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Abstract001

Associative recall has emerged as a criti-002
cal weakness in efficient language models003
and, as we demonstrate, is also a core bot-004
tleneck in efficient visual language models005
(VLMs). In this work, we show that efficient006
VLMs—exemplified by VisualRWKV—suffer007
from significant deficits in recall, particu-008
larly in text-centric tasks such as TextVQA009
and document understanding. Quantitatively,010
the baseline VisualRWKV-7B still trails the011
Transformer-based LLaVA-1.5-7B by 7.2 accu-012
racy points on the TextVQA benchmark. We013
attribute this gap to a fundamental architec-014
tural limitation: insufficient input feature qual-015
ity. To address this, we propose two effective016
processing strategies to enhance visual feature017
representations. First, our model incorporates018
SigLIP, DINOv2, and SAM to improve fea-019
ture richness across resolutions, enabling the020
retention of multi-scale visual information with-021
out increasing the number of input visual to-022
kens. Second, we introduce a segmentation-023
recombination strategy that supports ultra-high-024
resolution inputs (up to 4096×4096), allow-025
ing for precise and detailed feature extraction.026
These improvements significantly enhance re-027
call performance and feature quality, enabling028
VisualRWKV-Boost-1.6B to outperform the029
larger baseline VisualRWKV-7B. Moreover,030
the performance gap on TextVQA compared031
with LLaVA-1.5-7B is reduced from 7.2 to just032
1.9 accuracy points, paving the way for more033
scalable and efficient VLM architectures.034

1 Introduction035

The emergence of efficient language models with036

linear time complexity, such as Mamba (Gu and037

Dao, 2023) and RWKV (Peng et al., 2023, 2024,038

2025), has opened new avenues for scaling large039

language models (LLMs) with reduced computa-040

tional overhead. These models achieve competi-041

tive performance on various NLP tasks while of-042

fering significant efficiency advantages over tra-043

ditional attention-based architectures. However, 044

recent studies have identified a critical limitation: 045

their poor performance on tasks requiring asso- 046

ciative recall (Arora et al., 2023). This capabil- 047

ity—essential for retrieving relevant information 048

from long and complex sequences—remains a key 049

bottleneck for efficient language models. 050

In this work, we investigate this limitation 051

in the context of visual language modeling and 052

show that associative recall is also a core weak- 053

ness of efficient visual language models (VLMs). 054

Specifically, we study VisualRWKV (Hou et al., 055

2024), a representative efficient VLM, and ob- 056

serve that it performs comparably or even bet- 057

ter than Transformer-based counterparts on gen- 058

eral visual-language tasks such as VQA (An- 059

tol et al., 2015) and ScienceQA (Lu et al., 060

2022a), as shown in Table 3. However, on text- 061

centric benchmarks like TextVQA (Singh et al., 062

2019)—which demand precise recall of visual tex- 063

tual content—VisualRWKV underperforms signif- 064

icantly, trailing LLaVA-1.5 (Liu et al., 2023a) by 065

7.2 accuracy points (see Figure 1). These findings 066

suggest that associative recall is not only a chal- 067

lenge in pure language modeling but also a limiting 068

factor in visual-language modeling. 069

We attribute this performance gap primarily to 070

the limited quality of image feature representations, 071

which constrains the model’s ability to retrieve rel- 072

evant visual information—especially in text-rich 073

scenarios such as TextVQA. To address this, we 074

propose two complementary strategies: 075

• First, we improve the richness and quality 076

of image features by integrating a ensemble 077

of state-of-the-art vision encoders, including 078

SigLIP (Zhai et al., 2023), DINOv2 (Oquab 079

et al., 2023), and SAM (Kirillov et al., 2023). 080

These encoders are further supported by a 081

segmentation-recombination pipeline that en- 082

ables ultra-high-resolution image inputs (up 083
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Figure 1: The performance enhancement and workflow of the VisualRWKV-Boost model when dealing with
high-resolution images. The bar chart in the upper left corner compares the accuracy of different models on
the TextVQA task, with VisualRWKV-Boost leading at an accuracy rate of 56.31%. The bar graph in the upper
right corner contrasts the performance of VisualRWKV and VisualRWKV-Boost across multiple visual question
answering benchmarks, highlighting the superior performance of VisualRWKV-Boost across various tasks. The
flowchart at the bottom demonstrates the workflow of the VisualRWKV-Boost model: it uses visual encoders to
extract image features, optimizes feature integration through MLP with context gating, and then converts the textual
question into a format that the model can process. High-resolution processing helps the model accurately identify
text in images, thereby improving the accuracy of responses.

