
EDGS: Eliminating Densification for Efficient Convergence of 3DGS

Dmytro Kotovenko∗ Olga Grebenkova∗ Björn Ommer

CompVis @ LMU Munich, Munich Center for Machine Learning (MCML)

compvis.github.io/EDGS

300 500 700 900 1200 1700

Time (Seconds)

0.18

0.20

0.22

0.24

0.26

LP
IP

S
Sc

or
e

(lo
we

r i
s b

et
te

r)

Faster

Better

 3DGS
 3DGS-LM

 Mini gsplat

 Taming

3DGS [31]
3DGS-LM [25]+3DGS
MiniSplatting [15]
gsplat [80]
Taming-3DGS [45]
Ours 3DGS

0.5K steps
3DGS
3K steps

3DGS
30K steps

Ours
0.5K steps

Ours
3K steps

Taming 3DGS
30K steps

3DGS-MCMC
30K steps

Ground
Truth

Ours
30K

Scaffold GS
30K steps

Ours
Initialization

SfM
Initialization

Figure 1. 3DGS initializes with a sparse set of Gaussians and progressively adds more in under-reconstructed regions.
In contrast, our method begins with a dense initialization derived from triangulated dense 2D correspondences across
training image pairs, requiring only minimal refinement. This leads to faster convergence and higher rendering quality.
On the left, we compare our approach with state-of-the-art 3DGS acceleration methods on the MipNeRF360 [2] dataset.
Our method reaches the original 3DGS [31] LPIPS score in just 25% of the training time and uses only 60% of the final
number of splats, outperforming models like 3DGS-LM [25], Taming-3DGS [45], and MiniSplatting [15] trained for
the same duration. Note that all reported times include the one-time cost of dense correspondence computation. On
the right, we show that our method produces renderings nearly indistinguishable from the ground truth after only 3,000
steps—without any densification. Best viewed zoomed in.

Abstract

3D Gaussian Splatting reconstructs scenes by start-
ing from a sparse Structure-from-Motion initializa-
tion and iteratively refining under-reconstructed re-
gions. This process is inherently slow, as it requires
multiple densification steps where Gaussians are re-
peatedly split and adjusted, following a lengthy opti-
mization path. Moreover, this incremental approach

*Equal contribution

often leads to suboptimal renderings, particularly
in high-frequency regions where detail is critical.

We propose a fundamentally different approach:
we eliminate densification process with a one-step
approximation of scene geometry using triangulated
pixels from dense image correspondences. This
dense initialization allows us to estimate rough ge-
ometry of the scene while preserving rich details
from input RGB images, providing each Gaussian
with well-informed colors, scales, and positions. As

1

ar
X

iv
:2

50
4.

13
20

4v
1

 [
cs

.G
R

]
 1

5
A

pr
 2

02
5

https://compvis.github.io/EDGS

a result, we dramatically shorten the optimization
path and remove the need for densification. Un-
like traditional methods that rely on sparse key-
points, our dense initialization ensures uniform de-
tail across the scene, even in high-frequency regions
where 3DGS and other methods struggle. Moreover,
since all splats are initialized in parallel at the start
of optimization, we eliminate the need to wait for
densification to adjust new Gaussians.

Our method not only outperforms speed-
optimized models in training efficiency but also
achieves higher rendering quality than state-of-the-
art approaches, all while using only half the splats
of standard 3DGS. It is fully compatible with other
3DGS acceleration techniques, making it a versatile
and efficient solution that can be integrated with
existing approaches.

1. Introduction
Reconstructing accurate 3D scenes from dense col-
lections of 2D images is a fundamental challenge in
computer vision [8, 23, 48], with applications in vir-
tual and augmented reality [21, 28, 40, 55, 57, 88],
robotics [42, 54, 72], and immersive content cre-
ation [1, 4, 20, 36]. The goal is to obtain high-
quality 3D representations efficiently, enabling real-
time rendering while maintaining reconstruction fi-
delity. However, achieving this balance between ef-
ficiency, speed, and quality requires a representation
that is both expressive and computationally efficient.
NeRF-based models [2, 18, 48, 49, 83, 84] control
the trade-off between quality, computational cost,
and representation capacity by designing network
architectures and increasing the number of parame-
ters. In contrast, point-based graphics [24, 55, 78]
explicitly represent surfaces using discrete primi-
tives, such as meshes or point clouds, offering more
direct control over complexity but often struggling
with quality and scalability.

Recently, 3D Gaussian Splatting (3DGS) [31]
has emerged as a powerful and efficient alterna-
tive for 3D scene representation. It represents
scenes as a set of optimized 3D Gaussians, mathe-
matical primitives defined by their position, color,
and spread. The method starts with a sparse ini-

tialization, typically derived from Structure-from-
Motion (SfM) [58], and progressively refines the
scene by adding splats to under-reconstructed re-
gions. Through this densification process, 3DGS
can reach high rendering quality while efficiently
allocating computational resources.

However, this process is suboptimal. The orig-
inal 3DGS detects under-reconstructed regions us-
ing the gradient norm of the photometric loss. But
this metric often fails in high-frequency regions
and does not align well with human perception.
A separate branch of papers has proposed pixel-
error-driven formulations [3, 7, 45, 87], gradient
calculation improvements [81], and even treating
3DGS as Markov Chain Monte Carlo samples [32].
Despite these efforts, accurately capturing fine de-
tails, particularly in high-frequency regions, remains
a challenge, as illustrated in Fig. 1. Furthermore,
while each densification step is computationally ef-
ficient, the overall process is slow. It requires many
update steps, as Gaussians must iteratively adjust
their parameters before the model determines that
additional splats are necessary. This results in a
long optimization path, where individual Gaussians
undergo multiple refinements before reaching their
final states(see Sec. 4.5 and Fig. 5). Densification de-
lays convergence, as it takes many iterations before
the model identifies areas requiring higher recon-
struction fidelity. These challenges raise an impor-
tant question: can we bypass densification entirely?

The idea of iterative densification of a scene is
natural — it mirrors how humans create art. A
sculptor starts with rough shapes and progressively
refines details; an artist begins with broad strokes
before adding finer ones. However, cameras do not
operate this way. Instead of refining information
over time, a camera captures all available light at
once, recording all details simultaneously. It brings
us to the idea that waiting for the model to discover
where to add details is inefficient. Instead, it is better
to allocate resources from the very start and adjust
them through all optimization process.

In this paper, we propose a direct initialization
strategy that eliminates the need for incremental
densification used in the original 3DGS. Rather than
waiting for the model to gradually fill in missing

2

details, we precompute a dense set of 3D Gaus-
sians by triangulating dense 2D correspondences
across multiple input views. Knowing the viewing
rays for each correspondence pixel and the camera
poses—but not the depth along those rays—we re-
cover 3D positions by triangulating matched pixels
between image pairs. This allows us to assign each
Gaussian well-informed initial properties like posi-
tion, color, and scale from the start. To summarize,
we replace the slow, iterative densification of the
scene with a densely scattered collection of Gaus-
sians. As a result, each Gaussian is immediately
supervised by rich per-pixel photometric signals,
allowing for efficient optimization of the entire col-
lection and significantly accelerating convergence.

Although this initialization is noisy(see Fig. 2),
we show that it remains robust and leads to faster
convergence. Our experiments quantitatively and
qualitatively confirm that this approach results in
higher reconstruction quality, lower training time,
fewer Gaussians, and no need for densification. Our
contributions can be summarized as follows:
• We show that initial triangulation based on 2D

correspondences can replace the incremental re-
finement process, fundamentally changing how
3DGS models allocate resources.

• Our method reduces the path each Gaussian must
travel in parameter space, demonstrating that care-
ful initialization not only accelerates convergence
but also guides optimization toward a convergence
point corresponding to lower reconstruction error
and thus higher reconstruction quality.

• Our approach outperforms both speed-optimized
and quality-focused state-of-the-art models while
using only half the splats of standard 3DGS. By
improving initialization rather than altering the
optimization process, this method is compatible
with other 3DGS acceleration techniques, making
it a flexible enhancement to existing models.

2. Related Work
Novel View Synthesis It involves generating images
from perspectives different from the original input
viewpoints. A breakthrough in this area was Neural
Radiance Fields (NeRF)[48], which reconstructs
complex 3D scenes from 2D images using volumet-

ric rendering techniques[9, 39, 46, 47]. Since then,
many follow-up studies have focused on adapting
NeRF to sparse input views [27, 33, 52, 63, 84], im-
proving rendering speed [18, 41, 59, 83], and reduc-
ing training times [49, 52, 56, 70]. However, sam-
pling points along a ray and passing them through
an MLP to obtain density and color introduces sig-
nificant slowdowns during volume rendering. In
contrast, 3D Gaussian Splatting (3DGS) [31] has
gained attention due to its explicit representation,
high-fidelity results, and real-time rendering speed.

