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ABSTRACT

Sleep is a complex physiological process evaluated through various modalities
recording electrical brain, cardiac, and respiratory activities. We curate a large
polysomnography dataset from over 14,000 participants comprising over 100,000
hours of sleep recordings. Leveraging this extensive dataset, we developed
SleepF M, the first multi-modal foundation model for sleep analysis. We show
that a novel leave-one-out contrastive learning significantly improves downstream
task performance compared to standard pairwise contrastive learning. A logistic
regression model trained on SleepFM’s learned embeddings outperforms an end-
to-end trained convolutional neural network (CNN) on sleep stage classification
(macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered
breathing detection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61). Notably, the
learned embeddings achieve 48% top-1 average accuracy in retrieving modality
clip pairs from 90,000 candidates. This work demonstrates the value of holistic
multi-modal sleep modeling to fully capture the richness of sleep recordings.

1 INTRODUCTION

Sleep monitoring is critical to evaluate sleep disorders and as a proxy to assess overall brain, pul-
monary, and cardiac health|Worley| (2018)); Brink-Kjaer et al.|(2022);|Leary et al.|(2021)). Polysomnog-
raphy (PSG) is the current gold standard for studying sleep by recording diverse physiological signals
such as electroencephalogram (EEG), electroocculograms (EOG), electromyography (EMG), electro-
cardiogram (ECG) and respiratory channels Kryger et al.[(2010). EOG and EMG are often combined
with EEG recordings to determine sleep stages, referred to as Brain Activity Signals (BAS).

Traditionally, sleep data analysis involved manual visual inspection, a labor-intensive and time-
consuming process prone to errors |Boashash & Ouelha|(2016);|Hassan & Bhuiyan|(2017). Recent
advancements in supervised deep learning have shown promise in automating sleep staging and
classification of disorders like SDB [Nassi et al.| (2021)); [Perslev et al.|(2021); |Stephansen et al.| (2018)).
However, most methods rely on labeled data from a narrow task. They rarely leverage the full breadth
of unlabeled physiological dynamics within and across diverse PSG sensors.

In parallel, contrastive learning (CL) techniques have emerged to enable comprehensive representation
learning, with major computer vision frameworks like SimCLR |Chen et al.|(2020), and CLIP Radford
et al. (2021) focused primarily on images. While some works have explored extending CL to medical
images and time series like ECG signals, multi-modal contrastive representation learning across
diverse physiological modalities remains relatively uncharted. Two prior studies have investigated
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contrastive multi-modal clinical time series analysis: one employing SimCLR-style pre-training on
ECG data and structured records Raghu et al.| (2022)), and another deriving ECG representations by
contrasting ECGs with electronic health records and clinical notes |Lalam et al.|(2023). More related
works included in Appendix [A.T]

Our Contribution We introduce SleepFM, a foundation model for sleep analysis trained using CL on
a multi-modal PSG dataset comprising over 100,000 hours of sleep monitoring data from over 14,000
participants at [anonymized] sleep clinic collected between 1999 and 2020. By combining BAS,
ECG, and respiratory modalities from PSG, SleepF M exhibits superior performance on tasks such as
demographic attributes, sleep stage, and SDB event classifications, outperforming end-to-end trained
CNN models. Additionally, we introduce a novel leave-one-out approach for CL, which significantly
outperforms the standard pairwise CL on all of our downstream tasks. To our knowledge, this is the
first attempt to build and evaluate a foundation model for sleep analysis.

2 METHOD

2.1 DATASET AND PREPROCESSING

Our dataset encompasses PSG records from a sleep clinic from 1999-2020. Comprising 14,068
recordings, this dataset features diverse waveforms collected over approximately 8 hours per individ-
ual. Our preprocessing strategy aimed to make minimal alterations to preserve raw signals crucial for
nuanced pattern recognition. Each recording consists of three modalities: BAS, ECG, and respiratory,
encompassing 10, 2, and 7 channels, respectively. BAS includes brain activity from various brain
regions, as well as EOG for eye movement and EMG for chin muscle activation. ECG contains
channels that measure electrical cardiac function. Respiratory includes channels measuring chest
and abdomen movements, pulse readings, nasal and oral flow measurements. The selection of these
channels was guided by sleep experts and relevant sleep analysis literature Berry et al.| (2012).

