
KitchenShift: Evaluating Zero-Shot
Generalization of Imitation-Based

Policy Learning Under Domain Shifts

Eliot Xing 1, Abhinav Gupta 2, Sam Powers∗2, Victoria Dean∗2
1 Georgia Institute of Technology, 2 Carnegie Mellon University

exing@gatech.edu, {gabhinav, snpowers, vdean}@andrew.cmu.edu

Abstract

Humans are remarkably capable of zero-shot generalizing while performing tasks
in new settings, even when the task is learned entirely from observing others. In
this work, we show that current imitation-based policy learning methods do not
share this capability, lacking robustness to minor shifts in the training environ-
ment. To demonstrate these limitations of current methods, we propose a testing
protocol that new methods may use as a benchmark. We implement and evaluate
KitchenShift, an instance of our testing protocol that applies domain shifts to a
realistic kitchen environment. We train policies from RGB image observations
using a set of demonstrations for a multi-stage robotic manipulation task in the
kitchen environment. Using KitchenShift, we evaluate imitation and representation
learning methods used in current policy learning approaches and find that they are
not robust to visual changes in the scene (e.g., lighting, camera view) or changes
in the environment state (e.g., orientation of an object). With our benchmark, we
hope to encourage the development of algorithms that can generalize under such
domain shifts and overcome the challenges preventing robots from completing
tasks in diverse everyday settings.

1 Introduction

The real world is ever-changing, with each moment bringing new, visually rich scenes for an agent to
see and interact with. Consider a person going to a neighbor’s kitchen for the first time to help cook
dinner. Humans have a profound ability to maneuver such never-before-seen environments, transition
effortlessly between similar domains, and generalize within narrow task specifications. These abilities
lie in stark contrast to the current abilities of robots and policy learning algorithms. How can we
narrow this gap? We argue that the development of better algorithms that could be deployed in
real-world robotics settings has been bottlenecked by the simulation settings and evaluation schemes
that are currently used. Established benchmarks, such as video game tasks from Atari [9] and simple
control tasks from OpenAI Gym [10] or DeepMind Control Suite [93], evaluate policies under the
same environment settings in which they are trained.

Our evaluation scheme is designed to test robustness to visual and environmental changes using
realistic out-of-distribution domain shifts. Specifically, we provide a robotic agent with a set of
expert demonstrations and train it to perform a multi-stage manipulation task in a realistic kitchen
environment. The policy is then evaluated in an unseen scene, which is created by applying one
type of domain shift to the training environment. This situation is designed to mirror a scenario that
humans excel at but current algorithms do not. In this work, we make the following contributions:

∗Equal contribution

Workshop on Distribution Shifts, 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Training domain Domain shifts for testing (subset shown per category)

(a) object
instance

(b) object
layout

(d) camera
view

(e) lighting(c) texture (f) robot
state

(g) object
state

Figure 1: Visualizing initial observations across KitchenShift domains. (Left) The training do-
main for the demonstrations. (Right) Examples of each domain shift type: (a) object instance; (b)
object layout; (c) texture; (d) camera view; (e) lighting; (f) robot state; (g) object state.

• We define an evaluation protocol to determine the robustness of policies to minor, out-of-
distribution domain shifts to the environment, which a human could adapt to.

• To use this evaluation protocol, we introduce KitchenShift, which adds functionality for
applying 7 types of domain shifts to the realistic kitchen simulation from Gupta et al. [33].

• We demonstrate KitchenShift by benchmarking different imitation-based policy learning
and representation learning methods, and find that simple behavioral cloning outperforms
other approaches evaluated at zero-shot generalizing under domain shifts.

Overall, we observe that current approaches are not robust to realistic out-of-distribution domain
shifts. In order to eventually deploy robotic agents into everyday life, we will need approaches that
are robust and generalize to out-of-distribution settings. We release KitchenShift to encourage the
development of future algorithms that can overcome such domain shifts.

2 Evaluating Policies under Domain Shifts with KitchenShift

In this section, we describe KitchenShift, the implementation of our evaluation paradigm. We divide
the section into high-level protocol (Section 2.1), domain shifts (Section 2.2), and policy evaluation
(Section 2.3). In Appendix B, we discuss the choice of the kitchen environment we use.

2.1 Evaluation protocol

“Domain” and “distribution” shifts are frequently used interchangeably. In this paper, we use “domain
shift” to refer to a change in the environment, world, or domain D. We do not take “domain shift” to
include changes to the distribution or set of tasks that the policy learns.

For our evaluation protocol, we train the policy on a task Ttrain in a new training domain Dtrain,
with access to a limited set of demonstrations. These demonstrations reduce the need for exploration,
improving sample efficiency and lowering compute requirements. We then evaluate how the policy
performs the training task Ttrain in an unseen set of domains {Dshifted} by modifying the evaluation
environment. If the policy has learned general behavior, then it should be able to adapt to the new
testing domain and perform the task under such domain shifts. We describe and provide a set of
domain shifts that can be applied individually to independent parts of the environment, which an
average human would be able to overcome and still perform the training task successfully.

Though we focus on a single environment in this work, we note that this setup can also be used to
evaluate policy adaptation and transfer to new domains. For instance, a policy could be pretrained on
a set of tasks in RoboSuite [116] then finetuned and tested on KitchenShift, our implementation of
the evaluation protocol we propose, which we proceed to describe.

2.2 Domain shifts in KitchenShift

Building off the kitchen environment released by Gupta et al. [33], we make changes to the simulation
settings (see Section E) and add functionality to modify the environment, which we refer to as
KitchenShift. The domain shifts that we evaluate are not only limited to visual changes such as
background context [36, 88], colors, lighting, textures, or camera pose [41, 113, 37, 25]. In Figure 1

2

(Right), we visualize the types of domain shifts available in KitchenShift that can be applied to
create different testing scenes. We categorize seven types of domain shifts, based on changing (a)
object instance; (b) object layout; (c) texture; (d) camera view; (e) lighting; (f) robot state; (g) object
state. For (a) object instance, we change the microwave and kettle assets 2. For (b) object layout, we
change the position and orientation of different objects. For (f) robot state, we change the initial joint
positions of the robot manipulator. For (g) object state, one object in the scene is changed to its final
goal state. The training scene, which is also the domain used by the demonstrations, is shown in
Figure 1 (Left).

