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Abstract

This paper studies the problem of weakly open-vocabulary semantic segmenta-
tion (WOVSS), which learns to segment objects of arbitrary classes using mere
image-text pairs. Existing works turn to enhance the vanilla vision transformer
by introducing explicit grouping recognition, i.e., employing several group to-
kens/centroids to cluster the image tokens and perform the group-text alignment.
Nevertheless, these methods suffer from a granularity inconsistency regarding
the usage of group tokens, which are aligned in the all-to-one v.s. one-to-one
manners during the training and inference phases, respectively. We argue that this
discrepancy arises from the lack of elaborate supervision for each group token.
To bridge this granularity gap, this paper explores explicit supervision for the
group tokens from the prototypical knowledge. To this end, this paper proposes the
non-learnable prototypical regularization (NPR) where non-learnable prototypes
are estimated from source features to serve as supervision and enable contrastive
matching of the group tokens. This regularization encourages the group tokens to
segment objects with less redundancy and capture more comprehensive semantic
regions, leading to increased compactness and richness. Based on NPR, we pro-
pose the prototypical guidance segmentation network (PGSeg) that incorporates
multi-modal regularization by leveraging prototypical sources from both images
and texts at different levels, progressively enhancing the segmentation capability
with diverse prototypical patterns. Experimental results show that our proposed
method achieves state-of-the-art performance on several benchmark datasets. The
source code is available at https://github.com/Ferenas/PGSeg.

1 Introduction

Recently, the remarkable success of vision-language pre-training (VLP) methods [39, 29, 2] has
invigorated the field of semantic segmentation, one of the prominent computer vision tasks. This
advancement has led to the emergence of an intriguing task known as open-vocabulary semantic
segmentation (OVSS), which aims to segment object pixels belonging to arbitrary classes beyond
pre-defined categories. To address this challenge, most works [22, 19, 34, 37] have turned to a
large quantity of image-text pairs equipped with precisely-annotated masks. To liberate OVSS from
exhaustive pixel-level ground truth, we in this paper excavate weakly open-vocabulary semantic
segmentation (WOVSS), a more arduous setting that achieves OVSS with mere image-text pairs.
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Figure 1: Illustration of our motivation. Our method explores the prototypical knowledge to provide
explicit supervision for the group tokens, which improves the segmentation results with the increased
richness and compactness. The former improves the feature representation of group tokens, resulting
in enlarged semantic regions, and the latter reduces cluster redundancy and noise.

To learn from vast image-text data, vision transformer (ViT) [14] has exhibited impressive advances
in acquiring powerful visual representations from the text [39, 29]. However, the vanilla ViT lacks
an explicit grouping component, rendering it inadequate for achieving comparable fine-grained
segmentation with only text supervision. To imbue ViT with the potential for segmenting ability,
most WOVSS approaches [33, 50, 41, 51, 35] proposed to cluster the patch-level visual features
into several learnable group tokens/centroids, and process the group-text alignment to generate the
corresponding categories. Though effective, these methods inevitably are plagued with a granularity
inconsistency concerning the group tokens. During the training stage, these learnable group tokens
are averaged to facilitate all-to-one group-text alignment, while a one-to-one alignment strategy is
employed during zero-shot inference (please refer to Figure 2 for more details). This inconsistency
arises due to the weak supervision inherent in WOVSS, otherwise, they could be regularized with,
e.g. pixel-level ground truth, to perform promising segmentation results as normal OVSS methods
do [9, 28]. To break this ill-regularized learning pattern, this paper aims to bridge the granularity gap
by exploring explicit supervision for the group tokens, remedying the flawed supervision in WOVSS.

Before delving into the proper guidance for group tokens, let us revisit an interesting question:
What constitutes a good cluster? Such a question drives us to put forward two properties that
a reliable group centroid should possess. 1) Compactness ensures that a cluster centroid and its
clustered items are closely located in the feature space, forming a compact cluster with minimal noise
and redundancy [31, 24, 30]. 2) Richness refers to the capability of a centroid to capture diverse
and accurate patterns, thereby enhancing zero-shot generalization capability [3, 4, 56]. These two
properties motivate us to find the supervision by exploiting the prototypical knowledge [4, 31, 30]
from an expectation-maximization (EM) estimated data density. To this end, we propose the non-
learnable prototypical regularization (NPR) that adopts the Gaussian mixture models (GMM) [42],
one of the soft clustering models, to generate the supervision from the source features for each group
token. Specifically, we treat the learned Gaussian distributions from the source features as prototypes,
which are then used to align with the group tokens in a contrastive manner. Notably, each non-
learnable prototype (uninvolved in gradient backpropagation) is able to regularize the corresponding
group token, enabling it to segment compactly and richly. As shown in Figure 1, the group tokens
could benefit from this prototypical supervision to segment the objects with less redundancy and
more accurate semantic patterns, effectively alleviating the under- and over-segmentation problems.

