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Abstract

Associative recall has emerged as a criti-
cal weakness in efficient language models
and, as we demonstrate, is also a core bot-
tleneck in efficient visual language models
(VLMs). In this work, we show that efficient
VLMs—exemplified by VisualRWKV—suffer
from significant deficits in recall, particu-
larly in text-centric tasks such as TextVQA
and document understanding. Quantitatively,
the baseline VisualRWKV-7B still trails the
Transformer-based LLaVA-1.5-7B by 7.2 accu-
racy points on the TextVQA benchmark. We
attribute this gap to a fundamental architec-
tural limitation: insufficient input feature qual-
ity. To address this, we propose two effective
processing strategies to enhance visual feature
representations. First, our model incorporates
SigLIP, DINOv2, and SAM to improve fea-
ture richness across resolutions, enabling the
retention of multi-scale visual information with-
out increasing the number of input visual to-
kens. Second, we introduce a segmentation-
recombination strategy that supports ultra-high-
resolution inputs (up to 4096x4096), allow-
ing for precise and detailed feature extraction.
These improvements significantly enhance re-
call performance and feature quality, enabling
VisualRWKV-Boost-1.6B to outperform the
larger baseline VisualRWKV-7B. Moreover,
the performance gap on TextVQA compared
with LLaVA-1.5-7B is reduced from 7.2 to just
1.9 accuracy points, paving the way for more
scalable and efficient VLM architectures.

1 Introduction

The emergence of efficient language models with
linear time complexity, such as Mamba (Gu and
Dao, 2023) and RWKYV (Peng et al., 2023, 2024,
2025), has opened new avenues for scaling large
language models (LLMs) with reduced computa-
tional overhead. These models achieve competi-
tive performance on various NLP tasks while of-
fering significant efficiency advantages over tra-

ditional attention-based architectures. However,
recent studies have identified a critical limitation:
their poor performance on tasks requiring asso-
ciative recall (Arora et al., 2023). This capabil-
ity—essential for retrieving relevant information
from long and complex sequences—remains a key
bottleneck for efficient language models.

In this work, we investigate this limitation
in the context of visual language modeling and
show that associative recall is also a core weak-
ness of efficient visual language models (VLMs).
Specifically, we study VisualRWKYV (Hou et al.,
2024), a representative efficient VLM, and ob-
serve that it performs comparably or even bet-
ter than Transformer-based counterparts on gen-
eral visual-language tasks such as VQA (An-
tol et al.,, 2015) and ScienceQA (Lu et al.,
2022a), as shown in Table 3. However, on text-
centric benchmarks like TextVQA (Singh et al.,
2019)—which demand precise recall of visual tex-
tual content—VisualRWKYV underperforms signif-
icantly, trailing LLaVA-1.5 (Liu et al., 2023a) by
7.2 accuracy points (see Figure 1). These findings
suggest that associative recall is not only a chal-
lenge in pure language modeling but also a limiting
factor in visual-language modeling.

We attribute this performance gap primarily to
the limited quality of image feature representations,
which constrains the model’s ability to retrieve rel-
evant visual information—especially in text-rich
scenarios such as TextVQA. To address this, we
propose two complementary strategies:

* First, we improve the richness and quality
of image features by integrating a ensemble
of state-of-the-art vision encoders, including
SigLIP (Zhai et al., 2023), DINOv2 (Oquab
et al., 2023), and SAM (Kirillov et al., 2023).
These encoders are further supported by a
segmentation-recombination pipeline that en-
ables ultra-high-resolution image inputs (up
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Figure 1: The performance enhancement and workflow of the VisuaRWKV-Boost model when dealing with
high-resolution images. The bar chart in the upper left corner compares the accuracy of different models on
the TextVQA task, with VisuaRWKV-Boost leading at an accuracy rate of 56.31%. The bar graph in the upper
right corner contrasts the performance of VisualRWKYV and VisualRWKV-Boost across multiple visual question
answering benchmarks, highlighting the superior performance of VisualRWKV-Boost across various tasks. The
flowchart at the bottom demonstrates the workflow of the VisuaRWKV-Boost model: it uses visual encoders to
extract image features, optimizes feature integration through MLP with context gating, and then converts the textual
question into a format that the model can process. High-resolution processing helps the model accurately identify
text in images, thereby improving the accuracy of responses.

to 4096x4096), thereby generating highly de-
tailed, multi-scale visual representations while
maintaining token efficiency.