to 4096×4096), thereby generating highly de-084

tailed, multi-scale visual representations while085

maintaining token efficiency.086

• Second, we perform data scaling by incorpo-087

rating a substantially larger and more diverse088

corpus of high-quality image-text pairs. This089

expanded training set improves the model’s090

ability to align visual and textual modalities,091

thereby enhancing its robustness and general-092

ization across visual-language tasks.093

Combined, these improvements lead to a signifi-094

cant boost in associative recall performance. Our095

proposed VisualRWKV-Boost (1.6B) surpasses the096

larger 7B VisualRWKV baseline (Hou et al., 2024) 097

by 5.3 accuracy points and substantially closes 098

the performance gap with the Transformer-based 099

LLaVA-1.5 (Liu et al., 2023a), reducing it from 7.2 100

to just 1.9 points on the TextVQA benchmark. 101

Our study reveals that the architectural lim- 102

itations of efficient Visual Language Mod- 103

els—particularly in associative recall—can be ef- 104

fectively mitigated through a combination of fea- 105

ture scaling and data scaling, enabling them to 106

achieve performance on par with much larger 107

Transformer-based models. These results not only 108

close the performance gap with Transformer-based 109
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models but also provide a promising direction for110

developing scalable and resource-efficient Visual111

Language Models.112

2 Related Works113

2.1 Efficient Language Models114

Among common efficient language models,115

Mamba(Gu and Dao, 2023) and RWKV(Peng et al.,116

2023) each have their unique characteristics and117

capabilities. Mamba is based on the State Space118

Model (SSM) and uses a data-dependent dynamic119

decay mechanism to adaptively adjust the informa-120

tion retention period, thereby optimizing its capa-121

bility in long sequence processing. It also achieves122

faster training speeds through CUDA kernel opti-123

mization and enhances local feature capture with124

lightweight Token-shift short convolution opera-125

tions. Mamba is well-suited for tasks involving126

long sequences, such as DNA sequence analysis127

and CRISPR target prediction systems, and per-128

forms well on customized AI accelerator cards.129

RWKV combines linear attention with RNN130

characteristics, controlling the weight of historical131

information via a time decay factor to address the132

long-term dependency issues of traditional RNNs.133

It requires only a small number of state variables134

to maintain long sequence memory.135

Both models have a computational complexity136

of O(N). Mamba is primarily designed for long137

sequence processing, while RWKV is more suited138

for ultra-large-scale language models. In the fu-139

ture, the integration of Mamba and RWKV is an140

emerging trend. For example, RWKV-6 has im-141

proved its state update rules by incorporating the142

data-dependent characteristics of Mamba. This143

kind of integration is expected to lead to more ef-144

ficient and powerful model architectures, offering145

better solutions for future multimodal tasks.146

As derivatives of efficient models, the goal of147

Efficient Language Models is to endow language148

models with visual capabilities, enabling them149

to better handle tasks that integrate visual and150

textual information. In recent years, representa-151

tive works in this field include VisualRWKV and152

VMamba(Liu et al., 2024), among others.These153

models achieve a deep integration of visual and tex-154

tual information by incorporating visual encoders155

into the architecture of language models, signif-156

icantly enhancing performance in tasks such as157

Visual Question Answering (VQA), image caption-158

ing, and document analysis. For example, Visu-159

alRWKV enhances the model’s ability to under- 160

stand complex visual information through high- 161

resolution processing and multi-scale feature ex- 162

traction. VMamba, on the other hand, leverages its 163

dynamic decay mechanism and optimized training 164

strategies to improve inference efficiency in visual- 165

language tasks. The emergence of these models 166

provides new ideas and approaches for the devel- 167

opment of multimodal intelligent systems. 168

2.2 Architectural Limitations of Efficient 169

Language Models 170

VisualRWKV and VMamba show potential in inte- 171

grating visual and textual data, but they face chal- 172

lenges in processing long texts and complex de- 173

pendencies. VisualRWKV, with its high-resolution 174

processing and multi-scale feature extraction, en- 175

hances the understanding of visual information. 176

However, it inherits the limitations of the RWKV 177

architecture when dealing with long texts, such as 178

struggling with long-range dependencies and con- 179

text copying tasks. VMamba, on the other hand, 180

leverages state space models to optimize long se- 181

quence processing but is less effective in handling 182

discrete text data and tasks requiring historical re- 183

call. Therefore, improving feature quality and op- 184

timizing feature fusion mechanisms are key to ad- 185

dressing these issues and enhancing performance 186

in long-text modeling and multimodal tasks. 187

3 Method 188

In the improved VisualRWKV, we focused on ob- 189

taining high-quality features and optimizing fea- 190

ture management. The key enhancements are as 191

follows: 192

3.1 Improving feature quality 193

In the early versions of VisualRWKV, we used 194

SigLIP(Zhai et al., 2023) and DINOv2(Oquab et al., 195

2023) encoders, focusing on low-resolution im- 196

age processing. To enhance high-resolution image 197

processing, we introduced a pre-trained SAM(Zou 198

et al., 2023) vision encoder in the improved version, 199

supporting 1024×1024 pixel resolution and signifi- 200

cantly boosting the ability to capture key features. 201

This improvement resulted in better performance 202

across multiple benchmarks, making the model 203

more efficient and accurate in complex tasks. 204

1. Coarse-grained Feature Coarse-grained fea- 205

tures are obtained using the SigLIP encoder 206

alone, which is designed for low-resolution 207
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images. It can quickly extract global features208

