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Abstract

In the field of super-resolution, the Laplacian pyramid framework-based model
needs to estimate the result of the inverse convolution for upscaling layers. Gener-
ally, the transposed convolution is applied to estimate the result close to the inverse
convolution. In this process, the transposed convolution can be designed efficiently
to reduce the trainable weights. In this study, we propose a new model compression
method that replaces the transposed convolution layer by sharing the weights of the
convolution layer trained in the feature embedding recursive block. The proposed
weight-sharing method effectively reduces training complexity and training time.
The experiments demonstrate the results accordingly, even for relatively large
image sizes.

1 Introduction

Recently, with the rapid development of deep learning-based image processing technology, research
on super-resolution (SR) that converts low-resolution (LR) images into high-resolution (HR) images
is actively being conducted. SR technology is gaining importance in various application fields such
as medical imaging, satellite imaging, and image restoration. In particular, in practical applications,
efficiency as well as performance of SR models is emerging as important issues [1, 2, 3, 4, 5, 6].

To solve the SR problem, various deep learning-based models have been proposed. Among them,
models based on the Laplacian Pyramid Framework (LPF) have shown excellent performance through
stepwise image resolution [7, 8]. This framework uses a method of decomposing the original image
into pyramid structures of multiple resolutions, learning residuals at each level, and finally estimating
the HR image. In this process, accurate estimating the inverse convolution plays an important role,
and this task can generally be performed using transposed convolution (TConV). However, the
inefficiency of TConV is one of the main causes of increasing the complexity and computational
cost of the model. Other studies mainly tried to improve performance through deeper and more
complex network structures, but this caused problems such as increasing the depth of the model and
the weights to be learned [9, 10, 11]. For this reason, the need for model compression has arisen, and
for this purpose, it is necessary to design an appropriate and efficient TConV layer.

In this study, we propose a new method to replace the TConV layer by sharing the weights of the
convolution (ConV) layer learned in the feature embedding stage. Through this method, we can
obtain an effectively compressed model while we could preserve the performance of the existing
LPF-based model. In particular, by reusing the ConV layer weights learned through experiments, we
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can reduce the number of unnecessary parameters and maximize computational efficiency, thereby
building an efficient model while maintaining similar performance compared to the other models.

2 Related Works

Table 1: Comparison of related works on SR models

Method Upsampling Reconstruction Multi-scale GRL LSC Depth Filters Parametersstratege training

VDSR [3]
Pre-upsampling Direct

✓ ✓ 20 64 665k
DRCN [4] ✓ 20 256 1775k
DRRN [5] ✓ ✓ ✓ 52 128 297k

MDSR [6]

Post-upsampling

✓ ✓ 162 64 8000k

LapSRN [7]
Progressive

✓ 24 64 812k
MS-LapSRN [8] ✓ ✓ ✓ 84 64 222k

CMS-LapSRN (ours) ✓ ✓ ✓ 84 64 185k

Models based on the LPF [12] have been proposed to solve the SR problem. This framework is
advantageous in upscaling LR images through progressive upsampling. [13] proposed a model that
progressively SR images by applying GANs to each scale of the Laplacian pyramid structure. This
model focuses on extracting detailed information of image step by step using the post-upsampling
technique, thereby generating SR images similar to HR images. In addition, [14] and [15] proposed
LapSRN and MS-LapSRN models, which are deep learning networks utilizing the LPF. These models
extract image details by applying Local Skip Connection (LSC) and perform progressive upscaling at
each scale. In particular, MS-LapSRN increases the efficiency of learning by sharing weights between
blocks as well as between scales, and improves the overall quality of SR through Global Residual
Learning (GRL). There are comparison of related works on SR models on the depth, filter size, and
the number of parameters for each model in the case of a 4× upscaling in Table 1. Since other models
for the target image resolution is available, we just restrict the comparison scale to 4× upscaling.

3 Proposed Methodology

Figure 1: Architecture of the proposed CMS-LapSRN model

We propose a Compressed Multi-Scale Laplacian Pyramid Super-Resolution Network (CMS-
LapSRN) model which is described in detail in this section. The proposed network is based on
the MS-LapSRN model. It is a LPF-based SR model that progressively scales up LR images by scale
and post-upsamples them. To overcome the limitations of existing LPF-based models with increasing
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weights to be learned according to the size of the SR scale, we propose a model compression method
that can achieve compression of the model by reusing the weights learned in the ConV layer and
sharing them with the TConV layer. The following subsections describe the model’s architecture and
method for obtaining model compression.

