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ABSTRACT

Robotic manipulation benefits from foundation models that describe goals, but
today’s agents still lack a principled way to learn from their own mistakes. We
ask whether natural language can serve as feedback, an error-reasoning signal that
helps embodied agents diagnose what went wrong and correct course. We in-
troduce LAGEA (Language Guided Embodied Agents), a framework that turns
episodic, schema-constrained reflections from a vision language model (VLM)
into temporally grounded guidance for reinforcement learning. LAGEA summa-
rizes each attempt in concise language, localizes the decisive moments in the tra-
jectory, aligns feedback with visual state in a shared representation, and converts
goal progress and feedback agreement into bounded, step-wise shaping rewards
whose influence is modulated by an adaptive, failure-aware coefficient. This de-
sign yields dense signals early when exploration needs direction and gracefully
recedes as competence grows. On the Meta-World MT10 embodied manipulation
benchmark, LAGEA improves average success over the state-of-the-art (SOTA)
methods by 9.0% on random goals and 5.3% on fixed goals, while converging
faster. These results support our hypothesis: language, when structured and
grounded in time, is an effective mechanism for teaching robots to self-reflect
on mistakes and make better choices.

1 INTRODUCTION

Multimodal foundation models have reshaped sequential decision-making (Yang et al., 2023), from
language-grounded affordance reasoning (Ahn et al., 2022) to vision–language–action transfer,
robots now display compelling zero-shot behaviour and semantic competence (Driess et al., 2023;
Kim et al., 2024; Brohan et al., 2024). Yet converting such priors into reliable learning signals still
hinges on reward design, which remains a bottleneck across tasks and scenes. To reduce engineering
overhead, a pragmatic trend is to treat VLMs as zero-shot reward models (Rocamonde et al., 2023),
scoring progress from natural-language goals and visual observations(Baumli et al., 2023). Yet these
scores usually summarize overall outcomes rather than provide step-wise credit, can fluctuate with
viewpoint and context, and inherit biases and inconsistency (Wang et al., 2022; Li et al., 2024).

Densifying VLM-derived rewards into per-step signals helps but does not remove hallucination or
noise-induced drift. Simply adding these signals can destabilize training or encourage reward hack-
ing. Contrastive objectives like FuRL (Fu et al., 2024) reduce reward misalignment, but on long-
horizon, sparse-reward tasks, early misalignment can compound, misdirecting exploration. This
highlights the need for structured, temporally grounded guidance that reduces noise and helps the
agent recognize and learn from its own failures.

Agents need to recognize what went wrong, when it happened, and why it matters for the next deci-
sion. General-purpose VLMs, while capable at instruction-following, are not calibrated for this role,
as they can hallucinate or rationalize errors under small distribution shifts (Lin et al., 2021). Prior
self-reflection paradigms (Shinn et al., 2023) show that textual self-critique can improve decision
making, but these demonstrations largely live in text-only environments such as ALFWorld (Shrid-
har et al., 2020), where observation, action, and feedback share a symbolic interface. Learning from
failure is a fundamental aspect of reasoning; therefore, we ask a critical question: How can embod-
ied policies derive reliable, temporally localized failure attributions directly from visual trajectories
of the stochastic robotic environments where explorations are expensive?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Learning from mistakes requires detecting failures and causal understanding. For this purpose, we
present our framework LAGEA, which addresses this by using VLMs to generate episodic natural-
language reflections on a robot’s behavior, summarizing what was attempted, which constraints were
violated, and providing actionable rationales. As smaller VLMs can hallucinate or drift in free-
form text (Guan et al., 2024; Chen et al., 2024), feedback is structured and aligned with goal and
instruction texts, making LAGEA transferable across agents, viewpoints, and environments while
maintaining stability.

With these structured reflections in hand, we turn feedback into a signal the agent can actually use
at each step rather than as a single episode score. LAGEA maps the feedback into the agent’s
visual representation and attaches a local progress signal to each transition. We adopt potential-
based reward shaping, adding only the change in this signal from successive states, which avoids
over-rewarding static states (Wiewiora, 2003). The potential itself blends two agreements: how well
the current state matches the instruction-defined goal, and how well the transition aligns with the
VLM’s diagnosis around the key frames, so progress is rewarded precisely where the diagnosis says
it matters. To keep learning stable, we dynamically modulate its scale against the environment task
reward and feed the overall reward to the critic of our online RL algorithm (Haarnoja et al., 2018).

We evaluate LAGEA on diverse robotic manipulation tasks (Yu et al., 2020). LAGEA transforms
VLM critique into localized, action-grounded shaping, obtains faster convergence and higher suc-
cess rates over strong off-policy baselines. Our core contributions are:

• We present LAGEA, an embodied VLM-RL framework that generates causal episodic
feedback which are localized in time to turn failures into guidance and improve recovery
after near misses.

• We demonstrate that LAGEA can convert episodic, natural language self-reflection into a
dense reward shaping signal through feedback alignment and feedback-VLM delta reward
potential that can solve complex, sparse reward robot manipulation tasks.

• We provide extensive experimental analysis of LAGEA on state-of-the-art (SOTA) robotic
manipulation benchmarks (Yu et al., 2020) and present insights into LAGEA’s learning
procedure via thorough ablation studies.

2 RELATED WORK

VLMs for RL. Foundation models (Wiggins & Tejani, 2022) have proven broadly useful across
downstream applications (Khandelwal et al., 2022; Chowdhury et al., 2025), motivating their incor-
poration into reinforcement learning pipelines. Early work showed that language models can act as
reward generators in purely textual settings (Kwon et al., 2023), but extending this idea to visuomo-
tor control is nontrivial because reward specification is often ambiguous or brittle. A natural remedy
is to leverage visual reasoning to infer progress toward a goal directly from observations (Adeniji
et al., 2023). One approach (Wang et al., 2024) queries a VLM to compare state images and judge
improvement along a task trajectory; another aligns trajectory frames with language descriptions or
demonstration captions and uses the resulting similarities as dense rewards (Fu et al., 2024). How-
ever, empirical studies indicate that such contrastive alignment introduces noise, and its reliability
depends strongly on how the task is specified in language (Nam et al., 2023).

