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ABSTRACT

Joint-embedding based learning (e.g., SimCLR, MoCo, DINO) and reconstruction-
based learning (e.g., BEiT, SimMIM, MAE) are the two leading paradigms for
self-supervised learning of vision transformers, but they differ substantially in
their transfer performance. Here, we aim to explain these differences by analyzing
the impact of these objectives on the structure and transferability of the learned
representations. Our analysis reveals that reconstruction-based learning features
are significantly dissimilar to joint-embedding based learning features and that
models trained with similar objectives learn similar features even across architec-
tures. These differences arise early in the network and are primarily driven by
attention and normalization layers. We find that joint-embedding features yield
better linear probe transfer for classification because the different objectives drive
different distributions of information and invariances in the learned representation.
These differences explain opposite trends in transfer performance for downstream
tasks that require spatial specificity in features. Finally, we address how fine-
tuning changes reconstructive representations to enable better transfer, showing
that fine-tuning re-organizes the information to be more similar to pre-trained joint
embedding models.

1 INTRODUCTION

Among Self-Supervised Learning (SSL) methods for learning Vision Transformer (ViT) representa-
tions, two broad categories have emerged: joint embedding based learning (Chen et al., 2020b; Caron
et al., 2021) and reconstruction-based learning (Zhou et al., 2021; He et al., 2022) (referred to as
JE and REC respectively hereafter). JE training maximizes view invariance between handcrafted
augmentations of the same image via a joint-embedding (Siamese) Chen & He (2020). In contrast,
REC objectives train models to reconstruct images in pixel space from a masked input. JE learning
demonstrates stronger linear probe transfer than REC but requires more inductive biases. While some
methods (El-Nouby et al., 2021; Assran et al., 2022b) have tried to combine these objectives, the
reason why such difference arise across methods remains unclear. We seek to better understand the
differences in representations learned across SSL ViT methods in order to diagnose what information
is learned and discarded during SSL pre-training. We approach differences between SSL methods
from the perspectives of representational (dis)similarity, accessibility of information for transfer, as
well as changes that arise during fine-tuning, leading to the following contributions:

• JE representations are more similar to each other than REC representations and vice versa (even
across architectures). These differences arise early in the network, and are concentrated in the
Layer Norm and Self-Attention Layers (Sec 2.1).

• JE models contain more linearly decodable representations because all relevant class discriminative
information is available in final pre-projector layer CLS token. In contrast, REC models lack
key invariances and distribute class discriminative information across layers, leading to poor
downstream transfer w/o fine-tuning (Sec 2.2).
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(a) JE models show high similarity, and are less similar to REC models.
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(b) Attention, Norm layers = more dissimilar (than FC layers.)

Figure 1: CKA similarity between pre-trained ViTs (Fig 1a), broken down by layer-types (Fig 1b)

• Training probes on multiple layers from REC models improves transfer. The downstream task also
plays a role in transfer from frozen pre-trained representation, as we discover that reconstructive
features transfer better to tasks requiring spatial specificity (Sec 2.2).

• Fine-tuning REC models makes them similar to JE models by re-organizing class information into
the final layer. During fine-tuning, REC models take a more efficient path through parameter space
than JE models (Sec 2.3).

2 EXPERIMENTS AND RESULTS

2.1 HOW DOES REPRESENTATIONAL STRUCTURE OF VITS TRAINED WITH DIFFERENT SSL
OBJECTIVES COMPARE?

Representation Similarity Analyses as a Lens for Model Understanding To analyze why
reconstructive models transfer differently than JE models without any fine-tuning, we perform
pairwise comparisons of the representational structures of MoCo-V3, DINO, and MAE using CKA
(Fig. 1a). The two JE learning procedures (MoCo-V3 and DINO) have very similar representations
(Fig. 1aA), especially in the early and intermediate layers. In comparison, the REC learning method
(MAE) has representations that are very dissimilar to both JE methods (Fig. 1aB,C).

Which layers drive differences in representations? We aim to understand whether the differences
are higher in attention layers which encode global shape features, or in MLP layers which encode
local texture features (Naseer et al., 2021; Anonymous, 2023). In Fig. 1b, we plot the CKA similarity
across a subset of each ViT block: the layer normalization before the attention layer (Layer Norm),
the multi-head self-attention layer (Multi-Head Self-Attention), and first linear layer after the residual
connection (Fully-Connected). We observe that CKA similarity between attention and normalization
layers across MAE and MoCo-V3 are much lower than fully connected layers.
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Final Layer Final + (Best) Intermediate All layers

DINO 77.78 ± 0.07% 77.97 ± 0.05% (+0.19%) 77.24 ± 0.07% (-0.54%)

MoCo-V3 76.33 ± 0.07% 76.61 ± 0.02% (+0.32%) 75.77 ± 0.18% (-0.56%)

MAE 67.73 ± 0.10% 69.53 ± 0.07% (+1.8%) 70.12 ± 0.04% (+2.4%)

(b) Linear Probing w/ feats. at different depths.

