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Abstract

Large language models (LLMs) have limitations in handling tasks that require
real-time access to external APIs. While several benchmarks like ToolBench and
APIGen have been developed to assess LLMs’ API-use capabilities, they often
suffer from issues such as lack of generalizability, limited multi-step reasoning
coverage, and instability due to real-time API fluctuations. In this paper, we
introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world
API usage. SEAL standardizes existing benchmarks, integrates an agent system for
testing API retrieval and planning, and addresses the instability of real-time APIs
by introducing a GPT-4-powered API simulator with caching for deterministic
evaluations. Our testbed provides a comprehensive evaluation pipeline that covers
API retrieval, API calls, and final responses, offering a reliable framework for
structured performance comparison in diverse real-world scenarios. SEAL is
publicly available at https://github.com/EmergenceAI/seal-api-llms, with ongoing
updates for new benchmarks.

1 Introduction

While large language models (LLMs) excel at many language tasks, they face limitations when
handling tasks that require real-time access to specific information, such as current events, calculations,
or web searches. Tools like calculators, code execution, and browsing extend LLMs’ capabilities,
enabling them to perform specialized tasks and access up-to-date knowledge, adapting dynamically
to users’ needs. Recently, several benchmarks have been introduced to assess LLMs’ ability to
interact with real-world APIs, moving beyond a small set of hand-coded tools to a broader pool of
practical, real-world applications. These include ToolBench [Qin et al., 2023] and variants thereof,
APIGen [Chen et al., 2024], AnyTool [Du et al., 2024] and MetaTool [Huang et al., 2023].

In this paper, we analyze major API-use1 benchmarks and argue that there are critical gaps. Specif-
ically, we identify a number of common issues, including the lack of clear holdout sets leading to
overfitting, poor coverage of multi-step reasoning queries which are essential in real-world use cases
of such systems, and deficiencies in benchmark quality and stability. Further, some benchmarks only
focus on certain aspects; For example, AnyTool [Du et al., 2024] and MetaTool [Huang et al., 2023]
focus on tool selection but overlook other important aspects such as the content of tool calls and the
final response. Similarly, APIGen [Chen et al., 2024] tests function-calling capabilities but neglects
multiple possible trajectories with only one hard-coded answer.

In response, we present SEAL, a comprehensive, end-to-end testbed for evaluating LLMs in tool
usage, particularly with diverse real-world APIs. This testbed provides uniform test environment
of API calling system by sanitizing and standardizing existing benchmarks, incorporating an agent
system built on AutoGen [Wu et al., 2023] for testing both API retrieval and planning, and providing
a robust evaluation pipeline. Due to the real-time nature of APIs, existing benchmarks often lack

1We use “tool” and “API” interchangeably throughout this paper. While we primarily focus on APIs, the
same methodology can be extended to general tool usage with appropriate API-wrapper around them.
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User

Query:
How’s the weather 
tomorrow in NYC?

Agent System API Server

Function call:
{name: weather_nyc, arguments: {date: 08-30-24}}

API response:
{temperature: 83°
F, wind: light}

API call

Response generation:
Tomorrow in New York City, the weather is 
expected to be quite pleasant. The day will be 
mostly sunny with a high around 83°F (28°C), 
and light winds throughout the day.

Return response

API retrieval (top 3):
weather_nyc, weather_ny, weather_nj

Figure 1: Workflow of a single-step, single-API-use system

Table 1: Comparison of tool-use benchmarks. For datasets with multiple subsets, we only report
statistics for the largest subset: G1-train for Toolbench, and Huggingface for APIBench

Toolbench
Qin et al. [2023]

APIGen
[Chen et al., 2024]

AnyTool
[Du et al., 2024]

MetaTool
[Huang et al., 2023]

APIBench
Patil et al. [2023]

API source RapidAPI RapidAPI RapidAPI OpenAI plugin HuggingFace
Total # of queries 40399 60000 407 21047 8191
- multi-step only 34052 20448 339 497 0
Avg. # of APIs per query 4.5 1.7 2.3 1.1 1.0

# of APIs with queries 8684 3179 307 199 914
Total # of APIs 16464 3605 16464 437 914

reliable evaluation as there are no static ground truth answers. To address this, we developed an API
simulator powered by GPT-4 [Achiam et al., 2023] to generate plausible API responses, building on
the approach in StableToolbench [Guo et al., 2024]. We further enhance this system with caching to
enable more deterministic evaluations. Additionally, we offer a comprehensive evaluation framework
that covers all aspects of API learning, including API retrieval, API calls, and the final response. Our
testbed allows users to test their retrieval and planning methods while providing a more structured
and reliable performance comparison.