* Second, we perform data scaling by incorpo-
rating a substantially larger and more diverse
corpus of high-quality image-text pairs. This
expanded training set improves the model’s
ability to align visual and textual modalities,
thereby enhancing its robustness and general-
ization across visual-language tasks.

Combined, these improvements lead to a signifi-
cant boost in associative recall performance. Our
proposed VisualRWKV-Boost (1.6B) surpasses the

larger 7B VisualRWKYV baseline (Hou et al., 2024)
by 5.3 accuracy points and substantially closes
the performance gap with the Transformer-based
LLaVA-1.5 (Liu et al., 2023a), reducing it from 7.2
to just 1.9 points on the TextVQA benchmark.

Our study reveals that the architectural lim-
itations of efficient Visual Language Mod-
els—particularly in associative recall—can be ef-
fectively mitigated through a combination of fea-
ture scaling and data scaling, enabling them to
achieve performance on par with much larger
Transformer-based models. These results not only
close the performance gap with Transformer-based



models but also provide a promising direction for
developing scalable and resource-efficient Visual
Language Models.

2 Related Works

2.1 Efficient Language Models

Among common efficient language models,
Mamba(Gu and Dao, 2023) and RWKV(Peng et al.,
2023) each have their unique characteristics and
capabilities. Mamba is based on the State Space
Model (SSM) and uses a data-dependent dynamic
decay mechanism to adaptively adjust the informa-
tion retention period, thereby optimizing its capa-
bility in long sequence processing. It also achieves
faster training speeds through CUDA kernel opti-
mization and enhances local feature capture with
lightweight Token-shift short convolution opera-
tions. Mamba is well-suited for tasks involving
long sequences, such as DNA sequence analysis
and CRISPR target prediction systems, and per-
forms well on customized Al accelerator cards.

RWKYV combines linear attention with RNN
characteristics, controlling the weight of historical
information via a time decay factor to address the
long-term dependency issues of traditional RNNs.
It requires only a small number of state variables
to maintain long sequence memory.

Both models have a computational complexity
of O(N). Mamba is primarily designed for long
sequence processing, while RWKYV is more suited
for ultra-large-scale language models. In the fu-
ture, the integration of Mamba and RWKYV is an
emerging trend. For example, RWKV-6 has im-
proved its state update rules by incorporating the
data-dependent characteristics of Mamba. This
kind of integration is expected to lead to more ef-
ficient and powerful model architectures, offering
better solutions for future multimodal tasks.

As derivatives of efficient models, the goal of
Efficient Language Models is to endow language
models with visual capabilities, enabling them
to better handle tasks that integrate visual and
textual information. In recent years, representa-
tive works in this field include VisualRWKYV and
VMamba(Liu et al., 2024), among others.These
models achieve a deep integration of visual and tex-
tual information by incorporating visual encoders
into the architecture of language models, signif-
icantly enhancing performance in tasks such as
Visual Question Answering (VQA), image caption-
ing, and document analysis. For example, Visu-

alRWKYV enhances the model’s ability to under-
stand complex visual information through high-
resolution processing and multi-scale feature ex-
traction. VMamba, on the other hand, leverages its
dynamic decay mechanism and optimized training
strategies to improve inference efficiency in visual-
language tasks. The emergence of these models
provides new ideas and approaches for the devel-
opment of multimodal intelligent systems.

2.2 Architectural Limitations of Efficient
Language Models

VisualRWKYV and VMamba show potential in inte-
grating visual and textual data, but they face chal-
lenges in processing long texts and complex de-
pendencies. VisuaRWKYV, with its high-resolution
processing and multi-scale feature extraction, en-
hances the understanding of visual information.
However, it inherits the limitations of the RWKV
architecture when dealing with long texts, such as
struggling with long-range dependencies and con-
text copying tasks. VMamba, on the other hand,
leverages state space models to optimize long se-
quence processing but is less effective in handling
discrete text data and tasks requiring historical re-
call. Therefore, improving feature quality and op-
timizing feature fusion mechanisms are key to ad-
dressing these issues and enhancing performance
in long-text modeling and multimodal tasks.