Challenges of 3DGS 3D Gaussian Splatting has
shown significant promise in a range of applications,
including human avatars [35, 38, 57, 88], text-to-
3D generation [6, 61, 82], dynamic scene model-
ing [10, 30, 44, 67, 74, 76], and more [21, 64, 65, 68,
69, 77, 79]. However, like all methods, 3DGS is not
without its limitations. Further advancements have
tackled key issues such as anti-aliasing [73, 85],
memory usage reduction [19, 37, 43, 50, 51], im-
proving surface reconstruction quality [21, 26], and
modeling high-frequency signals by replacing spher-
ical harmonics [75]. Several studies suggest that us-
ing an effective strategy for splat densification can
significantly enhance performance. RevDev [3] in-
troduced a per-pixel error function as a criterion
for densification. AbsGS [81] addressed the is-
sue of gradient collision during the detection of
under-reconstructed regions. MiniSplatting [15]
proposed a novel densification approach that incor-
porates both screen-space and world-space informa-
tion. ScaffoldGS [43] introduced anchor points and
implemented a growth algorithm to optimize their
distribution. Meanwhile, 3DGS-MCMC [32] re-
formulated 3DGS densification as a Markov Chain
Monte Carlo sampling process, enabling a more effi-
cient Gaussian distribution across the scene. In con-
trast, we propose an improved initialization method
that avoids densification altogether, eliminating the
need to detect under-reconstructed regions.

Accelerating 3DGS Several strategies have been
developed to improve the speed of 3DGS. One ap-
proach leverages pre-trained neural networks as pri-
ors to guide reconstruction [5, 14, 71, 89]. For ex-
ample, MVSplat [5] integrates a multi-view trans-
former, DepthSplat [71] incorporates depth infor-

3

GT SfM init (3DGS) Init with matchings (Ours)

Figure 2. Visual comparison of initialization methods on the stump scene from the Mip-NeRF360 dataset [2]. The left
image represents ground truth. The middle image shows the traditional 3DGS approach initialization with Structure-from-
Motion (SfM) [58]. The right image illustrates initialization with our method using matchings. Despite noisy appearance
at the initialization, our model can jointly optimize all the gaussians and achieve better reconstruction quality.

mation with the transformer to improve accuracy,
and [89] employs a triplane representation. This
data-driven strategy enables quick reconstruction
with good quality, particularly effective in sparse-
view scenarios. In this paper, we focus on dense-
view reconstruction. Another area of research tar-
gets the optimization of 3DGS efficiency by refining
the differentiable rasterizer [11, 16, 45] or improv-
ing the framework itself [80]. Separately, 3DGS-
LM [25] proposes a Levenberg-Marquardt optimizer
that integrates with the 3DGS rasterizer and can
be adapted to other rasterization methods. Our ap-
proach centers on improving the initialization pro-
cess, which is compatible with these optimizations
and can further increase optimization speed.
Initialization of 3DGS Recent works, such as
RAIN-GS [29] and 3DGS-MCMC [32], have shown
that random initialization can match the perfor-
mance of the original 3DGS. In contrast, Rad-
Splat [53] initializes from points extracted using
pretrained NeRFs to improve quality, though it re-
quires 9 hours of training. Our method departs from
both approaches by emphasizing efficiency while
outperforming quality-focused methods.

3. Approach
Our key goal is to enhance the initial set of Gaus-
sians (Sec. 3.1) by directly placing them at plausible
locations in 3D space, so we can omit the densifi-
cation process. First, we leverage the availability
of multiple images covering the scene and employ
a pretrained dense matching network to establish

pixel correspondences across views (Sec. 3.2). To
accurately initialize Gaussian positions we solve
subsequent 3D triangulation problem (Sec. 3.3).

3.1. Preliminaries
3DGS [31] represents scenes as collections of Gaus-
sians G =

⋃N
i=1 gi, rendered into images using a

splatting-based rasterization technique [90]. Each
Gaussian component gi is described by parameters
{gx

i ,Σi, g
c
i , g

α
i } for i ∈ {1, . . . , N}. Specifically,

gx
i ∈ R3 is the center of the Gaussian gi in 3D

space, Σi ∈ R7 encodes its shape, gc
i ∈ R3 defines

its RGB color, and gα
i ∈ R1 indicates its opacity.

The color C of a given pixel p is rendered as:

C(p) =

N∑
i=1

gc
iσi(p)

i−1∏
j=1

(1− gα
j);

σi(p) = gα
i e

− 1
2 (p

′−gx
i)

TΣ−1
i (p′−gx

i),

(1)

where σi measures the influence of the i-th Gaus-
sian on pixel p, with (p′ − gx

i) representing the
shortest distance between the pixel projection line
and the Gaussian center gx

i . To project 3D Gaus-
sians to 2D for rendering, following [31], we repa-
rameterize the covariance matrix Σi as a function
of scaling Si and rotation Ri matrices ensuring the
positive semi-definiteness of Σi:

Σi = RiSiS
T
i R

T
i . (2)

The 3D scene is optimized using a photometric
loss function. Specifically, given an image Ii cap-
tured from viewpoint Ci, the goal is to refine the

4

set of Gaussians G such that the rendering R(G|Ci)
closely aligns with the image Ii. This alignment
is evaluated through a combination of L1 and the
Structural Similarity Index Measure (SSIM) losses.

3.2. Extract information from 2D prior
The main idea behind our approach is to use all the
available information from 2D images right from
the start, instead of adding it piece by piece through
photometric loss. We use 2D correspondences to
improve the initialization and project all the known
information directly into 3D. We start by selecting
a reference image Ii from the training dataset. For
each reference image Ii, we identify a set of neigh-
boring images I = {I1, . . . , Ij |j ∈ [0, J]} based
on camera parameters and spatial proximity to Ii.
These neighboring images maximize overlap with
the reference image, enhancing keypoint correspon-
dence reliability. To identify neighboring cameras,
we compute the proximity between projection matri-
ces P using the Frobenius norm. Since the camera
intrinsics are identical for one scene, we focus solely
on the extrinsic parameter differences.

For each neighboring image Ij ∈ I, dense cor-
respondences relative to Ii are computed using a
pretrained dense matching network denoted as M.
This network estimates dense pixel-wise correspon-
dences between images Ii and Ij , formalized as:

M(Ii, Ij) → Wj→i, cij , (3)

where Wj→i ∈ R2×H×W is a dense warp field
mapping Ij to Ii, and cij ∈ RH×W quantifies cor-
respondence confidence. Specifically, for a pixel at
coordinates (uj

k, v
j
k) ∈ Ij , the warp Wj→i provides

the corresponding pixel location in Ii via the map-
ping Wj→i(uj

k, v
j
k). For every pair of images, we

extract same number of correspondences.

3.3. Splats Initialization
To accurately place 2D correspondences in 3D
space, we formulate the task as a triangulation prob-
lem. The goal is to find an accurate 3D position
for a new Gaussian splat gx

k = (xk, yk, zk) for each
matched keypoint pair (ui

k, v
i
k) and (uj

k, v
j
k).

We use the projection equations for each camera,
where the projection matrices P i and P j are 4x3

matrices that map 3D homogeneous coordinates to
2D homogeneous coordinates. The scalars wi

k and
wj

k are normalization factors to account for the ho-
mogeneous coordinates, ensuring the consistency of
the projection across cameras. Specifically:

[
gx
k

1

]T

P i = wi
k

ui
k

vik
1


T

,

[
gx
k

1

]T

P j = wj
k

u
j
k

vjk
1


T

.

(4)

Since we normalize by the third component(third
row), this gives the following equations:

[
gx
k

1

]T

P i
col,0 − ui

k

[
gx
k

1

]T

P i
col,2 = 0,[

gx
k

1

]T

P i
col,1 − vik

[
gx
k

1

]T

P i
col,2 = 0,[

gx
k

1

]T

P j
col,0 − uj

k

[
gx
k

1

]T

P j
col,2 = 0,[

gx
k

1

]T

P j
col,1 − vjk

[
gx
k

1

]T

P j
col,2 = 0.