MAE MoCo-V3 DINO
Pre-Trained ViT

65

67

69

71

73

75

77

79

To
p-

1 
Im

ag
eN

et
 a

cc
ur

ac
y

MAE

baseline

MoCo baseline

DINO baseline

Additional Features Used
None
blocks.0
blocks.1
blocks.2
blocks.3
blocks.4
blocks.5

blocks.6
blocks.7
blocks.8
blocks.9
blocks.10
blocks.11
All

(c) Using additional intermediate layer CLS token features
for linear probe transfer.

Figure 2: Evaluating distribution of information across pre-trained ViTs by probing ImageNet top-1
accuracy (mean ± std for best 5 runs)

Does objective or architecture drive representational structure? We compare the CKA values
between ViT-CNN model pairs learned with the same objective against ViT-ViT model pairs learned
with different objectives1 Fig. 11 plots the CKA similarity between pairs of models as a function of
the distance between two layers in each model pair. In Fig. 11a, we show that CKA similarity for
two JE models trained on different architectures is consistently higher than for a JE and a REC ViT.
In Fig. 11b, when the layer depths are similar, the inter-layer CKA for REC CNN-ViT models is of
similar order of magnitude as the CKA for a JE and a REC ViT. As the distances between the layers
being compared increases, the CKA across REC ViT-CNN pair stays high while the CKA across
pre-training objectives in a ViT-ViT pair falls off. Hence, we conclude that the SSL objective governs
representational similarity more than architecture choice for both REC and JE learning.

How do representational differences manifest when utilizing self-supervised features for class
predictions? We consider how class discriminative information diverges between layers. In order
to do so, we calculate the 20 nearest-neighbour classification accuracy after each transformer block
(12 in total in ViT-B) as well as for a linear probe trained on top of the SSL representation. Following
(Raghu et al., 2021), two different representations are used: the CLS token features, as well as
Global Average Pooled features from all tokens except the CLS token (GAP w/o CLS), in order to
ensure we utilize class information present in the CLS token as well as outside the CLS token. We
plot the classification accuracy in Fig. 12. The predictions are highly consistent across JE models,
demonstrating that similar pre-training objectives lead to features that represent different object
classes similarly leading to class predictions which are also right and wrong in similar ways. (See
Appendix F for details.)

2.2 DOES THE SSL OBJECTIVE IMPACT INFORMATION DISTRIBUTION IN REPRESENTATIONS?

Is class discriminative information in pre-trained MAEs non-linearly decodable? While pre-
vious work on JE and REC learning has consistently demonstrated that the final CLS token in the
former contains features which can more easily be decoded by a linear probe, there has been little
exploration into utilizing non-linear probes for transfer. In Fig. 2a, we show the results on Top-1
ImageNet accuracy when using non-linear probes of increasing depth on the final CLS token features
of an SSL pre-trained ViT. Both JE models do not see any improvement in performance from using a
deeper probe. However, an MAE pre-trained ViT reports a performance improvement of 1.03% on
top-1 accuracy when using a three layer non-linear probe. While this improvement is not enough to
match the performance of JE final layer features, it demonstrates that there is additional class-specific
information available in final CLS token features, but it is inaccessible with a linear probe.

1See Appendix B for details of CNN models used.
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(a) DINO (b) MoCo-V3 (c) MAE

Figure 3: RCDM Bordes et al. (2022) samples generated by a diffusion model conditioned on
pre-trained ViT features shows differences in invariances learned

What features invariances have been learned during self-supervised learning in the final layer
of a ViT? Since the information present in the final CLS token is more suited for classification
in JE models than REC models, it becomes important then to characterize it. To do so, we used
RCDM (Bordes et al., 2022), a conditional diffusion model that uses pre-trained SSL representations
as conditioning. For training, we used the face-blurred version of ImageNet (Yang et al., 2022). As
RCDM is a stochastic generative model, the information that varies across samples (because of the
noise) is not contained in the representation while the information that remain constant across many
samples is contained in the representation. We visualize the samples for both JE and REC models
Fig. 3. We find that JE representations yield images with horizontal flip invariance, whereas REC
representations do not.

Does REC learning discard class discriminative information in its final layer? In this section,
we try to establish whether class discriminative information is discarded across network depth by
REC SSL. We find (Fig. 2c, Table 2b) that training a linear probe on both the final and an intermediate
layer CLS token features leads to an improvement in classification accuracy for REC representations,
but provides no marginal utility for JE representations. In Appendix C we consider different transfer
tasks like object detection and segmentation, and demonstrate how distribution of information varies
for pre-trained objectives.

2.3 WHAT HAPPENS TO SELF-SUPERVISED VIT REPRESENTATIONS POST FINE-TUNING?
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Figure 4: CKA similarity between MoCo-V3 and
MAE before (PT) and after fine-tuning (FT).