3 Method

In the improved VisuaRWKY, we focused on ob-
taining high-quality features and optimizing fea-
ture management. The key enhancements are as
follows:

3.1 Improving feature quality

In the early versions of VisualRWKYV, we used
SigLIP(Zhai et al., 2023) and DINOv2(Oquab et al.,
2023) encoders, focusing on low-resolution im-
age processing. To enhance high-resolution image
processing, we introduced a pre-trained SAM(Zou
et al., 2023) vision encoder in the improved version,
supporting 1024x1024 pixel resolution and signifi-
cantly boosting the ability to capture key features.
This improvement resulted in better performance
across multiple benchmarks, making the model
more efficient and accurate in complex tasks.

1. Coarse-grained Feature Coarse-grained fea-
tures are obtained using the Sigl.IP encoder
alone, which is designed for low-resolution



images. It can quickly extract global features
of the image but lacks the ability to capture
details. Although this method is efficient in
processing low-resolution images, its neglect
of detailed information leads to lower recall
rates in tasks that require precise recognition
of subtle features, making it prone to missing
some key information.

2. Medium-grained Feature Medium-grained
features are acquired by combining the SigL.IP
and DINOv2 encoders. SigLIP provides
global features, while DINOv2 enhances the
diversity and robustness of features through
self-supervised learning, thereby compensat-
ing for some of Sigl.IP’s shortcomings. This
combined approach achieves a better balance
between global and local features, capturing
more details than coarse-grained features. As
aresult, recall rates are significantly improved,
especially in tasks that require a moderate
level of detail. However, when dealing with
high-resolution images, the recall rate may
still be limited due to the insufficient richness
of feature details.

3. Fine-grained Feature Fine-grained features
are obtained by integrating the SigLIP, DI-
NOV2, and a pre-trained SAM vision encoder.
The SAM encoder, with its powerful feature
extraction capabilities, increases the model’s
supported resolution to 1024x1024 pixels and
can capture global and local features with high
precision. This high-quality feature acqui-
sition method not only contains rich global
information but also precisely captures local
details and complex structures in the image,
making it suitable for tasks that require rich
details and visual complexity. Therefore, fine-
grained features excel in recall rates, signifi-
cantly reducing the occurrence of missed de-
tections and improving the model’s recall rate,
especially in high-resolution image process-
ing tasks.

3.2 Lossless DownSampler

To enable seamless alignment between high-
resolution and low-resolution modules, we de-
signed a lossless downsampler. This downsampler
merges 2x2 blocks (each containing four adjacent
vectors) into a new channel dimension, allowing
high-resolution features to align effectively with

low-resolution features without information loss
during training. The process of the lossless down-
sampling can be represented by the following for-
mula:

Chew = Concat(C1, Ca, Cs, Cy) ()
Where:

¢ Chew represents the new channel dimension
formed by concatenating the four blocks.

* (1, Cy, C3, Cy are the 2x2 blocks, each con-
taining four adjacent vectors.

This formula illustrates how the new channel
dimension is created by combining the lower-
resolution representations effectively.

3.3 Image Segmentation and Recombination
Strategy

To obtain fine-grained features and enhance the
model’s ability to understand multi-scale visual in-
formation, we adopted an image segmentation and
recombination strategy. The input image was di-
vided into four parts, each processed by SigLIP,
DINOvV2, and SAM encoders for feature extraction.
The features were then merged using an average
pooling layer and aggregated with global features
to create a multi-scale feature representation.This
strategy balances coarse- and fine-grained infor-
mation, significantly improving the model’s abil-
ity to handle images up to 4096x4096 pixels. It
also showed notable improvements in text-image
question answering (TQA) tasks, enhancing cross-
modal reasoning performance.

3.4 Feature Fusion Projection Layer

During training, we found that excessive feature in-
formation could hinder model stability and degrade
feature quality. To address this, we redesigned the
MLP with Context Gating to optimize feature se-
lection and reduce loss.

Context Gating dynamically adjusts feature rep-
resentations by applying a learnable gating func-
tion. Our improved MLP strengthens this mech-
anism, allowing finer control over input features.
The gating layer uses a sigmoid-activated transfor-
mation to filter key information and suppress noise,
enhancing feature fusion and representation. This
design enables more effective handling of diverse
features, improving overall model performance.

y=oc(Wyx +by) ©x )
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Figure 2: Three levels of feature extraction: coarse-grained (a), medium-grained (b), and fine-grained (c). Figure (a)
uses the SigL.IP encoder for low-resolution images with limited detail. Figure (b) combines SigLIP and DINOv?2 for
medium detail. Figure (c) integrates SigL.IP, DINOv2, and a pre-trained SAM encoder for high-resolution images,
capturing both global and local details. This progression highlights the increasing detail and applicability across

different scenarios.