Natural Language in Embodied AI. With VLM architectures pushing this multimodal interface
forward (Liu et al., 2023; Karamcheti et al., 2024), a growing body of work integrates visual and lin-
guistic inputs directly into large language models to drive embodied behavior, spanning navigation
(Majumdar et al., 2020), manipulation (Lynch & Sermanet, 2020b), and mixed settings (Suglia et al.,
2021). Beyond end-to-end conditioning, many systems focus on interpreting natural-language goals
(Nair et al., 2022; Lynch et al., 2023) or on prompting strategies that extract executable guidance
from an LLM—by matching generated text to admissible skills (Huang et al., 2022b), closing the
loop with visual feedback (Huang et al., 2022c), incorporating affordance priors (Ahn et al., 2022),
explaining observations (Wang et al., 2023b), or learning world models for prospective reasoning
(Nottingham et al., 2023). Socratic Models (Zeng et al., 2022) exemplify this trend by coordinating
multiple foundation models under a language interface to manipulate objects in simulation. Con-
versely, our framework uses natural language not as a direct policy or planner, but as structured,
episodic feedback that supports causal reasoning in robotic manipulation.
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Figure 1: Overview of LAGEA framework. (a) After each rollout, key–frame selection identi-
fies causal moments and computes per-step weights ŵt; a VLM queried on those frames returns
a schema-constrained self-reflection that is encoded as a feedback embedding f . Trajectories, f ,
and ŵt are stored in buffer D. (b) Trainable projectors (Ei, Et, Ef ) map state images xt, goal g,
instruction y, and f into a shared space; a hybrid calibration+contrastive objective (Lalign,Lsym)
enforces control relevance. (c) Computes goal-delta ∆Rgoal and feedback-delta ∆Rfb, fuses them
with sparse task reward Rtask, and produces the final dense reward for policy updates.

Failure Reasoning in Embodied AI. Diagnosing and responding to failure has a long history in
robotics (Khanna et al., 2023), yet many contemporary systems reduce the problem to success clas-
sification using off-the-shelf VLMs or LLMs (Ma et al., 2022; Dai et al., 2025), with some works
instruction-tuning the VLM backbone to better flag errors (Du et al., 2023). Because VLMs can
hallucinate or over-generalize, several studies probe or exploit model uncertainty to temper false
positives (Zheng et al., 2024); nevertheless, the resulting detectors typically produce binary out-
comes and provide little insight into why an execution failed. Iterative self-improvement pipelines
offer textual critiques or intermediate feedback—via self-refinement (Madaan et al., 2023), learned
critics that comment within a trajectory (Paul et al., 2023), or reflection over prior rollouts (Shinn
et al., 2023)-but these methods are largely evaluated in text-world settings that mirror embodied en-
vironments, where perception and low-level control are abstracted away. In contrast, our approach
targets visual robotic manipulation and treats language as structured, episodic explanations of failure
that can be aligned with image embeddings and converted into temporally grounded reward shaping
signals. Extended references to related work can be found in the Appendix A.2

3 METHODOLOGY

We extend on prior work (Fu et al., 2024) by incorporating a feedback-driven VLM-RL frame-
work for embodied manipulation. Each episode, Qwen-2.5-VL-3B emits a compact, structured
self-reflection, which we encode with a lightweight GPT-2 (Radford et al., 2019) model and pair it
with keyframe-based saliency over the trajectory. Our framework overview is given in Figure 1

3.1 FEEDBACK GENERATION

To convert error-laden exploration into guidance and steer the exploration through mistakes, we
employ a VLM, i.e. Qwen 2.5VL 3B (Bai et al., 2025) model for a compact, task-aware natural
language reflection of what went wrong and how to proceed, which shapes subsequent learning.
Appendix A.7, Figure 8 compactly illustrates our feedback generation pipeline.

3.1.1 STRUCTURED FEEDBACK

Small VLMs can drift: the same episode rendered with minor visual differences often yields di-
vergent, sometimes hallucinatory explanations. To make feedback reliable and comparable across
training, we impose a structured protocol at the end of each episode. We uniformly sample N
frames and prompt the VLM with the task instruction, a compact error taxonomy, two few-shot
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exemplars (success/failure), and a short history from the last K attempts. The model is required to
return only a schema-constrained JSON. We then embed the natural language episodic reflection by
GPT-2, yielding a 768-D feedback vector that is stable across near-duplicate episodes and auditable
for downstream use. More details are provided in Appendix A.10.

3.1.2 KEY FRAME GENERATION

Uniformly broadcasting a single episodic feedback vector across all steps of the episode yields
noisy credit assignment because it ignores when the outcome was actually decided. We therefore
identify a small set of key frames and diffuse their influence locally in time, so learning focuses on
causal moments (approach, contact, reversal). To keep the gate deterministic and model-agnostic,
we compute key frames from the goal-similarity trajectory using image embeddings.

Let xt ∈ Rd be the image embedding at time t and g ∈ Rd the goal embedding. We compute a
proximity signal st and its temporal derivatives and convert them into a per-step saliency pt, which
favours frames that are near the goal, rapidly changing, or at sharp turns.

st = cos(xt, g) ∈ [−1, 1], vt = st − st−1, at = vt − vt−1, v0 = a0 = 0

pt = ωs[z(st)]+ + ωvz(|vt|) + ωaz(|at|), ωs+ωv+ωa = 1

Here z(·) is a per-episode z-normalization score and [·]+ is ReLU. We then form K keyframes by
selecting up to M high-saliency indices with a minimum temporal spacing (endpoints always kept),
yielding a compact, causally focused set of frames. We convert K into per-step weights with a
triangular kernel (half-window h) and a small floor β, followed by mean normalization:

w̃t = max
k∈K

(
1− |t−k|

h+1

)
+
, wt = β + (1− β) w̃t

These weights ŵt (normalized to unit mean) concentrate mass near key frames; elsewhere, the
weighting is near-uniform. They are later used in feedback alignment, where each timestep’s contri-
bution is scaled by ŵt so image-feedback geometry is learned primarily from causal moments, and
reward shaping, where ŵt gates the per-step feedback-delta signal.

3.1.3 FEEDBACK ALIGNMENT

Key-frame weights ŵt identify when gradients should matter; the remaining step is to make the
episodic feedback f actionable by aligning it with visual states in a shared space. We project images
and feedback with small MLP projectors Ei, Ef , and use unit-norm embeddings for the image state,
zt =

Ei(xt)
∥Ei(xt)∥ , the episodic feedback zf =

Ef (f)
∥Ef (f)∥ , and the goal image zg = Ei(g)

∥Ei(g)∥ . Each step
is weighted by ut (key-frame saliency × goal proximity, renormalized to mean one) to concentrate
updates on causal, near-goal moments.

Lbce =
1∑
t ut

∑
t

ut BCE
(
σ(ψt/τbce), yt

)
, ψt = ⟨zt, zf ⟩, yt ∈ {0, 1}

Lnce =
1∑

i: yi=1 ui

∑
i: yi=1

ui CE
(
softmax(Si:), i

)
, Sij =

⟨z(i)f ,z(j)⟩
τnce

Lalign = λbceLbce + λnceLnce

We align feedback to vision with two complementary losses. The first enforces absolute calibration:
the diagonal cosine ψt = ⟨zt, zf ⟩ is treated as a logit (scaled by temperature τbce) and supervised
with the per-step success label yt ∈ {0, 1}, so successful steps pull image and feedback together
while failures push them apart. The second loss shapes the relative geometry across the batch.
For each success row i, we form Sij = ⟨z(i)f , z(j)⟩/τnce and apply cross-entropy over columns so
feedback i prefers its own image over batch negatives. The hybrid objective balances these terms
via hyperparameters λbce, λnce.