Thus far, we have focused on pre-trained repre-
sentations, but how does fine-tuning impact rep-
resentational structure? Given the importance
of fine-tuning to the downstream performance
of REC models, this is a critical question.

How does representational similarity change
post fine-tuning? How does the layer-wise
CKA similarity changes as a result of fine-
tuning? We find (Fig. 4) that fine-tuned MAE
features are highly similar to that of a pre-trained
MoCo-V3, implying that instance discriminative
JE pre-training learns very similar representa-
tions to class discriminative fine-tuning. This
correspondence remains after fine-tuning MoCo-
V3 except in later layers (See Fig. 8 for quali-
tatively similar results with DINO). In addition,
we find that the layers which were initially most
dissimilar after SSL (multi-head self-attention

and layer normalization) become the most similar after fine-tuning (Fig. 9, Fig. 10 in Appendix D), .
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A mechanistic understanding of increased similarity To understand why fine-tuned MAEs can
quickly exceed transfer performance of fine-tuned JE models, we look at the the L2 norm of the total
difference between the pre-trained and fine-tuned model parameters, and normalize it by the L2 norm
of the difference between parameters after each epoch. This gives us a measure of the efficiency of
the path taken by the ViT model during fine-tuning, a score of 1 implies a perfectly straight path
from pre-trained to fine-tuned model versus a score closer to 0 implies a very inefficient path. A
visualization of the quantity we measure is shown in Fig. 14a. We find that the relative displacement
of the MAE pre-trained model attention layers is the noticeably lower than the MoCo-V3 and DINO
models when we observe the fine-tuning dynamics of the attention layers in Fig. 14b.
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Figure 5: Marginal class information in intermediate
feats. for linear probing pre-trained (PT) vs fine-tuned
(FT) MAE.

Does representational similarity trans-
late to functional similarity for finetuned
MAEs? To answer this, we repeat the ex-
periments from Section 2.2 on a fine-tuned
MAE model to visualize how the invari-
ances learned in the final CLS token fea-
tures change. In Fig. 17, we visualize the
samples from an RCDM trained on the final
CLS token features of a fine-tuned MAE
model. The samples generated from a par-
ticular horizontal orientation of the object
do not preserve this information i.e. during
fine-tuning the ViT learns to be invariant to
horizontal flip. Thus, fine-tuning enables
MAE pre-trained ViTs to learn invariances
that are similar to pre-trained JE models
and informative for classification.

In Fig. 5, we show that the marginal utility
of training a linear probe on the intermediate CLS token features in a fine-tuned MAE. Unlike a pre-
trained MAE (Fig. 2c) where not all class specific information was available in the final layer features,
we find that the fine-tuned MAE does not perform any better when a linear probe is additionally
trained on its intermediate features. Thus, fine-tuning with supervision leads to a re-organization of
information in the ViT layers, and the class discerning information becomes readily available in the
final CLS features.

3 DISCUSSION

Conclusion We analyzed ViT representations and their transferability when trained via two pop-
ular self-supervised approaches: (1) Joint-Embedding (JE) methods (MoCo-V3, DINO), and (2)
Reconstruction-Based (REC) methods (MAE). We reveal key differences learned across both rep-
resentations and how these differences are localized by layer types while being distributed across
network depth. We explained why JE models transfer better with a linear probe, as their final layer
CLS tokens contain all pertinent information for class discriminative learning. We also presente ways
to extract the relevant information distributed across REC layers without fine-tuning. Finally, we
show how fine-tuning modifies REC features to be more linearly decodable by re-organizing class
information into the final layer.

Limitations and Future Work Our pre-training dataset, ImageNet is a balanced large-scale dataset,
SSL ViT methods have demonstrated poor empirical performance and transfer when trained on
imbalanced datasets (Assran et al., 2022a). We also focused on understanding the ViT-Base model
representations in this study. Seeing how different SSL pre-training methods scale with model size
and dataset size and diversity is an interesting avenue for future research. Another potential future
study could look into quantifying the notion behind ‘information’ available in SSL representations
from a mathematical perspective instead of our treatment of representational information as its impact
on downstream transfer. It would also be interesting to see how both JE and REC representations
transfer to other downstream tasks beyond classification, detection, and segmentation. Lastly, we
are very interested in exploring the impact of SSL objectives on multi-modal representation learning
methods such as CLIP (Radford et al., 2021) and Omni-MAE (Girdhar et al., 2022).
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A RELATED WORK

We study the questions raised by us in Section 1 by comparing the representations of a standard
ViT-Base model (Dosovitskiy et al., 2020) trained with 16x16 image patches (ViT-B/16) on the
ImageNet (Deng et al., 2009) dataset across popular JE (MoCo-V3 He et al. (2020), DINO Caron
et al. (2021)) and REC methods (MAE He et al. (2022)). We summarize the most pertinent directions
of research related to our study below.