Subsequently, we segmented the total sleep duration into 30-second clips, following the standard
Berry et al.| (2012). We resampled the dataset to 256 Hz to standardize the sampling rate. Expert
sleep technicians labeled each clip for both sleep stage and SDB. Sleep stage is categorized into
Wake, Stage 1, Stage 2, Stage 3, REM, and SDB is a binary label. To prevent data leakage, the
dataset is split into participant-level pretrain/train/validation/test sets consisting of 11,261, 1,265,
141, and 1,401 participants respectively. The pretrain dataset is only used to pretrain our foundation
model. The remaining set serves to train and test models for downstream applications as explained in
Section[3] The validation set is used to optimize the hyperparameters. Demographic statistics for
different splits are presented in Table[6] An illustrative snapshot of our data can be found in Figure

2.2 MULTI-MODAL CONTRASTIVE LEARNING

We trained three separate 1D CNNs to generate embeddings separately for each modalities. The
architecture is based on CNN developed for classifying ECG measurements |Ouyang et al.|(2022).
We explore two CL frameworks: pairwise CL and leave-one-out CL ( Figure|[I)). The key idea is to
bring positive pairs of embeddings from different modalities closer in the latent space while pushing
apart negative pairs. The positive pairs are derived from temporally aligned 30-second clips across
modalities. All other non-matching instances a training batch are negative pairs. In pairwise CL, we
construct prediction tasks between all pairs of modalities. For modalities ¢ and j and sample k in a
batch, we have an embedding z, from modality i and an embedding x;, from modality j. The loss is:

lpgir — exp(sim(z},, 'r?c) *_ exp(7)) (1)
BT N explsim(a) k) < exp(r))

where N is the number of samples in a batch, and 7 is a trainable temperature parameter. We sum
this loss over all the samples in a batch and repeat the process for all pairs of modalities ¢, j.

In leave-one-out CL, for each modality 7, we construct an embedding Z7? by averaging over embed-
dings from all other modalities, excluding modality 7. The loss is:
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This is the loss for a sample k£ from modality ¢ in a given batch. The motivation behind the leave-one-
out method is to encourage each embedding to capture semantics aligned with all other modalities.
Our pretraining/training details are available in Appendix [A3]
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Figure 1: Overview of SleepFM pre-training with CL. We experiment with two types of pre-training:
standard pairwise CL where we contrast embeddings from each pair of modalities separately, and
our novel leave-one-out CL where we contrast the embedding of each modality against the average
embedding of all other modalities. BAS measures Brain Activity Signals, ECG measures heart
activity, and Respiratory channels measure chest, abdomen movements, pusle, nasal, and oral flow.

3 EXPERIMENTS AND RESULTS
3.1 RETRIEVAL ANALYSIS

Table 1: Retrieval on the test set for our pretrained model. Random baseline for Recall@10 = 0.0001

Leave-one-out Pairwise
BAS ECG Resp BAS ECG Resp
BAS - 0.58 0.05 - 0.74 0.58
ECG 046 - 039 0.82 - 0.81
Resp 0.05 0.38 - 0.60 0.82 -
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We assessed SleepF'M’s retrieval capabilities by retrieving one modality’s closest embeddings from
the test set based on another modality. Evaluation was measured using recall@ 10 rank metrics, which
measures the true paired item’s appearance within the top 10 recommendations. We measured the
performance using 90,000 randomly selected clips from the test set. We uniformly selected clips from
various event types within the test set. The Recall@ 10 for random retrievals is 10/90000 = 0.0001.

SleepFM achieved 500x-8000x higher Recall@10 than the random chance as shown in Table [T}
Pairwise CL yields better overall retrieval performance than leave-one-out, likely because the re-
trieval evaluation directly maps the training procedure of pairwise. Retrieval performance between
respiratory and other modalities is comparatively worse. This discrepancy may stem from the higher
variablilty of the respiratory measurements. While BAS and ECG are directly measured via electrical
activity from brain and heart respectively, the respiratory channels indirectly measure breathing
through the movement of the participant, which can be influenced by body position and other motion.

3.2 DOWNSTREAM CLASSIFICATION TASKS

Table 2: Sleep stage classification. LOO stands for leave-one-out. + represents 95% CI.

Macro AUROC \ Macro AUPRC
LOO Pairwise Baseline\ LOO Pairwise Baseline

0.906 0.876 0.842 | 0.685 0.608 0.579

Table 3: SDB classification. LOO stands for leave-one-out. + represents 95% CI.

AUROC \ AUPRC
LOO Pairwise Baseline\ LOO Pairwise Baseline

0.941 0.902 0.843 | 0.711 0.586 0.555

Table 4: Age classification. =+ represents 95% CI.