In this formula, y represents the output, W, is the
gating weight matrix, b, is the bias term, and x is
thenput data. The activation function used is the
sigmoid function o, and the symbol © indicates
element-wise multiplication. This mechanism op-
timizes the model’s performance by dynamically
adjusting the input features.

Compared to traditional MLP designs, our im-
proved approach achieves key optimizations in the
following aspects:

1. Lower Loss: The newly designed MLP struc-
ture optimizes gradient propagation, stabiliz-
ing the model and reducing information loss
during training.

2. Higher Feature Quality: By implementing
a refined feature selection mechanism, the
model enhances effective feature represen-
tation, especially for high-resolution visual
tasks.

3. Improved Training Stability: Prevents ad-
versarial effects caused by excessive feature
information, ensuring more robust model per-
formance across various tasks.

This enhancement not only stabilizes the training
process but also significantly improves the model’s
feature extraction capability, making it more effec-
tive in high-resolution vision tasks.

4 Experiments

We refer to this enhanced version of VisuaRWKV
as VisualRWKV-Boost.In the Experiment section,
we evaluate the performance of VisualRWKV-
Boost model across a variety of tasks, focusing
on its ability to handle high-resolution visual in-
puts effectively. We conducted experiments on
several widely-used visual language model (VLM)
benchmarks, with a particular emphasis on text-
rich and document analysis tasks that benefit from
high-resolution image processing.

4.1 Baselines

In the Baseline Comparisons section, we com-
pare VisualRWKV-Boost not only with the stan-
dard VisualRWKYV model(Hou et al., 2024) but
also with several other relevant models to com-
prehensively quantify the improvements brought
by high-resolution processing. The standard Vi-
sualRWKYV model serves as the baseline without
high-resolution optimization. Through these com-
parisons, we highlight the significant advantages of
high-resolution processing in text-dense tasks and
document analysis, which require precise detail
recognition. Additionally, the results demonstrate
the critical role of high-resolution enhancement in
handling complex visual tasks.



Model Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisualRWKYV 1.6B CLIP 336 59.05 43.57 5523 29.84  1204.90/245.00 0.832 55.75/53.17
+ SigLIP and DINOv2 SigLIP + DINOv2 384 53.35 41.08 56.55 3144  1273.67/213.92 0.870 57.39/51.72
+ SAM-b-1024 SigLIP + DINOV2 + SAM-b-1024 384 57.02 48.70 58.23 3046 1250.50/213.21 0.818 58.84/57.13
+ Scale up resolution SigLIP + DINOv2 + SAM-b-1024 448 58.55 47.75 60.96 33.12 1305.38/224.64 0.855 59.45/53.09
+ MLP with Context Gating ~ SigLIP + DINOv2 + SAM-b-1024 448 54.39 54.71 60.84 5497 1378.62/266.07 0.860 60.31/55.41
+ HD559 dataset SigLIP + DINOvV2 + SAM-b-1024 448 58.75 55.62 60.18  51.59  1271.03/230.36  0.857 57.56/51.03
+ HD667k dataset SigLIP + DINOv2 + SAM-b-1024 448 56.97 56.31 59.52  49.88  1321.33/232.14 0.853 58.42/52.84

Table 1: Performance metrics of different VisualRWKYV models on academic tasks. Bolded data in the table

represents the best performance.

Model Dataset DocVQA InfographicVQA ChartQA
VisualRWKYV 1.6B mix665k 10.88 - 10.00
VisualRWKV 1.6B + MLP mix665k 11.00 11.00 8.00
VisualRWKV-Boost 1.6B ~ HD559k 35.11 16.49 39.32
VisualRWKV-Boost 1.6B ~ HD667k 35.37 16.82 40.28

Table 2: Performance metrics of VisualRWKV-Boost model on text-rich tasks.