3.1 Architecture

The architecture of the proposed model consists of networks of appropriate depth according to the
SR scale, and the SR task that expands the resolution of the input image to 2× is performed in each
layer. For example, when performing SR at the scale of 8×, the architecture of the proposed model
is composed as shown in Figure 1. Each layer consists of the following components: a Convin sub-
network that extracts high-dimensional feature maps from the input LR image, a Feature Embedding
sub-network that extracts high-dimensional nonlinear feature maps, a Feature Upsampling sub-
network that upsamples the extracted feature maps, a Convres sub-network that estimates sub-band
residual images, and an Image Upsampling sub-network that upsamples the input image without
separate feature extraction. Except for the first layer, the Convin sub-network is omitted in the
remaining layers. Specifically, the feature embedding sub-network consists of r recursive blocks,
and each block consists of d ConV layers. We apply GRL to the estimated sub-band residual images
through the Image Upsampling sub-network and optimize information flow between scales. Also we
apply LSC between each recursive block to improve gradient flow and solve the vanishing gradient
problem. In this way, the stability of model learning is improved, the learning speed is accelerated,
and the details of the input image are preserved to improve the SR performance. This structure is
designed to effectively extract more detailed feature maps.

3.2 Weight-Sharing for model compression

Figure 2: Weight-sharing method for model compression

The initially implemented model has a structural characteristic that the depth of the model and
the amount of weights to be learned increase according to the SR scale and the number of feature
embedding recursive blocks. To overcome this problem, we applied a model compression technique
using a weight-sharing method to improve the efficiency of the model, as shown in Figure 2. First, by
sharing the weights of the feature embedding sub-network of each layer with the sub-networks of
other layers, as in the basic model, we effectively compressed the amount of weights to be learned
according to the SR scale. In addition, by sharing the weights of the recursive blocks in the feature
embedding sub-network with other r blocks, we also compressed the amount of learning weights
according to the number of feature embedding recursive blocks.
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Table 2: Quantitative evaluation of LPF-based SR models

Model Scale SET5 SET14 BSDS100 URBAN100 MANGA109

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic

2×

33.69 / 0.931 30.25 / 0.870 29.57 / 0.844 26.89 / 0.841 30.86 / 0.936
LapSRN 37.24 / 0.957 32.78 / 0.910 31.78 / 0.892 30.60 / 0.911 36.73 / 0.971

MS-LapSRN 36.76 / 0.955 32.57 / 0.908 31.38 / 0.888 29.59 / 0.899 36.16 / 0.970
CMS-LapSRN (1st ConV) 36.65 / 0.954 32.50 / 0.906 31.31 / 0.886 29.44 / 0.895 36.04 / 0.967
CMS-LapSRN (3rd ConV) 36.88 / 0.955 32.61 / 0.908 31.44 / 0.888 29.61 / 0.898 36.31 / 0.970
CMS-LapSRN (5th ConV) 36.46 / 0.954 32.38 / 0.905 31.23 / 0.885 29.34 / 0.894 35.37 / 0.968

Bicubic

4×

28.43 / 0.811 26.01 / 0.704 25.97 / 0.670 23.15 / 0.660 24.93 / 0.790
LapSRN 31.33 / 0.884 27.80 / 0.769 27.31 / 0.724 25.26 / 0.757 29.03 / 0.886

MS-LapSRN 31.48 / 0.885 28.19 / 0.771 27.30 / 0.726 25.35 / 0.761 29.27 / 0.890
CMS-LapSRN (1st ConV) 31.44 / 0.884 28.20 / 0.771 27.31 / 0.726 25.36 / 0.761 29.26 / 0.890
CMS-LapSRN (3rd ConV) 31.51 / 0.884 28.19 / 0.770 27.32 / 0.726 25.38 / 0.762 29.37 / 0.891
CMS-LapSRN (5th ConV) 31.52 / 0.884 28.19 / 0.769 27.31 / 0.724 25.29 / 0.758 29.17 / 0.888

Bicubic

8×

24.40 / 0.658 23.10 / 0.566 23.67 / 0.548 20.74 / 0.516 21.47 / 0.650
LapSRN 26.19 / 0.750 24.29 / 0.624 24.61 / 0.585 21.97 / 0.589 23.72 / 0.741

MS-LapSRN 26.39 / 0.754 24.66 / 0.629 24.61 / 0.587 22.09 / 0.596 23.87 / 0.751
CMS-LapSRN (1st ConV) 26.34 / 0.753 24.60 / 0.627 24.61 / 0.587 22.08 / 0.596 23.86 / 0.751
CMS-LapSRN (3rd ConV) 26.40 / 0.756 24.68 / 0.629 24.60 / 0.587 22.12 / 0.598 23.92 / 0.754
CMS-LapSRN (5th ConV) 26.35 / 0.753 24.60 / 0.627 24.60 / 0.586 22.05 / 0.594 23.82 / 0.749

In addition to the existing model, we compressed the amount of weights to be learned in the feature
upsampling sub-network by sharing some of the weights of the recursive block with the TConV layer
of the feature upsampling sub-network. Specifically, by sharing the weights of one of the d Conv
layers in the recursive block with the TConv layer in the feature upsampling sub-network, we were
able to reduce approximately 3.7e+04 trainable parameters. As a result, our proposed CMS-LapSRN
model uses only 1.85e+05 parameters, which is fewer than the 2.22e+05 parameters used by the
MS-LapSRN model. Additionally, while other models in Table 1 increase the trainable parameters
with respect to the upscaling factor, the MS-LapSRN and CMS-LapSRN models preserve 2.22e+05
and 1.85e+05 parameters, respectively, independent to the upscaling factor.