(5)

We rearrange the equations to the form
Agx

k = −b, where A is constructed from the pro-
jection matrices and b being a vector of constants:

AT =


P i

col,0 − ui
kP

i
col,2

P i
col,1 − vikP

i
col,2

P j
col,0 − uj

kP
j
col,2

P j
col,1 − vjkP

j
col,2

 , b =


0
0
0
0

 . (6)

The system can be solved using the least squares
method:

gx
k = argmin

gx
k

∥Agx
k + b∥2. (7)

We then augment this solution into homogeneous
coordinates for each Gaussian as:

gx
k = [xk, yk, zk, 1]

T . (8)

5

After determining Gaussian positions, we ini-
tialize color and scaling parameters. Colors are
initialized as the average pixel values at the corre-
sponding matched pixels (ui

k, v
i
k) and (uj

k, v
j
k) from

the paired images Ii and Ij . The initial scale can be
found using the minimum distance from the Gaus-
sian coordinate to the nearest camera Ci or Cj . Ro-
tation is simply an identity matrix. An example
of such an initialization is provided in Fig. 2. Fi-
nally, these initialized Gaussians undergo standard
photometric loss optimization to refine their param-
eters, correct any inaccuracies, and achieve precise,
high-quality 3D reconstructions.

4. Experiments

This section provides both quantitative and qualita-
tive evaluations of our approach. Our implementa-
tion builds upon the original 3DGS codebase [31].
All experiments were conducted on an NVIDIA
A100 GPU to ensure consistent performance across
methods. To maintain fairness, we obtained re-
sults for competing methods, including their training
times, using the same hardware. For our approach,
the initialization time is included in both Tab. 1 and
Fig. 1 for comprehensive comparison.

4.1. Datasets and Metrics

We evaluate our method on three established
datasets: Mip-NeRF360 [2], Tanks&Temples [34],
and Deep Blending [24], which contain 9, 2, and
2 scenes, respectively. These datasets cover a mix
of bounded indoor and unbounded outdoor environ-
ments with detailed backgrounds.

For evaluation, we use structural similarity
(SSIM) [66], peak signal-to-noise ratio (PSNR), and
perceptual similarity (LPIPS) [86] metrics on the
test dataset. Following prior work [31, 81], ev-
ery 8th camera view is set aside for testing. For
Mip-NeRF360, we follow 3DGS [31] protocol by
downsampling outdoor scenes by a factor of four
and indoor scenes by a factor of two. For other
datasets, we use the original resolution. Addition-
ally, we report optimization runtime and the final
number of Gaussians for each method.

4.2. Baselines
We focus on both speed and quality. Since our
method can operate in different modes and sup-
ports an early stopping mechanism, we compare
with representative baselines across categories. For
ray-based approaches, we compare against the fast
Plenoxels [83] and two advanced NeRF methods:
Mip-NeRF360 [2] and Instant-NGP [49]. As our
method is based on 3DGS, we also compare with the
original 3DGS [31]. To ensure a fair comparison, we
retrain it (denoted as 3DGS*), as this resulted in bet-
ter performance than the originally reported scores.
We include AbsGS[81], which focuses on improv-
ing the densification strategy, Mip-Splatting[85],
a method for mitigating aliasing issues, and two
high-quality baselines, 3DGS-MCMC [32] and
Scaffold-GS [43]. Since our method emphasizes the
initialization stage, we include RAIN-GS [29]. No-
tably, the mean values for Scaffold-GS and 3DGS-
MCMC changed significantly, as they originally re-
ported results for only 7 of the 9 Mip-NeRF360
scenes. Additionally, we report results for Scaffold-
GS trained with the same resolution settings as
3DGS, which were not included in the original paper.
We compare quality, initialization, and ray tracing
categories against our model with full 30000-step
convergence, denoted as Ours 30K.

To evaluate speed and efficiency, we com-
pare against the fastest competitive methods: EA-
GLES [19], 3DGS-LM [25], Taming 3DGS [45], a
fast reimplementation of 3DGS (gsplat) [80], and
Mini Splatting [15], which focuses on optimizing
computational budgets. We compare these methods
against our model stopped at 5000 steps (Ours 5K).

Importantly, our approach is orthogonal to most
of the methods listed in Tab. 1, as they primarily en-
hance computation through different means—such
as modifying the optimizer [25], re-implementing
the 3DGS framework [80], or improving the rasteri-
zation engine [45]. Therefore, we also report results
for our method combined with Taming 3DGS.

4.3. Quantitative Evaluations
The quantitative results are presented in Tab. 1.
Integrating our method with 3DGS and Taming-
3DGS consistently outperforms all other techniques,

6

Mip-NeRF 360 Tanks & Temples Deep Blending

SSIM ↑ PSNR ↑ LPIPS ↓ Train
time

#G
(106) SSIM ↑ PSNR↑ LPIPS↓ Train

time
#G

(106) SSIM↑ PSNR ↑ LPIPS ↓ Train
time

#G
(106)

Plenoxels [17] 0.626 23.08 0.463 26 m - 0.719 21.08 0.379 25 m - 0.795 23.06 0.510 28 m -
INGP-Big [49] 0.699 25.59 0.331 8 m - 0.745 21.92 0.305 7 m - 0.817 24.96 0.390 8 m -R

ay
s

Mip-NeRF360 [2] 0.792 27.69 0.237 48 h - 0.759 22.22 0.257 48 h - 0.901 29.40 0.245 48 h -

3D-GS [31] 0.815 27.21 0.214 42 m∗∗ 3.5 0.841 23.14 0.183 27 m∗∗ 2.0 0.903 29.41 0.243 36 m∗∗ 3.2
3D-GS [31]* 0.816 27.49 0.215 26 m 2.8 0.853 23.76 0.169 19 m 1.6 0.908 29.77 0.242 27 m 2.6
AbsGS-0004 [81] 0.818 27.41 0.198 20 m 3.1 0.852 23.59 0.162 14 m 1.4 0.901 29.61 0.236 20 m 1.9
Rain-GS [29]† 0.807 22.23 0.229 32 m⋆⋆ - 0.823 23.13 0.207 15 m⋆⋆ - 0.900 29.42 0.255 28 m⋆⋆ -
Mip-Splatting [85] 0.838 27.97 0.179 26 m 4.0 0.859 23.81 0.156 16 m 2.4 0.903 29.35 0.239 29 m 3.6
3DGS-MCMC [32] 0.842 28.15 0.176 20 m 3.2 0.863 24.22 0.158 13 m 1.9 0.902 29.56 0.244 19 m 2.9
ScaffoldGS [43] 0.812 27.60 0.222 22 m 0.6‡ 0.854 24.08 0.165 23 m 0.6‡ 0.907 30.25 0.245 28 m 0.4‡

Ours + 3DGS 30K steps 0.840 27.80 0.175 29 m 1.9 0.874 24.45 0.124 22 m 1.4 0.909 30.05 0.219 30 m 1.6

Q
ua

lit
y

Ours + Taming 3DGS 30K steps 0.839 28.06 0.174 16 m 3.2 0.881 24.93 0.121 12 m 1.9 0.915 30.28 0.210 14 m 2.8

Taming 3DGS [45] 0.820 27.71 0.207 14 m 3.2 0.856 24.34 0.164 9 m 1.9 0.907 29.54 0.237 12 m 2.8
3DGS+3DGS-LM [25]† 0.813 27.39 0.221 16 m 2.8⋆ 0.845 23.73 0.182 12 m 1.6⋆ 0.903 29.72 0.247 16 m 2.6⋆

gsplat [80] 0.818 27.51 0.215 18 m 3.1 0.845 23.57 0.170 13 m 1.8 0.904 29.57 0.237 15 m 2.8
EAGLES [19] 0.809 27.20 0.232 16 m 1.3 0.837 23.26 0.201 10 m 0.7 0.910 29.85 0.246 18 m 1.2
MiniSplatting [15] 0.820 27.25 0.217 12 m 0.5 0.836 23.21 0.203 12 m 0.3 0.908 29.98 0.253 8 m 0.4

Ours + 3DGS 5K steps 0.820 26.70 0.202 8 m 2.9 0.860 22.95 0.164 9 m 2.2 0.909 29.46 0.231 10 m 2.2

E
ffi

ci
en

cy

Ours + Taming 3DGS 5K steps 0.825 26.89 0.195 6 m 2.8 0.864 23.08 0.160 4 m 1.6 0.910 29.46 0.228 4 m 2.4

Table 1. Quantitative evaluations across the Mip-NeRF 360 [2], Tanks&Temples [34], and Deep Blending [24] datasets.
We assess quality using PSNR, SSIM, and LPIPS, while resource efficiency is measured by training time and, where
applicable, the final number of Gaussians (#G). The best and second-best results are highlighted for each metric. Note
that the reported training time for our method includes initialization, whereas, for other methods except the initialization
category, we report only the training time. † indicates that results were taken directly from the paper, as the code is either
not publicly available or not functioning. ‡ for ScaffoldGS denotes the number of anchors, not splats. ⋆ indicates that
for 3DGS-LM, we assume the number of Gaussians is the same as in the original 3DGS, as the method uses the same
densification strategy. ∗∗ denotes results reported for an NVIDIA A6000, while ⋆⋆ corresponds to results for an NVIDIA
RTX 3090. Please refer to supplementary materials for per-scene scores.

demonstrating its effectiveness in enhancing recon-
struction quality. Our models, trained for 30,000
steps, surpass quality-focused approaches, while the
same models trained for just 5,000 steps achieve
faster performance than efficiency-focused methods,
matching them in evaluation metrics. Notably, the
efficiency of our model stems from its improved
initialization rather than optimizing computational
steps. This initialization-based approach is compati-
ble with other techniques listed in the second half
of Tab. 1. For instance, applying our initialization to
Taming-3DGS significantly boosts its performance.