of the image but lacks the ability to capture209

details. Although this method is efficient in210

processing low-resolution images, its neglect211

of detailed information leads to lower recall212

rates in tasks that require precise recognition213

of subtle features, making it prone to missing214

some key information.215

2. Medium-grained Feature Medium-grained216

features are acquired by combining the SigLIP217

and DINOv2 encoders. SigLIP provides218

global features, while DINOv2 enhances the219

diversity and robustness of features through220

self-supervised learning, thereby compensat-221

ing for some of SigLIP’s shortcomings. This222

combined approach achieves a better balance223

between global and local features, capturing224

more details than coarse-grained features. As225

a result, recall rates are significantly improved,226

especially in tasks that require a moderate227

level of detail. However, when dealing with228

high-resolution images, the recall rate may229

still be limited due to the insufficient richness230

of feature details.231

3. Fine-grained Feature Fine-grained features232

are obtained by integrating the SigLIP, DI-233

NOv2, and a pre-trained SAM vision encoder.234

The SAM encoder, with its powerful feature235

extraction capabilities, increases the model’s236

supported resolution to 1024×1024 pixels and237

can capture global and local features with high238

precision. This high-quality feature acqui-239

sition method not only contains rich global240

information but also precisely captures local241

details and complex structures in the image,242

making it suitable for tasks that require rich243

details and visual complexity. Therefore, fine-244

grained features excel in recall rates, signifi-245

cantly reducing the occurrence of missed de-246

tections and improving the model’s recall rate,247

especially in high-resolution image process-248

ing tasks.249

3.2 Lossless DownSampler250

To enable seamless alignment between high-251

resolution and low-resolution modules, we de-252

signed a lossless downsampler. This downsampler253

merges 2×2 blocks (each containing four adjacent254

vectors) into a new channel dimension, allowing255

high-resolution features to align effectively with256

low-resolution features without information loss 257

during training. The process of the lossless down- 258

sampling can be represented by the following for- 259

mula: 260

Cnew = Concat(C1, C2, C3, C4) (1) 261

Where: 262

• Cnew represents the new channel dimension 263

formed by concatenating the four blocks. 264

• C1, C2, C3, C4 are the 2x2 blocks, each con- 265

taining four adjacent vectors. 266

This formula illustrates how the new channel 267

dimension is created by combining the lower- 268

resolution representations effectively. 269

3.3 Image Segmentation and Recombination 270

Strategy 271

To obtain fine-grained features and enhance the 272

model’s ability to understand multi-scale visual in- 273

formation, we adopted an image segmentation and 274

recombination strategy. The input image was di- 275

vided into four parts, each processed by SigLIP, 276

DINOv2, and SAM encoders for feature extraction. 277

The features were then merged using an average 278

pooling layer and aggregated with global features 279

to create a multi-scale feature representation.This 280

strategy balances coarse- and fine-grained infor- 281

mation, significantly improving the model’s abil- 282

ity to handle images up to 4096×4096 pixels. It 283

also showed notable improvements in text-image 284

question answering (TQA) tasks, enhancing cross- 285

modal reasoning performance. 286

3.4 Feature Fusion Projection Layer 287

During training, we found that excessive feature in- 288

formation could hinder model stability and degrade 289

feature quality. To address this, we redesigned the 290

MLP with Context Gating to optimize feature se- 291

lection and reduce loss. 292

Context Gating dynamically adjusts feature rep- 293

resentations by applying a learnable gating func- 294

tion. Our improved MLP strengthens this mech- 295

anism, allowing finer control over input features. 296

The gating layer uses a sigmoid-activated transfor- 297

mation to filter key information and suppress noise, 298

enhancing feature fusion and representation. This 299

design enables more effective handling of diverse 300