To further polish the geometry, we refine the shared space with a symmetric, weighted contrastive
step that uses the same weights but averages the cross-entropy in both directions (feedback-to-image

4
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Figure 2: The computation of our delta-based rewards. (a) A Goal Potential ϕt is formed by aligning
the current state zt with the goal image zg and instruction zy . (b) A Feedback Potential ψt is formed
by aligning zt with the VLM feedback zf . The temporal difference of these potentials creates the
fused feedback-VLM rewards.

and image-to-feedback). With per-row weights renormalized, label smoothing, and small regulariz-
ers (λalign, λuni) for pairwise alignment and uniformity on the unit sphere, the update becomes,

Lsym = 1
2

[
CEfi +CEif

]
+ λalign E∥z(i)t − z

(i)
f ∥

2 + λuni log E a̸=b
za,zb∈Z

exp
(
− 2∥za − zb∥2

)
Here, CEfi and CEif are cross-entropies over cosine-similarity softmaxes from feedback to image
and image to feedback, and a, b index distinct unit–norm embeddings za, zb ∈ Z from the current
minibatch (images and feedback).

Together, the calibration (BCE), discrimination (InfoNCE) (Oord et al., 2018), and symmetric re-
finement yield a stable, control-relevant geometry driven by key frames near the goal. Key-frame
and goal-proximity weights ensure these gradients come from moments that matter. The learned
projector is used downstream to compute goal and feedback-delta potentials for reward shaping, and
to estimate instruction text–feedback agreement for reward fusion.

3.2 REWARD GENERATION

With the shared space in place, we convert progress toward the task and movement toward the
feedback into dense, directional rewards. We project images, instruction text, and feedback with
Ei, Et, Ef and use unit–norm embeddings for the current state zt, the goal image zg , the episodic
feedback zf , and the instruction text zy = Et(instruction)

∥Et(instruction)∥ . Potentials are squashed with tanh to keep
scale bounded and numerically stable. We define a goal potential ϕt by averaging instruction text–
and image–goal affinities, then shape its temporal difference and get the goal-delta reward, rgoalt :

ϕt =
1
2

[
tanh

(
0.5(⟨zt,zy⟩+1)−0.5

τgoal

)
+ tanh

(
0.5(⟨zt,zg⟩+1)−0.5

τgoal

)]
, rgoal

t = tanh
(
γ ϕt+1−ϕt

τgoal

)
where γ∈(0, 1) is the shaping discount and τgoal > 0 controls slope. rgoalt supplies shaped progress
signals while preserving scale, and is positive when the state moves closer to the goal and negative
otherwise.

In parallel, we reward movement toward the feedback direction and concentrate credit to causal
moments via the key–frame weights ŵt. Let ψt = ⟨zt, zf ⟩ be feedback embeddings cosine with the
state and feedback temperature τf > 0 shaping the slope, we form a feedback-delta reward, rfbt . We
then combine goal and feedback delta reward and get the fused reward r̃t using a confidence–aware
mixture that increases with instruction–feedback agreement, a = 1

2 (1 + ⟨zy, zf ⟩) ∈ [0, 1]

rfb
t = ŵt tanh

(
γ ψt+1−ψt

τf

)
, ψt = ⟨zt, zf ⟩

r̃t = (1− α) rgoal
t + α rfb

t , α = clip
(
αbase · a, [αmin, αmax]

)
Here, αbase, αmin, αmax are hyperparameters. All terms are tanh-bounded, so r̃t ∈ [−1, 1], provid-
ing informative reward signals without destabilizing the critic. In the next subsection we describe
how r̃t is added to the environment task reward rtask

t ∈ {−1, 1} under an adaptive ρ-schedule.

5
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3.3 DYNAMIC REWARD SHAPING

Critic receives, reward signal r = rtask
t + ρ r̃t, where rtask

t is the environment task reward. En-
vironment task reward rtask

t is episodic and sparse, whereas the fused VLM signal r̃t is dense but
can overpower the task reward if used naively. We therefore gate shaping with a coefficient ρ, that
is failure-focused, progress-aware, and smooth, so language guidance is strong when exploration
needs direction and recedes as competence emerges.

We apply shaping only on failures using the mask mt = 1[ rtask
t < 0 ], and we down-weight shap-

ing as the policy improves. Progress is estimated in s̄ ∈ [0, 1] by combining an episodic success
exponential moving average (EMA) with a batch-level improvement signal from the goal delta.

P = max
(
s̄,

(
1
B

∑
t
1[ rgoal

t > 0 ]
)2)

.

ρt = ρmin + (ρmax − ρmin) (1− P ), 0 < ρmin < ρmax < 1,

We map P to an effective shaping weight ρt, so that shaping is large early and fades as competence
grows. As the shaping is only applied to failures mt, per-step shaped coefficient becomes ρ̂t =
mt ρt . The SAC algorithm is finally trained on, reward rt = rtask

t + ρ̂t r̃t, which preserves the task
reward while letting VLM shaping accelerate exploration and early credit assignment, then gradually
relinquish control as the policy becomes competent. The pseudo-code algorithm of LAGEA is
illustrated in the Appendix A.6.

4 EXPERIMENTS

Table 1: Experiment results on MT10 benchmarks with fixed goal. Average success rate across five
random seeds.

Environment SAC LIV LIV-Proj Relay FuRL w/o goal-image FuRL LAGEA

rVLMfeed ✗ ✗ ✗ ✗ ✗ ✗ ✓

rVLM ✗ ✓ ✓ ✓ ✓ ✓ ✓

rtask ✓ ✓ ✓ ✓ ✓ ✓ ✓

button-press-topdown-v2 0 0 0 60 80 100 100
door-open-v2 50 0 0 80 100 100 100
drawer-close-v2 100 100 100 100 100 100 100
drawer-open-v2 20 0 0 40 80 80 100
peg-insert-side-v2 0 0 0 0 0 0 0
pick-place-v2 0 0 0 0 0 0 0
push-v2 0 0 0 0 40 80 100
reach-v2 60 80 80 100 100 100 100
window-close-v2 60 60 40 80 100 100 100
window-open-v2 80 40 20 80 100 100 100

Average 37.0 28.0 24.0 54.0 70.0 76.0 80.0

We evaluate LAGEA on a suite of simulated embodied manipulation tasks, comparing against
baseline RL agents and ablated LAGEA variants to measure the contributions of VLM-driven self-
reflection, keyframes selection, and feedback alignment. Our experiments demonstrate that incor-
porating compact, structured feedback from VLM’s leads to faster learning, more robust policies,
and improved generalization to goal configurations.

We investigate the following research questions:

RQ1: How much does VLM-guided feedback improve policy learning and task success?

RQ2: Does natural language feedback guide embodied agents to achieve policy convergence faster?