Our goal is to isolate and analyze differences in the performance of existing algorithms, to inform
where these methods may be improved. To create testing environments that are explicitly outside
of the training distribution, we apply a single type of domain shift to the training environment. If
a human was asked to perform the task in the training domain, they would subsequently be able to
adapt and succeed in such shifted environments as well. Humans are able to learn from a narrow task
specification and training domain, while easily adapting to shifts in the scene. We do not apply domain
randomization by training the policy on the set of domain shifts encountered during evaluation. Our
purpose is to evaluate policy robustness when encountering unseen, out-of-distribution scenes.

2.3 Policy evaluation

The training task that the policy is asked to learn is multi-stage and involves interacting with
a set of at most four objects in the environment. In Appendix C, Figure 4, we visualize
frames selected from an expert demonstration for the training task that involves manipulating the
[microwave,kettle,switch,slide] objects in the scene to the final goal state.

We evaluate policy performance in the training domain and average performance across testing
domains within each category of domain shift. We also average across categories of domain shifts to
report the overall performance across all testing domains, as a measure of the robustness and general-
ization of the learned policy. We exclude the (g) object state category from this measure because the
object changed may be involved in the task and would improve the average step completion reported,
inflating policy performance. For instance, one of these domain shifts opens the microwave door
to the desired goal state (see Figure 1 (Left)), allowing a robust policy to skip interacting with the
microwave. The (g) object state category is still evaluated separately in Section 3, Figure 2.

3 Experimental Results

KitchenShift is available at github.com/etaoxing/kitchen-shift. We provide details on the
methods we evaluated and experimental details in Appendix C and Appendix D, respectively. In
Appendix E, we discuss and validate the random perturbations we apply when initializing the
simulation environment, in contrast to the original environment code.

We compare representation learning and imitation learning methods based on behavioral cloning, in
the training domain and in unseen testing environments with specific types of domain shifts applied.
Performance of policies trained with different methods is reported in Table 1, and results show that
learning-based methods are less successful when evaluated under domain shifts. Evaluating policies
with KitchenShift underscores the pitfalls of learning-based policies when testing generalization to
out-of-distribution settings, including even minor deviations from the training domain.

To further interpret these results, we show policy performance separated by each category of domain
shift in Figure 2. Intuitively, Demo playback is not affected at all by (c) texture, (d) camera view, or
(e) lighting, as these are visual-only changes. On the other hand, Demo playback cannot account for
changes to the initial robot state of the trajectory or environment, while learning-based methods show
some robustness to this. We find that BC (MSE) and BC (β-VAE) drastically overfit to the training
distribution and fail to generalize out-of-distribution under minor domain shifts. In comparison, BC
which parameterizes a policy as a logistic mixture distribution, generalizes better to unseen scenarios.
We also find that current representation learning approaches are not helpful in this imitation-based
policy learning setting, which corresponds with recent work by Chen et al. [14].

Note that the (g) object state category cannot be directly compared to the other types of domain shifts,
as it sets one object in the scene, that may be involved in the task, to the desired goal state. The

2We use assets released by github.com/vikashplus/furniture_sim.

3

https://github.com/etaoxing/kitchen-shift
https://github.com/vikashplus/furniture_sim

Table 1: Evaluating policy robustness to domain shifts. Results show policy performance in the
training domain and averaged across all testing domains. We report mean±stddev of the average step
completion (out of four total). Results are averaged over 20 evaluation episodes and 4 training seeds.

(training domain) (across testing domains)
Method Avg. steps completed Avg. steps completed

BC 2.03± 1.12 1.23± 1.02
BC (MSE) 1.29± 1.33 0.36± 0.60
BC w/ inv. dynamics 1.62± 1.27 1.15± 1.04
GCBC (HER relabeling) 1.97± 1.12 1.20± 1.03
GCBC (HER relabeling) w/ multi-task demos 1.50± 1.00 0.78± 0.76

BC (β-VAE) 1.23± 1.21 0.50± 0.70
BC (β-VAE, no stop grad) 0.45± 0.70 0.25± 0.41
BC (σ-VAE) 1.17± 1.17 0.63± 0.79
BC (RAE) 1.61± 1.16 1.09± 0.92
BC (SimSiam, full aug.) 1.27± 1.09 0.95± 0.87
BC (ATC, random shift) 1.44± 1.07 1.14± 0.97

BC (IMPALA network) 1.95± 1.35 1.15± 0.97
BC (fixed random embedding) 1.20± 1.03 0.97± 0.90

Random actions 0.07± 0.27 0.08± 0.26
Demo playback 1.26± 1.07 0.80± 0.96

!"#$%$%&
'#()*+,-.!)$%/!#%.-

'+()*+,-.!)0#1*2!

'.()!-3!2"-

'4().#5-"#)6$-7

'-()0$&8!$%&

'9()"*+*!)/!#!-

'&()*+,-.!)/!#!-

:
:;<
=

=;<
>

>;<
?

?;<
@ AB

AB)'CDE(
AB)7F)$%6;)41%#5$./
AB)'!GHIE(
AB)'D$5D$#5J)9200)#2&;())
AB)'IKBJ)"#%4*5)/8$9!(
AB)'L3-4)"#%4*5)-5+-44$%&())))
M-5*)N0#1+#.O

!"#$%&'()%*+',$+-."/0

1
2.
3'(
+-
4(
',
"#

45
-+
-6

Figure 2: Evaluating on domain shifts separated by category. Results show performance in the
training domain and testing domains, categorized by the type of domain shifts. We report on the same
experimental results as in Table 1, with the bars+lines showing mean+std.

categories that shift (a) object instance; (b) object layout; (f) robot state; and (g) object state, which
are not just visual changes but modify the underlying scene, pose the most interesting challenges.
One approach to overcome these challenges for future work may be to replace implicitly learned
representations with learned object-centric representations [21, 57].