AUROC \ AUPRC
LOO Pairwise Baseline \ LOO Pairwise Baseline
0.883 0.851 0.724 \ 0.716 0.664 0.481

We now evaluate performance on clinically useful downstream tasks: sleep stage and SDB classifica-
tion. We used the embeddings learned by SleepFM to train a logistic regression model and classify
sleep stages and SDB events on a held-out test dataset. Sleep stage classification is a multi-class
classification task, with 5 classes: Wake, Stage 1, Stage 2, Stage 3, and REM. Prevalence of these
groups are 0.21, 0.07, 0.51, 0.09, and 0.12 respectively. SDB classification is a binary classification
task, with a prevalence of 0.017. We compared SleepF'M performance with end-to-end CNN trained
on all three modalities, for sleep stage and SDB event classification.

The results for sleep stage classification are presented in Table 2] Notably, across both AUROC
and AUPRC metrics, the logistic regression model trained using representations from SleepFM
outperforms the CNN trained end-to-end in a supervised manner. This superiority holds true across
all sleep stage classes as shown in Table[9] Similarly, the SDB classification metrics, displayed in
Table [3] underscore our approach’s superiority over supervised CNN models. We find that the model
pretrained with leave-one-out CL significantly outperforms the model pretrained with pairwise.

Additionally, we also evaluated our model’s performance on age and gender classification. We
grouped ages into categories of 0-18, 18-35, 35-50, and 50+ and considered male vs female for
gender. Our model significantly outperforms the CNN baseline on both tasks, demonstrating it
captures salient demographic information effectively (Table 4] and Table [5). The model trained
with leave-one-out CL performed best. Analyzing per modality, the BAS signals showed the most
distinctive features, indicating they provide useful demographic cues (Table[I6] Table[I7).
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Table 5: Gender classification. Prevalence of female is 0.41. £ represents 95% Confidence Intervals.

AUROC \ AUPRC
LOO Pairwise Baseline \ LOO Pairwise Baseline
0.850 0.810 0.690 \ 0.774 0.731 0.614

3.3 FEW-SHOT EVALUATION
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Figure 2: Few Shot Evaluation. Shot 1265 is the total size of our training dataset. Testing is done on
the entire test set. Performance average across 3 replicates.

We performed a few-shot performance evaluation to understand how our model performs in low data
setting. We steadily increased the number of participants k that each model sees from k£ = 1 to the
full training dataset, and recorded the model’s AUROC and AUPRC at each k. For the supervised
CNN, few-shot examples are the only training examples seen by the model. For the pretrained models,
we use embeddings of these few-shot examples to train a logistic regression model.

We see that across all training set sizes, SleepFM significantly outperforms baseline supervised CNN
model for both sleep stage and SDB classification (Figure[2). The leave-one-out model significantly
outperforms pairwise model across all training set sizes, especially for SDB classification.

4 DISCUSSION AND CONCLUSION

Our study develops and evaluates a multi-modal contrastive learning model for sleep analysis,
using polysomnography data across over 100,000 hours of sleep from 14,000 patients. The model
exhibited strong performance across demographic attributes classification, retrieval analysis, sleep
stage classification, and SDB event detection, surpassing end-to-end trained CNNs. The methodology
centers on two CL approaches, leave-one-out and pairwise, which both effectively unified BAS,
ECG, and respiratory signal representations and demonstrated efficacy in limited data scenarios.
Interestingly, we find that pairwise CL is better suited for cross-modality retrieval, while leave-one-out
CL is best for learning representations for downstream sleep stage and SDB classification. This might
be due to leave-one-modality-out training encourages the model to learn a more unified representation
integrating different modalities.

Future Work. Limitations of this study include a reliance on a single institution’s data, highlighting
opportunities for expanded model evaluation and pretraining across diverse sleep data. Priorities for
future includes multi-site pretraining and application to additional clinically meaningful tasks like
narcolepsy to enable comprehensive sleep evaluation.
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A APPENDIX

A.1 RELATED WORK
A.1.1 MACHINE LEARNING FOR ANALYZING SLEEP DATA

The application of machine learning (ML) in sleep studies has garnered significant recent attention,
promising to streamline and expedite the sleep scoring process as well as detecting respiratory events
such as SDB. Models including autoencoders [Tsinalis et al.|(2016)), convolutional neural networks
(CNNs) Tsinalis et al.; Sors et al.| (2018)); [ Yildirim et al.| (2019)), recurrent neural networks (RNNS5)
Michielli et al.| (2019); [Phan et al.| (2019), and multiple other variations of deep neural networks
(DNNs) |Supratak et al.| (2017)); Mousavi et al.| (2019); Seo et al.|(2020); Phan et al.| (202 1)); Perslev.
et al.|(2021) have been proposed for sleep scoring tasks.
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Moreover, in the domain of respiratory event classification, automatic detection of SDB using ECG
Urtnasan et al.|(2020); Tripathy et al.|(2020), EEG [Zhao et al.|(2021), and PSG with its respiratory
channels Mostafa et al.|(2020); Yu et al.| (2022); Haidar et al.| (2018));|Yeo et al.|(2021)); Nassi et al.
(2021)); |Stephansen et al.| (2018)) has been explored extensively. A recent study introduced a multi-task
learning approach, training a supervised deep learning model to predict diverse sleep events (e.g.,
sleep stages, arousal, leg movements, and sleep-disordered breathing) using multiple sleep modalities
like EEG, EOG, and EMG |[Zahid et al.| (2023)). These studies predominantly utilize supervised
learning, often based on relatively small datasets comprising only a few hundred subjects.