RQ3: How important is each component of LAGEA? (Ablations)

Setup: We evaluate LAGEA framework on ten robotics tasks from the Meta-world MT10 bench-
mark (Yu et al., 2020) utilizing sparse rewards. LAGEA leverages Qwen-2.5-VL-3B for generat-
ing structured feedback, encoded with GPT-2. Visual observations are embedded using the LIV
model (Ma et al., 2023). Further implementation details are available in Appendix A.5

4.1 RQ1: HOW MUCH DOES VLM-GUIDED FEEDBACK IMPROVE POLICY LEARNING AND
TASK SUCCESS?

6
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Task SAC Relay FuRL LAGEA

button-press-topdown-v2 16.0 (32.0) 56.0 (38.3) 64.0 (32.6) 96 (8)
door-open-v2 78.0 (39.2) 80.0 (30.3) 96.0 (8.0) 100 (0)
drawer-close-v2 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100 (0)
drawer-open-v2 40.0 (49.0) 50.0 (42.0) 84.0 (27.3) 92 (9.8)
pick-place-v2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 4 (4.9)
peg-insert-side-v2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0
push-v2 0.0 (0.0) 0.0 (0.0) 6.0 (8.0) 12 (4)
reach-v2 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100 (0)
window-close-v2 86.0 (28.0) 96.0 (4.9) 100.0 (0.0) 100 (0)
window-open-v2 78.0 (39.2) 92.0 (7.5) 96.0 (4.9) 100 (0)

Average 49.8 (7.9) 57.4 (7.0) 64.6 (5.0) 70.4 (1.85)

Table 2: Experiment results on MT10 benchmarks with
random goal. We present the average success rate
across five random seeds.

Baseline: To thoroughly evaluate
LAGEA, we compare its performance
against a suite of relevant reward learning
baselines. We begin with a standard Soft
Actor-Critic (SAC) agent (Haarnoja et al.,
2018) trained solely on the sparse binary
task reward. We also include LIV (Ma
et al., 2023), a robotics reward model
pre-trained on large-scale datasets, and a
variant, LIV-Proj, which utilizes randomly
initialized and fixed projection heads for
image and language embeddings. To
further assess the benefits of exploration
strategies, we incorporate Relay (Lan
et al., 2023), a simplified approach that
integrates relay RL into the LIV baseline. Finally, we compare against FuRL (Fu et al., 2024), a
method employing reward alignment and relay RL to address fuzzy VLM rewards.

4.1.1 RESULTS ON METAWORLD MT10

Our experiments on the Meta-World MT10 benchmark demonstrate the effectiveness of LAGEA
in leveraging VLM feedback for reinforcement learning. As shown in Table 1, LAGEA achieves a
strong performance improvement of 5.3% over baselines, with an average success rate of 80% on
hidden-fixed goal tasks. More importantly, its true strength lies in its ability to generalize to varied
goal positions. In the observable-random goal setting (Table 2), LAGEA achieves a 70.4% average
success rate, representing a 9% improvement over all baselines. Importantly, LAGEA demonstrates
a clear advantage over FuRL. While FuRL achieves respectable performance, LAGEA consistently
surpasses it, notably in the hidden-fixed goal setting (e.g., drawer-open-v2 and push-v2), and tasks
in the more challenging observable-random goal setting (e.g., button-press-topdown-v2 and drawer-
open-v2). Performance on the MT10 benchmark illustrates that LAGEA’s benefits extend beyond
simply learning a policy for a specific goal location.

4.2 RQ2: DOES NATURAL LANGUAGE FEEDBACK GUIDE EMBODIED AGENTS TO ACHIEVE
POLICY CONVERGENCE FASTER?
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Figure 3: Natural-language feedback accelerates convergence: across eight Meta-World tasks,
LAGEA reaches high success in far fewer steps than FuRL and SAC, which plateau late or stall.

Figure 3 provides a comprehensive comparison of convergence dynamics across eight Meta-World
tasks, offering a definitive answer to our research question (RQ2). The results demonstrate that
LAGEA achieves significantly faster policy convergence than both the FuRL and SAC baselines
in almost all of the tasks. The efficiency of LAGEA is evident, as it consistently reaches task
completion substantially sooner than its counterparts. This accelerated learning is driven by the
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dense, corrective signals from our feedback mechanism, which fosters a more effective exploration
process compared to the slower, incremental learning of FuRL or the near-complete failure of sparse-
reward SAC. Even on the most challenging tasks (button-press-topdown-v2 and drawer-open-v2),
LAGEA is the only method to show meaningful, non-zero success, demonstrating its ability to
provide actionable guidance where other methods fail.

4.3 RQ3: HOW IMPORTANT IS EACH COMPONENT OF LAGEA?

To validate our design choices and disentangle the individual contributions of our core components,
we conduct a series of comprehensive ablation studies. Our analysis focuses on four primary mod-
ules of the LAGEA framework: (1) Keyframe Selection mechanism ( 4.3.1), designed to solve
the feedback credit assignment problem; (2) Reward Engineering ( 4.3.2), which includes the delta
reward formulation and the dynamic reward shaping schedule; (3) Feedback Quality ( 4.3.3), to
determine the usefulness of structured vs free-form feedback, and (4) Feedback Alignment module
( 4.3.4), responsible for creating a control-relevant embedding space. Our central finding is that
these components are highly synergistic; while each provides a significant contribution, the full
performance of LAGEA is only realized through their combined effort.

4.3.1 KEYFRAME EXTRACTION & CREDIT ASSIGNMENT
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Figure 4: Keyframe Ablation on the Drawer
Open Task.

Figure 4 visualizes the ablation on the Drawer
Open task, showing the impact of our keyframe
generation mechanism. LAGEA with keyfram-
ing learns the task efficiently, while the variant
without keyframing catastrophically fails. As
the agent learns to approach the goal correctly,
the VLM reward signal appropriately increases,
reflecting true progress just before the agent
achieves success. This is a direct result of our
keyframing’s emphasis on goal proximity and our
gating mechanism. The agent, without keyfram-
ing, lacks this focused guidance and fails to make
this crucial connection and thus remains trapped
in its suboptimal policy.

4.3.2 SYNERGY OF DELTA REWARDS AND ADAPTIVE SHAPING

No, rgoal
t No, rfb

t No, LaGEA

79% 80% 80%

99%

19%

Figure 5: Reward shaping:
Removing rgoal

t , rfb
t , or ρ leads

to a significant performance
drop.

To isolate the contributions of our key reward components, we per-
formed a targeted ablation study on both observable random goal
and hidden fixed goal tasks (e.g., button press topdown, drawer
open, door open), with results visualized in Figure 5. This analysis
demonstrates the roles of goal delta reward, rgoal

t , feedback delta re-
ward, rfb

t and our proposed dynamic reward shaping, ρ. Figure 5 un-
equivocally demonstrates that all components are critical and con-
tribute synergistically to the high performance of the full LAGEA
system. The complete LAGEA framework achieves a near-perfect
average success score outperforming other baselines in these ex-
periments. In contrast, removing any single component leads to a
substantial performance degradation. This assesment suggest that
the components of our reward generation are not merely additive
but deeply complementary. As visualized in the Figure 5, the final
19% performance gain achieved by the full LAGEA model over the
best-performing ablation is a direct result of the synergy between
measuring long-term progress, incorporating short-term corrective
feedback, and dynamically balancing this guidance as the agent’s
competence grows.