4 Related Work

We cover prior work on benchmarking policy learning in Appendix A.

Addressing domain shift Current approaches for dealing with domain shifts, such as the gap between
simulation and the real world, involve system identification to tune simulator parameters [22] or by
applying large amounts of domain randomization [95, 2, 5]. While such approaches may work for
constrained lab settings or in the data-rich area of computer vision, they require large engineering
effort to deploy for robot learning. Collecting large amounts of real-world data with robots is also

4

time and capital intensive [56, 19]. To deploy robots that can learn and adapt directly in the real world,
we need drastic improvements in the robustness of learning approaches to out-of-distribution changes.
Distribution shift [90, 48, 32, 101] has been studied before in the context of supervised learning such
as image classification, but domain shift for policy learning is challenging and under-explored. To the
best of our knowledge, single domain generalization [98, 114, 74, 100] has not been studied before
in the context of policy learning.

Several works have evaluated visual representation learning [52, 36, 89] and data augmentation [53,
75, 109, 108, 37] alongside policy learning to improve generalization, however these methods train
with visual inputs on simple control tasks [93] or Procgen [17], a video game environment. In this
work, we show that policies trained with these representation learning approaches still suffer from
domain shifts in a more challenging and realistic kitchen environment.

5 Discussion

We hope KitchenShift, with the evaluation protocols we developed and tested, will cast light on the
fragility of imitation-based policy learning approaches. Our results show that current methods are
not robust under minor visual and environmental domain shifts to which humans could effectively
adapt. We also evaluate several representation learning approaches and find that these methods are
still unable to overcome the challenge of generalizing with realistic visual scenes in the limited data
domain. To move toward robots that can learn directly in the real world and adapt to new, unseen
situations, the robotics community will need methods that tackle out-of-distribution domain shifts
head-on.

Future directions Future work may evaluate transfer and generalization of policies by pretraining
with different simulators, followed by training and evaluation using KitchenShift. This is an exciting
direction, as transfer learning has had significant success in computer vision, but how to transfer
policies between environments or different robot morphologies remains an open question. On a
related note, test-time training [91, 7], which adapts models online rather than fixing parameters for
evaluation, presents an interesting path forward. Ideally, learning-based methods deployed in the real
world are able to continuously learn and adapt to new settings.

Relaxing some of the available data assumptions, such as imitation directly from a demonstration
video without access to the trajectory actions, also poses an interesting line of work. This could
involve imitation learning by watching YouTube videos of humans, for which there will be more
challenging domain shifts between the real-world videos and the kitchen simulation.

Limitations We evaluate representation learning methods primarily alongside imitation learning,
due to time and compute constraints. Such methods may perform differently when trained online
with reinforcement learning. Still, we do not expect changes to the final results, as these methods
should have an easier time learning in the simpler, stationary imitation setup. We also only test our
evaluation protocol using one kitchen environment, but we expect our results would transfer to other
simulations, as the underlying policy learning methods would still suffer from similar challenges.

Broader impact In this paper, we evaluate policy robustness to minor, out-of-distribution domain
shifts to which a human could easily adapt. Understanding these limitations will aid in the develop-
ment of new algorithms that can deploy on robots in the real world. Understanding where methods
fail is also important in determining the expected behavior of policies for robot safety [3, 30]. On the
other hand, improving policy learning algorithms towards human-like generalization capabilities may
lead to large-scale automation, disrupting the workforce across many sectors [12]. For the moment,
our work is far from these impacts, and we hope that the positive implications of this line of research
will come to fruition in parallel with regulation and caution, to mitigate negative consequences.

5

References

[1] O. Ahmed, F. Träuble, A. Goyal, A. Neitz, M. Wuthrich, Y. Bengio, B. Schölkopf, and S. Bauer, “Causal-
world: A robotic manipulation benchmark for causal structure and transfer learning,” in International
Conference on Learning Representations, 2020.

[2] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert,
G. Powell, R. Ribas et al., “Solving rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[3] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Concrete problems in ai
safety,” arXiv preprint arXiv:1606.06565, 2016.

[4] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel,
and W. Zaremba, “Hindsight experience replay,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, 2017, pp. 5055–5065.

[5] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plap-
pert, G. Powell, A. Ray et al., “Learning dexterous in-hand manipulation,” The International Journal of
Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[6] A. S. Azad, E. Kim, Q. Wu, K. Lee, I. Stoica, P. Abbeel, and S. A. Seshia, “Scenic4rl: Programmatic
modeling and generation of reinforcement learning environments,” arXiv preprint arXiv:2106.10365,
2021.

[7] A. Bartler, A. Bühler, F. Wiewel, M. Döbler, and B. Yang, “Mt3: Meta test-time training for self-supervised
test-time adaption,” arXiv preprint arXiv:2103.16201, 2021.

[8] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun, S. Levine, J. Malik, I. Mordatch,
R. Mottaghi et al., “Rearrangement: A challenge for embodied ai,” arXiv preprint arXiv:2011.01975,
2020.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning environment: An evaluation
platform for general agents,” Journal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai
gym,” arXiv preprint arXiv:1606.01540, 2016.

[11] S. Brodeur, E. Perez, A. Anand, F. Golemo, L. Celotti, F. Strub, J. Rouat, H. Larochelle, and A. Courville,
“Home: A household multimodal environment,” arXiv preprint arXiv:1711.11017, 2017.

[12] E. Brynjolfsson and T. Mitchell, “What can machine learning do? workforce implications,” Science, vol.
358, no. 6370, 2017.