Self-Supervised Learning of Vision Transformers Self-supervised learning (for ViTs) can be
broadly categorized into two families of algorithms. First is the JE SSL family (Chen et al., 2020a;
Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2021; Chen & He, 2020) which rely on training
criteria that encourage the representations learned from different augmentations of a given image to be
close together. Second is REC SSL family which rely on a reconstruction loss in the pixel space that
doesn’t require handcrafted data augmentations but instead utilizes a decoder to reconstruct from the
noisy representation (Zhou et al., 2021; Xie et al., 2022; He et al., 2022). He et al. (2022) showed that
a simple masking approach (MAE) tailored for ViTs followed by a pixel-level reconstruction objective
outperforms all other methods for fine-tuning and scaling with dataset and ViT size. However, the
performance of MAEs with linear probes was much poorer than that of JE models. Research on
combining both methods has focused on sample efficient learning and transfer. Assran et al. (2022b)
tried to utilize masked image modelling to improve efficiency for JE learning and better few-shot
transfer. El-Nouby et al. (2021) combined joint-embedding learning with REC learning across disjoint
subsets of patches, as well as utilizing feature space augmentations and contrastive loss to improve
training sample efficiency. Park et al. (2023) performed an extensive study on the differences in
pre-trained feature diversity, scale of features, and texture versus shape bias across both methods, and
showed that a simple linear combination of losses outperforms individual objectives.

Representation Similarity Analyses as a Lens for Model Understanding Representational
Similarity metrics provide a method for comparison of neural network representations across layer
dimensionality, model initialization, and neural architectures (Raghu et al., 2017; Morcos et al., 2018;
Kornblith et al., 2019). Among these, Centered Kernel Alignment (CKA) (Kornblith et al., 2019)
between two representation matrices is given as the normalized Hilbert-Smith Independence Criteria
(Gretton et al., 2007) of the Gram similarity matrices. We adapt the formalization from (Nguyen
et al., 2020) which approximates the linear CKA metric by averaging over k minibatches to obtain the
minibatch CKA metric. Raghu et al. (2021) utilized CKA to demonstrate that information is localized
and distributed differently across CNNs and ViTs, and that training set size plays an important role in
the scale of features learned by supervised ViTs. Grigg et al. (2021) used it to analyze how supervised
and SSL representations defer while controlling for model architecture and training datasets. Park
et al. (2023) showed low feature diversity in attention heads in pre-trained JE models versus REC
models, by showing high CKA values across depth, attention heads, and tokens.

Transfer Learning from SSL representations Different SSL methods can have very different
downstream performances. To visualize how invariances differ between SSL and supervised-trained
representations, Bordes et al. (2022) trained a Representation Conditioned Diffusion Model (RCDM)
to generate images conditioned on a given pretrained representation. While most SSL methods
analyze how intermediate probes (Alain & Bengio, 2017) perform for linear transfer, Evci et al.
(2022) showed that probes trained on intermediate layers in addition to final layer features improve
transfer performance and robustness. In the supervised setting, Neyshabur et al. (2020) showed
that the scale of features being transferred during fine-tuning depends on the relation between the
pre-training and transfer tasks. Asano et al. (2019) showed that (older) SSL methods for CNNs
cannot match supervised performance irrespective of amount of data and augmentation used, while
El-Nouby et al. (2021) showed that REC SSL is more robust to type and size of dataset versus JE
learning.
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 MINI-BATCH CKA DETAILS

The CKA value between two p1 and p2 dimensional representational matrices of m examples
X ∈ Rm×p1 and Y ∈ Rm×p2 is the normalized Hilbert-Smith Independence Criteria (Gretton et al.,
2007) of the Gram similarity matrices K = XXT and L = YYT given as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) HSIC(L,L)
(1)

We adapt the formalization from (Nguyen et al., 2020) which approximates the linear CKA metric by
averaging over k minibatches to obtain the minibatch CKA metric. Minibatch CKA over two sets of
activation matrices Xi ∈ Rn×p1 and Yi ∈ Rn×p2 of the ith minibatch of n examples is given as:

CKAminibatch =
1
k

∑k
i=1 HSIC1

(
XiX

⊤
i ,YiY

⊤
i

)√
1
k

∑k
i=1 HSIC1

(
XiX⊤

i ,XiX⊤
i

)√
1
k

∑k
i=1 HSIC1

(
YiY⊤

i ,YiY⊤
i

) (2)

where HSIC1 is an unbiased estimator of the Hilbert-Smith Independence Criteria such that the CKA
value is independent of batch size. The HSIC1 between two similarity matrices K and L (K̃ and L̃
are obtained by setting the respective diagonal entries to zeros) is given as:

HSIC1(K,L) =
1

n(n− 3)

(
tr(K̃L̃) +

1⊤K̃11⊤L̃1

(n− 1)(n− 2)
− 2

n− 2
1⊤K̃L̃1

)
(3)

For our mini-batch CKA computations, we use a batch size of 32 and sample a total of 1024 examples
without replacement for computing the representations. Like Raghu et al. (2021), we compared our
mini-batch CKA values across a large range of mini-batch sizes (25 to 210) as well as a large range of
examples (103 to 106) and found no noticeable differences (Fig. 6).