Our method shows particularly strong improve-
ments in SSIM and LPIPS scores compared to
PSNR. We attribute this to the fact that our model
is less suited for handling reflective surfaces, where
the same physical location may radiate different col-
ors depending on the viewpoint. Since our color
prediction relies on input viewpoints and detected
correspondences, it may struggle with such scenar-
ios. Nonetheless, our approach excels in overall
reconstruction quality and efficiency, offering a ro-

bust enhancement to existing 3DGS pipelines.

4.4. Qualitative Evaluations
In Fig. 3, our approach shows clear improvements
over other methods on images sampled from Mip-
NeRF360 [2], Deep Blending [24], and Tank &
Temples [34]. For qualitative evaluation, we com-
pare our approach based on 3DGS without densifi-
cation to state-of-the-art quality-focused methods,
as this provides a more meaningful comparison than
benchmarking against the 3DGS baseline. We have
cropped regions of interest for the main paper; full-
scale results are in the supplementary material. The
examples show that our model excels not only in
high-frequency regions—such as small stones near
railroad tracks, grass, or concrete textures—but also
in capturing fine details like flower stems (first row)
and distant elements like roads (third row). Other
models often fail to reconstruct these details ac-
curately, either blurring them or introducing high-
frequency artifacts. EDGS dense initialization en-
sures a Gaussian splat is placed at every meaningful

7

GT 3DGS-MCMC Mip-Splatting Scaffold-GS Taming 3DGS Ours 3k Ours 30k

Figure 3. Qualitative comparison on flowers and treehill from Mip-NeRF360 [2], train from Tank & Temples [34] and
Playroom from Deep Blending [24]. For this visualization, we crop regions of interest. See supplementary materials for
full renderings. Our model effectively reduces blur and preserves fine details that other methods often overlook or blur. It
also performs comparably to or better than state-of-the-art methods, achieving faster convergence. For comparison, we
additionally provide renderings of these cropped regions for our model with 3DGS trained for only 3,000 steps.

Initialization Type PSNR↑ SSIM↑ LPIPS↓
3DGS (Random Init, w/D) 22.19 0.704 0.313
3DGS (M=COLMAP, w/ D.) 27.49 0.816 0.215
Ours (M=RoMa, w/o D.) 27.80 0.840 0.175
Ours (M=RoMa, w/ D.) 27.84 0.841 0.173
Depth [22] Init (w/ D.) 27.15 0.818 0.198
Depth [22] Init (w/o D.) 26.75 0.807 0.209

Table 2. Impact of densification on different initialization
methods. While densification can improve performance
of our model, especially in poorly initialized scenes, it
significantly increases the number of Gaussians.

location, enabling precise and detailed reconstruc-
tion. We also provide crops for our model with
3000 steps, showing that we achieve comparable
perceptual quality much faster than other methods.

Extreme Viewpoint Rendering. Our model effec-
tively handles extreme viewpoint variations, out-
performing the baseline when rendering from cam-

Figure 4. Extreme viewpoint rendering. EDGS (right)
better preserves details and reduces stretched Gaussians
when rendering from viewpoints far outside the training
set compared to the 3DGS (left). This results in a more
consistent distribution and improved quality, especially in
challenging regions like the building and flower pot.

era angles far outside the training set. As shown
in Fig. 4, our dense initialization prevents the need
for stretching small Gaussians to compensate for
pixel loss at a distance, resulting in a more stable and
accurate reconstruction. As visualized for garden

8

10 2 10 1 100 101 102

Coordinate Updates

100

101

102

103

Co
lo

r U
pd

at
es

Absolute distance between
 initialization and final scene

3DGS
Ours

10 6 10 4 10 2 100 102

Coordinate Updates

10 4

10 3

10 2

100

102

Co
lo

r U
pd

at
es

Aggregated distance
 through optimisation process

3DGS
Ours

Figure 5. Distributions of 3DGS parameters change in
color/coordinate space throughout training. We compare
color gc

i and coordinate gx
i changes from initialization to

30K steps. Our method not only initializes closer to the
solution (right chart) but also requires significantly fewer
adjustments (left chart) through the ptimisation process,
leading to faster and more stable convergence.

scene from the Mip-NeRF360 dataset, our method
avoids large Gaussians and exhibits less noise com-
pared to the competing approach.

4.5. Ablation Studies
Gaussian Motion and Convergence. We study
the distance traveled by each Gaussian during op-
timization. Fig. 5 presents the start-to-finish dis-
placement and full motion path length. Namely,
we analyze how Gaussian coordinate and color pa-
rameters evolve during the optimization process by
measuring two key distributions. Let gi(t) denote
the state of Gaussian gi at optimization step t for
i ∈ {1, . . . , N}. The first distribution captures the
absoulte travel distance, defined as:(

∥gc
i (0)− gc

i (T)∥2
∥gx

i (0)− gx
i (T)∥2

)
∈ R2. (9)

The second distribution measures the full trail
path length, computed as:

T∑
t=0

∥gc
i (t)− gc

i (t+ 1)∥2
T∑

t=0
∥gx

i (t)− gx
i (t+ 1)∥2

 ∈ R2, (10)

where T denotes the number of optimization steps.
Our method significantly reduces the final coor-
dinate displacement, as Gaussians are initialized
closer to surfaces, requiring fewer adjustments.

Matching Algorithm PSNR↑ SSIM↑ LPIPS↓
Ours (M=RoMa) 27.80 0.840 0.175
LoFTR [60] Init 27.71 0.828 0.185
DKM [12] Init 27.69 0.829 0.190
RAFT [62] Init 26.98 0.802 0.218

Table 3. Comparison of different matching algorithms.
While RoMa, LoFTR, and DKM perform similarly, RAFT
struggles since it was primarily designed for optical flow
between consecutive video frames.

However, color changes remain necessary since the
initialization provides only an approximate color
match. Compared to 3DGS, our model reduces the
final coordinate travel distance by 50 times, and the
total path length in coordinates is 30 times shorter.
The color path length also decreases, though less
dramatically, by approximately a factor of two, as
small oscillations remain along the trajectory. For a
more detailed analysis, we provide videos of Gaus-
sian motion in our supplementary material.
Matching Algorithm Comparison. We evaluate
various image matching methods M for initial-
izing our splats. Throughout this paper, we use
RoMa [13] as our primary matching algorithm, but
we also experiment with LoFTR [60], DKM [12],
and RAFT [62]. While RoMa, LoFTR, and DKM
yield comparable performance, RAFT struggles due
to its primary design for optical flow in consecu-
tive video frames, where viewpoint differences are
minimal. In addition to feature matching, we eval-
uate an alternative depth-based initialization using
DepthFM [22]. However, monocular depth esti-
mates suffer from scale inconsistencies even across
neighboring views, leading to worse performance.
While DepthFM performs better than the baseline
3DGS (COLMAP initialization + Densification), it
remains less effective than our matching-based ap-
proach. See Tabs. 2 and 3 for a detailed comparison
of performance on the Mip-NeRF360 [2] dataset.
Effect of Densification. We analyze the impact
of densification across different initialization strate-
gies, including our method, depth-projected splats,
COLMAP, and NeRF-based initialization. While
densification can be beneficial in cases where ini-
tialization is sparse—such as treehill scene in Mip-

9

NeRF360, where distant regions are underrepre-
sented—it significantly increases the number of
Gaussians, making optimization less efficient and
harder to control. See Tab. 2 for detailed results.
Robustness to Noise. Our model can tolerate inac-
curacies in the initial matches arising from errors
in the triangulation process or suboptimal matches
from M. To evaluate this robustness, we introduce
Gaussian noise ϵ ∼ N (0, σ) to either the coordi-
nates or color of the initialized splats and analyze
how final performance changes for varying noise
levels σ. Fig. 6 presents the effect of increasing
noise on PSNR and LPIPS. Interestingly, our model
demonstrates greater robustness to color noise than
to coordinate noise, reinforcing our claim that the
primary advantage of our approach lies in reducing
Gaussian movement during optimization. Despite
the added perturbations, performance remains stable
for moderate noise levels. Noise ϵ is applied sepa-
rately to the color parameter gc

i and the coordinate
parameter gx

i . See supplementary material for vi-
sualizations of noisy scenes, further illustrating our
model’s resilience. Notably, our method remains sta-
ble even with small amounts of added noise, likely
because the initialization itself is already inherently
noisy, as shown in Fig. 2. All experiments are con-
ducted on the Mip-NeRF360 dataset.