4.3.3 IMPACT OF STRUCTURED FEEDBACK
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Figure 6: Alignment enables control-relevant geometry: (a) success/failure logit margin increases
over training, (b) policy success accelerates, and (c) BCE/InfoNCE objectives co-train the shared
space for LAGEA.

Task Freeform Feedback Structured Feedback

Button press topdown v2 obs. 10 93.33
Drawer open v2 obs. 96.67 100
Door open v2 obs. 100 100
Push v2 hidden 66.67 100
Drawer open v2 hidden 100 100
Door open v2 hidden 100 100

average 78.89 98.89

Table 3: Ablation performance of Freeform
vs Structured Feedback.

We conducted a crucial ablation study comparing
our structured feedback approach against a base-
line using free-form textual feedback from the VLM
to validate our hypothesis regarding the benefits of
structured VLM feedback. The results, presented in
Table 3, show a clear and significant advantage for
using structured feedback. On average, our struc-
tured feedback approach outperforms the freeform
feedback baseline. We attribute this performance
disparity to feedback consistency. Freeform feed-
back, while expressive, introduces significant challenges by generating verbose, ambiguous, or ir-
relevant text, leading to noisy and often misleading guidance. In contrast, our structured taxonomy
compels the VLM to provide a compact, unambiguous, and consistently formatted signal, which
enables reliable guidance.

4.3.4 FEEDBACK-REWARD ALIGNMENT

To provide a deeper insight into our framework, we visualize the interplay between agent perfor-
mance and the internal metrics of our feedback alignment module in Figure 6. The plots illustrate a
clear, causal relationship: successful policy learning is contingent upon the convergence of a mean-
ingful, control-relevant embedding space as engineered by our methodology. Initially, as shown in
Figure 6a, the average logits for successful and unsuccessful states ψt = ⟨zt, zf ⟩ are alike. This in-
dicates that our hybrid alignment objective, Lalign, has not yet converged, and the feedback is not yet
meaningfully aligned with the visual states. Consequently, the agent’s success rate remains at zero
(Figure 6b). The turning point occurs around the 0.5M step mark, where a stable and growing Dis-
crimination Gap emerges. This is direct evidence of our methodology at work: the Lbce component
is successfully calibrating the logits based on the success label yt, while the contrastive Lnce term
is simultaneously shaping the relative geometry to distinguish correct pairs from negatives within
the batch. Figure 6c reveals the cause of this emergent structure: as the agent’s policy improves, it
presents the alignment module with more challenging hard negative trajectories, causing the BCE
and NCE losses to rise. This rising loss is not a sign of failure but a reflection of a co-adaptive
learning process where the alignment module is forced to learn the fine-grained distinctions.

5 CONCLUSION

Natural-language can be a training signal as error feedback for embodied manipulation rather than
mere goal description. In this paper, we present LAGEA, which operationalizes this idea by
turning schema-constrained episodic reflections into temporally grounded reward shaping through
keyframe-centric gating, feedback–vision alignment, and an adaptive, failure-aware representation.
On the Meta-World MT10 benchmark, LAGEA improves average success over SOTA by a large
margin with faster convergence, substantiating our claim that time-grounded language feedback
sharpens credit assignment and exploration, enabling agents to learn from mistakes more effectively.
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6 REPRODUCIBILITY STATEMENT

We provide an anonymized repository in the supplemental materials with all code needed to train and
evaluate LAGEA, including environment wrappers for Meta-World (Yu et al., 2020) tasks, the SAC
agent, the feedback-projection module, and reward function scripts. The Method and Experiments
sections specify the full algorithmic pipeline, while the Appendix details hyperparameters, hardware
settings, and feedback framework details with examples. We release the exact VLM prompts and
error-code ontology, and the key-frame selection procedure used in all runs. To support deterministic
reruns, we fix random seeds, pin library versions, and include an environment file with all dependen-
cies (CUDA/cuDNN versions, PyTorch/JAX where applicable). We also provide a requirements.txt
file in the repo to recreate the conda environment to run the experiments. For each benchmark task,
we provide launch scripts that reproduce the reported results across multiple seeds, and we report
the average results of multiple seed runs. Any data preprocessing (e.g., camera/viewpoint settings
and task resets) is described in the Appendix, as well as the code and implemented in the repo to
match the paper’s protocol.
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Sumedh Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh, Chelsea
Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. Advances
in Neural Information Processing Systems, 36:55681–55693, 2023.

Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, and Gaurav Sukhatme. Embodied
bert: a transformer model for embodied, language-guided visual task completion (2021). arXiv
preprint arXiv:2108.04927, 2021.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models. arXiv preprint arXiv:2310.01361, 2023a.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised im-
itation learning for vision-language navigation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6629–6638, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. arXiv
preprint arXiv:2402.03681, 2024.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023b.

Eric Wiewiora. Potential-based shaping and q-value initialization are equivalent. Journal of Artificial
Intelligence Research, 19:205–208, 2003.

Walter F Wiggins and Ali S Tejani. On the opportunities and risks of foundation models for natural
language processing in radiology. Radiology: Artificial Intelligence, 4(4):e220119, 2022.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Sean Ye, Glen Neville, Mariah Schrum, Matthew Gombolay, Sonia Chernova, and Ayanna Howard.
Human trust after robot mistakes: Study of the effects of different forms of robot communication.
In 2019 28th IEEE international conference on robot and human interactive communication (ro-
man), pp. 1–7. IEEE, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh Mottaghi, Aniruddha Kembhavi, Ali
Farhadi, and Yejin Choi. Piglet: Language grounding through neuro-symbolic interaction in a
3d world. arXiv preprint arXiv:2106.00188, 2021.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. Socratic models: Com-
posing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598, 2022.

Zhi Zheng, Qian Feng, Hang Li, Alois Knoll, and Jianxiang Feng. Evaluating uncertainty-based
failure detection for closed-loop llm planners. arXiv preprint arXiv:2406.00430, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

We used ChatGPT (GPT-5 Thinking) solely as a general-purpose writing assistant to re-
fine prose after complete, author-written drafts were produced. Its role was limited to lan-
guage editing—suggesting alternative phrasings, improving clarity and flow, and reducing redun-
dancy—without introducing new citations or technical claims. The research idea, methodology,
experiments, analyses, figures, and all substantive content were conceived and executed by the au-
thors. LLMs were not used for ideation, data analysis, or result generation. All AI-assisted text was
reviewed, verified, and, when necessary, rewritten by the authors, who take full responsibility for
the manuscript’s accuracy and originality.