To instantiate the prototypical patterns in NPR, this paper introduces a novel investigation into using
multi-modal information as the source features. The low-level image features, with detailed texture
information, could be an intuitive choice to refine the segmentation results [44, 49, 1]. Beyond such
simple uni-modality, we further mine out the prototypes from the text to regularize the group token
with textual information. Hence we propose two strategies, namely image-level NPR (I-NPR) and
text-level NPR (T-NPR), to provide multi-modality regularization to the group tokens. Based on this,
we propose the prototypical guidance segmentation network (PGSeg), a hierarchical segmentation
model that incorporates I-NPR and T-NPR into the group tokens at different levels, progressively
improving the segmenting ability of the group tokens. Overall, we make the following contributions:
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* We propose NPR that explores and exploits the profotypical knowledge to serve as a valid supervi-
sion of the group tokens in segmenting objects. This explicit regularization is encouraged to bring
compact and rich feature representation to the group tokens.

* We propose PGSeg, a simple yet effective segmentation architecture that extracts the prototyp-
ical knowledge from both the image and text to regularize the group tokens at different levels,
progressively guiding the group tokens to segment in an explicit way.

» Extensive results on several benchmarks demonstrate the superiority and effectiveness of our
method. Particularly, our method yields new state-of-the-art performance by reaching 53.2% mloU
and 28.7% mloU on PASCAL VOCI12 [16] and COCO [32], respectively. It is worth highlighting
that our PGSeg model, trained solely on the CC12M dataset [7], surpasses some state-of-the-art
methods utilizing large foundation models such as CLIP [39] and BERT [13] by up to 14.5% and
5.2% in terms of mloU on PASCAL VOCI12 and COCO, respectively.

2 Related Work

Weakly Open-Vocabulary Semantic Segmentation. Most existing works addressing WOVSS can
be categorized into two groups based on whether CLIP [39] or Diffusion Models [43] is employed as
the fundamental model. The first category focuses on extracting coarse localization features from
CLIP or Stable Diffusion Models and subsequently refining them to achieve fine-grained segmentation
results [55, 6, 36]. The second category of approaches, distinct from those focused on CLIP, centers
around enhancing the plain ViT by incorporating grouping recognition, resulting in a foundational
segmentation model [33, 50, 41, 51]. In these methods, several learnable group tokens/centroids are
introduced to extract visual concepts from the image features. [50] proposed GroupViT that assigns
these tokens to input patch tokens, enabling a learnable clustering process during training. [35] also
presented a grouping-based approach, and introduced a reconstruction loss and a superpixel-based
regularization loss to improve the inner clustering results. Our work aligns with the second category
of approaches. Note that the setting of WOVSS is extremely similar to weakly supervised semantic
segmentation (WSSS), where a segmentation model is obtained with simply image-level labels.
Most works addressing WSSS aim to use the low-level of the image information to iteratively refine
the segmentation mask [44, 1, 54], requiring massive additional training or inference stages on the
target dataset. Therefore, this paper explores an end-to-end mechanism that efficiently incorporates
low-level information on the segmentation mask.

Prototypes for Deep Representation Learning. The prototypes typically refer to the centroids
from conventional clustering methods [15]. Based on the expectation-maximization (EM) algorithm,
prototypes are learned by estimating the data features through a mixture of prior distributions.
As a result, prototypes are often regarded as "non-learnable" since they deviate from the usual
gradient-based learning in deep neural networks [31, 56]. The inclusion of prototypical patterns
has been extensively explored to enhance feature representation learning in contrastive learning
(CL) [3, 4, 5, 31, 57], which aims to match the feature embeddings of a pair of aligned samples.
The success of these approaches highlights two important benefits that prototypes bring to feature
alignment. The first goes to the compactness [31, 30, 24], where they find that the prototypes could
reformulate features into a more compact representation, reducing redundancy and noise in feature
alignment. This leads to more reliable feature representations. Another benefit is to enhance the
richness of the feature representation by capturing more learning patterns. CL often suffers from the
dimensional collapse, where embedding vectors occupy a lower-dimensional subspace than their
original dimension, resulting in limited diversity in feature representation. To address it, a line of
work has leveraged the prototypes to serve as a constraint on the feature alignment, which is validated
to effectively enrich the feature representation [3, 4, 5, 53]. This work explores the use of prototypical
knowledge with the expectation of providing the aforementioned advantages to segmentation clusters.