25 26 27 28
Final PSNR

0.16

0.20

0.24

0.28

0.32

Fin
al

 L
PI

PS

=0.01=0.05

=0.15

=0.25

=0.5

=1.0

=0.01=1.0=2.0=4.0
=8.0

Coordinates noise
Color noise

Figure 6. The effect of adding noise N (0, σ) to our model.
Please note that noise scale σ is higher for color noise.
In the supplementary, we provide images visualizing the
effect of noise on the initialization quality.

Hyperparameter Sensitivity. We evaluate the im-
pact of key hyperparameters, including the number
of reference frames and matches sampled per view.
Specifically, we analyze the effect of varying the

26 26 27 28
Final PSNR

0.18

0.24

0.30

0.36

Fin
al

 L
PI

PS

2000

5000
100001500035000

4

10

20

50
80 180

#Matches per reference
#Reference views

Figure 7. Impact of hyperparameters on final performance.
We visualize the importance of sampling a sufficient num-
ber of reference frames(orange) and having a sufficient
number of points sampled from each viewpoint(blue).

number of reference cameras and sampled keypoints
in Fig. 7. Increasing these values beyond a certain
point yields diminishing returns, leading us to select
15000 keypoints per reference frame and 180 ref-
erence cameras as a balance between performance
and computational cost. Regarding the number of
nearest neighbors used for match sampling, we ob-
serve that while increasing this number significantly
affects the initialization time (as more matches need
to be computed), its impact on final performance
is minimal. The supplementary material provides
additional visualization for this hyperparameter.

5. Conclusion

We propose a novel initialization strategy for 3D
Gaussian Splatting that directly triangulates dense
2D keypoints into 3D space. Unlike conventional it-
erative densification, our method begins with a high-
density Gaussian distribution, resulting in faster con-
vergence and improved reconstruction quality.

This initialization reduces the distance each
Gaussian must travel in parameter space, accelerat-
ing convergence and guiding optimization toward
lower-error reconstructions. EDGS exceeds the
performance of both speed-optimized and quality-
focused 3DGS approaches while requiring six times
fewer optimization steps and approximately 40%
fewer Gaussians. EDGS also integrates with ex-
isting acceleration techniques, offering an efficient
upgrade for high-quality 3D reconstruction.

10

Acknowledgement
This project has been supported by the German Fed-
eral Ministry for Economic Affairs and Climate Ac-
tion within the project “NXT GEN AI METHODS
– Generative Methoden für Perzeption, Prädiktion
und Planung”, the bidt project KLIMA-MEMES,
Bayer AG, the project “GeniusRobot” (01IS24083),
funded by the Federal Ministry of Education and
Research (BMBF). The authors gratefully acknowl-
edge the Gauss Center for Supercomputing for pro-
viding compute through the NIC on JUWELS at
JSC and the HPC resources supplied by the Erlan-
gen National High Performance Computing Center
(NHR@FAU funded by DFG project 440719683)
under the NHR project JA-22883.

References
[1] Hendrik Baatz, Jonathan Granskog, Marios Papas,

Fabrice Rousselle, and Jan Novák. Nerf-tex: Neu-
ral reflectance field textures. Computer Graphics
Forum, 41, 2022. 2

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin,
Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields.
In CVPR, 2022. 1, 2, 4, 6, 7, 8, 9

[3] Samuel Rota Bulò, Lorenzo Porzi, and Peter
Kontschieder. Revising densification in gaussian
splatting. arXiv preprint arXiv:2404.06109, 2024.
2, 3

[4] Jiafu Chen, Boyan Ji, Zhanjie Zhang, Tianyi Chu,
Zhiwen Zuo, Lei Zhao, Wei Xing, and Dongming
Lu. Testnerf: Text-driven 3d style transfer via cross-
modal learning. In International Joint Conference
on Artificial Intelligence, 2023. 2

[5] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan
Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaus-
sian splatting from sparse multi-view images. In
European Conference on Computer Vision, pages
370–386. Springer, 2025. 3

[6] Zilong Chen, Feng Wang, Yikai Wang, and Huaping
Liu. Text-to-3d using gaussian splatting. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21401–21412,
2024. 3

[7] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao,
Wei Yin, Yuexin Ma, Wenping Wang, and Xuejin

Chen. Gaussianpro: 3d gaussian splatting with pro-
gressive propagation. In Forty-first International
Conference on Machine Learning, 2024. 2

[8] Amaury Dame, Victor A. Prisacariu, Carl Y. Ren,
and Ian Reid. Dense reconstruction using 3d ob-
ject shape priors. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages
1288–1295, 2013. 2

[9] Robert A. Drebin, Loren Carpenter, and Pat Han-
rahan. Volume rendering. In Proceedings of the
15th Annual Conference on Computer Graphics and
Interactive Techniques, page 65–74, New York, NY,
USA, 1988. Association for Computing Machinery.
3

[10] Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He,
Wenzheng Chen, and Baoquan Chen. 4d gaussian
splatting: Towards efficient novel view synthesis for
dynamic scenes. arXiv preprint arXiv:2402.03307,
2024. 3

[11] Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruo-
fan Liang, Pawan Kumar Sanjaya, and Nandita Vi-
jaykumar. Distwar: Fast differentiable rendering
on raster-based rendering pipelines. arXiv preprint
arXiv:2401.05345, 2023. 4

[12] Johan Edstedt, Ioannis Athanasiadis, Mårten
Wadenbäck, and Michael Felsberg. DKM: Dense
kernelized feature matching for geometry estima-
tion. In IEEE Conference on Computer Vision and
Pattern Recognition, 2023. 9

[13] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten
Wadenbäck, and Michael Felsberg. RoMa: Robust
Dense Feature Matching, 2023. arXiv:2305.15404
[cs]. 9

[14] Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin
Wang, Jian Zhang, Xinghao Ding, Danfei Xu,
Boris Ivanovic, Marco Pavone, Georgios Pavlakos,
et al. Instantsplat: Unbounded sparse-view pose-
free gaussian splatting in 40 seconds. arXiv preprint
arXiv:2403.20309, 2, 2024. 3

[15] Guangchi Fang and Bing Wang. Mini-splatting:
Representing scenes with a constrained number of
gaussians. In European Conference on Computer
Vision, 2024. 1, 3, 6, 7

[16] Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi
Wang, Tao Liu, Zhilin Pei, Hengjie Li, Xingcheng
Zhang, and Bo Dai. Flashgs: Efficient 3d gaussian
splatting for large-scale and high-resolution render-
ing. arXiv preprint arXiv:2408.07967, 2024. 4

[17] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qin-
hong Chen, Benjamin Recht, and Angjoo Kanazawa.