(a) Minibatch CKA vs samples used (b) Minibatch CKA vs batch size

Figure 6: Comparisons showing the impact of batch size and number of data samples used to
compute minibatch CKA values across a random subset of 10 layers in ViT-B. Minibatch CKA

values remain consistent above batch sizes of 25 and sample sizes of 1024.
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Config Value

optimizer AdamW

base learning rate 1.5e− 4

weight decay 0.05

optimizer momentum β1, β2 = 0.9, 0.95

batch size 4096

learning rate schedule cosine decay

warmup epochs 40

training epochs 800

augmentation RendomResizedCrop

Table 1: Pre-Training Details for MAE.

Config Value
optimizer AdamW
base learning rate 1.5e− 4
weight decay 0.1
optimizer momentum β1, β2 = 0.9, 0.95
batch size 4096
learning rate schedule cosine decay
warmup epochs 40
training epochs 300
momentum encoder

momentum 0.99

momentum rate
schedule cosine

augmentation

RandomResizedCrop
ColorJitter

RandomGrayscale
GaussianBlur

Solarize
RandomHorizontalFlip

Table 2: Pre-training details for MoCo-V3

B.2 SSL PRE-TRAINING DETAILS

For each of MoCo-V3 Chen et al. (2020b), DINO (Caron et al., 2021), MAE He et al. (2022) we
utilize pre-trained models provided by the original authors with the exact pre-training setup as
mentioned in the original papers. We summarize these details in Table 1 for REC model MAE, and in
Table 2 and 3 for JE models MoCo-V3 and DINO respectively. We pretrain replicate models for all
three ourself to verify that our observations also hold on replicates. During this pre-training, Linear lr
scaling rule is used for large batch training where = lr = base.lr x batch size / 256.
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Config Value
optimizer AdamW
base learning rate 5e− 4
weight decay 0.04
optimizer momentum β1, β2 = 0.9, 0.95
batch size 4096
learning rate schedule cosine decay
warmup epochs 10
training epochs 300
teacher momentum 0.996
teacher temperature 0.07
teacher temperature

warmup epochs 30

augmentation

RandomResizedCrop-
-Multi (96x96 and 224x244)

ColorJitter
RandomGrayscale

GaussianBlur
Solarize

RandomHorizontalFlip

Table 3: Pre-training details for DINO

Config Value
optimizer LARS
base learning rate {0.1, 1e− 2, 1e− 3}
weight decay {0, 5e− 2, 0.1}
L-1 regularization α {0, 1e− {1, 2, 3, 4}, 5e− 4}
optimizer momentum 0.9
batch size 4096
learning rate schedule cosine decay
warmup epochs {10, 40}
training epochs {100, 200}
augmentation RandomResizedCrop

Table 4: Linear and Non-Linear Probe Transfer details. A hyper-parameter grid search was
performed on the cross-product of config values within {}.

B.3 LINEAR PROBE DETAILS

Details of our linear probe transfer settings are given in Table 4. Similar to He et al. (2022), we utilize
an extra BatchNorm layer without affine transformation before the linear classifier to calibrate feature
magnitudes across different layer features for our experiments involving intermediate features. We
perform extensive hyper-parameter sweeps by performing a grid search over cross product of values
given in Table 4, and report the mean and standard deviation in accuracy for the 5 best performing
models in each experiment.
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Config Value
optimizer AdamW
base learning rate 1e− 3
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
layer-wise lr decay [10, 2] 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100
augmentation RandAug (9, 0.5)[12]
label smoothing [52] 0.1
mixup [69] 0.8
cutmix [68] 1.0
drop path [30] 0.1

Table 5: Fine-Tuning Transfer details

B.4 NON-LINEAR PROBE DETAILS

For our experiments with non-linear probes trained on the last layer CLS token features, each non-
linear probe layer block is made up of a linear layer (same as linear probe), followed by a BatchNorm
layer, followed by a non-linear ReLU activation. The training related hyperparameters remain the
same as given in Table 4. Similar to Section B.3, we perform extensive hyper-parameter sweeps,
and report the mean and standard deviation in accuracy for the 5 best performing models in each
experiment.

B.5 FINE-TUNING DETAILS

Details of our fine-tuning transfer settings are given in Table 5.

B.6 ALTERNATE NEURAL ARCHITECTURE DETAILS

For our comparisons of representation similarity across types of architectures, we require convolu-
tional models pre-trained with similar objectives as our ViT models. For this purpose, we take a
standard ResNet50 (He et al., 2016) pre-trained with DINO and MoCo-V3 objectives as our candi-
date JE CNN model, and a ConvNextv2-Base (Woo et al., 2023) pre-trained with MAE objective
as our candidate REC CNN model. The readers may refer to the original papers for exact model
specifications.