features, improving overall model performance. 301

y = σ(Wgx+ bg)⊙ x (2) 302
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Figure 2: Three levels of feature extraction: coarse-grained (a), medium-grained (b), and fine-grained (c). Figure (a)
uses the SigLIP encoder for low-resolution images with limited detail. Figure (b) combines SigLIP and DINOv2 for
medium detail. Figure (c) integrates SigLIP, DINOv2, and a pre-trained SAM encoder for high-resolution images,
capturing both global and local details. This progression highlights the increasing detail and applicability across
different scenarios.

In this formula, y represents the output, Wg is the303

gating weight matrix, bg is the bias term, and x is304

thenput data. The activation function used is the305

sigmoid function σ, and the symbol ⊙ indicates306

element-wise multiplication. This mechanism op-307

timizes the model’s performance by dynamically308

adjusting the input features.309

Compared to traditional MLP designs, our im-310

proved approach achieves key optimizations in the311

following aspects:312

1. Lower Loss: The newly designed MLP struc-313

ture optimizes gradient propagation, stabiliz-314

ing the model and reducing information loss315

during training.316

2. Higher Feature Quality: By implementing317

a refined feature selection mechanism, the318

model enhances effective feature represen-319

tation, especially for high-resolution visual320

tasks.321

3. Improved Training Stability: Prevents ad-322

versarial effects caused by excessive feature323

information, ensuring more robust model per-324

formance across various tasks.325

This enhancement not only stabilizes the training326

process but also significantly improves the model’s327

feature extraction capability, making it more effec-328

tive in high-resolution vision tasks.329

4 Experiments 330

We refer to this enhanced version of VisualRWKV 331

as VisualRWKV-Boost.In the Experiment section, 332

we evaluate the performance of VisualRWKV- 333

Boost model across a variety of tasks, focusing 334

on its ability to handle high-resolution visual in- 335

puts effectively. We conducted experiments on 336

several widely-used visual language model (VLM) 337

benchmarks, with a particular emphasis on text- 338

rich and document analysis tasks that benefit from 339

high-resolution image processing. 340

4.1 Baselines 341

In the Baseline Comparisons section, we com- 342

pare VisualRWKV-Boost not only with the stan- 343

dard VisualRWKV model(Hou et al., 2024) but 344

also with several other relevant models to com- 345

prehensively quantify the improvements brought 346

by high-resolution processing. The standard Vi- 347

sualRWKV model serves as the baseline without 348

high-resolution optimization. Through these com- 349

parisons, we highlight the significant advantages of 350

high-resolution processing in text-dense tasks and 351

document analysis, which require precise detail 352

recognition. Additionally, the results demonstrate 353

the critical role of high-resolution enhancement in 354

handling complex visual tasks. 355
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Model Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisualRWKV 1.6B CLIP 336 59.05 43.57 55.23 29.84 1204.90/245.00 0.832 55.75/53.17
+ SigLIP and DINOv2 SigLIP + DINOv2 384 53.35 41.08 56.55 31.44 1273.67/213.92 0.870 57.39/51.72
+ SAM-b-1024 SigLIP + DINOv2 + SAM-b-1024 384 57.02 48.70 58.23 30.46 1250.50/213.21 0.818 58.84/57.13
+ Scale up resolution SigLIP + DINOv2 + SAM-b-1024 448 58.55 47.75 60.96 33.12 1305.38/224.64 0.855 59.45/53.09
+ MLP with Context Gating SigLIP + DINOv2 + SAM-b-1024 448 54.39 54.71 60.84 54.97 1378.62/266.07 0.860 60.31/55.41
+ HD559k dataset SigLIP + DINOv2 + SAM-b-1024 448 58.75 55.62 60.18 51.59 1271.03/230.36 0.857 57.56/51.03
+ HD667k dataset SigLIP + DINOv2 + SAM-b-1024 448 56.97 56.31 59.52 49.88 1321.33/232.14 0.853 58.42/52.84

Table 1: Performance metrics of different VisualRWKV models on academic tasks. Bolded data in the table
represents the best performance.

Model Dataset DocVQA InfographicVQA ChartQA
VisualRWKV 1.6B mix665k 10.88 - 10.00
VisualRWKV 1.6B + MLP mix665k 11.00 11.00 8.00
VisualRWKV-Boost 1.6B HD559k 35.11 16.49 39.32
VisualRWKV-Boost 1.6B HD667k 35.37 16.82 40.28

Table 2: Performance metrics of VisualRWKV-Boost model on text-rich tasks.