[13] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual
representations,” in International conference on machine learning. PMLR, 2020, pp. 1597–1607.

[14] X. Chen, S. Toyer, C. Wild, S. Emmons, I. Fischer, K.-H. Lee, N. Alex, S. H. Wang, P. Luo, S. Russell,
P. Abbeel, and R. Shah, “An empirical investigation of representation learning for imitation,” preprint,
2021.

[15] X. Chen and K. He, “Exploring simple siamese representation learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 15 750–15 758.

[16] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic gridworld environment for openai gym,”
https://github.com/maximecb/gym-minigrid, 2018.

[17] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedural generation to benchmark
reinforcement learning,” in International conference on machine learning. PMLR, 2020, pp. 2048–2056.

[18] S. Dasari and A. Gupta, “Transformers for one-shot imitation learning,” in CoRL 2020, 2020.

[19] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and C. Finn,
“Robonet: Large-scale multi-robot learning,” in Conference on Robot Learning. PMLR, 2020, pp.
885–897.

[20] M. Dehghani, Y. Tay, A. A. Gritsenko, Z. Zhao, N. Houlsby, F. Diaz, D. Metzler, and O. Vinyals, “The
benchmark lottery,” arXiv preprint arXiv:2107.07002, 2021.

6

https://github.com/maximecb/gym-minigrid

[21] C. Devin, P. Abbeel, T. Darrell, and S. Levine, “Deep object-centric representations for generalizable
robot learning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 7111–7118.

[22] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak, “Auto-tuned sim-to-real transfer,” arXiv preprint
arXiv:2104.07662, 2021.

[23] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve, A. Kembhavi, and R. Mottaghi,
“Manipulathor: A framework for visual object manipulation,” in CVPR, 2021.

[24] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dun-
ning et al., “Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures,”
in International Conference on Machine Learning. PMLR, 2018, pp. 1407–1416.

[25] L. Fan, G. Wang, D.-A. Huang, Z. Yu, L. Fei-Fei, Y. Zhu, and A. Anandkumar, “Secant: Self-expert
cloning for zero-shot generalization of visual policies,” arXiv preprint arXiv:2106.09678, 2021.

[26] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mordatch, and
J. Tompson, “Implicit behavioral cloning,” in 5th Annual Conference on Robot Learning, 2021.

[27] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-driven reinforcement
learning,” arXiv preprint arXiv:2004.07219, 2020.

[28] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. D. Freitas, J. Kubilius, A. Bhandwaldar,
N. Haber, M. Sano, K. Kim, E. Wang, M. Lingelbach, A. Curtis, K. T. Feigelis, D. Bear, D. Gutfreund,
D. D. Cox, A. Torralba, J. J. DiCarlo, J. B. Tenenbaum, J. Mcdermott, and D. L. Yamins, “ThreeDWorld: A
platform for interactive multi-modal physical simulation,” in Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

[29] X. Gao, R. Gong, T. Shu, X. Xie, S. Wang, and S.-C. Zhu, “Vrkitchen: an interactive 3d virtual
environment for task-oriented learning,” arXiv preprint arXiv:1903.05757, 2019.

[30] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,” Journal of Machine
Learning Research, vol. 16, no. 1, 2015.

[31] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. Black, and B. Scholkopf, “From variational to deterministic
autoencoders,” in International Conference on Learning Representations, 2020.

[32] I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,” in International Conference on
Learning Representations, 2021.

[33] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay policy learning: Solving long-horizon
tasks via imitation and reinforcement learning,” in Conference on Robot Learning. PMLR, 2020, pp.
1025–1037.

[34] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mohanty, D. P. Liebana,
R. Salakhutdinov, N. Topin et al., “The minerl 2019 competition on sample efficient reinforcement
learning using human priors,” arXiv preprint arXiv:1904.10079, 2019.

[35] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new estimation principle for unnormal-
ized statistical models,” in Proceedings of the thirteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings, 2010, pp. 297–304.

[36] N. Hansen and X. Wang, “Generalization in reinforcement learning by soft data augmentation,” arXiv
preprint arXiv:2011.13389, 2020.

[37] N. Hansen, H. Su, and X. Wang, “Stabilizing deep q-learning with convnets and vision transformers under
data augmentation,” arXiv preprint arXiv:2107.00644, 2021.

[38] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation
learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9729–9738.

[39] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep reinforcement learning
that matters,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[40] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner,
“beta-vae: Learning basic visual concepts with a constrained variational framework,” in ICLR, 2017.

7

[41] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel, M. Botvinick, C. Blundell, and A. Lerchner,
“Darla: Improving zero-shot transfer in reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1480–1490.

[42] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot learning benchmark & learning
environment,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[43] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn, “BC-0: Zero-shot
task generalization with robotic imitation learning,” in 5th Annual Conference on Robot Learning, 2021.

[44] A. Juliani, A. Khalifa, V.-P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi, J. Togelius, and D. Lange,
“Obstacle tower: A generalization challenge in vision, control, and planning,” in Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.

[45] H. Kannan, D. Hafner, C. Finn, and D. Erhan, “Robodesk: A multi-task reinforcement learning bench-
mark,” https://github.com/google-research/robodesk, 2021.

[46] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “Vizdoom: A doom-based ai research
platform for visual reinforcement learning,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG). IEEE, 2016, pp. 1–8.

[47] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.

[48] P. W. Koh, S. Sagawa, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao,
T. Lee et al., “Wilds: A benchmark of in-the-wild distribution shifts,” in International Conference on
Machine Learning. PMLR, 2021, pp. 5637–5664.

[49] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu, A. Gupta, and
A. Farhadi, “AI2-THOR: An Interactive 3D Environment for Visual AI,” arXiv, 2017.

[50] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforcement learning,”
arXiv preprint arXiv:2006.04779, 2020.