B.7 MS COCO OBJECT DETECTION AND SEGMENTATION

We utilize the ViTDet framework introduced by Li et al. (2022), which uses the final CLS token
features and then uses strided convolutions and deconvolutions to upsample/downsample the single-
scale features into a simple hierarchical feature pyramid. The feature pyramid generate uses strides
of 4, 8, 16, and 32 - consistent with ResNet based detection/segmentation models.

Once this feature pyramid is built from a ViT backbone, a standard Mask R-CNN (He et al., 2017) is
applied on top of the feature pyramid to perform bounding box regression, classification, as well as
instance segmentation. In order to evaluate the utility of pre-trained ViT representations for detection
and segmentation, we keep the backbone model parameters frozen when we train our Mask R-CNN
in Section C.
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Detection Segmentation

AP APlarge APsmall AP APlarge APsmall

MAE 30.25 39.93 18.69 28.56 41.73 14.37

MoCo-V3 28.75 40.21 15.49 26.67 41.92 10.89

DINO 32.57 44.14 19.89 30.04 45.77 14.37

DINO (w/o multi-crop) 29.97 40.82 17.55 28.16 42.53 12.99

Table 6: Downstream transfer for object detection and segmentation on MS COCO using a ViTDet
based Mask R-CNN with a frozen backbone ViT. MAE outperforms JE models when transferring
from frozen pre-trained features. Due to the scale of its features, it does worse than JE models
on larger objects, but performs better on small objects.

C SEGMENTATION AND DETECTION RESULTS

How do SSL pre-trained ViTs perform on downstream tasks requiring spatial specificity? In
Section 2.2, we examined the presence of information in SSL ViT features for linear probe transfer.
However, image classification is just one possible downstream task, and does not require a model
to preserve exact spatial information about object location. Other downstream transfer tasks, such
as object detection and instance segmentation (Lin et al., 2014), require the availability of precise
object location in the pre-trained features for transfer. In order to test how SSL objectives influence
ViT features for learning location-preserving information, we evaluate the performance of frozen
pre-trained ViTs as backbone feature extractors on the MS-COCO detection and segmentation tasks.
We utilize the ViTDet framework introduced by Li et al. (2022) to perform these experiments (see
Appendix B.7 for details).

Our results are shown in Table 6. Contrary to image classification from frozen representations, we
find that CLS token features from MAE actually outperform MoCo-V3 features on detection as well
as segmentation. While DINO intially outperforms MAE (Table ??), we hypothesize that it benefits
from its unique multi-crop training setup since DINO is specifically trained to be invariant to both
local and global scale of objects. In order to verify this, we train a DINO ViT without multi-crops
and indeed find that a frozen MAE outperforms a frozen DINO for detection and segmentation.

For the detection and segmentation transfer, we also observe an interesting difference between REC
and JE models that pertains to the scale of objects. The frozen REC model performs worse than
JE models on localizing larger objects (APlarge), but performs better for localizing smaller objects
(APsmall). Thus, the final CLS token features from a MAE are informative for localizing smaller
objects, but lack global context to correctly detect larger objects. This observation is consistent with
the Park et al. (2023) observations that the receptive field of REC models is more local in the last
layer features versus JE models. Our results establish that REC features can be useful out-of-the-box
vs JE features when the downstream task requires spatial specificity.

For completeness, we also provide the corresponding detection and segmentation results when the
Mask R-CNN with a ViT backbone is fine-tuned end-to-end. With supervised fine-tuning, the
discrepancy noted in the detection and segmentation for REC models on larger objects vanishes, since
they acquire global context and perform better on APlarge versus JE models.

Is there information relevant to detection and segmentation in the intermediate layers of SSL
pre-trained ViTs? How is information relative to spatially sensitive transfer tasks distributed
across layers in SSL pre-trained models? We repeat our experiment in Table 2b and Fig. 2c, utilizing
features from the final and intermediate layer CLS tokens, and concatenating them to build the feature
pyramid for Mask R-CNN training. However, due to the computational constraints of training Mask
R-CNN we limit ourselves to using intermediate features from ViT blocks 9, 10, 11.

We find that both a Mask R-CNN trained on both final and intermediate CLS token features outper-
forms a similar model trained only on the final layer features for both REC models as well as JE
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Detection Segmentation

AP APlarge APsmall AP APlarge APsmall

MAE 51.57 66.36 35.27 45.84 63.84 27.27

MoCo-V3 48.81 64.83 32.79 43.18 62.86 23.78

DINO 47.73 62.49 32.17 30.04 60.03 24.28

Table 7: Downstream transfer for object detection and segmentation on MS COCO using a ViTDet
based Mask R-CNN with a backbone ViT and end-to-end fine-tuning.With fine-tuning, MAE
outperforms both MoCo-V3 and DINO on both large and small objects, implying that REC
models learn global scale features with fine-tuning.

models. While intermediate features offered no marginal utility in linear probe classification for
JE models, they contain information relevant to detection/segmentation which is not present in the
final CLS token. While the JE objective lends itself better to classification by concentrating useful
information in its last pre-projector layer, it loses some relevant spatial information.