4.2 Benchmarks356

We evaluated VisualRWKV-Boost using eight357

benchmark datasets: SQA(Lu et al., 2022b),358

TextVQA(Singh et al., 2019), GQA(Hudson and359

Manning, 2019), VizWiz(Bigham et al., 2010),360

MME(Fu et al., 2023), POPE(Li et al., 2023),361

MMB(Liu et al., 2023b), and MMB-CN. These362

datasets cover various tasks, such as scenario-based363

question answering (SQA), text extraction from im-364

ages (TextVQA), and reasoning over image content365

(GQA). We also included document benchmarks366

like DocVQA(Mathew et al., 2021), Infograph-367

icVQA(Mathew et al., 2022), and ChartQA(Masry368

et al., 2022) to assess document and chart compre-369

hension. Results show that VisualRWKV-Boost370

significantly outperforms lower-resolution models371

in these tasks, demonstrating its effectiveness in372

handling high-resolution visual data across differ-373

ent modalities and languages.374

4.3 Quantitative Evaluation375

In the quantitative evaluation, Table 3 high-376

lights the significant advantages of VisualRWKV-377

Boost across multiple academic tasks. Specifi-378

cally, VisualRWKV-Boost achieves an accuracy of379

56.97% in the SQA task, surpassing MobileVLM380

1.7B (54.7%)(Chu et al., 2023) and VisualRWKV381

(59.1%). In the TextQA task, its accuracy is382

56.31%, a significant improvement over Visual-383

RWKV’s 43.6%. For the GQA task, VisualRWKV-384

Boost reaches an accuracy of 60.84%, outperform-385

ing other models. Additionally, it achieves a com-386

petitive score of 54.97% in the VizWiz task. Over-387

all, the increased resolution enables VisualRWKV-388

Boost to better process high-resolution image de-389

tails, leading to higher accuracy and superior per- 390

formance across various tasks. 391

4.4 Ablation Study 392

In the Experiment section, we evaluate 393

VisualRWKV-Boost on several VLM bench- 394

marks, focusing on text-rich and document 395

analysis tasks that demand high-resolution visual 396

understanding. The results highlight the model’s 397

effectiveness in real-world scenarios where detail 398

and clarity are critical. 399

4.4.1 Ablation on Vision Encoder 400

In this section, we compared visual encoders, 401

specifically SigLIP and SigLIP + DINOv2, based 402

on a resolution of 384, as shown in Table 4. The 403

results showed a comprehensive performance im- 404

provement. We further enhanced the model by 405

integrating SAM into the SigLIP + DINOv2 frame- 406

work, leading to additional performance gains on 407

the SQA, TQA, and MMB/MMBCN datasets.We 408

assessed the impact of using DINOv2 and SAM on 409

training stability and computational efficiency. The 410

key metrics evaluated included training stability 411

and overall computational cost, as well as the per- 412

formance results across various datasets. After in- 413

troducing DINOv2 and SAM, the model exhibited 414

enhanced stability during training and improved 415

performance across all datasets. This highlights 416

the significant role that the SAM and DINOv2 vi- 417

sual encoders play in effectively processing high- 418

resolution inputs. 419

4.4.2 Ablation on Resolution 420

In this experiment, we introduced SigLIP, DINOv2, 421

and SAM and increased the resolution from 384 422
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Method LLM Resolution SQA TextQA GQA VizWiz MME POPE MMB/MMB-CN
MobileVLM 1.7B MobileLLaMA-1.4B 336 54.7 - 56.1 - 1196.2/- 84.5 53.2/-
Mini-Gemini Gemma-2B 336 - - - - 1341.0/312.0 - 59.8/-
TinyLLaVa-v1 TinyLlama-1.1B - 59.4 - 57.5 - - - -
LLaVa-1.5 Vicuna 7B 336 66.8 58.2 62.0 50.0 - - -
FastViT Vicuna 7B 256 - 51.6 60.2 - - 82.9 -
FastViTHD Vicuna 7B - - 53.1 60.6 - - 82.3 -
VisualRWKV VisualRWKV6-1.6B 336 59.1 43.6 55.2 - 1204.9/- 83.2 55.8/53.2
VisualRWKV VisualRWKV6-7B 336 68.2 51.0 64.3 - 1387.8/- 84.7 65.8/63.7
VisualRWKV-Boost VisualRWKV6-1.6B 448 57.0 56.3 60.8 55.0 1378.6/266.1 86.0 60.3/55.4

Table 3: Performance comparison of different visual language models across various academic tasks.

