
Using the property 1⊤x=1 we get,

=Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

αtz⊤t x+(1−αt)z⊤t π

)
. (14)

A.2.2. pθ(zs|zt)

Austin et al. (2021) approximate the reverse process in the following manner:

pθ(xs|xt)=q(zs|zt,x=xθ(zt,t))=Cat

(
xs;

Q̄t|sxt⊙Q̄⊤
s xθ(zt,t)

x⊤
t Q̄

⊤
t xθ(zt,t)

)
. (15)

where xθ(zt,t) :V×[0,1]→∆K is an approximation for x.
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Simple and Effective Masked Diffusion Language Models

A.3. Absorbing state

For the absorbing state diffusion process we have π=m.

A.3.1. q(zs|zt,x)

Since, zt∈{x,m}, takes only 2 values we consider the separate cases: zt=x and zt=m.

Case 1. Consider the case zt=x i.e. zt is unmasked. From (14), we have the following:

q(zs|zt=x,x)

=Cat

(
zs;

[αt|sx+(1−αt|s)1m
⊤x]⊙[αsx+(1−αs)m]

αtx⊤x+(1−αt)x⊤m

)

=Cat
(
zs;

[αt|sx]⊙[αsx+(1−αs)m]

αt

)
since x⊤m=0

=Cat
(
zs;

αtx

αt

)
since x⊤m=0 and αt=αt|sαs

=Cat(zs;x) since αt=αt|sαs (16)

Thus, we have the following:

q(zs|zt=x,x)=Cat(zs;x). (17)

Case 2. Consider the case zt=m. By substituting zt=m and π=m in (14), q(zs|zt,x) simplifies to the following:

q(zs|zt=m,x)=Cat
(
(αt|sm+(1−αt|s)1)⊙(αsx+(1−αs)m)

(1−αt)

)
=Cat

(
(αt|s(1−αs)m+(1−αt|s)(1−αs)m+(αs−αt)x)

(1−αt)

)
=Cat

(
zs;

(1−αs)m+(αs−αt)x

1−αt

)
(18)

Note that the above categorical distribution is non-zero for zs∈{x,m} and zero for every other value. The non-zero values
are specified as follows:

q(zs=x|zt=m,x)=
αs−αt

1−αt
(19)

q(zs=m|zt=m,x)=
1−αs

1−αt
(20)

A.3.2. pθ(zs|zt)

For the absorbing state diffusion process with π=m, we want to simplify the (15). For this reason, we consider 2 cases:
first, when zt ̸=m (case 1), second, when zt ̸=m (case 2).

8
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Case 1. Consider the case when zt ̸=m. (15) simplifies to the following:

pθ(zs|zt ̸=m)=Cat

(
xs;

Q̄t|szt⊙Q̄⊤
s xθ(zt,t)

z⊤t Q̄
⊤
t xθ(zt,t)

)
(21)

=Cat

(
xs;

Q̄t|szt⊙Q̄⊤
s xθ(zt,t)

[Q̄tzt]⊤xθ(zt,t)

)

=Cat

(
xs;

[αt|szt]⊙[αsIn+(1−αs)m1⊤]xθ(zt,t)

[αtzt]⊤xθ(zt,t)

)

=Cat
(
xs;

[αt|szt]⊙[αsxθ(zt,t)+(1−αs)m⟨1,xθ(zt,t)⟩]
αt⟨zt,xθ(zt,t)⟩

)
since ⟨1,xθ(zt,t)⟩=1, we have the following:

=Cat
(
xs;

[αt|szt]⊙[αsxθ(zt,t)+(1−αs)m]

αt⟨zt,xθ(zt,t)⟩

)
since zt⊙m=0, we have the following:

=Cat
(
xs;

αtzt⊙xθ(zt,t)

αt⟨zt,xθ(zt,t)⟩

)
(22)

Case 2. Consider the case when zt=m. (15) simplifies to the following:

pθ(xs|zt=m)=Cat

(
xs;