A.2 EXTENDED RELATED WORK

VLMs for RL. Foundation models (Wiggins & Tejani, 2022) have proven broadly useful across
downstream applications (Ramesh et al., 2022; Khandelwal et al., 2022; Chowdhury et al., 2025),
motivating their incorporation into reinforcement learning pipelines. Early work showed that lan-
guage models can act as reward generators in purely textual settings (Kwon et al., 2023), but ex-
tending this idea to visuomotor control is nontrivial because reward specification is often ambiguous
or brittle. A natural remedy is to leverage visual reasoning to infer progress toward a goal directly
from observations (Mahmoudieh et al., 2022; Rocamonde et al., 2023; Adeniji et al., 2023). One
approach (Wang et al., 2024) queries a VLM to compare state images and judge improvement along
a task trajectory; another aligns trajectory frames with language descriptions or demonstration cap-
tions and uses the resulting similarities as dense rewards (Fu et al., 2024; Rocamonde et al., 2023).
However, empirical studies indicate that such contrastive alignment introduces noise, and its relia-
bility depends strongly on how the task is specified in language (Sontakke et al., 2023; Nam et al.,
2023).

Natural Language in Embodied AI. With VLM architectures pushing this multimodal interface
forward (Liu et al., 2023; Karamcheti et al., 2024; Laurençon et al., 2024), a growing body of
work integrates visual and linguistic inputs directly into large language models to drive embodied
behavior, spanning navigation (Fried et al., 2018; Wang et al., 2019; Majumdar et al., 2020), manip-
ulation (Lynch & Sermanet, 2020a;b), and mixed settings (Suglia et al., 2021; Fu et al., 2019; Hill
et al., 2020). Beyond end-to-end conditioning, many systems focus on interpreting natural-language
goals (Lynch & Sermanet, 2020b; Nair et al., 2022; Shridhar et al., 2022; Lynch et al., 2023) or
on prompting strategies that extract executable guidance from an LLM—by matching generated
text to admissible skills (Huang et al., 2022b), closing the loop with visual feedback (Huang et al.,
2022c), planning over maps or graphs (Shah et al., 2023; Huang et al., 2022a), incorporating affor-
dance priors (Ahn et al., 2022), explaining observations (Wang et al., 2023b), learning world models
for prospective reasoning (Nottingham et al., 2023; Zellers et al., 2021), or emitting programs and
structured action plans (Liang et al., 2022; Singh et al., 2022). Socratic Models (Zeng et al., 2022)
exemplify this trend by coordinating multiple foundation models (e.g., GPT-3 (Brown et al., 2020)
and ViLD (Gu et al., 2021)) under a language interface to manipulate objects in simulation. Con-
versely, our framework uses natural language not as a direct policy or planner, but as structured,
episodic feedback that supports causal credit assignment in robotic manipulation.

Failure Reasoning in Embodied AI. Diagnosing and responding to failure has a long history in
robotics (Ye et al., 2019; Khanna et al., 2023), yet many contemporary systems reduce the prob-
lem to success classification using off-the-shelf VLMs or LLMs (Ma et al., 2022; Ha et al., 2023;
Wang et al., 2023a; Duan et al., 2024; Dai et al., 2025), with some works instruction-tuning the
vision–language backbone to better flag errors (Du et al., 2023). Because large models can halluci-
nate or over-generalize, several studies probe or exploit model uncertainty to temper false positives
(Zheng et al., 2024); nevertheless, the resulting detectors typically produce binary outcomes and
provide little insight into why an execution failed. Iterative self-improvement pipelines offer textual
critiques or intermediate feedback—via self-refinement (Madaan et al., 2023), learned critics that
comment within a trajectory (Paul et al., 2023), or reflection over prior rollouts (Shinn et al., 2023)-
but these methods are largely evaluated in text-world settings that mirror embodied environments
such as ALFWorld (Shridhar et al., 2020), where perception and low-level control are abstracted
away. In contrast, our approach targets visual robotic manipulation and treats language as struc-
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tured, episodic explanations of failure that can be aligned with image embeddings and converted
into temporally grounded reward shaping signals.

A.3 EXPERIMENTAL SETUP

All experiments (including ablations) were run on a Linux workstation running Ubuntu 24.04.2 LTS
(kernel 6.14.0-29-generic). The machine is equipped with an Intel Core Ultra 9 285K CPU, 96 GB of
system RAM, and an NVIDIA GeForce RTX 4090 (AD102, 24 GB VRAM) serving as the primary
accelerator; an integrated Arrow Lake-U graphics adapter is present but unused for training. Storage
is provided by a 2 TB NVMe SSD (MSI M570 Pro). The NVIDIA proprietary driver was used for
the RTX 4090, and all training/evaluation leveraged GPU acceleration; results reported in the paper
were averaged over multiple random seeds with identical software and driver configurations on this
host.

A.4 META-WORLD MT10

We evaluated LAGEA on the MetaWorld (Yu et al., 2020) MT-10 benchmark. Meta-World MT10
is a widely used benchmark for multi-task robotic manipulation, comprising ten goal-conditioned
environments drawn from the broader Meta-World suite (Yu et al., 2020). All tasks are executed
with a Sawyer robotic arm under a unified control interface: a 4D continuous action space (three
Cartesian end-effector motions plus a gripper command) and a fixed 39D observation vector that
encodes the end-effector, object, and goal states. Episodes are capped at 500 steps and share a
common reward protocol across tasks, enabling a single policy to be trained and evaluated in a
consistent manner.

Figure 7 depicts the ten tasks, and Table 4 lists the corresponding natural-language instructions that
ground each goal succinctly. The suite spans fine motor skills (e.g., button pressing, peg insertion) as
well as larger object interactions (e.g., reaching, opening/closing articulated objects), making MT10
a demanding testbed for generalization and multi-task policy learning.

Figure 7: Meta-world MT10 benchmark tasks.
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Table 4: Environments and their text instructions of Meta-world MT10 benchmark tasks.

Environment Text instruction

button-press-topdown-v2 Press a button from the top.
door-open-v2 Open a door with a revolving joint.
drawer-close-v2 Push and close a drawer.
drawer-open-v2 Open a drawer.
peg-insert-side-v2 Insert the peg into the side hole.
pick-place-v2 Pick up the puck and place it at the

target.
push-v2 Push the puck to the target position.
reach-v2 Reach a goal position.
window-close-v2 Push and close a window.
window-open-v2 Push and open a window.