[51] H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu, M. Selvatici, E. Grefenstette, and T. Rocktäschel, “The
NetHack Learning Environment,” in Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS), 2020.

[52] M. Laskin, A. Srinivas, and P. Abbeel, “Curl: Contrastive unsupervised representations for reinforcement
learning,” in International Conference on Machine Learning. PMLR, 2020, pp. 5639–5650.

[53] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas, “Reinforcement learning with
augmented data,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[54] K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin, “Context-aware dynamics model for generalization in
model-based reinforcement learning,” in International Conference on Machine Learning. PMLR, 2020,
pp. 5757–5766.

[55] Y. Lee, E. S. Hu, and J. J. Lim, “IKEA furniture assembly environment for long-horizon complex
manipulation tasks,” in IEEE International Conference on Robotics and Automation (ICRA), 2021.
[Online]. Available: https://clvrai.com/furniture

[56] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection,” The International Journal of Robotics
Research, vol. 37, no. 4-5, pp. 421–436, 2018.

[57] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy,
and T. Kipf, “Object-centric learning with slot attention,” arXiv preprint arXiv:2006.15055, 2020.

[58] Y. Lu, Y. Shen, S. Zhou, A. Courville, J. B. Tenenbaum, and C. Gan, “Learning task decomposition with
ordered memory policy network,” in International Conference on Learning Representations, 2021.

[59] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet, “Learning latent
plans from play,” in Conference on Robot Learning. PMLR, 2020, pp. 1113–1132.

[60] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire,
A. Handa, and G. State, “Isaac gym: High performance gpu-based physics simulation for robot learning,”
2021.

8

https://github.com/google-research/robodesk
https://clvrai.com/furniture

[61] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and
R. Martín-Martín, “What matters in learning from offline human demonstrations for robot manipulation,”
in 5th Annual Conference on Robot Learning, 2021.

[62] H. Mania, A. Guy, and B. Recht, “Simple random search of static linear policies is competitive for
reinforcement learning,” in Proceedings of the 32nd International Conference on Neural Information
Processing Systems, 2018, pp. 1805–1814.

[63] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su, “Maniskill: Learning-
from-demonstrations benchmark for generalizable manipulation skills,” arXiv preprint arXiv:2107.14483,
2021.

[64] A. Nair, S. Bahl, A. Khazatsky, V. Pong, G. Berseth, and S. Levine, “Contextual imagined goals for
self-supervised robotic learning,” in Conference on Robot Learning. PMLR, 2020, pp. 530–539.

[65] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with
imagined goals,” Advances in Neural Information Processing Systems, vol. 31, pp. 9191–9200, 2018.

[66] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” arXiv
preprint arXiv:1807.03748, 2018.

[67] O. OpenAI, M. Plappert, R. Sampedro, T. Xu, I. Akkaya, V. Kosaraju, P. Welinder, R. D’Sa, A. Petron,
H. P. d. O. Pinto et al., “Asymmetric self-play for automatic goal discovery in robotic manipulation,”
arXiv preprint arXiv:2101.04882, 2021.

[68] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters et al., “An algorithmic perspective
on imitation learning,” Foundations and Trends in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[69] K. Pertsch, Y. Lee, and J. J. Lim, “Accelerating reinforcement learning with learned skill priors,” arXiv
preprint arXiv:2010.11944, 2020.

[70] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Demonstration-guided reinforcement learning with learned
skills,” in Self-Supervision for Reinforcement Learning Workshop - ICLR 2021, 2021.

[71] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin,
M. Chociej, P. Welinder et al., “Multi-goal reinforcement learning: Challenging robotics environments
and request for research,” arXiv preprint arXiv:1802.09464, 2018.

[72] V. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine, “Skew-fit: State-covering self-supervised
reinforcement learning,” in International Conference on Machine Learning. PMLR, 2020, pp. 7783–
7792.

[73] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba, “Virtualhome: Simulating
household activities via programs,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8494–8502.

[74] F. Qiao, L. Zhao, and X. Peng, “Learning to learn single domain generalization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12 556–12 565.

[75] R. Raileanu, M. Goldstein, D. Yarats, I. Kostrikov, and R. Fergus, “Automatic data augmentation for
generalization in deep reinforcement learning,” arXiv preprint arXiv:2006.12862, 2020.

[76] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine, “Learning Com-
plex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations,” in Proceedings of
Robotics: Science and Systems (RSS), 2018.

[77] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in
deep generative models,” in International conference on machine learning. PMLR, 2014, pp. 1278–1286.

[78] O. Rybkin, K. Daniilidis, and S. Levine, “Simple and effective vae training with calibrated decoders,” in
International Conference on Machine Learning. PMLR, 2021, pp. 9179–9189.

[79] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifications,” arXiv preprint arXiv:1701.05517, 2017.

[80] M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. Jiang, E. Hambro, F. Petroni, H. Kuttler, E. Grefen-
stette, and T. Rocktäschel, “Minihack the planet: A sandbox for open-ended reinforcement learning
research,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021.

9

[81] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun, “Minos: Multimodal indoor
simulator for navigation in complex environments,” arXiv preprint arXiv:1712.03931, 2017.

[82] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik
et al., “Habitat: A platform for embodied ai research,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9339–9347.

[83] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng, “Learning to
Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[84] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak, “Planning to explore via
self-supervised world models,” in International Conference on Machine Learning. PMLR, 2020, pp.
8583–8592.

[85] Y. Seo, L. Chen, J. Shin, H. Lee, P. Abbeel, and K. Lee, “State entropy maximization with random
encoders for efficient exploration,” arXiv preprint arXiv:2102.09430, 2021.

[86] B. Shen, F. Xia, C. Li, R. Martín-Martín, L. Fan, G. Wang, S. Buch, C. D’Arpino, S. Srivastava, L. P.
Tchapmi et al., “igibson, a simulation environment for interactive tasks in large realisticscenes,” arXiv
preprint arXiv:2012.02924, 2020.