A.1.2 CONTRASTIVE LEARNING

A major development in self-supervised learning techniques is the rise of contrastive methods for
comprehensive data representation learning. In computer vision, influential frameworks have emerged
including: InfoNCE |Oord et al.|(2018)), SImCLR |Chen et al.| (2020), MoCo |He et al.| (2020), and
SupCon Khosla et al.|(2020). These uni-modal contrastive approaches focus primarily on single
data modalities like images. A notable multi-modal exception is the Contrastive Language-Image
Pretraining (CLIP) model|Radford et al.|(2021)), which aligns image and text embeddings. In medicine,
ConVIRT [Zhang et al.[(2022)) pioneered multi-modal CL between chest radiographs and reports.
Other works have explored similar directions for medical images |Huang et al.[(2021); Boecking et al.
(2022); Bannur et al.[(2023); |Lu et al.| (2023)).

Outside of computer vision, uni-modal contrastive methods have been applied to time series data
like ECG signals Kiyasseh et al.| (2021)); |Gopal et al.[(2021). CL has also enabled signal conversion
tasks Ngrskov et al.[(2023)). However, contrastive representation learning across diverse physiological
modalities remains relatively uncharted. Two prior studies have investigated contrastive multi-modal
clinical time series analysis. One work employed SimCLR-style pre-training on data encompassing
ECG and structured records [Raghu et al.|(2022). Another derived ECG representations by contrasting
ECGs, structured EHRS, and clinical notes |Lalam et al.| (2023)).

A.2 DATA DESCRIPTION

In Figure[3] we see a 30 second clip of our raw data for all 19 channels across 3 modalities. Figure 4]
shows the distribution of various events across the entire sleep duration for a participant. To ensure
the protection of participants’ Protected Health Information (PHI), all data has been de-identified.
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Figure 3: 30-second clip of raw patient data. The x-axis is time and y-axis is different channels across
all three modalities: BAS, ECG, and Respiratory.
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Table 6: Demographics table. REM: Rapid Eye Movement; AHI: Apnea-Hypopnea Index, a measure
used in sleep medicine to assess the severity of sleep apnea; WASO: Wake After Sleep Onset, the
total time spent awake after initially falling asleep; SL: Sleep Latency, the time it takes to transition
from wakefulness to sleep; REML: REM Sleep Latency, the time it takes to enter REM sleep after
falling asleep; TSD: Total Sleep Duration, the overall duration of sleep. & represents upper and lower

bound.
pretrain train valid test
Participants (count) 11,261 1,265 141 1,401
Events (count) 10,611,314 1,190,392 130,380 1,314,267
Duration (hours) 88,427 9,920 1,086 10,952
Male (%) 49.9 50.2 47.1 53.0
Female (%) 43.8 44.0 48.1 41.8
Unknown (%) 6.3 5.9 4.8 5.2
Age (years) 422 +19.6 43.0 +20.3 40.4 +20.0 419+ 19.9
TSD (mins) 376.7 £90.8 3764 +£90.6 371.24+849 37431875
WASO (mins) 79.4 4+ 60.5 79.7 + 62.3 78.8 +57.3 81.5 £ 62.8
SL (mins) 22.2 +32.8 21.2+31.6 29.0 +87.8 225+ 32.6
REML (mins) 1519 £102.6 1494 +£97.7 148.64+99.9 154.8+103.5
Stage 1 (%) 94+9.2 9.3 £8.8 8.2+ 7.7 9.0 £8.9
Stage 2 (%) 65.0 + 14.7 64.8 +14.7 64.8 +14.7 65.0 + 14.7
Stage 3 (%) 10.2 +13.2 10.2 +13.2 10.9 + 12.7 10.3 +13.6
REM (%) 1554+79 15.7 + 8.0 16.2 £ 6.8 157+ 79
AHI (h—1) 22.24+79.3 22.8 +19.1 22.2 +18.5 20.9 +17.0
g
[ - - - - .
Obs Apnea (1)
5 ——— * 0bs Hypopnea (88)
b= * REM(78)
E 4 - - —— e N3 (90}
z = N2 (304)
| - - ——— o N1 (181)
3 *  Wake (154)
24
1 -—-e - -san—o - L S - - e
] 5000 10000 15000 20000
Time (s)