Our contributions are as follows:

• We investigate the shortcomings of existing API-use benchmarks, identifying issues like
lack of generalizability, limited multi-step reasoning coverage, and benchmark instability.

• We present SEAL, a comprehensive testbed that standardizes existing benchmarks and in-
corporates an agent-based system for evaluating LLMs in retrieval, planning, and execution.

• We offer an end-to-end evaluation framework covering API retrieval, API calls, and final
responses, enabling structured performance comparison across diverse real-world scenarios.

2 Overall Landscape

Fig. 1 provides an overview of the typical workflow for tool-use systems. These systems consist of
three main components: the user, the agent system, and the API server. The process begins when
a user queries the agent system, for example, “How’s the weather tomorrow in NYC?” The next
step typically is a retrieval to identify relevant APIs for the language model that powers the agentic
system. This is especially useful in scenarios with numerous real-world APIs, where providing all
available APIs as input is impractical due to context limitations (such as length, and lost-in-the-middle
phenomenon). The LLM then generates the arguments for tool calls based on the API documentation
or the tool specifications and forwards them to the API server. Typically, the API server operates
as a separate component outside the agent system. Once the API response is received, the agent
system’s final role is to generate a response summarizing the API’s output. While this example
involves a single-step process, in many real-world cases, these steps are repeated, with each step’s
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Figure 2: Comparison of embedding models’ API retrieval performance across benchmarks. We fixed
the total number of sampled queries and report the average performance over 10 sampling runs. For
ToolBench, results are based on the test split, as the ToolBench retriever was trained on the train split.

input determined by the output of the previous step. There may also be an optional verification step
to ensure intermediate and final responses are generated correctly.

This is a multi-step, complex process that relies on several LLM capabilities, including accurate
retrieval, correct function calling, and factual summarization. However, existing benchmarks focus
only on specific aspects of this pipeline: AnyTool and MetaTool emphasize tool selection, while
APIGen focuses on function-calling capabilities. Section 3 talks about these challenges in more
detail.

Another often-overlooked aspect is that this process involves collaboration between multiple agents,
such as the tool retriever, the main orchestrator, and optionally, a planner or verifier. [Mekala et al.,
2024, Shen et al., 2024] Most previous benchmarks [Chen et al., 2024, Qin et al., 2023, Patil et al.,
2023] customize a single LLM to handle all these steps. We argue that this could be tackled more
effectively using an agent system, where certain components are powered by an LLM. In fact,
this separation is already happening internally, though it’s not often recognized as distinct agent
components. For example, tool retrieval is often handled independently of the LLM, using query/API
embeddings generated by large embedding models or smaller sentence-transformer models, followed
by vector lookups. Our testbed integrates these components under the concept of agents, and we
implement it using the AutoGen [Wu et al., 2023] framework. Section 4 discusses this in more detail.

3 Challenges in Existing Benchmarks

We conduct an in-depth evaluation of existing benchmarks and identified several critical limitations
that restrict their wider applicability. Table 1 presents key statistics for five benchmarks we focus on.
While these are the primary benchmarks under discussion, there are additional ones within the scope
that we plan to further support. Our analysis highlights the following four significant limitations.

3.1 Lack of Generalizability

Previous works have claimed that small, open-source models trained on specific benchmarks can
perform as well as, or better than, general-purpose models. However, as noted by Kapoor et al.
[2024], many agent benchmarks lack adequate holdout sets, or even fail to include them entirely.
This is also true for API-calling benchmarks. For instance, APIGen does not provide a clear train-test
split, making it difficult to evaluate models using the provided benchmark data. Similarly, ToolBench
includes a very small test set that fails to represent the diversity of real-world scenarios. This
limitation in benchmark design often results in models that perform well on narrow datasets but
struggle with generalization. We illustrate this through an example of API retrievers, as retrieving
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Table 2: Comparison of benchmarks on evaluation
Toolbench APIGen AnyTool MetaTool APIBench