Q̄t|sm⊙Q̄⊤
s xθ(zt,t)

m⊤Q̄txθ(zt,t)

)

=Cat

(
xs;

Q̄t|sm⊙Q̄⊤
s xθ(zt,t)

[Q̄⊤
t m]⊤xθ(zt,t)

)

=Cat

(
xs;

[αt|sm+(1−αt|s)1]⊙[αsIn+(1−αs)m1⊤]xθ(zt,t)

[αtm+(1−αt)1]⊤xθ(zt,t)

)

=Cat
(
xs;

[αt|sm+(1−αt|s)1]⊙[αsxθ(zt,t)+(1−αs)m⟨1,xθ(zt,t)⟩]
αt⟨m,xθ(zt,t)⟩+(1−αt)⟨1,xθ(zt,t)⟩

)
=Cat

(
xs;

[αt|sm+(1−αt|s)1]⊙[αsxθ(zt,t)+(1−αs)m]

αt⟨xθ(zt),m⟩+(1−αt)

)
=Cat

(
xs;

αtm⊙xθ(zt,t)+(αs−αt)xθ(zt,t)+(1−αs)m

αt⟨xθ(zt),m⟩+(1−αt)

)
(23)

Note that the above categorical distribution, we can obtain the values for pθ(xs=x|xt=m) and pθ(xs=m|xt=m) which
are as follows:

pθ(xs=x|xt=m)=
(αs−αt)⟨xθ(zt),x⟩

αt⟨xθ(zt),m⟩+(1−αt)
(24)

pθ(xs=m|xt=m)=
αs⟨xθ(zt),m⟩+(1−αs)

αt⟨xθ(zt),m⟩+(1−αt)
(25)

As a sanity check, we can verify that (24) reduces to (19), and (25) reduces to (20) if our denoising network can reconstruct
x perfectly, i.e., xθ(zt,t)=x.

A.3.3. DIFFUSION LOSS

For a given T , Let LT =Et∈{1,...,T}Eq(xt|x)TDKL(q(xs|xt,x)∥pθ(xs|xt)) denote the diffusion loss. We break down the
computation of DKL(q(xs|xt,x)∥pθ(xs|xt)) into 2 cases: zt=x (case 1) and zt=m (case 2).

Case 1. consider the case zt=x. Let’s simplify DKL(q(zs|zt=x,x)∥pθ(zs|zt=x)).

9
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DKL(q(zs|zt=x,x)∥pθ(zs|zt=x))

=
∑
zs

q(zs|zt=x,x)log
q(zs|zt=x,x)

pθ(zs|zt=x)

Since q(zs|zt,x) is 1 only for zs=x we get,

=log
1

pθ(zs=x|zt=x)

=log1 From (21)

=0 (26)

Case 2. Consider the case zt=m. Let’s simplify DKL(q(xs|xt=m,x)∥pθ(xs|xt=m)).

DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))

=
∑
xs

q(xs|xt=m,x)log
q(xs|xt=m,x)

pθ(xs|xt=m)

=
∑

xs∈{x,m}

q(xs|xt=m,x)log
q(xs|xt=m,x)

pθ(xs|xt=m)

=q(xs=x|xt=m,x)log
q(xs=x|xt=m,x)

pθ(xs=x|xt=m)︸ ︷︷ ︸
Simplify using (19) and (24)

+q(xs=m|xt=m,x)log
q(xs=m|xt=m,x)

pθ(xs=m|xt=m)︸ ︷︷ ︸
Simplify using (20) and (25)

=
αs−αt

1−αt
log

αt⟨xθ(zt),m⟩+(1−αt)

(1−αt)⟨xθ(zt),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt),m⟩+(1−αs))
(27)

Thus, DKL(q(xs|xt,x)∥pθ(xs|xt)) can be written in the following manner where ⟨zt,x0⟩ evaluates to 1 if zt=x and ⟨zt,m⟩
evaluates to 1 if zt=m:

DKL(q(xs|xt,x)∥pθ(xs|xt))

=DKL(q(xs|xt=x,x)∥pθ(xs|xt=x))︸ ︷︷ ︸
=0 , from (26)

⟨zt,x0⟩+DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))︸ ︷︷ ︸
Given by (27)

⟨zt,m⟩ (28)

Thus, we derive the diffusion loss, LT , in the following manner:

LT =Et∈{1,...,T}Eq(xt|x)TDKL(q(xs|xt,x)∥pθ(xs|xt))

=Et∈{1,...,T}Eq(xt|x)T

[
αs−αt

1−αt
log

αt⟨xθ(zt),m⟩+(1−αt)

(1−αt)⟨xθ(zt),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt),m⟩+(1−αs))

]
⟨zt,m⟩ (29)

Note that LT is 0 if zt is an unmasked token i.e. zt=x.

B. MDLM: Rao-Blackwelization using SUBS parameterization
In this section we show how SUBS parameterization can simplify the functional form of the ELBO as defined in (29).
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B.1. ELBO

The SUBS parameterization, as described in Sec. 3.2, simplifies DKL(q(xs|xt=m,x)∥pθ(xs|xt=m)) ((27)) to the following:

DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))

=
αs−αt

1−αt
log

αt⟨xθ(zt),m⟩+(1−αt)

(1−αt)⟨xθ(zt),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt),m⟩+(1−αs))

Since SUBS sets ⟨xθ(zt),m⟩=0, the above equation simplifies to the following:

=
αs−αt

1−αt
log

(1−αt)

(1−αt)⟨xθ(zt),x⟩

=
αt−αs

1−αt
log⟨xθ(zt),x⟩

(30)

Using this, we obtain the following expression for the diffusion loss, LT :

LT =TEt∈{1,...,T}Eq(xt|x)DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))⟨zt,m⟩

=TEt∈{1,...,T}Eq(xt|x)
αt−αs

1−αt
log⟨xθ(zt),x⟩⟨zt,m⟩

When zt=m, log⟨xθ(zt),x⟩=0; hence, the term ⟨zt,m⟩ can be safely dropped to obtain:

=TEt∈{1,...,T}Eq(xt|x)
αt−αs

1−αt
log⟨xθ(zt),x⟩

(31)

B.2. Continous Time ELBO

To derive the continuous-time diffusion loss, L∞
diffusion, we consider the limiting case limT→∞LT :

L∞
diffusion= lim

T→∞
LT

=Et∈{1,...,T}Eq(xt|x)

[
lim

T→∞
T
αt−αs

1−αt
log⟨xθ(zt),x⟩

]
Using lim

T→∞
T (αs−αt)=α′

t, we obtain:

=Et∼[0,1]Eq(xt|x)

[
α′
t

1−αt
log⟨xθ(zt),x⟩

]
(32)

C. Additional Experiments
C.1. Experimental Setup

We evaluate MDLM as a generative model of language and as a representation model via fine-tuning on downstream tasks.

For language modeling likelihood evaluation, we conduct experiments on two datasets: The One Billion Words Dataset
(LM1B; (Chelba et al., 2014)) and OpenWebText (OWT; (Gokaslan et al., 2019)). We use the bert-base-uncased
tokenizer for One Billion Words, and report perplexities on the test split. Models have a context size of 128. For OWT, which
does not have a pre-defined split, we reserve the last 100K documents as a held-out validation set and report perplexities
on this set. We use the GPT2 tokenizer (Radford et al., 2019) for OWT. Models have a context size of 1,024. We utilize the
transformer architecture from Lou et al. (2023), which augments the diffusion transformer (Peebles & Xie, 2023) with rotary
embeddings (Su et al., 2021). MDLM was trained for 1M or 10M steps (corresponding to 33B, 330B tokens, respectively)
on LM1B and 1M steps on OWT (which corresponds to 262B tokens). The corresponding AR baseline was trained for half
the number of steps to ensure similar number of tokens seen (details in Suppl. F). Full hyperparameters are given in Suppl. I.1.
On OWT, we train with and without time step conditioning.