Figure 4: Distribution of events across an entire patient sleep. The x-axis represents approximately
8 hours in seconds, and y-axis is distribution of different sleep events during the entire duration of
sleep. N1, N2, N3 refers to Sleep Stage 1, 2, and 3 respectively. Obs Hypopnea and Obs SDB are

types of SDBs.
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A.3 TRAINING DETAILS

Our model pretraining involves minimizing the contrastive loss with stochastic gradient descent
(SGD) using an initial learning rate set to 0.001 and a momentum of 0.9. The learning rate is decayed
by a factor of 10 every 5 epochs. The trainable temperature parameter is initialized to 0. Training
spans a maximum of 20 epochs with early stopping based on validation loss, employing a batch size
of 32 and validating checkpoints at each epoch to ensure robust regularization.

Upon pretraining completion via this self-supervised approach, we generate embeddings for the
training, validation, and test sets, utilizing the learned modality encoders. Subsequently, these
training embeddings drive the training of a logistic regression classifier. The classifier’s performance
undergoes evaluation on the test set for both sleep stage and SDB event detection tasks, as outlined in
Section[3.2

In our experiments, we additionally compare against training a supervised CNN without contrastive
learning as a baseline. The supervised CNN uses an 1D EfficientNet architecture akin to our pretrained
model encoder but is solely trained via supervised learning on the entire (pretraining + training)
dataset for classification tasks. This architecture uses a series of 1D convolutions encoding all
three modalities into an embedding space, followed by a dropout layer for regularization and a
fully-connected layer predicting scores across different classes. This model is trained end-to-end
from scratch using cross-entropy loss between the predicted and true labels, optimized by SGD.
Mirroring the pretraining phase, this model undergoes training for 20 epochs with a batch size of 32,
aligning hyperparameters with our model pretraining strategy.

All model training was executed on a single NVIDIA Tesla V100S GPU with 32GB of memory.
Each pretraining epoch consumed approximately 4 hours, while baseline supervised training required
roughly 2 hours on the same GPU. Table Table[7]and Table [§]lists the hyperparameters we used in
our training runs.

Table 7: Hyperparameters for Pretraining and end-to-end CNN training

Hyperparameter Value

Learning Rate 0.01
Batch Size 32
Ir step period 5

epochs 20
momentum 0.9

Temperature (init) 0.0

Table 8: Hyperparameters for logistic regression training during downstream classifications.

Hyperparameter Value

penalty L2
max iter 10000
class weight balanced
solver Ibfgs

A.4 ADDITIONAL RESULTS
A.5 DEMOGRAPHIC ATTRIBUTES CLASSIFICATION

We evaluated our SleepF'M’s embedding quality by training a logistic regression classifier on top
of the combined multimodal embeddings to predict common demographic attributes such as age
and gender. Our classification task directly used the 30-second clip-level embeddings generated by
SleepF M. For age prediction, we grouped ages into the following categories: 0-18, 18-35, 35-50, and
50+. The prevalence of these age groups in our dataset is 0.17, 0.18, 0.28, and 0.37, respectively. For
gender classification, we considered male vs. female, with the prevalence of females being 0.41 in

11
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Table 9: Sleep stage classification metrics for models trained using different types of contrastive
learning (CL). Baseline here is an end-to-end CNN trained on the entire (pretraining + training)
dataset to classify sleep stages. The leave-one-out (LOO) and pairwise models are logistic regression
models trained on the embeddings generated from only the training dataset. Therefore end-to-
end CNN saw 11,261 patient data while pretrained model saw 1,265 training data for sleep stage
classification. Prevalence of Wake, Stage 1, Stage 2, Stage 3, and REM are 0.21, 0.07, 0.51, 0.09,
and 0.12 respectively. + represents 95% Confidence Intervals.

AUROC | AUPRC
LOO Pairwise Baseline \ LOO Pairwise Baseline

Wake 0~945i.001 0~930i.001 0.869i,001 0.862i,002 0.827i,002 0~711i.002
Stage 1 0.814;‘;_002 0.782;‘;_002 O.706i_002 0.233:|:_003 0.186:|:_002 0.130;‘;_002
Stage2  0.8911001 0.8611001 0.840+001 | 0.876+£ 001 0.849+ 001 0.8221 o1
Stage 3 0.928i,001 0.918i,001 0.918i,001 0.676i,003 0.615i,003 0.695i,002
REM 0.9514 001 0.8914+ 001 0.878+ 001 | 0.778 4L 003 0.5654+ 002 0.5404 oo3
Avg 0.906 0.876 0.842 \ 0.685 0.608 0.579

Table 10: Age classification metrics for models trained using different types of contrastive learning
(CL). The supervised CNN is trained on the entire (pretraining + training) dataset to classify age
groups. The leave-one-out (LOO) and pairwise models are logistic regression models trained on the
embeddings generated from only the training dataset. Therefore end-to-end CNN saw all data 11,261
participants while pretrained model saw data from 1,265 participants for sleep stage classification.
Prevalence of 0-18, 18-35, 35-50, and 50+ are 0.17, 0.18, 0.28, and 0.37 respectively. + represents
95% Confidence Intervals.