11

Plenoxels: Radiance fields without neural networks.
In CVPR, 2022. 7

[18] Stephan J Garbin, Marek Kowalski, Matthew John-
son, Jamie Shotton, and Julien Valentin. Fastnerf:
High-fidelity neural rendering at 200fps. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 14346–14355, 2021. 2, 3

[19] Sharath Girish, Kamal Gupta, and Abhinav Shri-
vastava. Eagles: Efficient accelerated 3d gaus-
sians with lightweight encodings. arXiv preprint
arXiv:2312.04564, 2023. 3, 6, 7

[20] Leonardo Gomes, Luciano Silva, and Olga Bellon.
3d reconstruction methods for digital preservation
of cultural heritage: A survey. Pattern Recognition
Letters, 50, 2014. 2

[21] Antoine Guédon and Vincent Lepetit. Sugar:
Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh render-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5354–5363, 2024. 2, 3

[22] Ming Gui, Johannes S. Fischer, Ulrich Pres-
tel, Pingchuan Ma, Dmytro Kotovenko, Olga
Grebenkova, Stefan Andreas Baumann, Vincent Tao
Hu, and Björn Ommer. DepthFM: Fast Monocu-
lar Depth Estimation with Flow Matching, 2024.
arXiv:2403.13788 [cs]. 8, 9

[23] Richard Hartley and Andrew Zisserman. Multiple
view geometry in computer vision. Cambridge uni-
versity press, 2003. 2

[24] Peter Hedman, Julien Philip, True Price, Jan-
Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based
rendering. ACM Transactions on Graphics (ToG),
37(6):1–15, 2018. 2, 6, 7, 8

[25] Lukas Höllein, Aljaž Božič, Michael Zollhöfer,
and Matthias Nießner. 3dgs-lm: Faster gaussian-
splatting optimization with levenberg-marquardt.
arXiv preprint arXiv:2409.12892, 2024. 1, 4, 6,
7

[26] Binbin Huang, Zehao Yu, Anpei Chen, Andreas
Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In ACM
SIGGRAPH 2024 Conference Papers, pages 1–11,
2024. 3

[27] Muhammad Zubair Irshad, Sergey Zakharov,
Katherine Liu, Vitor Guizilini, Thomas Kollar,
Adrien Gaidon, Zsolt Kira, and Rares Ambrus. Neo
360: Neural fields for sparse view synthesis of out-
door scenes. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages
9187–9198, 2023. 3

[28] Joel Janai, Fatma Güney, Aseem Behl, and An-
dreas Geiger. Computer vision for autonomous vehi-
cles: Problems, datasets and state-of-the-art. Found.
Trends Comput. Graph. Vis., 12:1–308, 2017. 2

[29] Jaewoo Jung, Jisang Han, Honggyu An, Jiwon Kang,
Seonghoon Park, and Seungryong Kim. Relaxing ac-
curate initialization constraint for 3d gaussian splat-
ting. arXiv preprint arXiv:2403.09413, 2024. 4, 6,
7

[30] Kai Katsumata, Duc Minh Vo, and Hideki
Nakayama. An efficient 3d gaussian representation
for monocular/multi-view dynamic scenes. arXiv
preprint arXiv:2311.12897, 2023. 3

[31] Bernhard Kerbl, Georgios Kopanas, Thomas
Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM
Trans. Graph., 42(4):139–1, 2023. 1, 2, 3, 4, 6, 7, 8

[32] Shakiba Kheradmand, Daniel Rebain, Gopal
Sharma, Weiwei Sun, Yang-Che Tseng, Hossam
Isack, Abhishek Kar, Andrea Tagliasacchi, and
Kwang Moo Yi. 3d gaussian splatting as markov
chain monte carlo. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2024. Spotlight
Presentation. 2, 3, 4, 6, 7

[33] Mijeong Kim, Seonguk Seo, and Bohyung Han.
Infonerf: Ray entropy minimization for few-shot
neural volume rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12912–12921, 2022. 3

[34] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and
Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions
on Graphics (ToG), 36(4):1–13, 2017. 6, 7, 8

[35] Muhammed Kocabas, Jen-Hao Rick Chang, James
Gabriel, Oncel Tuzel, and Anurag Ranjan. Hugs:
Human gaussian splats. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 505–515, 2024. 3

[36] Dmytro Kotovenko, Olga Grebenkova, Nikolaos
Sarafianos, Avinash Paliwal, Pingchuan Ma, Omid
Poursaeed, Sreyas Mohan, Yuchen Fan, Yilei Li,
Rakesh Ranjan, and Björn Ommer. Wast-3d:
Wasserstein-2 distance for scene-to-scene styliza-
tion on 3d gaussians. In Computer Vision – ECCV
2024, pages 298–314, Cham, 2025. Springer Nature
Switzerland. 2

[37] Joo Chan Lee, Daniel Rho, Xiangyu Sun,
Jong Hwan Ko, and Eunbyung Park. Compact 3d

12

gaussian representation for radiance field. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21719–21728,
2024. 3

[38] Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie
Liu, and Kostas Daniilidis. Gart: Gaussian ar-
ticulated template models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 19876–19887, 2024. 3

[39] Marc Levoy. Efficient ray tracing of volume data.
TOG, 1990. 3

[40] Shaopeng Li, Daqiao Zhang, Yong Xian, Bangjie
Li, Tao Zhang, and Chengliang Zhong. Overview of
deep learning application on visual slam. Displays,
74:102298, 2022. 2

[41] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng
Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing
Systems, 33:15651–15663, 2020. 3

[42] Guanxing Lu, Shiyi Zhang, Ziwei Wang, Changliu
Liu, Jiwen Lu, and Yansong Tang. Manigaussian:
Dynamic gaussian splatting for multi-task robotic
manipulation. In European Conference on Com-
puter Vision, pages 349–366. Springer, 2024. 2

[43] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli,
Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages
20654–20664, 2024. 3, 6, 7

[44] Jonathon Luiten, Georgios Kopanas, Bastian Leibe,
and Deva Ramanan. Dynamic 3d gaussians: Track-
ing by persistent dynamic view synthesis. arXiv
preprint arXiv:2308.09713, 2023. 3

[45] Saswat Subhajyoti Mallick, Rahul Goel, Bernhard
Kerbl, Francisco Vicente Carrasco, Markus Stein-
berger, and Fernando De La Torre. Taming 3dgs:
High-quality radiance fields with limited resources.
arXiv preprint arXiv:2406.15643, 2024. 1, 2, 4, 6, 7

[46] Nelson Max. Optical models for direct volume ren-
dering. TVCG, 1995. 3

[47] Nelson Max and Min Chen. Local and global illumi-
nation in the volume rendering integral. Technical
report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2005. 3

[48] Ben Mildenhall, Pratul P Srinivasan, Matthew Tan-
cik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance
fields for view synthesis. Communications of the
ACM, 65(1):99–106, 2021. 2, 3

[49] Thomas Müller, Alex Evans, Christoph Schied, and
Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM trans-
actions on graphics (TOG), 41(4):1–15, 2022. 2, 3,
6, 7

[50] KL Navaneet, Kossar Pourahmadi Meibodi,
Soroush Abbasi Koohpayegani, and Hamed Pirsi-
avash. Compact3d: Compressing gaussian splat ra-
diance field models with vector quantization. arXiv
preprint arXiv:2311.18159, 2023. 3

[51] Simon Niedermayr, Josef Stumpfegger, and Rüdiger
Westermann. Compressed 3d gaussian splatting for
accelerated novel view synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10349–10358, 2024. 3

[52] Michael Niemeyer, Jonathan T Barron, Ben Milden-
hall, Mehdi SM Sajjadi, Andreas Geiger, and Noha
Radwan. Regnerf: Regularizing neural radiance
fields for view synthesis from sparse inputs. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5480–5490,
2022. 3

[53] Michael Niemeyer, Fabian Manhardt, Marie-Julie
Rakotosaona, Michael Oechsle, Daniel Duckworth,
Rama Gosula, Keisuke Tateno, John Bates, Dominik
Kaeser, and Federico Tombari. Radsplat: Radi-
ance field-informed gaussian splatting for robust
real-time rendering with 900+ fps. arXiv.org, 2024.
4

[54] Onur Ozyesil, Vladislav Voroninski, Ronen Basri,
and Amit Singer. A survey of structure from motion,
2017. 2

[55] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017. 2

[56] Christian Reiser, Songyou Peng, Yiyi Liao, and An-
dreas Geiger. Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In Proceedings
of the IEEE/CVF international conference on com-
puter vision, pages 14335–14345, 2021. 3

[57] Shunsuke Saito, Gabriel Schwartz, Tomas Simon,
Junxuan Li, and Giljoo Nam. Relightable gaussian
codec avatars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 130–141, 2024. 2, 3

[58] Johannes L Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Proceedings of

13

the IEEE conference on computer vision and pattern
recognition, pages 4104–4113, 2016. 2, 4

[59] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Di-
rect voxel grid optimization: Super-fast convergence
for radiance fields reconstruction. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 5459–5469, 2022. 3

[60] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun
Bao, and Xiaowei Zhou. LoFTR: Detector-free local
feature matching with transformers. CVPR, 2021. 9

[61] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu,
and Gang Zeng. Dreamgaussian: Generative gaus-
sian splatting for efficient 3d content creation. arXiv
preprint arXiv:2309.16653, 2023. 3

[62] Zachary Teed and Jia Deng. Raft: Recurrent all-
pairs field transforms for optical flow. In European
Conference on Computer Vision, 2020. 9

[63] Guangcong Wang, Zhaoxi Chen, Chen Change Loy,
and Ziwei Liu. Sparsenerf: Distilling depth ranking
for few-shot novel view synthesis. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 9065–9076, 2023. 3