3 Rethinking the Semantic Grouping Mechanism in WOVSS

To effectively tackle WOVSS, recent works [50, 41, 35, 51] have placed significant emphasis
on incorporating explicit grouping recognition into the plain model. To this end, these meth-
ods developed a semantic grouping mechanism (SGM) based on ViT [14]. Formally, given
m input patch tokens S = [s1,S2,..,8m] € R™*% and extra q learnable group tokens G =



(91,92, -, gq] € RI*?, where d is the dimension of data and ¢ < m. SGM clusters S and out-
puts new clustered tokens S € R9*? by § = Gumbel-Softmax(Q(G)K(S)T)V(S) + G, where
Q : R7¥d 5 RI¥4 [ (V) : R™*4 — R™*4 represent the Query, Key (Value) mapping function.
Figure 2 clearly demonstrates this cross-attention-based clustering process. Here each patch to-
ken is assigned to a corresponding group token by the Straight-Through Gumbel-Softmax [23],
making this process end-to-end trainable. We formulate this patch-group assignment as A =
Q(G)K(S)T € R9*™, By plugging the SGM into ViT, the vanilla image encoder could be
empowered with potential segmenting ability. However, it could be observed that this mecha-
nism presents a granularity inconsistency for the group tokens between the training and inference
stages (as shown in Figure 2). More specifically, during the training phase, all group tokens are
globally averaged to match the corresponding text embedding for the final group-text alignment,
while during the inference
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receive explicit supervision

as they are subjected to all-to-one text-based regularization during the training stage. This discrep-
ancy in supervision may contribute to the performance gap observed between OVSS and WOVSS.
In OVSS, each learnable group token can be treated as a query embedding, generating a dense
embedding for object mask prediction. This dense embedding can be further regularized by the
patterns extracted from pixel-level ground truth annotations [9, 28, 58]. Therefore, such granularity
discrepancy essentially is derived from the weak supervision of WOVSS. Despite the challenges
posed, we are motivated to explore customized regularization techniques for each group token, aiming
to compensate for the absence of pixel-level annotations. By explicitly addressing the granularity
gap, we aim to enhance the segmentation performance in WOVSS.

4 Methods

4.1 Exploring Prototypical Knowledge for Explicit Supervision

To find explicit and reliable supervision, we turn to the prototypical knowledge to form a regularized
basis that can bring certain benefits to the group token in segmentation. Gaussian mixture models
(GMM) [42] has been experimentally validated to form a basis that could reduce the redundancy
of the features [31, 24]. Inspired by this, we propose the non-learnable prototypical regularization
(NPR) that uses GMM to extract the prototypes from the prototypical source (like a way of data
mining), and then aligns such prototypes with the group centroids in a contrastive way.

Prototype Generation. The first stage of NPR is to generate the supervision by GMM. GMM is based
on a mixture of Gaussian distributions, where each component of the mixture corresponds to a cluster
in the data. Formally, given the prototypical source features V' = [v1, ..., v,,] € R™*?, and extra
q randomly-initialized prototypes P = [py, ..., p,] € R?*?, where m and d represents the number
and the dimension of the prototypical source. In this way, the distribution of V' could be expressed
asp(V) = 20, mN(V|p;, %;), where m; € RY, p; € R? and the 3; € R?*? are the weight,
mean and covariance of the ¢-th Gaussian component. Here we take the means as the prototypes. To
work out (P, X, ), the log-likelihood of p(V') is maximized through the expectation-maximization
(EM) algorithm, which optimizes the model, until convergency is reached, by alternating between an
expectation (E) step and a maximization (M) step. In the E step, the probability of j-th source feature



Algorithm 1 Non-learnable Prototypical Regularization (NPR)