4.2 Benchmarks

We evaluated VisualRWKV-Boost using eight
benchmark datasets: SQA(Lu et al.,, 2022b),
TextVQA(Singh et al., 2019), GQA(Hudson and
Manning, 2019), VizWiz(Bigham et al., 2010),
MME(Fu et al., 2023), POPE(Li et al., 2023),
MMB(Liu et al., 2023b), and MMB-CN. These
datasets cover various tasks, such as scenario-based
question answering (SQA), text extraction from im-
ages (TextVQA), and reasoning over image content
(GQA). We also included document benchmarks
like DocVQA(Mathew et al., 2021), Infograph-
icVQA(Mathew et al., 2022), and ChartQA(Masry
et al., 2022) to assess document and chart compre-
hension. Results show that VisualRWKV-Boost
significantly outperforms lower-resolution models
in these tasks, demonstrating its effectiveness in
handling high-resolution visual data across differ-
ent modalities and languages.

4.3 Quantitative Evaluation

In the quantitative evaluation, Table 3 high-
lights the significant advantages of VisualRWKV-
Boost across multiple academic tasks. Specifi-
cally, VisualRWKV-Boost achieves an accuracy of
56.97% in the SQA task, surpassing MobileVLM
1.7B (54.7%)(Chu et al., 2023) and VisuaRWKV
(59.1%). In the TextQA task, its accuracy is
56.31%, a significant improvement over Visual-
RWKYV’s 43.6%. For the GQA task, VisualRWKV-
Boost reaches an accuracy of 60.84%, outperform-
ing other models. Additionally, it achieves a com-
petitive score of 54.97% in the VizWiz task. Over-
all, the increased resolution enables VisualRWK V-
Boost to better process high-resolution image de-

tails, leading to higher accuracy and superior per-
formance across various tasks.

4.4 Ablation Study

In the Experiment section, we evaluate
VisualRWKV-Boost on several VLM bench-
marks, focusing on text-rich and document
analysis tasks that demand high-resolution visual
understanding. The results highlight the model’s
effectiveness in real-world scenarios where detail
and clarity are critical.

4.4.1 Ablation on Vision Encoder

In this section, we compared visual encoders,
specifically SigL.IP and SigLIP + DINOv2, based
on a resolution of 384, as shown in Table 4. The
results showed a comprehensive performance im-
provement. We further enhanced the model by
integrating SAM into the SigLIP + DINOv2 frame-
work, leading to additional performance gains on
the SQA, TQA, and MMB/MMBcy datasets.We
assessed the impact of using DINOv2 and SAM on
training stability and computational efficiency. The
key metrics evaluated included training stability
and overall computational cost, as well as the per-
formance results across various datasets. After in-
troducing DINOv2 and SAM, the model exhibited
enhanced stability during training and improved
performance across all datasets. This highlights
the significant role that the SAM and DINOV2 vi-
sual encoders play in effectively processing high-
resolution inputs.

4.4.2 Ablation on Resolution

In this experiment, we introduced SigL.IP, DINOv2,
and SAM and increased the resolution from 384



Method LLM Resolution SQA TextQA GQA VizWiz MME POPE MMB/MMB-CN
MobileVLM 1.7B MobileLLaMA-1.4B 336 54.7 - 56.1 - 1196.2/- 84.5 53.2/-
Mini-Gemini Gemma-2B 336 - - - - 1341.0/312.0 - 59.8/-
TinyLLaVa-v1 TinyLlama-1.1B - 59.4 - 575 - - - -
LLaVa-1.5 Vicuna 7B 336 66.8 58.2 62.0 50.0 - - -
FastViT Vicuna 7B 256 - 51.6 60.2 - - 82.9 -
FastViTHD Vicuna 7B - - 53.1 60.6 - - 82.3 -
VisuaRWKV VisuaRWKV6-1.6B 336 59.1 43.6 55.2 - 1204.9/- 83.2 55.8/53.2
VisuaRWKV VisuaRWKV6-7B 336 68.2 51.0 64.3 - 1387.8/- 84.7 65.8/63.7
VisuaRWKV-Boost  VisualRWKV6-1.6B 448 57.0 56.3 60.8 55.0 1378.6/266.1  86.0 60.3/55.4

Table 3: Performance comparison of different visual language models across various academic tasks.