MAE MoCo-V3 DINO
Pre-Trained ViT
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Figure 7: Object detection results on MS-COCO using frozen pre-trained ViT features. ViTs trained
with both kinds of SSL objectives show improved performance when additional intermediate
features are used for detection, unlike for classification.
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D ADDITIONAL CKA PLOTS

D.1 CKA BETWEEN PRE-TRAINED AND FINE-TUNED MAE AND DINO

For completeness, we provide the plots comparing CKA between DINO and MAE both before and
after fine-tuning, analogous to Fig. 4 in the main text with MoCo-V3.
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(c) DINO (FT) & MAE (PT)

0 10 20 30 40 50 60 70 80 90 10
0

DINO (finetuned) ViT layers

0

10

20

30

40

50

60

70

80

90

100

M
AE

 (f
in

et
un

ed
) V

iT
 la

ye
rs

0.0

0.2

0.4

0.6

0.8

1.0

(d) DINO (FT) & MAE (FT)

Figure 8: CKA similarity between DINO and MAE before (PT) and after fine-tuning (FT). Similar to
the MoCo-V3 comparisons 4, an MAE (FT) ViT-B becomes very similar to a DINO (PT), (8c), and
the similarity persists with the DINO (FT) ViT-B/16 (8d).

D.2 CKA BETWEEN PRE-TRAINED AND FINE-TUNED JE AND REC MODELS BY LAYER TYPE

In addition to Fig. 4 we include additional comparisons of layer-wise CKA similarity between
MoCo-V3 and MAE layers before and after fine-tuning in 10. We can observed that the similarity
between the fully-connected layers (MLP-FC1) increases for the initial and intermediate ViT layers
but decreases for the later layers. However, the similarity between multi-head self-attention layers
(MHSA-QKV) and layer normalization layers after attention (LayerNorm) of both models increases
remarkably post fine-tuning. There is also a strong linear correspondence (layers at similar depth
learn similar features) as well as strong block correspondence (groups of layers learn similar features)
in the initial and intermediate MHSA-QKV and LayerNorm layers after fine-tuning.
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Figure 9: Attention layers show strong linear correspondence as well as block correspondence
in CKA similarity after fine-tuning JE and REC models. NOTE: Attention layer indices shown
(one per ViT block, ViT-B made up of 12 ViT blocks.)
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(e) Self-Attention (FT)
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(f) Fully-Connected (FT)

Figure 10: CKA similarity between MoCo-V3 and MAE before and after fine-tuning by layer type.
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E SUPPLEMENTARY RESULTS: DOES OBJECTIVE OR ARCHITECTURE DRIVE
REPRESENTATIONAL STRUCTURE?
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(a) JE objectives across architectures
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Figure 11: CKA similarity vs layer distance across ViT and CNN architectures. Similar SSL
objectives yield similar representations even across models with very different architectures.

We visualize above the results discussed in Section 2.1, showing that CKA values across CNN-ViT
model pairs trained with the same self-supervised objective tend to be higher than CKA values acros
ViT-ViT model pairs trained with different types of objectives.
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F SUPPLEMENTARY RESULTS: HOW DO REPRESENTATIONAL DIFFERENCES
MANIFEST WHEN UTILIZING SELF-SUPERVISED FEATURES FOR CLASS
PREDICTIONS
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Figure 12: 20-Nearest Neighbour classification accuracy across ViT blocks and linear probe. Class
separability starts to decrease in MAEs after the first few ViT layers. The CLS token features
in the last ViT layers of JE models contain a significant amount of class information.

We visualize above the results discussed in Section 2.1, showing that class separability starts to
diverge early between JE and REC trained ViTs (by ViT block 3). We also observe that the last layer
CLS token features in JE ViTs contain all information necessary for classification, as demonstrated
by their nearest-neighbor classification accuracy being comparable to linear probe.