[87] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and D. Fox, “Alfred:
A benchmark for interpreting grounded instructions for everyday tasks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 10 740–10 749.

[88] A. Stone, O. Ramirez, K. Konolige, and R. Jonschkowski, “The distracting control suite–a challenging
benchmark for reinforcement learning from pixels,” arXiv preprint arXiv:2101.02722, 2021.

[89] A. Stooke, K. Lee, P. Abbeel, and M. Laskin, “Decoupling representation learning from reinforcement
learning,” in International Conference on Machine Learning. PMLR, 2021, pp. 9870–9879.

[90] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[91] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-time training with self-supervision for
generalization under distribution shifts,” in International Conference on Machine Learning. PMLR,
2020, pp. 9229–9248.

[92] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam, D. Chaplot,
O. Maksymets et al., “Habitat 2.0: Training home assistants to rearrange their habitat,” arXiv preprint
arXiv:2106.14405, 2021.

[93] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq et al., “Deepmind control suite,” arXiv preprint arXiv:1801.00690, 2018.

[94] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap, and
N. Heess, “dm_control: Software and tasks for continuous control,” 2020.

[95] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for
transferring deep neural networks from simulation to the real world,” in 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.

[96] S. Toyer, R. Shah, A. Critch, and S. Russell, “The magical benchmark for robust imitation,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[97] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Küttler,
J. Agapiou, J. Schrittwieser et al., “Starcraft ii: A new challenge for reinforcement learning,” arXiv
preprint arXiv:1708.04782, 2017.

[98] R. Volpi, H. Namkoong, O. Sener, J. Duchi, V. Murino, and S. Savarese, “Generalizing to unseen domains
via adversarial data augmentation,” in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, 2018, pp. 5339–5349.

[99] J. Wang, Y. Lu, and H. Zhao, “Cloud: Contrastive learning of unsupervised dynamics,” arXiv preprint
arXiv:2010.12488, 2020.

[100] Z. Wang, Y. Luo, R. Qiu, Z. Huang, and M. Baktashmotlagh, “Learning to diversify for single domain
generalization,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.
834–843.

10

[101] O. Wiles, S. Gowal, F. Stimberg, S. Alvise-Rebuffi, I. Ktena, T. Cemgil et al., “A fine-grained analysis on
distribution shift,” arXiv preprint arXiv:2110.11328, 2021.

[102] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese, and R. Martín-Martín, “Error-
aware imitation learning from teleoperation data for mobile manipulation,” in 5th Annual Conference on
Robot Learning, 2021.

[103] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable agents with a realistic and rich 3d
environment,” arXiv preprint arXiv:1801.02209, 2018.

[104] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang et al., “Sapien: A
simulated part-based interactive environment,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11 097–11 107.

[105] C. Yan, D. Misra, A. Bennnett, A. Walsman, Y. Bisk, and Y. Artzi, “Chalet: Cornell house agent learning
environment,” arXiv preprint arXiv:1801.07357, 2018.

[106] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive representations for deformable
objects using contrastive estimation,” arXiv preprint arXiv:2003.05436, 2020.

[107] C. Yang, X. Ma, W. Huang, F. Sun, H. Liu, J. Huang, and C. Gan, “Imitation learning from observations
by minimizing inverse dynamics disagreement,” in Proceedings of the 33rd International Conference on
Neural Information Processing Systems, 2019, pp. 239–249.

[108] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering visual continuous control: Improved data-
augmented reinforcement learning,” arXiv preprint arXiv:2107.09645, 2021.

[109] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all you need: Regularizing deep reinforce-
ment learning from pixels,” in International Conference on Learning Representations, 2021.

[110] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus, “Improving sample efficiency in
model-free reinforcement learning from images,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 12, 2021, pp. 10 674–10 681.

[111] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning,” in Conference on Robot Learning. PMLR,
2020, pp. 1094–1100.

[112] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin, D. Duong,
V. Sindhwani, and J. Lee, “Transporter networks: Rearranging the visual world for robotic manipulation,”
Conference on Robot Learning (CoRL), 2020.

[113] A. Zhang, Y. Wu, and J. Pineau, “Natural environment benchmarks for reinforcement learning,” arXiv
preprint arXiv:1811.06032, 2018.

[114] L. Zhao, T. Liu, X. Peng, and D. Metaxas, “Maximum-entropy adversarial data augmentation for improved
generalization and robustness,” in Advances in Neural Information Processing Systems (NeurIPS), 2020.

[115] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine, “The ingredients of
real world robotic reinforcement learning,” in International Conference on Learning Representations,
2020.

[116] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín, “robosuite: A modular simulation framework and
benchmark for robot learning,” in arXiv preprint arXiv:2009.12293, 2020.

11

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Appendix 5, Appendix B.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Ap-

pendix 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Appendix C
contains a code repository link.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? See Appendix C for an overview and Appendix D for additional
hyperparameter details.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] All tables and plots show standard deviation either
written numerically or as error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] We provide links or references that

point to the licenses of the assets used.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

A Extended Related Work

Benchmarking policy learning Random search algorithms have been shown to solve [62] the
established benchmarks such as low-dimensional control tasks from the OpenAI Gym [10] or
DeepMind Control Suite [93, 94]. Furthermore, RL algorithms which have frequently been developed
and evaluated on these tasks are known to be brittle, sample-inefficient, and difficult to apply in the
real world. Video game-like environments [46, 97, 16, 34, 80] such as Atari [9] have also been used
to evaluate policy learning, but these environments do not have realistic graphical assets and do not
simulate real-world physics. While procedurally-generated game environments [44, 51, 17, 6] have
been proposed to evaluate policies in unseen testing environments, the test environments are usually
in-distribution to the train settings and difficult to apply realistic instances of domain shifts in.