Model Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisualRWKV 1.6B  CLIP 59.05 43.57 5523  29.84  1204.90/245.00 0.832 55.75/53.17
VisualRWKV 1.6B  SigLIP + DINOv2 53.35 41.08 56.55 3144  1273.67/213.92 0.870 57.39/51.72
VisualRWKV 1.6B  SigLIP + DINOv2 + SAM-b-1024 57.02 48.70 5823 3046  1250.50/213.21 0.818 58.84/57.13

Table 4: Ablation study on Vision Encoder

to 448, as shown in Table 5. This adjustment im-
proved the model’s performance on datasets such as
SQA, GQA, and VizWiz. We compared the perfor-
mance of VisualRWKV-Boost under different res-
olution settings to explore the impact of increased
resolution on accuracy and processing time.

Feature Quality: Increasing the input resolu-
tion to 448 pixels significantly improved feature
quality, enabling the model to capture finer de-
tails—especially important in text-heavy tasks like
TextVQA. The enhanced features improved the
model’s ability to recognize and extract textual
information, leading to higher answer accuracy.
While inference time increased, techniques like seg-
mentation and downsampling effectively balanced
efficiency and accuracy.

4.4.3 Ablation on Projection

In the experiment, the introduction of MLPWith-
ContextGating significantly enhanced the recall
performance in the TextVQA task, increasing it
from 47.75% to 54.71%. This improvement is at-
tributed to the mechanism’s ability to dynamically
filter key features and suppress noise, thereby op-
timizing feature quality. Additionally, it enhanced
training stability and reduced memory consump-
tion, particularly when processing high-resolution
inputs. This highlights the crucial role of MLP-
WithContextGating in improving performance for
complex visual-textual tasks.

4.4.4 Ablation on Data Scaling up

In the ablation study on data expansion, we
analyzed VisualRWKV-Boost’s feature utiliza-
tion across different datasets (mix665k, HD559k,
HD667k). The results showed that as dataset size
increased, feature utilization improved, enhancing

performance in tasks like SQA, TextVQA, and
MME. For instance, in the SQA task, accuracy
rose from 54.39% with mix665k to 58.75% with
HD559k, indicating that larger datasets with high-
resolution images improve learning and reason-
ing. However, further increasing the dataset size
to HD667k led to a slight performance decline in
some tasks, suggesting a need to balance dataset
size and computational efficiency. The improve-
ment in feature quality also boosted recall, allow-
ing better extraction of key information from high-
resolution images.

5 Conclusion

In the conclusion, we propose an enhanced Visual-
RWKYV that integrates lossless downsampling and
high-/low-resolution visual encoders to improve
feature quality while maintaining computational ef-
ficiency. Advanced encoders like SigLIP, DINOv2,
and SAM are incorporated to balance coarse- and
fine-grained information representation. Addition-
ally, an image segmentation and reassembly mech-
anism is introduced to strengthen multi-scale fea-
ture representation, supporting input resolutions
up to 4096x4096 pixels. These improvements sig-
nificantly enhance the model’s visual understand-
ing and recall in high-resolution tasks, offering a
new direction for developing efficient and scalable
VLMs.

Limitations Despite significant improvements
in feature quality and high-resolution processing
capabilities, the proposed method still has several
limitations and potential risks. First, while inte-
grating multiple visual encoders enhances feature
extraction, it may also introduce additional compu-
tational overhead, potentially affecting inference



Model Vision Encoder Resolution SQA TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisuaRWKV-Boost  SigLIP + DINOV2 + SAM-b-1024 384 5702 4870 5823 3046 1250.50/213.21 0.818  58.84/57.13
VisuaRWKV-Boost  SigLIP + DINOV2 + SAM-b-1024 448 5855 4775  60.96 33.12 1305.38/224.64 0.855  59.45/53.09
Table 5: Ablation study of VisualRWKV-Boost on different resolutions.
Model Vision Encoder Resolution  SQA TextVQA GQA  VizWiz MME POPE_ MMB/MMB-CN
VisualRWKV + Linear Projection  SigLIP + DINOv2 + SAM-b-1024 448 5855  47.75  60.96 33.12 1305.38/224.64 0855  59.45/53.09
VisuaRWKV + MLP SigLIP + DINOv2 + SAM-b-1024 448 5439 5471 6084 5497 1378.62/266.07 0860  6031/55.41
Table 6: Ablation study on projection layer.
Model Dataset ~ Vision Encoder Resolution SQA  TextVQA GQA VizWiz MME POPE MMB/MMB-CN
VisuaRWKV-Boost mix665k SigLIP + DINOv2 + SAM-b-1024 448 5439 5471  60.84 5497 137862/266.07 0860  60.31/55.41
VisuaRWKV-Boost HD559k ~ SigLIP + DINOv2 + SAM-b-1024 448 5875 5562  60.18 5159 1271.03/230.36 0.857  57.56/51.03
VisuaRWKV-Boost HD667k _ SigLIP + DINOV2 + SAM-b-1024 448 5697 5631  59.52 49.88 1321.33/232.14 0.853  5842/52.84