[64] Peng Wang, Lingjie Liu, Yuan Liu, Christian
Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume render-
ing for multi-view reconstruction. arXiv preprint
arXiv:2106.10689, 2021. 3

[65] Yiming Wang, Qin Han, Marc Habermann, Kostas
Daniilidis, Christian Theobalt, and Lingjie Liu.
Neus2: Fast learning of neural implicit surfaces for
multi-view reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 3295–3306, 2023. 3

[66] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Si-
moncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004. 6

[67] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie,
Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-
time dynamic scene rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 20310–20320, 2024. 3

[68] Yuxi Xiao, Nan Xue, Tianfu Wu, and Gui-Song
Xia. Level-s ˆ2 fm: Structure from motion on neural
level set of implicit surfaces. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17205–17214, 2023. 3

[69] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yu-
tao Feng, Yin Yang, and Chenfanfu Jiang. Physgaus-

sian: Physics-integrated 3d gaussians for generative
dynamics. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 4389–4398, 2024. 3

[70] Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan,
Humphrey Shi, and Zhangyang Wang. Sinnerf:
Training neural radiance fields on complex scenes
from a single image. In European Conference on
Computer Vision, pages 736–753. Springer, 2022. 3

[71] Haofei Xu, Songyou Peng, Fangjinhua Wang,
Hermann Blum, Daniel Barath, Andreas Geiger,
and Marc Pollefeys. Depthsplat: Connecting
gaussian splatting and depth. arXiv preprint
arXiv:2410.13862, 2024. 3

[72] Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang
Wang, Dong Wang, and Xuelong Li. Gs-slam:
Dense visual slam with 3d gaussian splatting. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19595–19604,
2024. 2

[73] Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee
Lee. Multi-scale 3d gaussian splatting for anti-
aliased rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 20923–20931, 2024. 3

[74] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu,
and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian
splatting. arXiv preprint arXiv:2310.10642, 2023. 3

[75] Ziyi Yang, Xinyu Gao, Yangtian Sun, Yihua Huang,
Xiaoyang Lyu, Wen Zhou, Shaohui Jiao, Xiaojuan
Qi, and Xiaogang Jin. Spec-gaussian: Anisotropic
view-dependent appearance for 3d gaussian splat-
ting. arXiv preprint arXiv:2402.15870, 2024. 3

[76] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao,
Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic
scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 20331–20341, 2024. 3

[77] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lip-
man. Volume rendering of neural implicit surfaces.
Advances in Neural Information Processing Systems,
34:4805–4815, 2021. 3

[78] Lior Yariv, Peter Hedman, Christian Reiser, Dor
Verbin, Pratul P Srinivasan, Richard Szeliski,
Jonathan T Barron, and Ben Mildenhall. BakedSDF:
Meshing Neural SDFs for Real-Time View Synthe-
sis. In SIGGRAPH, 2023. 2

14

[79] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei
Ke. Gaussian grouping: Segment and edit anything
in 3d scenes. arXiv preprint arXiv:2312.00732,
2023. 3

[80] Vickie Ye, Ruilong Li, Justin Kerr, Matias Turku-
lainen, Brent Yi, Zhuoyang Pan, Otto Seiskari,
Jianbo Ye, Jeffrey Hu, Matthew Tancik, and Angjoo
Kanazawa. gsplat: An open-source library for Gaus-
sian splatting. arXiv preprint arXiv:2409.06765,
2024. 4, 6, 7

[81] Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, and
Yong Dou. Absgs: Recovering fine details in 3d
gaussian splatting. In ACM Multimedia 2024, 2024.
2, 3, 6, 7

[82] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie,
Xiaopeng Zhang, Wenyu Liu, Qi Tian, and Xing-
gang Wang. Gaussiandreamer: Fast generation from
text to 3d gaussian splatting with point cloud priors.
arXiv preprint arXiv:2310.08529, 2023. 3

[83] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren
Ng, and Angjoo Kanazawa. Plenoctrees for real-
time rendering of neural radiance fields. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 5752–5761, 2021. 2, 3, 6

[84] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo
Kanazawa. pixelnerf: Neural radiance fields from
one or few images. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 4578–4587, 2021. 2, 3

[85] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sat-
tler, and Andreas Geiger. Mip-splatting: Alias-
free 3d gaussian splatting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 19447–19456, 2024. 3, 6,
7

[86] Richard Zhang, Phillip Isola, Alexei A Efros, Eli
Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual met-
ric. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 586–595,
2018. 6

[87] Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He,
and Hengshuang Zhao. Pixel-gs: Density control
with pixel-aware gradient for 3d gaussian splatting.
arXiv preprint arXiv:2403.15530, 2024. 2

[88] Wojciech Zielonka, Timur Bagautdinov, Shunsuke
Saito, Michael Zollhöfer, Justus Thies, and Javier
Romero. Drivable 3d gaussian avatars. arXiv
preprint arXiv:2311.08581, 2023. 2, 3

[89] Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yang-
guang Li, Ding Liang, Yan-Pei Cao, and Song-Hai
Zhang. Triplane meets gaussian splatting: Fast and
generalizable single-view 3d reconstruction with
transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 10324–10335, 2024. 3, 4

[90] Matthias Zwicker, Hanspeter Pfister, Jeroen
Van Baar, and Markus Gross. Ewa splatting. IEEE
Transactions on Visualization and Computer Graph-
ics, 8(3):223–238, 2002. 4

15

EDGS: Eliminating Densification for Efficient Convergence of 3DGS
–Supplementary Materials–

A. Implementation details

After the initialization phase, we follow the default optimization protocol of 3DGS, with densification disabled
and without gradient aggregation for detection of under-reconstructed regions. This ensures a controlled
setting to isolate the impact of our initialization. For fair comparison, all models are trained for the same
number of iterations as competing methods, except for two models that were stopped early at 5000 steps
(Ours + 3DGS 5K, Ours + Taming 3DGS 5K). All experiments were conducted on an NVIDIA A100 GPU
with 80GB of memory, though our method required only 15GB of GPU memory at peak usage.

Our method is also compatible with front-facing scenes. In a public demo, we show that selecting only 16
random frames from a video is sufficient for rapid convergence, demonstrating the efficiency and robustness
of the method even in sparse-view scenarios.

B. Visual results

Full-resolution versions of the renders shown in the main paper are provided in Figs. A1 to A3. For clearer
comparison in Fig. A3, we also include renderings from the original 3DGS method.

C. Impact of Nearest Neighbors parameter

Once we have computed dense keypoint correspondences between the reference image Ii and its neighboring
images Ij , we need to aggregate them to obtain a robust initialization. In Fig. A4, we visualize keypoint
detection confidence across different neighbors. The reference image (referred to as the source) is shown in
the top-left, followed by rows 2 through 5, where we display ground truth views (left) of the nearest cameras
(in terms of extrinsics) and the corresponding confidence maps cij (right), indicating which regions in Ii were
matched with each neighbor Ij . It is evident that each neighbor overlaps only partially with the reference
view, motivating the need to aggregate confidence scores on a per-pixel level. The resulting aggregated
confidence map ci is shown in the top-right corner and is used to sample keypoints. This process is illustrated
using the treehill scene from the Mip-NeRF360 [2] dataset.

While matching with more neighbors increases the total number of reference correspondences, the
marginal gain decreases with each additional neighbor due to significant overlap among the sets of matched
keypoints. Meanwhile, the initialization time grows linearly with the number of neighbors. Therefore, instead
of aggregating over many neighbors per reference image, we achieve better efficiency by sampling more
reference views and selecting only the top-1 nearest neighbor for each.

D. Number of gaussians

In Fig. A5, we illustrate the effect of densification as the relative number of Gaussian splats over optimization
steps, averaged across multiple scenes and normalized by the final count in the original 3DGS [31]. Our
method, even without densification, needs 40% fewer Gaussians, while converging faster and maintaining
performance comparable to the version with densification. Although densification offers slight improvements
in under-initialized regions, it nearly doubles the number of splats, leading to increased computational
overhead and reduced controllability.

1

GT 3DGS-MCMC Mip-Splatting Ours 30k

Figure A1. Additional qualitative results are presented for the scenes treehill, flowers, train and playroom. For clarity,
areas of interest have been zoomed in Fig. 3. These results are best viewed digitally for optimal detail.

E. Undercovered regions

To ensure complete coverage of the scene, it is crucial to sample keypoints from multiple image pairs. Without
this, certain regions may remain underrepresented, making it difficult for the network to converge in those
areas due to insufficient overlap between the images. For examples, refer to Fig. A6.