Model Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisualRWKV 1.6B CLIP 336 59.05 43.57 55.23 29.84 1204.90/245.00 0.832 55.75/53.17
VisualRWKV 1.6B SigLIP + DINOv2 384 53.35 41.08 56.55 31.44 1273.67/213.92 0.870 57.39/51.72
VisualRWKV 1.6B SigLIP + DINOv2 + SAM-b-1024 384 57.02 48.70 58.23 30.46 1250.50/213.21 0.818 58.84/57.13

Table 4: Ablation study on Vision Encoder

to 448, as shown in Table 5. This adjustment im-423

proved the model’s performance on datasets such as424

SQA, GQA, and VizWiz. We compared the perfor-425

mance of VisualRWKV-Boost under different res-426

olution settings to explore the impact of increased427

resolution on accuracy and processing time.428

Feature Quality: Increasing the input resolu-429

tion to 448 pixels significantly improved feature430

quality, enabling the model to capture finer de-431

tails—especially important in text-heavy tasks like432

TextVQA. The enhanced features improved the433

model’s ability to recognize and extract textual434

information, leading to higher answer accuracy.435

While inference time increased, techniques like seg-436

mentation and downsampling effectively balanced437

efficiency and accuracy.438

4.4.3 Ablation on Projection439

In the experiment, the introduction of MLPWith-440

ContextGating significantly enhanced the recall441

performance in the TextVQA task, increasing it442

from 47.75% to 54.71%. This improvement is at-443

tributed to the mechanism’s ability to dynamically444

filter key features and suppress noise, thereby op-445

timizing feature quality. Additionally, it enhanced446

training stability and reduced memory consump-447

tion, particularly when processing high-resolution448

inputs. This highlights the crucial role of MLP-449

WithContextGating in improving performance for450

complex visual-textual tasks.451

4.4.4 Ablation on Data Scaling up452

In the ablation study on data expansion, we453

analyzed VisualRWKV-Boost’s feature utiliza-454

tion across different datasets (mix665k, HD559k,455

HD667k). The results showed that as dataset size456

increased, feature utilization improved, enhancing457

performance in tasks like SQA, TextVQA, and 458

MME. For instance, in the SQA task, accuracy 459

rose from 54.39% with mix665k to 58.75% with 460

HD559k, indicating that larger datasets with high- 461

resolution images improve learning and reason- 462

ing. However, further increasing the dataset size 463

to HD667k led to a slight performance decline in 464

some tasks, suggesting a need to balance dataset 465

size and computational efficiency. The improve- 466

ment in feature quality also boosted recall, allow- 467

ing better extraction of key information from high- 468

resolution images. 469

5 Conclusion 470

In the conclusion, we propose an enhanced Visual- 471

RWKV that integrates lossless downsampling and 472

high-/low-resolution visual encoders to improve 473

feature quality while maintaining computational ef- 474

ficiency. Advanced encoders like SigLIP, DINOv2, 475

and SAM are incorporated to balance coarse- and 476

fine-grained information representation. Addition- 477

ally, an image segmentation and reassembly mech- 478

anism is introduced to strengthen multi-scale fea- 479

ture representation, supporting input resolutions 480

up to 4096×4096 pixels. These improvements sig- 481

nificantly enhance the model’s visual understand- 482

ing and recall in high-resolution tasks, offering a 483

new direction for developing efficient and scalable 484

VLMs. 485

Limitations Despite significant improvements 486

in feature quality and high-resolution processing 487

capabilities, the proposed method still has several 488

limitations and potential risks. First, while inte- 489

grating multiple visual encoders enhances feature 490

extraction, it may also introduce additional compu- 491

tational overhead, potentially affecting inference 492
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Model Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisualRWKV-Boost SigLIP + DINOv2 + SAM-b-1024 384 57.02 48.70 58.23 30.46 1250.50/213.21 0.818 58.84/57.13
VisualRWKV-Boost SigLIP + DINOv2 + SAM-b-1024 448 58.55 47.75 60.96 33.12 1305.38/224.64 0.855 59.45/53.09

Table 5: Ablation study of VisualRWKV-Boost on different resolutions.

Model Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisualRWKV + Linear Projection SigLIP + DINOv2 + SAM-b-1024 448 58.55 47.75 60.96 33.12 1305.38/224.64 0.855 59.45/53.09
VisualRWKV + MLP SigLIP + DINOv2 + SAM-b-1024 448 54.39 54.71 60.84 54.97 1378.62/266.07 0.860 60.31/55.41

Table 6: Ablation study on projection layer.