AUROC \ AUPRC
LOO Pairwise Baseline \ LOO Pairwise Baseline
0-18 0.9824 001 0.977+001 0.864+ 001 | 0.937£002 0.9294 g4 0.6284 o3
18-35 0.8524 001 0.8094+ 002 0.683+ 002 | 0.5494 003 0.4584+ go2  0.3084 o2
35-50 0.7844 991 0.7404.001 0.6064+ o3 | 0.5244 991 0.4764 002 0.3714 002
50+ 0.9154 001  0.880+.001 0.7454+ 002 | 0.8564.002 0.7964 002 0.6194 go2
Avg 0.883 0.851 0.724 \ 0.716 0.664 0.481

our dataset. We evaluated the performance based on AUROC (Area Under the Receiver Operating
Characteristic curve) and AUPRC (Area Under the Precision-Recall Curve). As a baseline, we trained
a CNN end-to-end to perform age and gender classification given the combined multimodal raw input
data.

We find that Sleep FM can predict age and gender with high accuracy from just 30-second clips of
physiological data (Table[I0]and Table TT). Both our pre-trained models significantly outperform the
end-to-end CNN baseline across all evaluation metrics and tasks. Note that the end-to-end supervised
CNN used the full (pretraining + training) dataset during training, while the embeddings from
SleepFFM were only trained on the training set. Notably, the model pre-trained with leave-one-out CL
achieves the best performance. The strong clip-level performance indicates SleepFM’s embeddings
effectively capture salient demographic information. Analyzing the performance per modality, we
find that the BAS signals contain the most distinctive features for these tasks as shown in Table
and Table

12
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Table 11: Gender classification metrics for models trained using different types of CL. The supervised
CNN is trained on the entire (pretraining + training) dataset to classify gender. The leave-one-out
and pairwise models are logistic regression models trained on the embeddings generated from only
the training dataset. Therefore end-to-end CNN saw 11,261 patient data while pretrained model saw
1,265 training data for SDB classification. Prevalence of female gender is 0.41. + represents 95%
Confidence Intervals.

AUROC AUPRC

Leave-One-Out CL.  0.8504 go1 0.7744 002
Pairwise CL 0.810;‘;_001 0.731;‘;_002
Supervised CNN 0.6904 002 0.614 4 gp2

Table 12: Sleep stage classification metrics for model trained with leave-one-out CL. After having
trained the model with all three modalities, we extract embeddings for each modality separately and
train a logistic regression with each modality to identify sleep stages. + represents 95% confidence
intervals.

AUROC | AUPRC

ECG Respiratory BAS \ ECG Respiratory BAS
Wake 0.934:|:.001 0.846:|:.001 0.942:|:_001 0.829:‘:_0()4 0.652;‘;_003 0.857:‘:.002
Stage 1 0.786:&,()02 0.676:|:,0()2 0.801:|:_0()2 0.193:‘:,002 0.127:‘:,001 0.211:|:.0()3
Stage 2 0.874i_001 0.728i,001 0.888i,001 0.860i,001 0.708i,001 0.873i_001
Stage 3 0.919:|:.001 0.788:|:.001 0.927:|:_001 0.638i_003 O.307i_002 0.679:‘:.002
REM 0.9391 001  0.7891 001  0.9441 o1 | 0.7454L 003  0.3881 003  0.7244 o3
Macro Avg 0.891 0.765 0.900 | 0.436 0.484 0.669

Table 13: SDB classification metrics for model trained with leave-one-out CL. After having trained
the model with all three modalities, we extract embeddings for each modality separately and train a
logistic regression with each modality to identify SDB. =+ represents 95% confidence intervals.

ECG Respiratory BAS

AUROC  0.735+ 004  0.9254 002  0.735+ 004
AUPRC  0.0404+ 901  0.697+.006  0.0404 001

Table 14: Sleep stage classification metrics for model trained with pairwise CL. After having trained
the model with all three modalities, we extract embeddings for each modality separately and train a
logistic regression with each modality to identify sleep stages. & represents 95% confidence intervals.