Require: Group tokens G € R7*?, prototypes P € R7*?, prototypical source features V' € R™*¢,
iterations 7' (7" = 10 in our setting), selecting threshold ¢.
> Prototype Generation
for iteration t = 1 to 7" do
(E-step) Calculate the probability of V' belonging to P in Eq. (1)
(M-step) Update the prototypes P by using Eq. (2)
end for
> Prototype Supervision
Generate the matched prototypes P" by using the Hungarian matching between P and G
Select the matched pairs (P", G') whose similarity scores are beyond ¢
Regularize the selected G with the matched P" by using Lpg in Eq. (3)
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v; belonging to the i-th Gaussian prototype could be expressed as

Z(v)|ps) exp(pivy) . :
Yij = - 726 {077(]}7] S {07"'7m}7 (1)
! i1 Z(vilpi) Y01, exp(piv))

where Z : R4 — R! denotes a kernel function. For simplicity, we set X as the identity matrix I
and leave out . We experimentally observe that the different choices of Z negligible effects on the
final results, so we simplify the Gaussian Kernel exp (— |z —ylI?/ 202) to the exponential inner dot

exp (myT) Based on the estimated y;;, the prototypes P in the M step could be updated as

pi = D Yij Vs

T — m .
Z]’:l Yij

After alternatively repeating the E step and M step, a bunch of compact prototypes representing

the prototypical information could be obtained to supervise the group tokens. Note that we could
reconstruct the prototypical source Vby V' =Y TP € R™ 1Y = [y;;]gxm-

@

Prototype Supervision. The second stage is to regularize G with the updated P. Based on the cosine
similarity between P and G, we first perform Hungarian matching [27] to ensure that each centroid g
has a corresponding target prototype p. Denote the matched prototypes as P? = [p¥, ..., p}ql] € R7x4,

Then, we combine the matched pair of (g, p") as the positive samples, and propose the Prototypical
Guidance (PG) loss Lpg to regularize the group centroids in a contrastive way:

1 exp(S(gi, pi')/7) exp(S(p!. 9i)/7)
Lec(G,P")=-=>"" (lo +1o )
pa(@ P == 2 1B T (S lanp) /) T S exp(S(Y 9,)/7)
where 7 = 0.1 is the temperature hyper-parameter, and S(a,b) = % calculates the cosine

similarity between two vectors. Based on the PG loss, we introduce a simple hard rejecting strategy
(HRS) that only considers the positive pairs whose similarity is beyond a fixed threshold ¢. We
claim that one group centroid could be wrongly guided by the matched prototype once they have
a significant difference, which will be discussed in Section 5.3. Besides, we here assume that the
number of prototypes and group centroids is the same, and we will also show the case where the
number of them is different in Section 5.3 (only the matched pairs are considered to calculate Lpg).

Compactness & Richness. The essence of NPR is to regulate each group centroid with a normalized
prototype from a prior distribution, yielding two essential benefits as discussed 2. The first one is
the compactness, which helps refine the clustered results by reducing noise and redundancy [31, 24].
The second one goes to the richness that empowers the group tokens with rich feature representation
by relieving the dimensional collapse through the application of normalized regularization [4, 18],
capturing more accurate patterns as possible. In all, we believe that NPR could augment the
segmenting ability of the group tokens with these two benefits, which will be validated in Section 5.

Complexity Analysis. The EM algorithm is the key part in NRP (Prototype Generation in Algo-
rithm 1). It is crucial to carefully consider its time complexity regarding iterative learning. However,
through a simplified implementation, we demonstrate that the time complexity of prototype gener-
ation in NPR is O(¢g x m x d) for a single sample. This complexity is reasonably acceptable for
implementation purposes. The actual computational performance will be demonstrated in Section 5.3.
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Figure 3: The overall framework of our proposed PGSeg. PGSeg consists of an image encoder and
a text encoder. Through sequential connections facilitated by the PG Unit and several transformer
layers, the image encoder is organized into multiple hierarchical levels (highlighted in orange),
enabling the progressive grouping of the input patch tokens. Best viewed in color.

4.2 Exploiting Prototypical Guidance for WOVSS

In this section, we introduce our proposed prototypical guidance segmentation network (PGSeg) in
detail, which incorporates the proposed NPR into SGM to address WOVSS.