API retrieval ✓ ✓ ✓ ✓ ✗
API call ✗ ✓ ✗ ✗ ✗
Final response ✓ ✗ ✗ ✗ ✓

the appropriate APIs is critical to overall performance. Previous works [Qin et al., 2023, Kong
et al., 2023] trained small sentence transformer models [Reimers, 2019] using contrastive learning
objectives, and claim superior performance over proprietary, general-purpose embedding models
like OpenAI’s. However, we find that while these trained retrievers performed well on the same
source of APIs, their performance significantly declines when applied to different sources. As shown
in Figure 2, the retriever trained on ToolBench outperforms OpenAI’s embedding model on three
RapidAPI-based benchmarks but performs significantly worse on MetaTool, a dataset based on
OpenAI plugins. This highlights the importance of generalization to various API sets, a critical
feature in realistic scenarios where APIs are frequently updated, deprecated, or custom-built by users.

3.2 Bias Towards Simple Queries

To better simulate realistic scenarios, we emphasize the need for multi-tool and multi-step benchmarks.
As state-of-the-art LLMs become increasingly adept at basic function calls [Qu et al., 2024], it is
crucial to assess their ability to decompose complex user queries into smaller, executable substeps
and plan actions accordingly. Unfortunately, most existing benchmarks consist predominantly of
single-step queries, where a single API call is sufficient to complete the task, as shown in Fig 1.
Notably, one of the most widely-used benchmarks, APIBench [Patil et al., 2023], consists solely
of single-step and single-tool queries. Existing benchmarks also lack realistic queries that require
sequentially dependent reasoning. We show a few examples in the Appendix A.2.

3.3 General Instability

A significant issue with current benchmarks is their instability, as static ground truth quickly becomes
outdated, and API services exhibit variability. API responses are time-sensitive, and services change
over time due to factors like deprecation, shifts in service definitions, and altered response behaviors.
This instability makes it difficult to evaluate new systems on older benchmarks, hindering efforts to
standardize evaluation. To mitigate these challenges, several benchmarks restrict themselves to small
sets of hard-coded and deterministic tools [Schick et al., 2024, Lu et al., 2024], instead of dynamic
real-world APIs. Other benchmarks limit themselves in both API pool size and the number of queries.

One widely used benchmark for API-use, that does not limit its scope as above, is the ToolBench
benchmark. Despite the efforts of ToolBench to enhance stability by introducing a proxy server for
RapidAPI, which simplifies access by handling authentication and overhead associated with real-time
APIs, we found ToolBench to be highly unstable. Many APIs fail to return consistent responses and
frequently produce a variety of errors. Previous work [Guo et al., 2024] highlighted ToolBench’s
instability and proposed solutions like caching API responses and using a GPT-4-based simulator for
unresponsive APIs. However, these fixes were limited to a small subset of ToolBench, and running
LLM simulators on demand still introduces stochastic variability.

3.4 Incomplete Evaluation

For a comprehensive evaluation of API-calling systems, it is essential to assess each stage of the
pipeline: whether the correct tools are retrieved, whether the correct tools are called, whether the
tool calls are accurate, and finally, whether the query response is correct. The real-time nature
of APIs further complicates the evaluation of API-use systems, and existing works focus only on
partial components of the overall pipeline described in Section 2. As shown in Table 2, AnyTool
and MetaTool only evaluate API retrieval, while APIGen evaluates both API retrieval and calls
but overlooks the fact that multiple trajectories can lead to a successful final response. Although
ToolBench aims to provide ground truth across the entire pipeline, the provided ground truth labels
for tool calls and final responses is somewhat outdated and unreliable. Approximately 40% of queries
end up as "unsolvable," where the LLM used in ToolBench’s own implementation fails to generate a
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Figure 3: AutoGen system architecture

valid output. Each stage of the API-calling system needs to be evaluated to enable more reliable and
comprehensive assessment.

4 SEAL Construction

SEALis a comprehensive, end-to-end testbed that builds on top of current benchmarks. It includes
standardization and sanitization of queries from existing benchmarks, a flexible agent system capable
of adapting to user demands, and a thorough evaluation pipeline.