Model Dataset Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisualRWKV-Boost mix665k SigLIP + DINOv2 + SAM-b-1024 448 54.39 54.71 60.84 54.97 1378.62/266.07 0.860 60.31/55.41
VisualRWKV-Boost HD559k SigLIP + DINOv2 + SAM-b-1024 448 58.75 55.62 60.18 51.59 1271.03/230.36 0.857 57.56/51.03
VisualRWKV-Boost HD667k SigLIP + DINOv2 + SAM-b-1024 448 56.97 56.31 59.52 49.88 1321.33/232.14 0.853 58.42/52.84

Table 7: Ablation study of VisualRWKV-Boost on different datasets.

efficiency, especially in resource-constrained envi-493

ronments. Second, although the model supports in-494

put resolutions up to 4096×4096 pixels, processing495

high-resolution images is computationally inten-496

sive, leading to increased training time and resource497

consumption. Additionally, the method relies on498

specific visual encoders (such as SigLIP, DINOv2,499

and SAM), which may limit its adaptability to dif-500

ferent visual tasks or datasets. Applying the model501

to new tasks may require additional fine-tuning or502

retraining. Moreover, while the approach demon-503

strates strong recall performance in text-rich scenes504

and document analysis, its generalization capability505

across more diverse visual-language tasks remains506

to be further validated. Furthermore, the introduc-507

tion of complex multi-scale representations and508

advanced encoders may increase model complex-509

ity, potentially bringing risks such as overfitting to510

specific datasets or performing poorly in unseen511

scenarios. Finally, for real-time applications, opti-512

mizing computational efficiency while maintaining513

high-resolution visual understanding is still a key514

challenge. Future work will focus on addressing515

these issues, exploring more efficient and flexible516

architectural designs to enhance the model’s adapt-517

ability and practicality.518
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A Model Architecture and Computing650

Model Architecture: The VisualRWKV models used in our experiments are visual extensions of the651

Recurrent Weighted Key-Value (RWKV) architecture, designed to handle both visual and textual data. We652

experimented with the following configurations:653

• VisualRWKV 1.6B: A baseline model using 1.6 billion parameters.654

• VisualRWKV 1.6B + MLP: Enhanced with a Multi-Layer Perceptron (MLP) to improve feature655

extraction.656

• VisualRWKV 1.6B + MLP (VisualRWKV-Boost): A model that adopts the VisualRWKV-Boost657

strategy to extract more fine-grained features.658

Computing Infrastructure : Infrastructure A range of computational resources were employed in the659

study. The standard training and benchmark evaluation were conducted using 8 NVIDIA A100-80GB660

GPUs. The VisualRWKV 7B model is trained with 6 A100 GPUs due to insufficient memory capacity661

with 8 GPUs. For the efficiency analysis, we employed an NVIDIA RTX 3090 GPU.662

Computing Budget: Training an epoch of VisualRWKV 1.6B with 8 A100 GPUs takes 6.7 hours,663

equivalent to 53.6 GPU hours; Training an epoch of VisualRWKV 3B with 8 A100 GPUs takes 11.3664

hours, equivalent to 90.4 GPU hours; Training an epoch of VisualRWKV 7B with 6 A100 GPUs takes665

26.5 hours, equivalent to 159 GPU hours666

In all cases, the RWKV backbone was adapted for visual tasks by incorporating Vision Encoders and667

using Context Gating. These models were fine-tuned for visual question-answering tasks on various668

datasets.669

B Datasets670

We trained and evaluated the models on the following datasets:671

• mix665k: This is the dataset used by LLaVA for instruction tuning, comprising 665,000 diverse672

images aimed at enhancing the model’s adaptability to various visual tasks and instructions, thereby673

improving its overall performance and usability.674

• HD559k: This dataset is our custom high-resolution dataset consisting of 559,000 high-quality675

images. It focuses on testing the model’s performance when processing high-quality visual content,676

particularly in terms of detail, color, and clarity, ensuring that the model can accurately capture677

complex visual information. Table 8 and Figure 3 provide an overview of the data proportions in the678

HD559k dataset.679

• HD667k: As another significant contribution from our team, HD667k is a larger high-resolution680

dataset containing 667,000 images. This dataset not only enriches the training data for the model but681

also provides additional support for its performance in diverse and complex visual scenarios, helping682

to improve the model’s generalization ability and robustness in practical applications. Table 8 and683

Figure 3 provide an overview of the data proportions in the HD667k dataset.684

C Experimental Setup685

Preprocessing: Input images were divided into four sections, each encoded by three vision encoders686