Many environments have also been introduced that involve robots for object manipulation using a
manipulator arm [71, 33, 111, 42, 116, 59, 45, 67, 55] or dexterous hand [76, 5], as well as mobile
agents in more complex settings such as home environments [11, 105, 81, 73, 103, 29, 49, 87, 23,
86, 104, 28, 82, 92]. We note that planar manipulation tasks of rigid [112] and even deformable [83]
objects, where the robot is given a top-down view of a tabletop, can be nearly or completely solved
by methods that can take advantage of such spatial structure. As such, we avoid selection of these
tasks for this benchmark. Additionally, the latter types of home simulation environments pose an
interesting and challenging set of tasks for policy learning, compared to more basic scenes that only
contain a robot and objects on a solid-colored surface. However, these simulators are difficult to set
up, with many layers of software complexity. State-of-the-art RL algorithms are also very far from
learning on such long-horizon manipulation and navigation tasks.

In the search for better evaluations, there has been a consistent stream of benchmarks [20] released
recently, and in particular environments for the evaluation of policy learning. In this work, we do
not introduce a new environment, but instead add new functionality to an existing environment [33]
that has already been used by the community [27, 50, 69, 70, 58]. The task we train policies on can
be viewed as a kind of rearrangement task [8], where a fixed robot arm is asked to manipulate the
objects in the scene to some given goal state. We do not use a mobile manipulator and circumvent the
challenge of combining navigation and manipulation in this work.

Commonly, RL and robotics methods either report performance on the training domain or assume
that the train and test sets are drawn from the same distributions, following standard assumptions and
practices with training neural networks. We take the stance that deploying robotic agents in the real
world requires policy learning approaches that can generalize or adapt to out-of-distribution testing
scenes, which we evaluate in simulation with KitchenShift in this work.

For causal learning in robotics, CausalWorld [1] introduces task generators for parameter variation of
cuboid block manipulation with a three finger robot, though their setup could be modified to evaluate
zero-shot generalization. Our work is similar to ManiSkill [63] and MAGICAL [96], which leverage
demonstrations and evaluate policy generalization. However, MAGICAL uses a visually simplistic
2D world, and ManiSkill is focused on robust object-level manipulation in an empty background
scene. In contrast, we evaluate out-of-distribution policy generalization across 7 categories of domain
shifts in a realistic kitchen scene. We find that BC alone performs better than other methods, which
corresponds with results from other recent work [63, 43, 61, 102, 26] that also evaluate on more
challenging tasks.

B Choice of Environment

Figure 3: Example demonstration observations. In this [microwave,kettle,switch,slide]
task demonstration, the robot first opens the microwave, then moves the kettle to the back burner,
turns on the light switch, and finally opens the sliding cabinet.

13

To evaluate policy learning, we chose the kitchen environment, task definitions, and demonstration
trajectories from Gupta et al. [33]. This environment is visually realistic with challenging multi-stage
tasks involving a robot manipulator. Demonstrations given by human VR teleoperation of the robot
are also available, compared to environments which use carefully designed policies to generate
demonstrations or even ones without any demonstration data. Furthermore, this environment has
already been used by the community [27, 50, 69, 70, 58].

MuJoCo has been acquired and open-sourced by DeepMind, which makes KitchenShift accessible
for the community. There is also active development on other simulator backends such as NVIDIA
Isaac Sim, [60], and in the near future, KitchenShift could be ported over to use other simulations.

Prior work [95, 2, 5, 22] has used the MuJoCo simulator for the purposes of domain randomization,
and we use similar functionality to apply domain shifts to the environment. We also note that our
domain shift evaluation protocol is not uniquely applicable to this particular kitchen environment.
Our evaluation paradigm could be applied to other environments such as recent home environment
simulations [49, 86, 104, 92, 28], which also have a wide range of objects, texture assets, and scenes;
though that is outside the scope of this work.

C Experimental Setup

Using domain shifts and the KitchenShift benchmark as described in Section 2, we evaluate the
generalization of different imitation-based policy learning approaches. As in Gupta et al. [33], we
report the average step completion, out of a maximum of four total subgoals. Agents are given a
small set of 19 expert demonstration trajectories of the training task. All results reported are averaged
across 4 random seeds. Additional details can be found in Appendix D.

We prioritized methods with publicly available code that were easier to implement and tune, as well
as ones that could take advantage of learning from demonstrations for improved sample efficiency.
The implementations we developed are open-sourced in a shared codebase 3. The repository also
includes the full set of experiment logs and models used to generate the results in this paper. We
evaluate combinations of the following imitation learning and representation learning baselines.

C.1 Imitation learning

We use an implementation of behavioral cloning (BC) open-sourced by Dasari and Gupta [18],
which parameterizes the policy as a discretized logistic mixture distribution [79, 59]. We include a
comparison to standard BC trained with mean-squared error (MSE), which corresponds to maximizing
the expected log likelihood under a Gaussian distribution [68]. We also experiment with jointly
optimizing an auxiliary dynamics modeling objective to regularize policy learning, which was studied
by Dasari and Gupta [18] and in other work as well [107, 54, 99, 106].

To support training with multi-task demonstration data, we also evaluate goal-conditioned BC
(GCBC) [59], which conditions the policy on a goal image specifying the task to perform. We use the
goal relabeling strategy originally proposed by Hindsight Experience Replay (HER) [4], but we do
not call a reward function to relabel rewards as in HER.

C.2 Representation learning

Reconstruction representations have been used extensively for perception in policy learning. We ex-
periment with different autoencoders [47, 77]: β-VAE [40], RAE [31], and σ-VAE [78]. For robotics
applications, β-VAE is commonly used [65, 64, 72, 115]. Rybkin et al. [78] recently proposed
σ-VAE as an extension to β-VAE that automatically sets the β hyperparameter. Furthermore, Yarats
et al. [110] find that a model-free RL policy using a deterministic autoencoder (RAE) outperforms
more complex model-based planning approaches that employed β-VAE, when the environment
background contained noise distractors.