4.1 Benchmark Standardization & Sanitization

We parse and standardize five existing benchmarks introduced in Table 1, into a unified format
consisting of queries, APIs, query-to-API mapping, and query-to-API-call mapping. Note that
API-call data is available for only 3 out of the 5 datasets, so this field remains empty for AnyTool and
MetaTool. This standardized format enables the use of multiple benchmarks with diverse structures
via a unified approach. For instance, users can search for APIs associated with a specific query ID or
retrieve an API by its name or features. Data sanitization and filtering details are in the Appendix A.1.

4.2 Agent System Construction

Previous works have developed single LLMs to handle every step of the API-calling process. However,
we argue that API-calling, and tool-calling in general, can be tackled more effectively using an agent-
based system, where multiple agents collaborate, with some powered by LLMs. This design of
separation allows for testing both tool retrieval and tool planning methods, enabling users to easily
swap different agents in and out. It also opens up the possibility of replacing agents with smaller,
specialized models, rather than relying on expensive general models to handle everything. We
develop an adaptable agent system based on the AutoGen [Wu et al., 2023] framework. One of
the key advantages of AutoGen is its customizable agents, which can operate in various modes by
leveraging combinations of LLMs, human inputs, and tools/APIs. This flexibility allows the system
to dynamically adjust agent behaviors based on user-specified configurations.

Fig. 3 illustrates the current architecture of SEAL. We follow the workflow of existing systems, where
APIs are pre-selected and registered within the agent system. Within this system, API-calling is
managed through a “group chat” interaction between a API Executor and a API Execution Manager.
The API Execution Manager, powered by an LLM, generates the necessary API calls and arguments,
while the API Executor communicates with a API Simulator in the background to simulate real API
servers. Although this represents the simplest version of the architecture, the system is designed to
allow easy addition or removal of agents. For instance, one could add a Planner Agent under the
Orchestrator to break down multi-step queries into smaller sub-steps or introduce a Verifier Agent to
ensure that each step has been executed correctly.

API Retriever Given the large size of the API pool in API-calling benchmarks, it is impractical
to register all APIs with an LLM due to context length limits. We implement an API retriever
as a separate class, allowing users to specify the embedding model of their choice. Available
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Table 3: SEAL execution results on two benchmarks.
Benchmark: Toolbench

# of queries API retrieval recall@10 API call recall API param. acc. Pass rate

# of apis Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

10 30.67 18.04 1.00 0.00 0.62 0.19 0.34 0.30 0.68 0.16
50 279.00 29.21 0.95 0.06 0.56 0.11 0.31 0.03 0.78 0.10
100 524.00 33.96 0.95 0.04 0.57 0.12 0.39 0.07 0.82 0.03
200 865.00 NA 0.91 NA 0.63 NA 0.43 NA 0.73 NA
500 2019.00 NA 0.85 NA 0.59 NA 0.44 NA 0.76 NA

Benchmark: APIGen
# of queries API retrieval recall@10 API call recall API param. acc. Pass rate

# of apis Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

10 10.00 4.36 1.00 0.00 0.98 0.03 0.93 0.01 0.87 0.12
50 116.00 32.36 0.96 0.01 0.94 0.02 0.80 0.10 0.80 0.05
100 375.33 118.59 0.97 0.02 0.95 0.03 0.84 0.06 0.84 0.03
200 726.00 NA 0.95 NA 0.93 NA 0.82 NA 0.86 NA
500 2456.00 NA 0.93 NA 0.87 NA 0.79 NA 0.85 NA

options include OpenAI embedding models, Gemini embedding models, and a customized sentence
transformer model proposed by Qin et al. [2023]. Once the user query and API documents are
embedded, the retriever efficiently performs vector lookups using the Faiss library.

API Simulator Since real APIs are inherently real-time, and we find existing benchmarks’ API
servers to be highly unstable, we develop a custom API simulator powered by GPT-4. Similar
approach is used in Guo et al. [2024], where real-time API responses are cached and the simulator
is called on demand. In our case, we fully replace and cache all API responses with simulations to
minimize stochastic variability. Given instructions for simulation, API documentation, and API pa-
rameters, the simulator replicates API behavior. The simulator prompt can be found in Appendix A.4.
Although we acknowledge that LLM-based systems may generate fabricated information, we believe
it is essential to have reliable and deterministic APIs from the perspective of benchmarking.