Main Architecture. As shown in Figure 3, the overall framework of PGSeg is mainly comprised of a
text encoder and an image encoder. The transformer-based text encoder is used to output the text
embedding, denoted as Z* € R™*¢, where n denotes the sample batch size and ¢ denotes the feature
dimension. For the image encoder, we adopt a ViT-based architecture as the image encoder. To
instill the image encoder with the segmenting ability, we propose PG Unit, which is a plug-and-play
module to perform grouping based on SGM. Intuitively, a multitude of PG Units, along with several
transformer layers, can be sequentially connected to perform hierarchical grouping during the forward
learning process. The image embedding Z' € R, as the output of the image encoder, is generated
by average-pooling and mapping the output tokens in the final PG Unit. Based on the architecture
of PGSeg, we assume that the image encoder could be split into L levels if L PG Units are inserted.
Formally, we denote the input tokens in the [-th level as S; € R"™*"™ xd and ¢, learnable group
tokens as G; € R™*%*4 where m; (¢;) denotes the number of input patch (group) tokens in level
l. Likewise, denote the output tokens in the I-th level as S, € Rnxaxd, Intuitively, we hold that

Siy1 = Sl, 1 €{1,..., L} due to the sequential connection among the PG Units, namely the output
tokens in the previous level serve as the input patch tokens in the next level.

PG Unit. To instantiate NPR, we propose PG Unit that mines out the multi-modal prototypical source
from image-text representations. In this way, we propose two NPR-based strategies based on the type
of prototypical pattern, namely image-level NPR (I-NPR) and text-level NPR (T-NPR). For I-NPR,
we adopt the input tokens placed before the transformer layers as the image-level prototypical pattern,
which are denoted as V; € R"*™*4_Based on extra non-learnable prototypes P; € R™"¥% x4 we
follow the Algorithm 1 and regularize G; with V; and P;. Besides, we further reform the input
tokens by S; = S; + Vf, where V; e R™*muxd gre the reconstructed image-level source, as the
input tokens of SGM to enhance the robustness of the model learning [10].

For T-NPR, we turn to the text embedding Z* € R"*¢*! as the text-level prototypical pattern to
improve the group tokens G; in capturing semantic information. Specifically, we introduce additional
text prototypes T; € R"*%*1 and update them with Z*. Subsequently, we regularize AVG(G;) with
the updated T, where AVG : R?>*@xd _ RnXa X1 ayerages the G; along dimension d. Essentially,
T-NPR aligns the score of each group token with the center value clustered from dimension d in Z?.

Training Loss. Based on the proposed I-NPR and T-NPR in PG Unit, the overall training loss is
LaLL = Li1(2",Z") + Z Z Mpc(G],P]) + BLpc(AVG(G]), T}), 4)

where Ly is the symmetric image-text contrastive loss in [39], A and 3 are the hyper-parameters to
balance the loss. Here we empirically set A = 0.1 and 5 = 0.01.



Momentum update of Prototype. It is critical to set appropriate initialization of P to guarantee
robust convergence [42]. To this end, we leverage the exponential moving average (EMA) strategy
to globally update the initial prototypes after each training round: P(new) = YP(o1a) + (1 —

) 3i1 Pz, where P{;, denotes the updated prototypes at the final T-th iteration in NPR, and
P (new)/ P (o1q) 1s the initial prototypes for the next/current training round. Empirically we set y = 0.9.

S Experiments

5.1 Implementation Details

Model Architecture. Following conventions in [50, 41, 35], we adopt ViT-S [47] as the visual
backbone, which consists of 12 transformer layers with a hidden dimension of 384. The input image
size is 224 x 224 and the patch size is 16 16. Based on the experimental performance in [50, 41], we
set L = 2 for PGSeg, which means two individual PG Units are incorporated into the ViT module
at different places. The number of learnable group tokens is 64 in level 1 and 8 in level 2, namely
q1 = 64, g2 = 8. Two PG Units are inserted after the 6t and 9*" transformer layers, respectively.
The transformer-based text encoder is the same as [39], with the hidden dimension of 256.

Datasets and Evaluation Metric. Following [50, 41, 35, 51], we use CC12M [7] and RedCaps [12]
as the training sets, and each of them contains 12 million image-text pairs. For the downstream
evaluation datasets, we select 5 benchmarks: PASCAL VOC12 (20 foreground classes) [16], PASCAL
Context (59 foreground classes) [38], COCO Object (80 foreground classes) [32], ImageNet-S (919
foreground classes) [17] and LVIS [20] (1203 foreground classes). All of them contain 1 extra
background class. We use the mean Intersection-over-Union (mloU) as the evaluation metric.