11
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For representation learning, we pre-train models on the C4 dataset (Raffel et al., 2020), then fine-tune and evaluate models on
the GLUE benchmark (Wang et al., 2019). Models have a context size of 128. We use the bert-base-uncased tokenizer
for the representation learning experiments. We utilize the MosaicBERT architecture from Portes et al. (2024), an extension
of the original BERT architecture (Devlin et al., 2018). We pre-train a bidirectional MosaicBERT using an MLM objective
for 37B tokens of C4, as well as a causal variant on the same data. We further fine-tune MosaicBERT model using the MDLM
for 327M tokens, less than 1% of the pre-training data. We provide the full hyperparameters in Suppl. I.3.

C.2. LM1B perplexity

Table 4: Test perplexities (PPL; ↓) on LM1B. †Reported in He et al. (2022). Best diffusion value is bolded.

Parameters PPL (↓)

Autoregressive
Transformer-X Base (Dai et al., 2019) 0.46B 23.5
OmniNetT (Tay et al., 2021) 100M 21.5

Diffusion

BERT-Mouth (Wang & Cho, 2019) 110M ≤142.89
D3PM (absorb) (Austin et al., 2021) 70M ≤77.50
Diffusion-LM (Li et al., 2022)† 80M ≤118.62
DiffusionBert (He et al., 2022) 110M ≤63.78
SEDD (Lou et al., 2023) (33B tokens) 110M ≤ 32.79

Autoregressive
(Retrained)

Transformer (33B tokens) 110M 22.32
Transformer (330B tokens) 20.86

Diffusion
(Ours)

MDLM (33B tokens) 110M ≤27.04
MDLM (330B tokens) ≤23.00

C.3. LM1B ablations

We assess the importance of our continuous-time framework by performing ablation on diffusion steps T . In Table 5, we
compare NLL and PPL under continuous and discrete T in MDLM. We find that NLL consistently decreases as T →∞.

Table 5: Discrete vs continuous time evaluation for MDLM on LM1B. MDLM was trained with T =∞ and a smaller model
containing 70M non-embedding parameters for 200K steps. We report test perplexity for a discrete T .

Method NLL PPL

MDLMT=∞ ≤3.61±0.001 ≤37.25

MDLMT=10 ≤4.14±0.003 ≤62.83
MDLMT=100 ≤3.66±0.002 ≤39.04
MDLMT=1000 ≤3.62±0.000 ≤37.38

C.4. Train NLL curves on OWT

In Figure 2, we show that MDLM achieves lower variance loss during training compared to a previous diffusion language
model, SEDD. Training is performed over 1M steps on OWT (which corresponds to 524B tokens).

C.5. Time-conditioning ablation on OWT

In Table 6, we assess the importance of time conditioning in MDLM on OWT. We observe that time-conditioning has minimal
impact on perplexity. Training is performed over 1M steps on OWT (which corresponds to 524B tokens).
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Figure 2: Train negative log-likelihood (NLL) curves across 1M gradient steps (524B tokens) on OpenWebText (Gokaslan
et al., 2019). NLL is logged every 1K steps without value smoothing.

Table 6: Ablation on time-conditioning in MDLM on OWT.

Method PPL

MDLM w/ time-conditioning 23.21
MDLM w/o time-conditioning 23.05

C.6. Zero shot evaluations

We also explore models’ ability to generalize by taking models trained on OWT and evaluating how well they model unseen
datasets. We compare the perplexities of our MDLM with a SEDD parameterization and an AR Transformer language model.
Our zero-shot datasets include the validation splits of Penn Tree Bank (PTB; (Marcus et al., 1993)), Wikitext (Merity et al.,
2016), LM1B, Lambada (Paperno et al., 2016), AG News (Zhang et al., 2015), and Scientific Papers (Pubmed and Arxiv
subsets; (Cohan et al., 2018)). Full experimental details are available in Suppl. I.1.