AUROC | AUPRC

ECG Respiratory BAS | ECG Respiratory BAS
Wake 0-917i.001 0.821i.001 0-925i.001 0.782i,002 0.621i,002 0.816i.001
Stage 1 0.766i.002 0.661i,002 0-772i.002 0.167i_002 0.116i_001 0-174i4002
Stage 2 0.848:|:.001 0.695:|:,001 0.857:|:_001 0.841;‘;,001 0.675;‘;,001 0.845:|:,001
Stage 3 0-911i.001 0-777i.001 0-917i.001 0.601i,002 0.296i.003 0.614i.003
REM 0.8721 001 0.6494 001  0.880+.001 | 0.5264 003  0.2004 903  0.5224 go2
Macro Avg 0.862 0.720 0.870 \ 0.583 0.381 0.594
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Table 15: SDB classification metrics for model trained with pairwise CL. After having trained the
model with all three modalities, we extract embeddings for each modality separately and train a
logistic regression with each modality to identify SDB. =+ represents 95% confidence intervals.

ECG Respiratory BAS

AUROC  0.698+ 003  0.8934+ 003  0.706+ 004
AUPRC  0.0294 901  0.6014 906  0.030+.001

Table 16: Age classification metrics for model trained with leave-one-out CL. After having trained
the model with all three modalities, we extract embeddings for each modality separately and train a
logistic regression with each modality to identify age groups. & represents 95% confidence intervals.

AUROC \ AUPRC
ECG Respiratory BAS \ ECG Respiratory BAS
0-18 0.977+ 001 0.965+ 001 0.9694+ 001 | 0.9211 001  0.8831.003  0.9114 go1
18-35 0.833+ 001  0.789+ 001  0.7554 002 | 0.4931+ 003 0.4554+ 003  0.380+ 003
35-50 0.77441 001 0.7224 901 0.6864 001 | 0.5164 002  0.4584+ g3  0.4244 o2
50+ 0.9054 901 0.8731 001  0.8131 001 | 0.8431 001 0.7801+001  0.685+ o2
Macro Avg 0.872 0.837 0.805 | 0.693 0.644 0.600

Table 17: Gender classification metrics for model trained with leave-one-out CL. After having trained
the model with all three modalities, we extract embeddings for each modality separately and train a
logistic regression with each modality to identify gender. & represents 95% confidence intervals.

ECG Respiratory BAS

AUROC  0.8294 001  0.790+.002  0.778+ 001
AUPRC  0.7544+ 901 0.710+.003  0.713+ 002

Table 18: Age classification metrics for model trained with pairwise CL. After having trained the
model with all three modalities, we extract embeddings for each modality separately and train a
logistic regression with each modality to identify age groups. & represents 95% confidence intervals.

AUROC \ AUPRC
ECG Respiratory BAS \ ECG Respiratory BAS
0-18 0.9694+ 901 0.9624 901 0.9634 001 | 0.908+ 001  0.8831001  0.8971 001
18-35 0.7864+ 001 0.769+ 001  0.7674 001 | 04224 002  0.4554 003 0.389+ o2
35-50 0.7124 902 0.7024 901 0.7064 002 | 04414 002  0.4584 g3  0.436+ o2
50+ 0.8654+ o1 0.8414 901  0.8404 01 | 0.7224 gp2  0.7801 001  0.7424 go1
Macro Avg 0.832 0.818 0.818 | 0.634 0.617 0.615

Table 19: Gender classification metrics for model trained with pairwise CL. After having trained
the model with all three modalities, we extract embeddings for each modality separately and train a
logistic regression with each modality to identify gender. & represents 95% confidence intervals.

ECG Respiratory BAS

AUROC  0.7954 001  0.7464 001  0.765+ 001
AUPRC  0.7224 901 0.676+.002  0.7024 o2
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Table 20: Sleep Stage Classification stratified by age group.

Macro AUROC \ Macro AUPRC
Leave-One-Out  Pairwise | Leave-One-Out Pairwise
0-18 0.890 0.849 0.665 0.594
18-35 0.911 0.883 0.702 0.624
35-50 0.897 0.867 0.630 0.559
50+ 0.895 0.861 0.616 0.530

Table 21: Sleep Stage Classification stratified by gender.

Macro AUROC \ Macro AUPRC
Leave-One-Out Pairwise \ Leave-One-Out Pairwise
Male 0.899 0.869 0.674 0.594
Female 0.910 0.880 0.693 0.621

Table 22: SDB classification metrics stratified by age group.