4.3 Evaluation Pipeline

Previous works evaluate one of the following: (1) the final response of the system [Qin et al.,
2023], considering that multiple reasoning trajectories can lead to success, or (2) a single hard-
coded trajectory by checking if the API calls are correct [Chen et al., 2024]. We argue that a
more comprehensive evaluation is needed, spanning the entire pipeline of API usage, including API
retrieval, API calls, and the final response.

• API Retrieval: Did the system retrieve the correct tools? All five benchmarks listed in
Table 2 provide ground truth for tool retrieval. We leverage this information and use standard
retrieval metrics, such as Recall@K and Mean Reciprocal Rank (MRR), where K = 10.

• API Call: Were the correct tools called, and were the parameters passed accurately? We
assess tool call performance by measuring recall, ignoring the order of calls and treating
repeated calls to the same tool as distinct events. To evaluate API arguments, we use tool call
accuracy, determining whether parameters and values were an exact match. Additionally,
more fine-grained metrics, such as matching parameter names or values, can be employed
as in Trivedi et al. [2024].

• Final Response: Did the system fully address the user query, and was the final response
accurate? We adopt the AI critique methodology from Qin et al. [2023] to compute Pass
Rate. First, an LLM assesses whether the query was successfully executed by analyzing the
final response and categorizing it as solved, unsolved, or unsure. If unsure, it re-evaluates
with the entire execution trajectory.
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5 Results & Analysis

We evaluate SEAL using four key metrics: Recall@10 for API retrieval, Recall@N for API calls
(varying N as the number of ground truth APIs), API parameter accuracy, and the pass rate of the final
response. gpt-4-turbo-2024-04-09 serves as a single model handling API calling, parameter
generation, and response summarization.

Fig. 4 and Table 3 presents results from ToolBench and APIGen evaluations. We progressively
increase the size of the API pool to assess whether task complexity scales with API pool size. As the
API pool grows, the associated queries also vary. Our results indicate that as the API pool expands,
performance declines in both API retrieval and call accuracy, demonstrating that the task becomes
more challenging with more APIs. However, this decline is less evident in the pass rate. We also
conduct three sampling runs with API pool sizes of 10, 50, and 100. The standard deviation across
these runs is substantial, particularly in ToolBench. This is due to the limited number of queries
associated with each API, causing each sampling to yield significantly different query distributions.
In contrast, APIGen exhibit smaller but still notable variance. We plan to increase the number of
bootstrapping runs in future work for more reliable and scalable evaluation.

We identify three major error cases:

Incorrect API Retrieval The most common error is partially solved queries due to incorrect API
retrieval, especially for multi-tool queries. Current vector lookup systems struggle to retrieve multiple
relevant APIs. This underscores the need for multi-step, hierarchical planning to break down complex
queries into sub-steps for more accurate API retrieval and resolution. Below is an example where the
system partially solves a query because it fails to retrieve an API for fetching technical specifications
of a film.

• Query: What are the technical specifications of the film ‘tt0133093’ and search for news in
Italian about ‘tecnologia’.
• Final Answer:

# Technical Specifications of the Film ‘The Matrix’ (tt0133093)
There was an error retrieving the technical specifications for the film ‘The Matrix’

(tt0133093).
# News in Italian about ‘Tecnologia’

1. **Tech Trends in Cinema: How Technology is Shaping the Future of Film** An
in-depth article exploring the latest technological advancements in the film industry and their
impact on movie production and viewing experiences...
• Result: Unsolved
• Reason: The answer does not provide the technical specifications of the film ‘tt0133093’ as
requested in the query. It does, however, provide news articles in Italian about ‘tecnologia’.

Incorrect API Parameters Another frequent errors are incorrect API parameters. This highlights
the challenge LLMs face in correctly extracting relevant information from queries. For example,
below is a case where the system incorrectly identifies latitude and longitude values.

• Query: Can you find the time zone for a Canadian postal code G2J and a latitude-longitude
pair of 48.8567, 2.3508?
• Final Answer: I successfully retrieved the geographical boundary information for the
Canadian postal code FSA "G2J," which corresponds to a region in Quebec City, Quebec,
Canada. However, there was an error in fetching the time zone for the latitude-longitude pair
(48.8567, 2.3508).
• Correct API call: { ‘arguments’: { ‘lat’: 48.8567, ‘lng’: 23.508 },
‘name’: ‘tz_lookup_by_location’ }
• Actual API call: { ‘arguments’: { ‘lat’: 488567, ‘lng’: 23508 },
‘name’: ‘tz_lookup_by_location’ }
• Result: Unsolved
• Reason: The tool call for the latitude-longitude pair (48.8567, 2.3508) returned an error due
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to invalid values provided. The correct latitude-longitude values should be within the range
of -90 to 90 for latitude and -180 to 180 for longitude.