Building off the recent success of instance discrimination for self-supervised learning in computer
vision [13, 38, 15], contrastive representations have been studied for policy learning. We evaluate
ATC [89], a version of noise contrastive estimation [35, 66, 13, 38] that associates images within a
temporal window and applies the random shift augmentation proposed in Yarats et al. [110]. We also

3Our code: github.com/etaoxing/kitchen-shift.

14

https://github.com/etaoxing/kitchen-shift

experiment with SimSiam [15], which associates two augmentations of the same image without using
negative pairs, and use the larger set of augmentations from computer vision tasks.

The same four-layer ConvNet from Sekar et al. [84] is used for the encoder network to compare
different methods. As a baseline, we fix the initial random weights of the encoder network layers [89,
85], to validate that the policy leverages image observations to aid control. We also experiment with
a deeper encoder network architecture: the 15-layer network used in IMPALA [24].

C.3 Random actions and Demo playback

We also report performance on two basic, non-learning baselines. For Random actions, we sample an
action uniformly from the action space at each timestep. For Demo playback, we randomly sample a
demonstration and execute the actions given by the demonstration trajectory open-loop.

D Experimental Details

We render (256, 256) RGB image observations of the environment and resize them to (224, 224) as
input to the agent, following conventions from computer vision with ConvNets for image classification.
Image observations are embedded into a 128-dim latent vector by an encoder network. We also
provide the policy with a noisy observation of the robot’s proprioceptive state (36 dimensions): joint
positions, joint velocities, as well as end effector position, orientation, and contact forces. Policies are
parameterized by a three-layer feedforward neural network with 256 units per layer. The continuous
action space is 9-dim, controlling the robot gripper and the arm’s joint velocities.

For methods that condition on goal context, we provide an image that specifies the final environment
state (GCBC) and use the same encoder network as for the image observation. All methods are
trained with the Adam optimizer (α = 0.001, ε = 0.01) and a batch size of 128 episode steps for a
total of 1e5 optimization iterations. In early experiments, we trained policies for longer but found
1e5 iterations to be sufficient to evaluate policies.

Beyond the single training task evaluation where the policy must interact with the
[microwave,kettle,switch,slide] objects, we widen the training distribution to include
demonstrations of other tasks. All demos selected involve at least interacting with the microwave
object, with 235 demos across a total of 12 multi-stage tasks. Agents are trained for twice the
number of optimization steps used in the single training task setup. We train GCBC with this larger
demonstrations dataset to compare to GCBC trained only with trajectories of the single task.

We used a university cluster to generate results; we ran four seeds at a time on 4-GPU (either Titan
X (Pascal) or 1080 Ti) machines with 32-vCPUs each. Config files are available in our repository,
containing hyperparameters used for all methods and experiments we ran.

E Impact of simulator initialization

The original kitchen environment code [33] resets and initializes the state of the underlying physics
simulator in a deterministic fashion. We found that this determinism inflates the performance of
methods, as the policy is evaluated in the exact same simulation conditions, even with uniform noise
added to proprioceptive observations given to the policy as per the original settings.

To illustrate this gap, we generate demonstrations in environments with deterministic initialization
and with noise perturbations applied during initialization. For the latter, we combine two types
of perturbation: (i) small uniform noise added to the initial state when resetting the simulator; (ii)
stepping the simulation a random number of times when resetting. Perturbation (ii) further changes
the simulator state because we do not compensate for gravity in the robot controller, so the unactuated
robot arm can drift. This noise perturbation only affects the initial state of the environment.

In Table 2, we show results of deterministic versus stochastic environment initialization when
evaluating policies. We report results with BC (state-vector) as a baseline which achieves similar
performance as the original behavioral cloning results from Gupta et al. [33] in environments with
deterministic initialization. Notably, evaluating in environments with the stochastic initialization
reduces policy performance for all methods, most notably by 51% for BC (β-VAE).

15

Table 2: Comparing simulator initializations. We use ‘deterministic’ to refer to deterministically
resetting the environment to the same initial state, while ‘stochastic’ refers to adding a small amount
of noise to the initial state and stepping the simulation a random number of times after resetting. We
report mean±stddev of the average number of steps completed (out of a total of four). All results are
averaged across 20 episodes and 4 random seeds. Policy performance is significantly better when the
evaluation environment initialization is deterministic. Evaluating with initialization noise reduces
performance by 51% for BC (β-VAE) (compare 2.51 in row three vs. 1.23 in row six).

Environment (training domain)
Method initialization Avg. steps completed

BC (state-vector) deterministic 1.44± 1.01
BC deterministic 2.79± 0.90
BC (β-VAE) deterministic 2.51± 1.12
Demo playback deterministic 1.62± 1.03

BC (state-vector) stochastic 0.96± 0.94
BC stochastic 2.03± 1.12
BC (β-VAE) stochastic 1.23± 1.21
Demo playback stochastic 1.26± 1.07

To ensure that we report on a reasonable metric for realistic conditions (the importance of which is
highlighted by Henderson et al. [39]), for all other experiments evaluate policies in environments
with stochastic initialization. Our purpose here is to show that a small amount of perturbation to the
initial state significantly reduces the reported performance of the policy.

F Domain shifts evaluated in KitchenShift

Figure 4: Visualizing initial observations of domains in KitchenShift, in a grid.

16

	Introduction
	Evaluating Policies under Domain Shifts with KitchenShift
	Evaluation protocol
	Domain shifts in KitchenShift
	Policy evaluation

	Experimental Results
	Related Work
	Discussion
	Extended Related Work
	Choice of Environment
	Experimental Setup
	Imitation learning
	Representation learning
	Random actions and Demo playback

	Experimental Details
	Impact of simulator initialization
	Domain shifts evaluated in KitchenShift