A.5 IMPLEMENTATION DETAILS

In our experiments, we use the latest Meta-World M10 (Yu et al., 2020) environment. The main
software versions are as follows:

• Python 3.11

• jax 0.4.16

• jaxlib 0.4.16+cuda12.cudnn89

• flax 0.7.4

• gymnasium 0.29.1

• gymnasium-robotics 1.2.4

• mujoco 2.3.7

• optax 0.2.1

• torch 2.2.1

• torchvision 0.17.1

• numpy 1.26.4

• imageio 2.34.0

• matplotlib 3.8.3

A.6 ALGORITHM

The pseudocode algorithm 1 formalizes the LAGEA training loop. Each episode, the policy collects
a trajectory with RGB observations and a task instruction; we select a small set of key frames and
query an instruction-tuned VLM (Qwen-2.5-VL-3B) (Bai et al., 2025) to produce a structured reflec-
tion (error code, key-frame indices, brief rationale). The instruction and reflection are encoded with
a lightweight GPT-2 text encoder and paired with visual embeddings; a projection head is trained
with a keyframe-gated alignment objective followed by a symmetric, weighted contrastive loss so
that feedback becomes control-relevant. At training time we compute two potentials from these
aligned embeddings: one that measures instruction–state goal agreement and one that measures
transition consistency with the VLM diagnosis around the cited frames. We use only the change
in these signals between successive states as a per-step shaping reward, add it to the environment
reward with adaptive scaling and simple agreement gating (emphasizing failure episodes early and
annealing over time), and update a standard SAC (Haarnoja et al., 2018) agent from a replay buffer
with target networks.
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Algorithm 1: LAGEA: Feedback–Grounded Reward Shaping (lean)
Input : Encoders ΦI ,ΦT ,ΦF ; VLM Q; goal image og; instruction y; replay buffer D;

episodes N
Output: trained policy π

1 Initialize: projection heads Ei, Et, Ef ; policy π; SAC learner.
2 zg ← norm

(
Ei(ΦI(og))

)
, zy ← norm

(
Et(ΦT (y))

)
.

3 for i = 1 to N do
4 /* Collect Trajectories Figure 1 */
5 Roll out π to obtain {(ot, rtask

t )}T−1
t=0 ; push to D.

6 /*Key frames & per-step weights Section 3.1.2*/
7 xt ← ΦI(ot); st ← ⟨norm(Ei(xt)), zg⟩;
8 K ← GETKEYFRAMES(s0:T−1, M); ŵ ← TRIANGULARWEIGHTS(K, h) (unit mean).
9 /*Structured episodic reflection Section 3.1.1*/

10 Subsample N frames; query Q with frames; encode feedback zf ← norm
(
Ef (ΦF (f))

)
11 /*Feedback alignment Section 3.1.3*/
12 UPDATEFEEDBACKALIGNMENT(Ei, Ef ; D, ŵ);

UPDATEFEEDBACKCONTRASTIVEWEIGHTED(Ei, Ef ; D, ŵ).
13 /*Dense Reward shaping Section 3.2*/
14 for t = 0 to T − 2 do
15 zt ← norm(Ei(xt)), zt+1 ← norm(Ei(xt+1));
16 Calculate goal delta; rgoal

t ← GOALDELTA(zt, zt+1; zy, zg);
17 Calculate feedback delta; rfb

t ← FEEDBACKDELTA(zt, zt+1; zf );
18 α← CLIP

(
αbase · 1+⟨zy,zf ⟩

2 , [αmin, αmax]
)
;

19 Calculate fused dense reward; r̃t ← (1−α) rgoal
t + α ŵt r

fb
t .

20 /*Adaptive reward shaping Section 3.2*/
21 ρt ← ADAPTIVERHO(progress EMA / schedule);
22 Overall reward; rt ← rtask

t + ρt r̃t.
23 /*Update SAC*/
24 UPDATESAC(π; D, rt).

Figure 8: Feedback Generation Pipeline: Keyframes are selected from an episode, analyzed by a
VLM to produce structured feedback text, which is then encoded into a final feedback embedding.

A.7 FEEDBACK PIPELINE

At the end of each episode, we run a deterministic key-frame selector over the image sequence
to extract a compact set of causal moments K. We then assemble a prompt with the task in-
struction, a compact error taxonomy, few-shot exemplars, and the selected frames, and query a
frozen VLM (Qwen-2.5-VL-3B). The model is required to return a schema-constrained JSON
with fields outcome, primary error{code, explanation}, secondary factors,
key frame indices, suggested fix, confidence, and summary. Responses are val-
idated against the schema and retried on violations. Textual slots are normalized and embedded
with a lightweight GPT-2 encoder to produce a feedback vector f that is time-anchored via K.
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This structured protocol reduces hallucination, yields feedback comparable across episodes and
viewpoints, and makes the language signal embeddings directly consumable by the alignment and
reward-shaping modules.

A.8 HYPERPARAMETERS

Hyperparameters for LAGEA are illustrated in Table 5. We followed the hyperparameter and relay
steps parameters provided in (Fu et al., 2024). Many of these hyperparameters are not tuned to
perfection; therefore, tuning them could achieve slightly better performance.

Table 5: Summarization of hyper-parameters.

Parameter Value
Camera Id 2
Residual connection False
Total environment steps 1× 106

Start timesteps 10,000
Decay timesteps 7.5× 105

Evaluation episodes 100
Evaluation frequency 1e6/100
Checkpoint frequency 1e6/10
Adam learning rate 1× 10−4

Batch size 256
Discount factor γ 0.99
Target network τ 0.01
Hidden dimensions (256, 256)
Initializer Orthogonal
Random seed 0
Relay threshold 2500
Exploration noise 0.2
VLM reward weight ρ 0.25
ρ cap 1.0
Gap 10
Crop False
L2 margin 0.25
Cosine margin 0.25
Embed buffer size 20,000
Feedback coefficient αfeedback 0.5
Episode success threshold 100
Contrastive start step 25,000
Contrastive temperature τ 0.07
Label smoothing 0.05
λalign 0.02
λuniform 1× 10−3

Shaping target ratio 0.20
Shaping warmup steps 20,000
Shaping anneal end step 600,000
Shaping scale cap 10.0
Shaping scale floor 0.1
Shaping clip per step 1.0
Shaping EMA β 0.1
Shape only on fail True
Use goal delta True
Success EMA β 0.01
Progress power 2.0
αmin 0.20
αmax 0.95

A.9 ERROR TAXONOMY

An error taxonomy is introduced to systematically characterize the types of failures observed in
robot manipulation trajectories. This taxonomy provides discrete error codes that capture common
failure modes in manipulation tasks, such as interacting with the wrong object, approaching from
an incorrect direction, failing to establish a stable grasp, applying insufficient force, or drifting
away from the intended goal. By mapping trajectories to these interpretable categories, we enable
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Table 6: Error codes and their descriptions.

Error Code Description
wrong object Interacted with the wrong object.
bad approach direction Approached object from a wrong angle/direction.
failed grasp Contact without a stable grasp; slipped or never closed gripper appropriately.
insufficient force Touched correct object but did not exert proper motion/force.
drift from goal Trajectories drifted away from the goal, no course correction.

{
task: {string},
outcome: {success | failure},
primary error: {
code: {error code or success code},
explanation: {one sentence explanation}

},
secondary factors: [{error code, ...}],
key frame indices: [{int, int, int}],
suggested fix: {string or (n/a)},
confidence: {float in [0,1]},
summary: {one sentence summary}

}

Figure 9: Schema for structured feedback returned by the VLM

structured analysis of failure cases and facilitate targeted improvements in policy learning. Table 6
summarizes the error codes and their descriptions.