(SigLIP, DINOv2, SAM). Features were merged and passed through an MLP with Context Gating.687

Training: The models were trained using the AdamW optimizer with a learning rate of X , using688

NVIDIA GPUs and mixed precision. Training continued for 100 epochs, with early stopping applied after689

10 epochs of no improvement.690

Evaluation: Models were evaluated on the DocVQA, InfographicVQA, and ChartQA datasets. These691

datasets represent different challenges, from document understanding to infographics and chart analysis.692
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Figure 3: Distribution of the HD559k dataset, showcasing the various datasets and their respective quantities. This
comprehensive dataset includes a diverse range of sources, contributing to a total of 559,494 images utilized for
training and evaluation purposes.

Figure 4: Distribution of the HD667k dataset, illustrating the composition and quantity of various datasets included.
With a total of 667,000 images, this dataset encompasses a wide array of visual tasks and sources, aimed at enhancing
the training and evaluation of model performance.
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Dataset Name Quantity
textocr 21.9k
DocReason25K 25k
sharegpt4v_instruct_61k 61k
monkey_685k_multi_round 294k
llavar_16k 16k
pdfa-eng-50k 50k
pdfa-eng-9k-multi_sft 9k
idl_train-35k 35k
cord-v2-fix2 0.8k
llava_mix50k 50k

Table 8: Overview of Datasets Used of HD559k

Dataset Name Quantity
textocr 21.9k
DocReason25K 25k
sharegpt4v_instruct_61k 61k
monkey_685k_multi_round 294k
llavar_16k 16k
pdfa-eng-50k 50k
pdfa-eng-9k-multi_sft 9k
idl_train-35k 35k
cord-v2-fix2 0.8k
llava_mix50k 50k
chart2text 26.9k
rendered_text 10k
iam 5.66k
st_vqa 17.2k
tabmwp 22.7k
vistext 9.97k
visualmrc 3k
websight 10k
infographic_vqa 2.1k

Table 9: Overview of Datasets Used of HD667k

D Data and Hyperparameters693

• A. Training Data694

We used a two-phase training process for VisualRWKV. In the Feature Alignment Phase, 558K695

images from LAION-CC-SBU were utilized to connect a frozen vision encoder with a frozen LLM.696

This phase establishes the foundation for robust image-text alignment. In the Visual Instruction697

Tuning Phase, an expanded dataset of 150K multimodal examples generated by GPT and 515K VQA698

datasets were used to enhance the model’s capacity for multimodal tasks.All the data used in this699

paper are consistent with their intended use.700

Ethical guidelines were strictly followed in data preparation, focusing on identifying and handling701

PII and sensitive content via automated tools and manual reviews. Anonymization techniques, such702

as data masking, were applied to ensure data integrity and privacy.703

• B. Evaluation Benchmarks704

We employed various benchmarks to evaluate the model. VQA-v2 and GQA metrics are based on705
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the test-dev split, while TextVQA is evaluated on its validation set. ScienceQA and POPE metrics 706

are from their respective test sets. MMBench metrics are based on the development set, and MME is 707

evaluated on a specific test set. 708

• C. Data Language 709

Our training data spans multiple datasets, with most Visual Question Answering (VQA) datasets 710

being in English. The ShareGPT data is multilingual, covering multiple user-contributed languages. 711

Among the evaluation benchmarks, MMBench-cn is in Chinese, while the rest are in English. 712

• D. Hyperparameters 713

The models used 1.6B parameters for experiments. Detailed hyperparameters for both the vision- 714

language alignment pretraining and the visual instruction tuning phases are listed in Table 10. 715

These include settings optimized for diverse tasks across different datasets, ensuring robust model 716

performance.

Hyperparameter 1.6B-Pretrain 1.6B-Finetune
batch size 256 128
lr init 1e-3 6e-5
lr end 1e-5 1.5e-5
lr schedule cosine decay cosine decay
lr warmup ratio 0 0
weight decay 0 0
epoch 2 2
optimizer AdamW AdamW
DeepSpeed stage 1 1

Table 10: Hyperparameters for 1.6B model pretraining and finetuning.

717

E Limitations and Future Work 718

Although this strategy significantly improves model performance, especially on ChartQA and TextQA, 719

challenges remain in document understanding tasks. Future work will explore improved feature extraction 720

methods and further optimize the model for multimodal tasks. 721

F Use of AI Assistants 722

In this research, an AI writing assistant is solely employed for the purposes of paraphrasing, spell-checking, 723

and enhancing the author’s original content, and it does not introduce any novel content. 724
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