Training and Inference Settings. During the training stage, we use Adam [25] optimizer with a
weight decay of 0.05. We set the batch size as 4096, and use the cosine learning strategy with an
initial learning rate of 1.6e~2. We train the PGSeg for 40 epochs with 5 epochs of linear warm-up.
As the generated features are unreliable in early epochs, we set A = 8 = 0 at the first 30 epochs.
For the selecting threshold ¢ of HRS in NPR, we experimentally set it to 0.1. The whole training
process is implemented on 4 A100 GPUs, each with 80 GB of memory. During the inference, where
no additional training is involved, we obtain the patch-group assignment with the cross-attention
maps in two PG Units: Ag,, = A1 Ay € R™*92, We then generate the foreground semantic mask,
and set a fixed threshold as the background score to evaluate the segmentation mask. Note that the
templates of the text prompt could significantly impact the segmentation results [40]. To ensure fair
comparisons, we follow the same prompt template [50, 39, 41] (a photo of...) to generate the text
embedding with the foreground class name for the evaluated benchmark datasets.

5.2 Zero-shot Segmentation Performance

Comparison with Zero-shot Baselines. Similar to [41, 50], we compare our methods with
seven baselines. Four of them train a plain ViT and a text encoder simply by Lir [39], and
generate the segmentation mask by using different pixel-grouping methods on the image features.
[52] find that increased [CLS] tokens in ViT
serve as meaningful centers for perceptual
grouping. Inspired by this, we additionally build

Table 1: Comparison with zero-shot baselines.
Architecture | Pixel-Grouping Methods | mIoU (%)

a baseline VIT-8S to serve as a more potent para- ViT-S pixel-wise 20.1
metric baseline. It trains a plain ViT-S but with ViT-§ K-means 25.0
. . . ViT-S Mean-shift 20.7
increasing the [CLS] token amount into 8, and . S
. . ViT-S Spectral clustering 19.7
then aligns the averaged embedding of the final -
8 [CLS] tokens with the text embedding in a con- ViT-88 X 38.1
. . . GroupViT [50] X 43.2
trastive way. ViT-8S generates the assignment )
. . ViewCo [41] X 45.7
by summing the cross-attention maps ([CLS] to PGSeg X 49.0

patch) in each transformer layer. Table 1 shows
the performance of these methods on the validation set of PASCAL VOC12, note that all methods here
are trained simply with CC12M. It is intuitive that PGSeg outperforms all the compared baselines.
Notably, PGSeg adopts the same backbone as GroupViT [50] and ViewCo [41], while achieving a
5.8% and 3.3% performance improvement over them.



Table 3: Comparison with SOTA in terms of mIoU(%). All the image encoders here are built on
ViT-S [47]. ST means that [55] uses the self-training strategy on the evaluated datasets to refine the
mask. The best results are highlighted in bold (underline marks the cases under the same volume).

Methods | Training Data (volume) |  Pre-trained Models | VOC12 | Context | COCO
RECO [45] CC400M [39] + ImageNet1M (401M) CLIP [39] + MOCO [21]| 25.1 19.9 15.7
MaskCLIP [55] CC400M [39] (400M) CLIP [39] 29.3 21.1 15.5
ViL-Seg [33] CC12M [7] (12M) x 344 | 163 | 164
MaskCLIP [55] CC400M [39] + ST (400M) CLIP [39] 38.8 23.6 20.6
GroupViT [50] CCI12M [7] (12M) X 41.1 18.2 18.4
OVSegmentor [51] CCI12M [7] + ImageNet1M [11] (13M) BERT [13] + DINO [5] 44.5 18.3 19.0
PGSeg | CCI2M [7] (12M) \ x | 490 | 206 | 229
GroupViT [50] CCI12M [7] + RedCaps12M [12] (24M) X 50.8 23.6 27.5
SegCLIP [35] CC403M [39, 7] + COCO400k [32] (403.4M) CLIP [39] 52.6 24.7 26.5
GroupViT [50] CCI2M [7] + YFCC14M [46] (26M) X 52.3 22.4 20.9
ViewCO [41] CC12M [7] + YECC14M [46] (26M) X 524 23.0 23.5
PGSeg ‘ CCI12M [7] + RedCaps12M [12] (24M) ‘ X ‘ 53.2 ‘ 23.8 ‘ 28.7
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Figure 4: Qualitative results on PASCAL VOC12. Compared with GroupViT, the group tokens in
PGSeg could capture the object (marked with a white circle) in a more complete and delicate way.