MDLM consistently outperforms the SEDD diffusion parameterization. In some cases, e.g., for Lambada and Scientific
Papers, MDLM attains better perplexity than AR. We hypothesize that these datasets are farther from OWT, and that diffusion
models may be more robust to out-of-domain evaluation due to the unmasking-based objective.

Table 7: Zero-shot validation perplexities (↓) of models trained for 524B tokens on OWT. All perplexities for diffusion models
are upper bounds.

PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

AR (Retrained) 82.05 25.75 51.25 51.28 52.09 49.01 41.73

SEDD (Retrained) 100.09 34.28 68.20 49.86 62.09 44.53 38.48
MDLM (Ours) 95.26 32.83 67.01 47.52 61.15 41.89 37.37
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C.7. Glue Evaluation

Table 8: GLUE evaluation results. Evaluation measures (↑) are F1 score for QQP and MRPC, Spearman correlations for
STS-B, and accuracy for the rest. For MNLI, we report match/mismatch accuracies.

MNLI
(m/mm) QQP QNLI SST-2 COLA STS-B MRPC RTE Avg

AR 80.94/80.78 86.98 86.16 90.14 33.43 84.32 83.88 47.29 74.88
BERT 84.43/85.35 88.41 90.46 92.20 54.81 88.41 89.16 61.37 81.62
+MDLM-FT 84.76/85.07 88.49 90.30 92.20 57.69 87.48 90.53 62.09 82.06

C.8. OWT perplexity

Table 9: Test perplexities (PPL; ↓) on OWT for models trained for 262B tokens. † denotes retrained models.

PPL (↓)

AR† 17.54

SEDD† ≤24.10
MDLM (Ours) ≤23.21

C.9. Ablation Analysis

Table 10: Test perplexities (PPL; ↓) for MDLM ablations on LM1B. All the models were trained for 200K steps. Standard
deviation is measured over 5 seeds during evaluation.

PPL

MDLM 33.59±.11
w/o Continuous time 33.70±.07

& carry-over 35.57±.15
& zero masking 35.31±.16

In Table 10, we can see the effect of our streamlined masked diffusion implementation. The improvements described in
Sec. ?? allow us to greatly reduce perplexity of previously discounted models, such as D3PM (see the bottom row of this table,
which is mathematically equivalent to the D3PM formulation). While most works assumed that D3PM achieves mediocre
log-likelihoods, we show that is is incorrect: our re-implementation almost matches state-of-the-art score-based methods.
This introduces a new strong baseline that opens new research opportunities. Additionally, in Table 10, we ablate different
components of MDLM. We observe that the perplexity for MDLM trained with a discrete T = 1000 marginally worsens
by 0.1 compared to MDLM trained in continuous time. Additionally, removing the “carry over” operation from the SUBS
parameterization increases the perplexity by 2 points. However, further removing the “zero masking” operation does not
lead to any meaningful change in perplexity.

We provide further ablations for the continuous time formulation in the Appendix, showing in Table 5 that for a pre-trained
model, at inference, increasing T yields better likelihoods.

C.10. SEMI-AR

To test the SAR decoding algorithm presented in Sec. 4.2, we compare to SSD-LM (Han et al., 2022) a diffusion model that
was designed to generate blocks of text autoregressively. We generate 200 sequences of length 2048 tokens on a single 3090
GPU and evaluate generative perplexity under a pre-trained GPT-2 (Radford et al., 2019) model. The SSD-LM sequences
are generated using blocks of 25 tokens (as implemented in their pre-trained model) and the MDLM sequences are generated
using L′=512. In Table 11, we find that in addition to achieving better generative perplexity, MDLM enables ∼25-30x faster
SAR decoding relative to SSD-LM.
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Table 11: Semi-AR generative perplexity (Gen. PPL; ↓) for sequences of 2048 tokens.