4 Experimental Results

Data Preparation & Training Details To train the proposed model, the DIV2K dataset [16] was
collected and preprocessed. In [14, 17, 18], data augmentation techniques such as scaling, rotation,
and flipping were applied. The training process was performed on a system equipped with two Intel
Xeon Gold 5220R CPUs (676 GB RAM) and three NVIDIA RTX A6000 GPUs with 48 GB memory
each. We used batch size 16 and patch size 512 × 512. The architecture of the proposed model
uses 64 filters in all ConV layers except the Convin layer and the image upsampling subnetwork,
and applies 4× 4 filters to the ConV layer and the TConV layer. In addition, following the method
proposed in [15], the feature Embedding subnetwork is composed of r = 8 recursive blocks, and
each block is efficiently composed of d = 5 ConV layers. The model is optimized using the Adam
optimizer with weight decay 1e−4, and the Charbonnier loss function is applied to progressively
improve high-frequency residual prediction. This training process can be explained that the model is
trained in a multi-scale manner.

Comparisons The proposed model is compared with existing LPF-based SR models using bench-
mark datasets (SET5 [19], SET14 [20], BSDS100 [21], URBAN100 [22], and MANGA109 [23]).
The performance of each model is quantitatively compared using image quality metrics such as
PSNR and SSIM. The results for 2×, 4×, and 8× are presented in Table 2. In addition, the results
are presented visually in Figure 3 and Figure 4 to qualitatively compare the 8× performance of each
model.

We conducted experiments by selecting the weights of the first, third, and fifth ConV layers among
the d = 5 ConV layers of each block to efficiently share some of the weights of the recursive block
with the TConV layer of the feature upsampling subnetwork. The experimental results are presented
in Figure 3, 4, and Table 2, denoted as CMS-LapSRN (1st ConV), CMS-LapSRN (3rd ConV), and
CMS-LapSRN (5th ConV), respectively.

According to the comparison results, we were able to reduce the number of trainable parameters and
maximize computational efficiency by sharing the weights of the third ConV layer of the recursive
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Figure 3: Qualitative evaluation of LPF-based SR models for 8× SR on the URBAN100 datasets.
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Figure 4: Qualitative evaluation of LPF-based SR models for 8× SR on the MANGA109 datasets.
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block with the TConV layer of the feature upsampling subnetwork, and also confirmed that it showed
better or similar performance compared to the existing model. Furthermore, based on the results for
the URBAN100 dataset in Figure 3, our proposed CMS-LapSRN model detects topological structures
such as grids and orthogonal structures more precisely compared to other models. Similarly by the
results for the MANGA109 dataset in Figure 4, the CMS-LapSRN model removes noise between
objects more effectively and captures the structure of letters more accurately than other models. In
other words, the proposed model has the smallest number of trainable parameters among the models
trained with the multi-scale method introduced in the related works, and also has the smallest number
of trainable parameters among the models applying GRL and LSC. Despite being a compressed
model, it achieved comparable performance at the 2× scale and even better results at the 4× and 8×
scales.

Specifically, since the inference time of the model depends on its depth, it shows a similar inference
time to the MS-LapSRN model. However, as training time is dependent on the number of param-
eters, the CMS-LapSRN model, with approximately 3.7e+04 fewer parameters at 8× upscaling
factor, reduces training time by around 21,700 seconds (around 6 hours). Furthermore, despite the
reduced training time and model complexity, it maintains comparable or even improved performance.
This reduction in training time and complexity through weight-sharing not only accelerates model
deployment but also reduces more computational expenses.

5 Conclusion

This paper presents a novel weight-sharing method for upsampling layers in SR models, addressing a
remedy for traditional TConV layers. The proposed CMS-LapSRN model has the smallest number of
trainable parameters in this study. Despite being a compressed model, CMS-LapSRN performs better
or similar than the others, especially in the highest scale. The weight-sharing for upsampling layer
shows an efficient method for replacing the TConV approximating inverse convolution . Experiment
results have shown that the upsampling layer in the LPF for SR can be replaced by a block in a feature
embedding recursive block. Nevertheless, the upsampling layer in the Laplace Pyramid network is
initially proposed is an inverse convolution.

Therefore, we expected that finding a more appropriate way to replace the inverse convolution could
improve the prediction performance, hence we plan to do as the next research followed by this study.
Moreover, another interesting application is to use the trainable CMS-LapSRN to medical imaging
datasets as its external validation or generalization.
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