Table 7: Ablation study of VisualRWKV-Boost on different datasets.

efficiency, especially in resource-constrained envi-
ronments. Second, although the model supports in-
put resolutions up to 4096x4096 pixels, processing
high-resolution images is computationally inten-
sive, leading to increased training time and resource
consumption. Additionally, the method relies on
specific visual encoders (such as SigLIP, DINOv2,
and SAM), which may limit its adaptability to dif-
ferent visual tasks or datasets. Applying the model
to new tasks may require additional fine-tuning or
retraining. Moreover, while the approach demon-
strates strong recall performance in text-rich scenes
and document analysis, its generalization capability
across more diverse visual-language tasks remains
to be further validated. Furthermore, the introduc-
tion of complex multi-scale representations and
advanced encoders may increase model complex-
ity, potentially bringing risks such as overfitting to
specific datasets or performing poorly in unseen
scenarios. Finally, for real-time applications, opti-
mizing computational efficiency while maintaining
high-resolution visual understanding is still a key
challenge. Future work will focus on addressing
these issues, exploring more efficient and flexible
architectural designs to enhance the model’s adapt-
ability and practicality.
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A Model Architecture and Computing

Model Architecture: The VisualRWKYV models used in our experiments are visual extensions of the
Recurrent Weighted Key-Value (RWKYV) architecture, designed to handle both visual and textual data. We
experimented with the following configurations:

* VisualRWKY 1.6B: A baseline model using 1.6 billion parameters.

* VisualRWKY 1.6B + MLP: Enhanced with a Multi-Layer Perceptron (MLP) to improve feature
extraction.

* VisualRWKYV 1.6B + MLP (VisualRWKYV-Boost): A model that adopts the VisuaRWKV-Boost
strategy to extract more fine-grained features.

Computing Infrastructure : Infrastructure A range of computational resources were employed in the
study. The standard training and benchmark evaluation were conducted using 8 NVIDIA A100-80GB
GPUs. The VisualRWKYV 7B model is trained with 6 A100 GPUs due to insufficient memory capacity
with 8 GPUs. For the efficiency analysis, we employed an NVIDIA RTX 3090 GPU.

Computing Budget: Training an epoch of VisualRWKYV 1.6B with 8 A100 GPUs takes 6.7 hours,
equivalent to 53.6 GPU hours; Training an epoch of VisualRWKYV 3B with 8 A100 GPUs takes 11.3
hours, equivalent to 90.4 GPU hours; Training an epoch of VisualRWKYV 7B with 6 A100 GPUs takes
26.5 hours, equivalent to 159 GPU hours

In all cases, the RWKYV backbone was adapted for visual tasks by incorporating Vision Encoders and
using Context Gating. These models were fine-tuned for visual question-answering tasks on various
datasets.

B Datasets

We trained and evaluated the models on the following datasets:

* mix665k: This is the dataset used by LLaVA for instruction tuning, comprising 665,000 diverse
images aimed at enhancing the model’s adaptability to various visual tasks and instructions, thereby
improving its overall performance and usability.

* HD559Kk: This dataset is our custom high-resolution dataset consisting of 559,000 high-quality
images. It focuses on testing the model’s performance when processing high-quality visual content,
particularly in terms of detail, color, and clarity, ensuring that the model can accurately capture
complex visual information. Table 8 and Figure 3 provide an overview of the data proportions in the
HD559k dataset.

* HD667k: As another significant contribution from our team, HD667k is a larger high-resolution
dataset containing 667,000 images. This dataset not only enriches the training data for the model but
also provides additional support for its performance in diverse and complex visual scenarios, helping
to improve the model’s generalization ability and robustness in practical applications. Table 8 and
Figure 3 provide an overview of the data proportions in the HD667k dataset.