A.10 STRUCTURED FEEDBACK

Structured feedback mechanism constrains the VLM to produce precise, interpretable, and repro-
ducible outputs. After each rollout, the model returns a JSON object that follows the schema shown
in Figure 9, rather than free-form text. The schema records the task identifier, the binary outcome
(success or failure), a single primary error code with a short explanation, optional secondary fac-
tors, key frames, a suggested fix, a confidence score, and a concise summary. This format anchors
feedback to concrete evidence, keeps annotations consistent across episodes, and makes the signals
directly usable for downstream analysis.

Example structured feedback is shown for two Meta-World tasks -
button-press-topdown-v2 and door-open-v2 - with two success cases in Figures 10
and Figure 11 and two failure cases in Figures 12 and Figure 13.

For the success cases, the schema assigns primary error.code=good grasp, with
empty secondary factors, high confidence, and suggested fix=(n/a). In
button-press-topdown-v2, success is attributed to a secure grasp followed by a vertical,
normal-aligned press that achieves the goal. In door-open-v2, success is similarly tied to a
stable grasp on the handle and the application of sufficient force to open the door.

In the failure counterparts, the same schema yields concise, actionable diagnoses. For
button-press-topdown-v2, primary error.code=bad approach direction re-
flects a lateral approach that causes sliding; the prescribed fix is a topdown, normalaligned press. For
door-open-v2, primary error.code=failed grasp with insufficient force as
a secondary factor attributes failure to unstable closure and inadequate actuation; the recommended
remedy is a tighter grasp and sufficient force. Across both tasks, explanations remain succinct and
suggested fixes translate diagnosis into concrete adjustments, ensuring comparability and evidential
grounding within the structured format.
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{
task: button-press-topdown-v2-goal-observable,
outcome: success,
primary error: {
code: good grasp,
explanation: The gripper successfully grasped the

button.
},
secondary factors: [ ],
key frame indices: [12, 18],
suggested fix: (n/a),
confidence: 0.9,
summary: The agent succeeded because it grasped the

button securely and pressed it straight down, achieving the
goal.
}

Figure 10: Success case with structured feedback for button-press-topdown-v2-goal-observable
task.

{
task: door-open-v2-goal-observable,
outcome: success,
primary error: {
code: good grasp,
explanation: The gripper successfully grasped the black

block and opened its door.
},
secondary factors: [ ],
key frame indices: [9, 18, 27],
suggested fix: (n/a),
confidence: 0.9,
summary: The robot successfully opened the door of the

black block by grasping it and applying the appropriate
force.
}

Figure 11: Success case with structured feedback for door-open-v2-goal-observable task.

A.11 ABLATION

To quantify the contribution of each component in LAGEA, we run controlled ablations with iden-
tical training settings, three random seeds per task, and we report mean (std.) success. All variants
use the same encoders, SAC learner, and goal image; unless noted otherwise. The protocol followed
for the ablation study is as follows:

Feedback Alignment Drop the multi-stage feedback−vision alignment and rely on frozen encoder
similarities; tests whether learned alignment is required to obtain a control-relevant embed-
ding geometry.

Feedback Quality Ablation Replace the schema-constrained (structured) feedback with uncon-
strained free-form VLM feedback text; measures the impact of feedback structure, reli-
ability and hallucination on reward stability.

Keep all, drop adaptive ρ Use the full shaping signals but fix the mixing weight instead of
scheduling it; probes the role of progress-aware scaling for stable learning.
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{
task: button-press-topdown-v2-goal-observable,
outcome: failure,
primary error: {
code: bad approach direction,
explanation: The gripper came from the side, sliding

off the button instead of a vertical press.
},
secondary factors: [ ],
key frame indices: [18, 22],
suggested fix: Approach from directly above the button;

align gripper normal to the button surface, then press
straight down.,

confidence: 0.85,
summary: The robot failed to press the button correctly

because it approached from the side instead of a vertical
press. This resulted in the gripper sliding off the button.
}

Figure 12: Failure case with structured feedback for button-press-topdown-v2-goal-observable task.

{
task: door-open-v2-goal-observable,
outcome: failure,
primary error: {
code: failed grasp,
explanation: The gripper did not close properly around

the door handle, leading to a failed attempt to open the
door.
},
secondary factors: [insufficient force],
key frame indices: [16, 24],
suggested fix: Ensure the gripper closes tightly around

the door handle and applies sufficient force.,
confidence: 0.9,
summary: The agent failed to open the door as the gripper

did not close properly around the handle, indicating a failed
grasp.
}

Figure 13: Failure case with structured feedback for door-open-v2-goal-observable task.

Drop all, keep adaptive ρ Remove goal-/feedback-delta terms and keyframe gating while retain-
ing the adaptive schedule (no auxiliary signal added); controls for the possibility that the
schedule alone yields gains.

Key frame ablation Replace keyframe localization with uniform per-step weights; assesses the
value of temporally focused credit assignment around causal moments.

Delta reward ablation Use absolute similarities instead of temporal deltas; tests whether potential-
based differencing (which avoids static-state bias) is essential.
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Table 7: Ablation results of LAGEA. Experiments were done using three different seeds. Results
are averaged here.

Task Feedback
Alignment

Feedback
Quality

Ablation

Keep all,
drop

adaptive ρ

Drop all,
keep

adaptive ρ

Key frame
ablation

Delta
reward
ablation

button-press-topdown-
v2-observable 20 (34.64) 10 (10) 13.33(23.09) 33.33(57.74) 30 (51.96) 30 (51.96)

drawer-open-v2-
observable 100 (0) 96.67(5.77) 100 (0) 0 (0) 76.67(40.41) 100 (0)

door-open-v2-observable 100 (0) 100 (0) 100 (0) 0 (0) 100 (0) 76.67(40.41)
push-v2-hidden 100 (0) 66.67(57.74) 66.67(57.74) 33.33(57.74) 100 (0) 100 (0)

drawer-open-v2-hidden 100 (0) 100 (0) 100 (0) 33.33(57.74) 100 (0) 66.67(57.74)
door-open-v2-hidden 100 (0) 100 (0) 100 (0) 33.33(57.74) 100 (0) 100 (0)

A.12 SUCCESSFUL TRAJECTORY VISUALIZATION

Figure 14 presents successful trajectory visualizations generated by LAGEA across nine environ-
ments from Meta-World MT10. Each trajectory illustrates how LAGEA effectively completes the
corresponding manipulation task, highlighting its generalization ability across diverse settings. The
only exception is peg-insert-side-v2, where LAGEA was unable to produce a successful
episode; therefore, no trajectory is shown for this environment.

A.13 LIMITATIONS

LAGEA still inherits occasional hallucinations from the underlying VLM, which our structure and
alignment mitigate but cannot eliminate. While the study spans diverse simulated tasks, real-robot
generalization and long-horizon observability remain open challenges. A natural next step is to
translate from simulation to real-robot deployment, closing the sim-to-real gap.
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Figure 14: Visualization of successful trajectories using LAGEA on environments from Meta-World
MT10 benchmark tasks.
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