Comparison with SOTA. Table 3 lists the mloU of recent state-of-the-art (SOTA) methods on the
validation splits of PASCAL VOC12, PASCAL Context, and COCO datasets. Since there is a huge
gap among these methods in terms of the datasets and pre-trained model, we particularly report the
total data volume and the specific pre-trained model that each method used during the whole training
process, with the expectation for a clear and sound fair comparison. As shown in Table 3, our PGSeg
achieves the SOTA performance among all the methods with the same data volume. Particularly, our
method, with comparably small data volume, even achieves a more stunning performance than the
methods with huge foundation models, validating the superiority and effectiveness of our PGSeg.

Challenging Segmentation. Here we introduce two challenging benchmarks to explore
the potential of PGSeg in real-world segmentation. ImageNet-S, distilled from the Ima-
geNet [11], contains 919 classes of object-centric images with human-annotated mask labels.
LVIS contains 1203 classes that are incorporated
yfwlt:)kll v;rig)t;; g?égworlddogjeCtSVz%S((Sjlgl\’;Iﬁ/[in refers to the True Label Guidance strategy.

able 2, bo eg and GroupVi +
RedCaps12M) are weak in segmenting these two Methods |ImageNet-$ (-/+TLG) | LVIS (- / +TLG)
datasets. Such frustrating performance might be ~ GroupViT 19.6/32.5 3.2/6.9
due to inadequate image-text alignment of new PGSeg 19.7/338 34172
vocabularies. It is observed that both their segmentation performance could be boosted through the
True Label Guidance, considering only the true labels of the evaluating samples. It is also found
that PGSeg performs better than GroupViT with the TLG strategy. Therefore, we believe that the
segmenting performance of PGSeg could be further enhanced by including more image-text pairs.

Table 2: Challenging segmentation results. TLG

5.3 Ablation Studies

In this section, we use the version of PGSeg with CC12M+RedCaps12M to implement all ablation
studies on PASCAL VOC]12 in detail, which contain the effectiveness of the modules in the PG Unit,
some analysis of the prototypes, and the computational performance of PGSeg.



Effectiveness of PG Unit. Table 4 shows the effectiveness of each designed module in the PG Unit.
Recall that in Section 4.2 we propose two different NPR-based strategies in the PG Unit, namely
I-NPR and T-NPR. As shown in Table 4, both these strategies are effective in enhancing the baseline,
delivering 1.75% and 0.58% improvements, respectively. We also propose the HRS to further improve
the performance of NPR by filtering the group-prototype pairs with a fixed selecting threshold ¢.
Consequently, it is observed that proper threshold could lead to the boosting of PGSeg (+0.41%),
which finally achieves 53.24% performance together with T-NPR.

The number of Prototypes. Recall that in Section 4.1 we mention that the number of prototypes
could be different from the group tokens. Table 5 reports the performance of PGSeg with different
numbers of prototypes. Note that at the 15¢ (2"?) level, the number of group tokens remains constant
at 64 (8). Here we exclude the HRS to ensure a comprehensive consideration of all prototypes.
We only consider the matched group-prototype pairs as the positive samples, and all other extra
groups/prototypes would be considered to form the negative samples. In other words, if the number
of group tokens is smaller (larger) than the number of prototypes, the symmetric Lpg would simply
calculate the left (right) part accordingly. As depicted in Table 5, it has been observed that the optimal
performance is attained when the number of prototypes is equal to the number of group tokens.
Moreover, any increase or decrease in the number of prototypes beyond this optimal value tends to
negatively impact the segmentation performance to some extent. This reveals that the number of
negative samples or positive samples is vital to the performance of prototypical alignment. Clearly,
the number of positive sample pairs would decrease if the number of prototypes is less than 64/8,
otherwise, the number of negative sample pairs would increase. Therefore, our experimental results
on the number of prototypes reach a consistent conclusion with [48, 53, 21].

Table 4: Ablation studies on the PG Unit. Table 5: Ablation studies on the
Baseline I-NPR T-NPR HRS-0.5 HRS-0.3 HRS-0.1|mloU (%) number of prototypes (w.0. HRS).
v 50.76 The group token amount is 64/8.

v (4 52.51 y

v 4 51.34 2" level |, 8 16
v v v 51.62 1% level

v 4 v 52.57 32 52.12152.49(51.94
v v v 52.92 64 52.71|52.83(52.23
v v v v 53.24 128 52.21(52.62(52.14
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Figure 5: Compactness analysis. The results come from 5 clus- Figure 6: Dimension distribu-
tered patch tokens based on the group tokens. tions of each group token.