Gen. PPL (↓) Sec/Seq (↓)

SSD-LM 35.43 2473.9
MDLM (Ours) 27.18 89.3

C.11. Generative Performance

Table 12: Test perplexities (PPL; ↓) of generative fine-tuning of the Caduceus MLM (Schiff et al., 2024) on the HG38 reference
genome. Best diffusion model values are bolded. Error bars indicate the difference between the maximum and minimum
values across 5 random seeds used for fine-tuning. † denotes retrained models.

Params PPL (↓)

AR† Mamba 465K 3.067 ± .0104
HyenaDNA 433K 3.153 ± .001

Dif †
Plaid 507K ≤ 3.240 ± .005
SEDD 467K ≤ 3.216 ± .003

Dif (Ours) MDLM 467K ≤ 3.199 ± .010

D. Noise schedule parameterization
As described in Sec. 3.4, the ELBO is invariant to the functional form of αt. To demonstrate this, we evaluate MDLM, initially
trained using a log-linear schedule on OWT, by replacing the noise schedule with various other noise schedules as mentioned
below. Following prior works (Austin et al., 2021; Lou et al., 2023; Sohl-Dickstein et al., 2015), we parameterize αt=e−σ(t),
where σ(t) : [0,1]→R+. Various functional forms of σ(t) are listed below:

Log Linear (Austin et al., 2021; Lou et al., 2023; Sohl-Dickstein et al., 2015) The log linear schedule is given as:

σ(t)=−logt (33)

Cosine Squared schedule (Han et al., 2022) The Cosine Squared schedule is given as:

σ(t)=−logcos2
(π
2
(1−t)

)
(34)

Cosine schedule The Cosine schedule is given as:

σ(t)=−logcos2
(π
2
(1−t)

)
(35)

Linear The Linear schedule is given as:

σ(t)=σmax(1−t) (36)

where σmax is a very large number. In our experiments we set it to 108.

In Table 13 we demonstrate empirically that noise schedules with different functional forms evaluate to the same Likelihood
which is consistent with our theory in Sec. 3.4. However, different schedules lead to different per data point variance.

E. Likelihood Evaluation
How you do it Say that it incurs lower variance by referencing to the Ablattions table The variance is low because of the
low discrepancy sampler
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Table 13: Likelihood in bits per dimension (BPD) for different noise schedules on OWT dataset, is reported along with the
mean and variance associated with each noise schedule per data point. We empirically observe that noise schedules with
different functional forms yield the same likelihood, consistent with our theory in Sec. 3.4; however, different schedules result
in different variances. Notably, the log-linear schedule exhibits the lowest variance among all the noise schedules considered.

σ(t) Mean Variance per datapoint

Log Linear (33) 3.30 1.81
Cosine (35) 3.30 3.30
Cosine Squared (34) 3.30 3.30
Linear (36) 3.30 7.57

F. Avg. Number of Tokens seen
Given training_steps, batch_size, context_length, the number of tokens seen by the AR model is given as:

training_steps×batch_size×context_length.

However, this expression doesn’t hold true for a diffusion model, since at each training step, the model sees masked input.
Let pm be the probability of a token being masked at a timestep t. Then the diffusion model sees the following number of
tokens in expection:

Et[training_steps×batch_size×context_length×pm]

=training_steps×batch_size×context_length×Et[pm]

For log-linear schedule used in our experiments pm= t; thus,

=training_steps×batch_size×context_length×0.5 (37)

G. Low discrepancy sampler
To reduce variance during training we use a low-discrepancy sampler, similar to that proposed in Kingma et al. (2021).
Specifically, when processing a minibatch of N samples, instead of independently sampling N from a uniform distribution,
we partition the unit interval and sample the time step for each sequence i∈{1,...,N} from a different portion of the interval
ti∼U [ i−1

N , i
N ]. This ensures that our sampled timesteps are more evenly spaced across the interval [0,1], reducing the variance

of the ELBO.