We also consider whether the differences in representational similarity and in class separability
across JE and REC models translates to the class predictions made by these models. While we have
observed higher linear and k-NN transfer performance in JE models in Section 2.1, we do not know
whether similar representations and performance are driven by consistent object classification results,
or inconsistent results across different classes. In order to evaluate this, we consider the Kendall’s
Tau rank correlation coefficient of the top-5 and top-10 class predictions made across the ImageNet
validation set from MoCo-V3, DINO, and MAE in Fig. 13. We observe that the ranking predictions
generated by MoCo-V3 and DINO are consistently more correlated across all predictions, as well as
both correct and incorrect predictions. We also calculate the F-1 score of top-1 predictions for DINO
and MoCo-V3 (0.93) and confirm that it is higher than the F-1 score for MAE and MoCo-V3 (0.88).
Our results verify that not only does the training objective determine representation content, similar
pre-training objectives lead to features that represent different object classes similarly leading to class
predictions which are also right and wrong in similar ways.
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Figure 13: Kendall’s Tau rank correlation of linear probe ranks (Top-5 and Top-10 ranks averaged
across ImageNet val set). JE models generate more similar rankings across all predictions (5A),
and are also incorrect in similar ways (5C).
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G SUPPLEMENTARY RESULTS: A MECHANISTIC UNDERSTANDING OF
INCREASED SIMILARITY
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(b) Fine-Tuning Path efficiency

Figure 14: Fine-tuning dynamics of attention layers of SSL ViTs. MAE fine-tuning follows a more
efficient path integral, and attention layer parameters converge more directly towards new
values. On the contrary, JE parameters do not follow an efficient path, and go through much
higher displacement relative to the actual distance covered in parameter space.

We visualize above in Figure G the results discussed in Section 2.3 demonstrating that MAE fine-
tuning follows a more efficient path in the ViT parameter space during fine-tuning.
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H COMPARISONS OF RECONSTRUCTION-BASED AND JOINT-EMBEDDING
LEARNING WITH MASKED SIAMESE NETWORKS

We also compare the representations in JE and REC ViTs to a training procedure that incorporates
elements of both: Masked Siamese Networks (MSN) (Assran et al., 2022b). Masked Siamese
Networks use a joint embedding approach similar to DINO Caron et al. (2021) as their objective,
however they also sample input patches from the image like MAE He et al. (2022) for learning their
anchor view embeddings in the joint embedding framework.

We hypothesize that since the training objective of MSN does not invoke reconstruction-based
losses, the representations learned will be similar to joint-embedding approaches despite their use
of masking-based feature learning. Indeed, our representation similarity analysis in Figure 15
shows that pre-trained MSN representations are much more similar to pre-trained JE representations
(DINO, MoCo-V3) than REC representation (MAE). Thus, we conclude that the reconstruction
based objective plays a much stronger role in the features learned by MAE versus the modelling of
masked image features which MSN shares with MAEs, while the JE objective of modelling similarity
between pairs of views dominates features learned by MSN.
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(a) MoCo-V3 (PT) vs MSN (PT)
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(b) DINO (PT) vs MSN (PT)
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(c) MAE (PT) vs MSN (PT)
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(d) MoCo-V3 (FT) vs MSN (PT)
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(e) DINO (FT) vs MSN (PT)
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(f) MAE (FT) vs MSN (PT)

Figure 15: CKA similarity between pre-trained and fine-tuned JE and REC models and a pre-trained
MSN model.

Fine-tuning ViTs pre-trained with MSN also gives results consistent with fine-tuning JE models
as outlined in Section 2.3. Fine-tuned MSN models continue to remain similar to pre-trained and
fine-tuned JE ViTs, as well as fine-tuned REC ViTs, as shown in in Figure 16.
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(a) MoCo-V3 (PT) vs MSN (FT)
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(b) DINO (PT) vs MSN (FT)
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(c) MAE (PT) vs MSN (FT)
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(d) MoCo-V3 (FT) vs MSN (FT)
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(e) DINO (FT) vs MSN (FT)
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(f) MAE (FT) vs MSN (FT)

Figure 16: CKA similarity between pre-trained and fine-tuned JE and REC models and a fine-tuned
MSN model.
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I ADDITIONAL RCDM EXAMPLES

We visualize RCDM2 samples conditioned on a fine-tuned MAE model below to demonstrate that
fine-tuning imparts new invariances (like horizontal flip invariance) that improve transfer performance
on classification.

(a) MAE (PT) (b) MAE (FT)

Figure 17: Visualization of samples generated from an RCDM2 conditioned on fine-tuned MAE and
trained on the face-blurred version of ImageNet (Yang et al., 2022). Unlike pre-trained MAEs,
fine-tuned MAE features generate objects oriented differently (horizontally) to the source
image, demonstrating that these features are invariant to horizontal flips.

We also provide additional RCDM samples visualized for each of the 4 models (Pretrained: MAE,
DINO, MoCo-V3 and Finetuned: MAE) for readers to identify additional invariances.

2We train RCDM on the face-blurred version of ImageNet (Yang et al., 2022), which enhances privacy.
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(a) MAE (PT) (b) MoCo-V3 (PT)

(c) MAE (FT) (d) DINO (PT)

Figure 18: Additional RCDM2 samples generated using representations from pre-trained MAE,
DINO, MoCo-V3 and fine-tuned MAE when training RCDM on the face-blurred version of ImageNet
(Yang et al., 2022).
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