Inconsistent Evaluation There are cases where evaluation is inconsistent, largely because the LLM
serves as both the solver and the evaluator. LLM critique is stochastic, and at times, inconsistent,
leading to different outcomes when re-evaluating the same query. Below is an example where, despite
fully addressing the query, the LLM incorrectly marked it as unsolved. This variability underscores
the importance of multi-faceted evaluation beyond relying solely on final output assessments.

• Query: Fetch auto-complete results for ‘winter coat’ from Kohls and ‘kitchen appliance’
from Wayfair.
• Final Answer: Here are the auto-complete suggestions for your queries:

**For ‘winter coat’ from Kohls:**
- Winter Coat for Men, Winter Coat for Women, ...

**For ‘kitchen appliance’ from Wayfair:**
- Kitchen appliance set, Kitchen appliance package deals...

These suggestions are based on popular searches and available products related to your
queries.
• Result: Unsolved
• Reason: The answer provides auto-complete suggestions for ‘winter coat’ from Kohls and
‘kitchen appliance’ from Wayfair, which are based on popular searches and available products
related to the queries.

6 Related Work

LLM Tool-use Recent works have proposed methods and models for enabling LLMs to interact
with Tools and real-world APIs. [Xu et al., 2023b, Zeng et al., 2023, Shen et al., 2024, Wang et al.,
2023, Xu et al., 2023a, Chen et al., 2023, Ruan et al., 2023, Li et al., 2024, Song et al., 2023, Yang
et al., 2024, Schick et al., 2024] Chen et al. [2024], Qin et al. [2023], Patil et al. [2023] also propose
custom models trained on their respective benchmarks, based on open-source models, demonstrating
solid in-domain and out-of-domain performance. Our testbed facilitates the development of more
advanced LLMs for tool-use by providing a ready-made framework, allowing researchers to easily
test new planning methods without building an entire system from scratch.

Tool-use Benchmarks In addition to the five benchmarks previously discussed, several others have
been proposed for evaluating LLMs’ tool-use capabilities [Li et al., 2023, Patil et al., 2023, Xu et al.,
2023a]. τ -bench [Yao et al., 2024], ToolSandbox [Lu et al., 2024], and AppWorld [Trivedi et al.,
2024] focus on the interactive and conversational aspects between users and agents in tool-learning.
For multimodal benchmarks, m&m’s [Ma et al., 2024] and MLLM-Tool [Wang et al., 2024] test
LLMs’ performance across natural language and vision. ToolQA [Zhuang et al., 2023] evaluates
LLMs’ ability to use external tools for question answering, while Ultratool [Huang et al., 2024] also
incorporates tool creation alongside other aspects. Our benchmark suite is comprehensive and it
recycles existing benchmarks’ queries and ground truth while addressing missing components in
evaluation.

7 Conclusion

In this work, we introduce SEAL, a comprehensive testbed designed to address key gaps in existing
LLM tool-use benchmarks, particularly for real-world API interactions. We identify critical issues
like overfitting, limited support for multi-step reasoning, and instability due to dynamic API behaviors.
To overcome these challenges, SEAL include an API simulator powered by GPT-4 and caching
responses and a robust evaluation framework covering the full API usage pipeline—from retrieval and
calls to final response. Our agent-based system provide a structured platform for reliable performance
comparisons. We believe SEAL will facilitate better development and evaluation of API-driven
LLMs, supporting more rigorous and reproducible testing in future research.
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A Appendix

A.1 Benchmark Standardization Details

ToolBench Sanitization A significant issue with ToolBench is the presence of numerous unsolvable
queries, which degrade the overall quality of the benchmark. To address this, we apply a series of
filters to exclude queries that cannot be mapped to the available API pool. Specifically, we use the
G1 subset of ToolBench training data (the largest among the G1-G3 subsets), which contains 72,783
queries. We then filter out queries that meet any of the following criteria:

• The finish type is “give_up,” indicating that the query could not be solved using the available
APIs.