AUROC AUPRC
Leave-One-Out Pairwise \ Leave-One-Out Pairwise
0-18 0.9340.01 0.86+0.03 0.56+0.04 0.3540.04
18-35 0.9449.01 0.90+0.01 0.69+0.02 0.6140.03
35-50 0.9440.01 0.8940.01 0.73+0.01 0.63+0.02
50+ 0.94:|:0,01 0.90:&0,01 0.73:|:()‘01 0.60:|:0‘01

Table 23: SDB classification metrics stratified by gender.

AUROC | AUPRC
Leave-One-Out  Pairwise \ Leave-One-Out  Pairwise
Male 0-94j:0401 0.9010_01 0-73i0.01 0-6110.01
Female 0.95:‘:0.01 0.91:|:0.01 O.70i0.01 O~59:t0.01

Table 24: AUROC metrics for sleep stage classification with leave-one-out CL, stratified by different
age groups.

0-18 18-35 35-50 50+

Wake 0.937:‘:0_002 0.939:|:0,001 0.938:|:0_001 0.944:‘:0,001
Stage 1 0-805i0,006 0.831i0,003 0.808i0,003 0~793j:0‘002
Stage 2 0.861i0,002 0-900i0.001 0.888i0_002 0.88910.001
Stage 3 0.906+0.001 0.93240.002 0.90240.002 0.90240.002
REM 0-941i0.002 0.956i0,001 0-950i0.001 0~949i0‘001

Avg 0.890 0.911 0.897 0.895
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Table 25: AUPRC metrics for sleep stage classification with leave-one-out CL, stratified by different
age groups.

0-18 18-35 35-50 50+

Wake 0.809i0,005 0.859i0.004 0.843i0,003 0.872i0.002
Stage 1 0.163+0.008 0.2940.006 0.23640.005 0.23540.004
Stage 2 0.81240.003 0.8904+0.002 0.87940.001 0.863+0.002
Stage 3 0.818i0,004 0.696i0.004 0.406i0,007 O~325j:0.005
REM O.725i0_007 0~775i0.006 0.787i0_004 0.786i0.004

Avg 0.665 0.702 0.630 0.616

Table 26: Sleep stage classification metrics for model trained with leave-one-out CL. The performance
is stratified by different gender groups.

AUROC

Male Female Male Female

|
|

Wake 0.937+0.001 0.94940.001 | 0.84440.002 0.87240.002
|

Stage 1 0.805:‘:0.002 0.824:|:0‘002 0.251:|:0‘004 0.225:‘:0.004
Stage 2 0.887i0,001 0-890i0.001 0.867i0,001 0-870i0,001
Stage 3 O.919i0_001 0.934:|:0_001 0.6355;0_005 O.729i0_004
REM 0.94410.001 0.95510.001 | 0.-77110.004 0.76710.002

Avg 0.899 0.910 0.674 0.693

Table 27: AUROC metrics for sleep stage classification with pairwise CL, stratified by different age
groups.

0-18 18-35 35-50 50+

Wake 0.919:|:0_002 0.928:‘:0.002 0.926:|:0_001 0.926:‘:0,001
Stage 1 0.712:&0,009 0.804:‘:0.004 0.775:&0,003 0.758:‘:()‘003
Stage 2 0.827i0_002 0.870104002 0.863i0_002 0.861i0,002
Stage 3 0.89110.002 0.91140.002 0.88110.003 0.891+0.002
REM 0.89410.002 0.90110.002 0.89110.002 0.868+9.002

Avg 0.849 0.883 0.867 0.861

Table 28: AUPRC metrics for sleep stage classification with pairwise CL, stratified by different age
groups.

0-18 18-35 35-50 50+

Wake 0.771:|:0_005 0.828:‘:0,003 0.813:|:0_003 0.838:‘:0,003
Stage 1 0.103+10.006 0.218410.007 0.19140.004 0.198+0.004
Stage 2 O.780i0_003 0.861i0.003 0.857i0_002 0.833i0.002
Stage 3 0.77540.004 0.61710.003 0.34040.009 0.267+0.007
REM 0.53940.000 0.59710.006 0.59110.006 0.516-+9.005

Avg 0.594 0.624 0.559 0.530
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Table 29: Sleep stage classification metrics for model trained with pairwise CL. The performance is
stratified by different gender groups.

AUROC

Male Female

|
Male Female |
Wake 0-924i0.001 0-932i0.001 0.813i0,002 0.834i0,002

Stage 1 0.76910.002 0.79110.002 | 0.19410.003 0.19210.004
Stage 2 0.85940.001 0.86140.001 | 0.84040.001 0.840+0.002
Stage 3 0-910i0.001 0-922i0.001 0-559i0.002 0.687i0,004
REM 0.88210.001  0.89210.001 | 0.561t0.002 0.55410.005

Avg 0.869 0.880 0.594 0.621
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