H. Faster sampling with caching
In Figure 14 we compare the wall clock times of variaous methods: AR, SEDD, MDLM with caching, and MDLM without
caching for generating 64 samples on a single GPU. We observe that MDLM without caching yields samples that consistently
get better generative perplexity than SEDD. For T = {5k,10k}, both SEDD and MDLM get better generative perplexity
than the AR model.

Table 14: Wall clock time reported in seconds.

T =5k T =10k

MDLM 4215.9 7675.4
+ caching 2407.3 3626.6

Speedup 1.75x 2.12x

I. Experimental details
I.1. Language Modeling

For our forward noise process, we use a log-linear noise schedule similar to Lou et al. (2023).
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Figure 3: Generative perplexities across wall clock time for generating 64 samples on OWT using a single 32GB A5000 GPU
are compared by varying T ∈{100,500,1000,5000,10000} in the reverse diffusion process. The samples are generated in
mini-batches with a batch size of 16 for AR, SEDD, and MDLM without caching, as it is the largest batch size that fits on this
GPU. For MDLM with caching, we vary the batch size.

We detokenize the One Billion Words dataset following Lou et al. (2023), whose code can be found here. We tokenize the
One Billion Words dataset with the bert-base-uncased tokenizer, following He et al. (2022). We pad and truncate
sequences to a length of 128.

We tokenize OpenWebText with the GPT2 tokenizer. We do not pad or truncate sequences – we concatenate and wrap them
to a length of 1,024. When wrapping, we add the eos token in-between concatenated. We additionally set the first and last
token of every batch to be eos. Since OpenWebText does not have a validation split, we leave the last 100k docs as validation.

We parameterize our autoregressive baselines, SEDD, and MDLM with the transformer architecture from Lou et al. (2023).
We use 12 layers, a hidden dimension of 768, 12 attention heads, and a timestep embedding of 128 when applicable. Word
embeddings are not tied between the input and output.

We use the AdamW optimizer with a batch size of 512, constant learning rate warmup from 0 to a learning rate of 3e-4 for
2,500 steps. We use a constant learning rate for 1M, 5M, or 10M steps on One Billion Words, and 1M steps for OpenWebText.
We use a dropout rate of 0.1.

I.2. Zeroshot Likelihood

We evaluate zeroshot likelihoods by taking the models trained on OpenWebText and evaluating likelihoods on the validation
splits of 7 datasets: Penn Tree Bank (PTB; Marcus et al. (1993)), Wikitext (Merity et al., 2016), One Billion Word Language
Model Benchmark (LM1B; Chelba et al. (2014)), Lambada (Paperno et al., 2016), AG News (Zhang et al., 2015), and
Scientific Papers (Pubmed and Arxiv subsets; Cohan et al. (2018)). We detokenize the datasets following Lou et al. (2023).
For the AG News and Scientific Papers (Pubmed and Arxiv), we apply both the Wikitext and One Billion Words detokenizers.
Since the zeroshot datasets have different conventions for sequence segmentation, we wrap sequences to 1024 and do not
add eos tokens in between sequences.
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I.3. Representation Learning

Following Devlin et al. (2018), we evaluate on all GLUE tasks (Wang et al., 2019), but exclude WNLI.

We pre-train a MosaicBERT model on C4 (Raffel et al., 2020) for 70k steps, corresponding to 36B tokens. We pad and
truncate the data to 128 tokens using the bert-base-uncased tokenizer.

MosaicBERT (Portes et al., 2024) has a similar architecture to bert-base-uncased and has 137M parameters, 12 layers,
12 attention heads, a hidden dimension of 768, an intermediate size of 3072, and ALiBi attention bias (Press et al., 2022).