Two benefits of NPR. Here we aim to investigate the nature of the two benefits, i.e., compactness
and richness (mentioned in Section 4.1), to understand the effectiveness of NPR better. To validate
the first one, we use tSNE to visualize the clustered 5 input patch tokens of SGM among 50 samples.
As shown in Figure 5, it is intuitively found that the patch tokens in PGSeg are more tightly clustered
than GroupViT, where most input tokens are comparably scattered. With the help of the compact basis
in NPR, the input patch tokens become less noisy in the feature space, which is also supported by the
visualized results in Figure 4 and Figure 1. The second benefit aims to enrich the feature representation
to capture more accurate semantic patterns by relieving the dimensional collapse [8, 18]. As shown
in Figure 6, we calculate the mean and variance of 384 dimensions for each 1! level group token
(64 in total) based on 300 samples. It is evident that although the means are nearly identical, the
dimensional variance of PGSeg is significantly larger than that of GroupViT, indicating a better
dimensional representation for each group token with prototypical regularization. Overall, these two
explicit benefits are validated to contribute to the enhanced segmenting ability of the group tokens.



Computational Performance. Here we present the  Table 6: Computational performance.

floating-point operations (FLOPSs) and model parameters

for thrgeepmethg)ds in Table 6 as well. The FpLOPs are Methods ‘ FLOPs ‘ Params
calculated based on an image size of 448 x 448. It is ob- ViT-S 16.7G | 21.6M
served that PGSeg introduces a 3.2G increase in FLOPs GroupViT | 104G | 28.7M
compared to GroupViT, but still maintains a lower FLOP PGSeg 13.6G | 35.IM

count (-3.1G) than ViT-S. Therefore, the computational
complexity of PGSeg remains manageable, indicating a reasonable level of computational efficiency.

6 Discussion with SAM

Recently, the Segment Anything Model (SAM) [26], an impressive model for interactive segmentation,
has demonstrated significant progress in image segmentation tasks. SAM supports segmenting
everything in an arbitrary image, which is a powerful foundation model to address OVSS. SAM
is trained on a massive dataset comprising 11 billion images. In contrast, PGSeg is trained on a
smaller dataset consisting of only 24 million image-text pairs. Intuitively, the data volume of SAM
is approximately 460 times that of PGSeg. Despite their vast data amount, SAM also incorporates
over 1 billion accurately annotated masks. Therefore, SAM is clearly better than PGSeg. Though a
huge performance gap between our PGSeg and SAM, we would like to present some comparisons
between these two models to present the research value of WOVSS. As illustrated in Figure 7, the
segmenting groups in SAM provide comprehensive coverage of objects in an extremely fine-grained
manner. In comparison, our learnable groups effectively capture entire objects without requiring
instance-level recognition. For example, in the 1¢ column of the image, our yellow group can
represent the overall forest background, while SAM can differentiate between individual trees within
the forest background. However, it is important to note that our PGSeg model achieves comparable
segmentation capabilities for certain intuitive objects, such as umbrellas, ships, babies, etc., with
significantly fewer image-text pairs compared to SAM. Although vast attention has been paid to
investigating the huge foundation model with vast data collection, given this impressive performance,
we believe that WOVSS is a fascinating research topic that merits future investigation.

E = b o a— 3 i
Figure 7: Class-agnostic segmentation comparison between SAM and PGSeg on LVIS.

7 Conclusion

The majority of efforts in weakly open-vocabulary semantic segmentation (WOVSS) have focused on
implementing explicit grouping recognition while overlooking the customized supervision needed for
the inherent clustering of group tokens. This oversight has led to a granularity inconsistency between
the training and inference stages. To address this issue, our paper proposed to leverage prototypical
knowledge to mine out explicit supervision, which encourages the generation of compact and rich
feature representations for the group tokens. Additionally, we introduced multi-modal prototypes
derived from image-text information to instantiate this knowledge, resulting in diverse patterns that
enhance the segmenting ability of the group tokens. Through quantitative and qualitative experiments,
we have demonstrated the effectiveness and superiority of this straightforward concept. In all, our
bottom-up concept further validates the potential of prototypes, which exhibit compactness and
richness, as promising elements for the top-down segmentation methods. Therefore, we believe that
it is worth further exploring the full potential of prototypes in more weakly supervised tasks.
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