• No matching APIs are found in the API pool, including cases of hallucinated function
names.

• Incorrect functions, not present in the function pool, are called.

• Errors occur while parsing API arguments.

After preprocessing, the total number of queries is reduced to 40,399, with 8,684 APIs remaining.
Following additional multi-step and multi-tool filtering, we arrive at a final count of 34,055 queries
and 7,559 APIs.

Multi-step Filtering We filter queries to focus on those requiring multi-step reasoning and the
use of multiple tools. Since ToolBench and APIGen provide tool-call ground truth, we leverage this
information to identify multi-step queries. For datasets that do not include ground truth information
such as tool selection benchmarks, we extract only the multi-tool queries.

A.2 Necessity for More Realistic Benchmarks

Current benchmarks often fail to reflect real-world scenarios, particularly when it comes to queries
requiring sequential, dependent reasoning. For example, ToolBench frequently features simplistic
user queries like “Perform a task with API A," which typically result from having LLMs generate
queries for a given set of APIs. Among the benchmarks we analyzed, APIGen stands out for having
the highest-quality queries. However, even APIGen rarely includes multi-step queries that requires
sequentially dependent reasoning. Instead, most queries in APIGen are parallel, such as “Perform
tasks A and B," where tasks A and B are independent of each other. We provide examples of this
dynamic below.

• Query: Generate the first 10 Fibonacci numbers and calculate the standard deviation of the
numbers [3.5, 4.2, 5.1, 6.7, 7.3]
• Query: Can you split the list [1, 2, 3, 4, 5, 6] into chunks of size 2, and then generate a
random string of length 10 with only uppercase letters?
• Query: Find verses with ’wisdom’, ’knowledge’, and ’understanding’. Also, generate a
15-character random password.

As a result, models like GPT-4 continue to perform well, achieving over an 80% pass rate on these
benchmarks. This is despite relying on a relatively simple setup, where a single LLM handles all tasks.
We find that a significant portion of existing benchmark queries follow this pattern, highlighting the
need for more complex benchmarks. Such benchmarks would provide a more accurate measure of
LLM capabilities in real-world scenarios.

A.3 Bootstrapping Results

Figure 4 presents a line plot based on the data from Table 3. As the size of the API pool progressively
increases, we observe an overall degradation in performance. However, this trend is less pronounced
in the pass rate.
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(a) Toolbench

(b) APIGen

Figure 4: SEAL execution results on two benchmarks.

A.4 API Simulator Prompt

Imagine you are an API Server. Your role is to simulate API calls
based on the API documentation provided in a JSON format. API
documentation includes the API’s name, description, and input
parameters. There are two types of parameters: required and
optional. Optional parameters are specified as "optional" in the
"type" field.

Following is the documentation for the API you need to simulate:

{API_INFO}

Your task is to generate a JSON response that aligns with the
expected output of the API. As you receive specific inputs for
this API call, analyze these inputs to determine their intended
purpose.

Your responses must adhere to a specific JSON structure as the
following:

{
"error": "",
"response": "<Your_Response>"

}

The error field should remain empty, indicating no errors in
processing. The response field should contain the content you
formulate based on the API’s functionality and the input
provided. Ensure that your responses are meaningful and directly
address the API’s intended functionality. If the provided
examples are mostly error messages or lack substantial content,
use your judgment to create relevant and accurate responses. The
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key is to maintain the JSON format’s integrity while ensuring
that your response accurately reflects the API’s intended output.

Please note that your answer should not contain anything other than
a json format object, which should be parsable directly to json.

Note that:
- your response should be around 100 to 200 words, containing rich

information given the api input parameters. Keep Your answer
short and simple.

- your response must be effective and have practical content.
- try to simulate the API call and return as helpful information as

possible. Instead of saying "The API successfully executed and
returned something", provide a more detailed response.

- do not mention that this is a simulation in your response, assume
that this is a real scenario and provide imaginary responses if
the information required is not available

A.5 SEAL Execution Example

Figure 5 illustrates an actual execution example from SEAL. Built on top of the AutoGen framework,
SEAL allows users to easily integrate and experiment with different agents in a plug-and-play fashion.
Additionally, the system enables monitoring of interactions between agents, providing a flexible and
user-friendly environment for testing various tool-use scenarios.
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Figure 5: Execution example of SEAL
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