For pre-training, we use the following hyperparameters: A global batch size of 4096 with gradient accumulation, a learning
rate of 5e-4, linear decay to 0.02x of the learning rate with a warmup of 0.06x of the full training duration, and the decoupled
AdamW optimizer with 1e-5 weight decay and betas 0.9 and 0.98.

For diffusion fine-tuning we use AdamW with a warmup of 2,500 steps from a learning rate of 0 to 5e-5, betas 0.95 and 0.999,
and batch size 512. We train for 5k steps total, corresponding to 32M tokens.

For GLUE evaluation, we use the HuggingFace script found here. We use the default parameters for all datasets, except
for a batch size of 16, which we found helped with smaller datasets. This includes the default of 3 epochs for all datasets
and learning rate of 2e-5.

I.4. Diffusion DNA Models

Dataset We pre-train the Caduceus MLM (Schiff et al., 2024) on the HG38 human reference genome (Consortium, 2009).
Following Schiff et al. (2024), we use character- / base pair-level tokenization. The dataset is based on the splits used in Avsec
et al. (2021): the training split comprises of 35 billion tokens covering the human genome. This consists of 34,021 segments
extended to a maximum length of 1,048,576 (220 segments). We maintain a constant 220 tokens per batch. For the Genomics
Benchmark tasks, we use 5-fold cross-validation where we split the training set into 90/10 train/validation splits.

Architecture The Caduceus MLM uses as a backbone a bi-directional variant of the data-dependent SSM Mamba block
proposed in Gu et al. (2021). This architecture is ideal as it contains inductive biases that preserve reverse complement (RC)
equviariance, respecting the inherent symmetry of double-stranded DNA molecules (Mallet & Vert, 2021; Schiff et al., 2024;
Zhou et al., 2022).

Training details All models are pre-trained on 10B tokens (10K steps) and fine-tuned on a generative objective for an
additional 50B tokens (50K steps). We use a global batch size of 1024 for a context length of 1024 tokens. Downstream
task fine-tuning is performed for 16K steps ( 1B tokens).

For performing Caduceus MLM pre-training, we follow Schiff et al. (2024) for the model size configuration, and hyperpa-
rameter selection. For pre-training, we use a fixed 15% mask rate as done in Devlin et al. (2018). Of the ’masked’ tokens,
80% are replaced with [MASK] , 10% are replaced with a random token from the vocabulary, and 10% are left unchanged.

For fine-tuning all Mamba-based models (including Caduceus) on diffusion objectives, we lower the learning rate from 8e-3 to
1e-3. For fine-tuning HyenaDNA (Nguyen et al., 2024), we lower the learning rate from 6e-4 to 5e-5. Similar to Gu et al. (2021);
Schiff et al. (2024), we found that Mamba-based models were robust to higher learning rates. We exclude timestep embeddings
for all Diffusion DNA experiments, as we show it has minimal impact on generative performance (see Table 6, Suppl. C.5).

We perform downstream task fine-tuning on the final hidden state embedding from pre-training. We perform mean pooling
across the sequence length, which may vary from 200 to approximately 2,000 bps. We report the mean and ± on max/min
classification accuracy over 5-fold cross-validation (CV) using different random seeds, with early stopping on validation
accuracy. For each task, we do a hyperparameter sweep over batch size and learning rate and report the values of the 5-fold
CV for the best configuration.

Genomic Benchmark Task Distributions We use a subset of the Genomic Benchmark tasks with an emphasis on tasks
from Human data. The positive samples for each dataset were generated by selecting samples that were annotated, either
computationally or experimentally, in previous work (e.g enhancers, promoters, open chromatin regions (OCR)) (Grešová
et al., 2023). These annotations each correspond to subsets of the genome of varying sizes that may exhibit different
distributions of DNA than those observed globally over the reference genome. Due to this, the observed dataset may have
a different distribution than the data used for pre-training and calculating perplexity. This might in turn lead to a case where
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perplexity and downstream performance may not necessarily correlate.
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