F. Confidence of keypoints

We have discovered that uniform sampling of detected keypoints is more crucial than selectively mining
keypoints with high confidence. In Fig. A7, we visualize a set of keypoints extracted from a single pair of
images. The results highlight that we need to sample keypoints from the image more uniformly, rather than
focusing solely on keypoints with high confidence, as confidence in keypoint detection is not uniform. To
achieve this, we utilize multiple cameras to find matching keypoints with the source view and then sample all
points above a certain confidence threshold.

2

GT Scaffold-GS Taming 3DGS Ours 30k

Figure A2. Additional qualitative results are presented for the scenes treehill, flowers, train and playroom. For clarity,
areas of interest have been zoomed in Fig. 3. These results are best viewed digitally for optimal detail.

G. Impact of noise on initialization

Here, we provide additional visualization for ablation on the robustness of our method to noise. In Fig. A8,
we visualized initialization for scene garden, which was noised with different scales for both coordinates
(first row) and colors (second row).

H. Per-scene results

To provide a more detailed evaluation of our model, we include per-scene scores in Tab. A1, Tab. A2, Tab. A3,
Tab. A4, Tab. A5, Tab. A6, Tab. A7, Tab. A8, Tab. A9, Tab. A10.

Table A1. Per-scene quantitative results(SSIM) from the Mip-NeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai
Ours+ 3DGS 30K 0.794 0.642 0.875 0.782 0.655 0.932 0.998 0.937 0.947
Ours+ Taming 3DGS 30K 0.803 0.67 0.883 0.796 0.666 0.928 0.925 0.939 0.943

3

GT Ours 3k Ours 30k3DGS

Figure A3. Additional qualitative results are presented for the scenes treehill, flowers, train and playroom. For clarity,
areas of interest have been zoomed in Fig. 3. These results are best viewed digitally for optimal detail.

Table A2. Per-scene quantitative results(PSNR) from the Mip-NeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai
Ours+ 3DGS 30K 25.45 21.57 27.61 26.69 22.63 32 29.49 32.31 32.45
Ours+ Taming 3DGS 30K 25.83 21.87 28.09 27.05 23.15 32 29.65 32.52 32.34

Table A3. Per-scene quantitative results(LPIPS) from the Mip-NeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai
Ours+ 3DGS 30K 0.157 0.256 0.09 0.189 0.244 0.182 0.169 0.112 0.174
Ours+ Taming 3DGS 30K 0.153 0.257 0.09 0.179 0.238 0.188 0.168 0.112 0.182

I. Notation
To simplify the understanding of the paper, we include a table of notation Tab. A11 in the supplementary
material. This table provides a concise summary of the key symbols and terms used throughout the paper,
along with their definitions.

4

Table A4. Per-scene quantitative results(millions of gaussians #G) from the Mip-NeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai
Ours+ 3DGS 30K 2.3 2.6 3 2.2 2.5 0.9 1.2 1.3 1.3
Ours+ Taming 3DGS 30K 6 3.6 5.7 4.9 3.8 1.5 1.2 1.8 1.3

Table A5. Per-scene quantitative results(time in minutes) from the Mip-NeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai
Ours+ 3DGS 30K 24 23 27 19 22 33 40 41 33
Ours+ Taming 3DGS 30K 18 13 21 13 13 13 13 12 12

Table A6. Per-scene quantitative results(SSIM) from the Tanks & Temples and Deep Blending subsets.

Truck Train Dr Johnson Playroom
Ours+ 3DGS 30K 0.897 0.851 0.908 0.910
Ours+ Taming 3DGS 30K 0.903 0.859 0.915 0.914

Table A7. Per-scene quantitative results(PSNR) from the Tanks & Temples and Deep Blending subsets.

Truck Train Dr Johnson Playroom
Ours+ 3DGS 30K 26.12 22.78 29.64 30.46
Ours+ Taming 3DGS 30K 26.48 23.38 29.92 30.63

Table A8. Per-scene quantitative results(LPIPS) from the Tanks & Temples and Deep Blending subsets.

Truck Train Dr Johnson Playroom
Ours + 3DGS 30K 0.09 0.157 0.224 0.213
Ours+ Taming 3DGS 30K 0.086 0.155 0.213 0.206

Table A9. Per-scene quantitative results(millions of gaussians #G) from the Tanks & Temples and Deep Blending
subsets.

Truck Train Dr Johnson Playroom
Ours+ 3DGS 30K 1.6 1.2 1.6 1.5
Ours+ Taming 3DGS 30K 2.6 1.1 3.3 2.3

Table A10. Per-scene quantitative results(time in minutes) from the Tanks & Temples and Deep Blending subsets.

Truck Train Dr Johnson Playroom
Ours+ 3DGS 30K 21 23 28 31
Ours+ Taming 3DGS 30K 14 9 16 12

5

Table A11. Table of Notations

Notation Description

G Set of 3D Gaussians representing the scene
gi Parameters of the i-th Gaussian in the set G
gx
i ∈ R3 Center of the i-th Gaussian in 3D space

Σi ∈ R7 Covariance matrix encoding the shape of the i-th Gaussian
gc
i ∈ R3 RGB color of the i-th Gaussian

gα
i ∈ R1 Opacity of the i-th Gaussian

p Pixel
C(p) Rendered color of pixel p
σi(p) Influence of the i-th Gaussian on pixel p
p′ − gx

i Shortest distance from pixel projection line to the Gaussian center
Ri Rotation matrix of the i-th Gaussian
Si Scaling matrix of the i-th Gaussian
Ii Reference image selected from the training dataset
I Set of neighboring images for Ii based on spatial proximity
P Camera projection matrix
M Pretrained 2D dense matching network
Wj→i Dense warp field mapping pixels from Ij to Ii

cij Matchability score between Ii and Ij

(uj
k, v

j
k) Coordinates of a pixel in Ij

gx
k ∈ R3 3D position of the k-th prototype Gaussian

pi
k = (xi

k, y
i
k, w

i
k) homogenous coordinates of the projected pixel pik

(ûi
k, v̂

i
k) Projected coordinates of a 3D prototype in Ii

L Triangulation loss for optimizing 3D Gaussian positions
α Scaling factor for Gaussian scale estimation
Ci Camera center of image Ii

gs
k Scale of the k-th Gaussian based on distance from the camera

6

N
N

 1
N

N
 2

N
N

 3
N

N
 4

Source image Aggregated

Figure A4. Visualization of the keypoint aggregation process from multiple nearest neighbors for the reference image Ii.
The top-left panel shows the source image (reference image), while rows 2, 3, 4, and 5 depict ground truth images (on the
left) of the nearest cameras, ordered by proximity in terms of camera extrinsics. The right side of each row shows the
matching score cij , representing areas of the source image matched with each neighboring image. The top-right panel
displays the aggregated confidence map ci, combining matching scores from all neighbors. This step achieves fuller and
more uniform coverage of the frame, as illustrated using the treehill image from the Mip-NeRF360 dataset.

7

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

#G
au

ss
ia

ns
 (n

or
m

al
ize

d)
3DGS
Ours
Ours+densification

Figure A5. Comparison of the relative number of Gaussian splats over optimization steps. The count is normalized by
the final number of splats in 3DGS [31]. Our method without densification requires only 60% of the Gaussians while
converging faster and achieving similar performance to our densified version.

Final step3000 stepsInitialization GT patchRendering

O
ur

s
U

nd
er

co
ve

re
d

O
ur

s
U

nd
er

co
ve

re
d

Figure A6. Our model benefits from dense coverage of the scene with paired views. If we sample enough views all the
parts of the scene are covered and have enough initial prototypes to converge to a sharp image. Compare to the ground
truth patch on the right.

8

Figure A7. Dense keypoint matches for a bicycle scene image pair. The top row shows matched keypoints, and the bottom
row visualizes the confidence of finding a match in the neighboring image. The matching model M is RoMa [13].

σ=0.05 σ=0.15 σ=1

Coordinates

 Colors

Figure A8. The impact of noise on initialization quality. The first row shows the effect of adding noise to the coordinates,
while the bottom row demonstrates the effect of adding noise to the color values.

9

	Introduction
	Related Work
	Approach
	Preliminaries
	Extract information from 2D prior
	Splats Initialization

	Experiments
	Datasets and Metrics
	Baselines
	Quantitative Evaluations
	Qualitative Evaluations
	Ablation Studies

	Conclusion
	Supplementary Materials
	Implementation details
	Visual results
	Impact of Nearest Neighbors parameter
	Number of gaussians
	Undercovered regions
	Confidence of keypoints
	Impact of noise on initialization
	Per-scene results
	Notation