C Experimental Setup

Preprocessing: Input images were divided into four sections, each encoded by three vision encoders
(SigLIP, DINOv2, SAM). Features were merged and passed through an MLP with Context Gating.
Training: The models were trained using the AdamW optimizer with a learning rate of X, using
NVIDIA GPUs and mixed precision. Training continued for 100 epochs, with early stopping applied after
10 epochs of no improvement.
Evaluation: Models were evaluated on the DocVQA, InfographicVQA, and ChartQA datasets. These
datasets represent different challenges, from document understanding to infographics and chart analysis.
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Proportion of Data in HD559k Dataset
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Figure 3: Distribution of the HD559k dataset, showcasing the various datasets and their respective quantities. This
comprehensive dataset includes a diverse range of sources, contributing to a total of 559,494 images utilized for

training and evaluation purposes.
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Figure 4: Distribution of the HD667k dataset, illustrating the composition and quantity of various datasets included.
With a total of 667,000 images, this dataset encompasses a wide array of visual tasks and sources, aimed at enhancing

the training and evaluation of model performance.
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Dataset Name Quantity
textocr 21.9k
DocReason25K 25k
sharegpt4v_instruct_61k 61k
monkey_685k_multi_round 294k
llavar_16k 16k
pdfa-eng-50k 50k
pdfa-eng-9k-multi_sft 9k
idl_train-35k 35k
cord-v2-fix2 0.8k
Hava_mix50k 50k

Table 8: Overview of Datasets Used of HD559k

Dataset Name Quantity
textocr 21.9k
DocReason25K 25k
sharegpt4v_instruct_61k 61k
monkey_685k_multi_round 294k
llavar_16k 16k
pdfa-eng-50k 50k
pdfa-eng-9k-multi_sft 9k
idl_train-35k 35k
cord-v2-fix2 0.8k
llava_mix50k 50k
chart2text 26.9k
rendered_text 10k
iam 5.66k
st_vqa 17.2k
tabmwp 22.7k
vistext 9.97k
visualmrc 3k
websight 10k
infographic_vqa 2.1k

Table 9: Overview of Datasets Used of HD667k

D Data and Hyperparameters

* A. Training Data

We used a two-phase training process for VisualRWKV. In the Feature Alignment Phase, 558K
images from LAION-CC-SBU were utilized to connect a frozen vision encoder with a frozen LLM.
This phase establishes the foundation for robust image-text alignment. In the Visual Instruction
Tuning Phase, an expanded dataset of 150K multimodal examples generated by GPT and 515K VQA
datasets were used to enhance the model’s capacity for multimodal tasks.All the data used in this
paper are consistent with their intended use.

Ethical guidelines were strictly followed in data preparation, focusing on identifying and handling
PII and sensitive content via automated tools and manual reviews. Anonymization techniques, such
as data masking, were applied to ensure data integrity and privacy.

¢ B. Evaluation Benchmarks

We employed various benchmarks to evaluate the model. VQA-v2 and GQA metrics are based on
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the test-dev split, while TextVQA is evaluated on its validation set. ScienceQA and POPE metrics
are from their respective test sets. MMBench metrics are based on the development set, and MME is
evaluated on a specific test set.

* C. Data Language

Our training data spans multiple datasets, with most Visual Question Answering (VQA) datasets
being in English. The ShareGPT data is multilingual, covering multiple user-contributed languages.
Among the evaluation benchmarks, MMBench-cn is in Chinese, while the rest are in English.

* D. Hyperparameters

The models used 1.6B parameters for experiments. Detailed hyperparameters for both the vision-
language alignment pretraining and the visual instruction tuning phases are listed in Table 10.
These include settings optimized for diverse tasks across different datasets, ensuring robust model

performance.
Hyperparameter | 1.6B-Pretrain | 1.6B-Finetune
batch size 256 128
Ir init le-3 6e-5
Ir end le-5 1.5e-5
Ir schedule cosine decay cosine decay
Ir warmup ratio 0 0
weight decay 0 0
epoch 2 2
optimizer AdamW AdamW
DeepSpeed stage 1 1

Table 10: Hyperparameters for 1.6B model pretraining and finetuning.

E Limitations and Future Work

Although this strategy significantly improves model performance, especially on ChartQA and TextQA,
challenges remain in document understanding tasks. Future work will explore improved feature extraction
methods and further optimize the model for multimodal tasks.

F Use of AI Assistants

In this research, an Al writing assistant is solely employed for the purposes of paraphrasing, spell-checking,
and enhancing the author’s original content, and it does not introduce any novel content.
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