
Published as a conference paper at ICLR 2023

TRANSFORMERS LEARN SHORTCUTS TO AUTOMATA

Bingbin Liu1 ∗ Jordan T. Ash2 Surbhi Goel3† Akshay Krishnamurthy2 Cyril Zhang2

1Carnegie Mellon University 2Microsoft Research NYC 3University of Pennsylvania

ABSTRACT

Algorithmic reasoning requires capabilities which are most naturally understood
through recurrent models of computation, like the Turing machine. However,
Transformer models, while lacking recurrence, are able to perform such reason-
ing using far fewer layers than the number of reasoning steps. This raises the
question: what solutions are these shallow and non-recurrent models finding? We
investigate this question in the setting of learning automata, discrete dynamical
systems naturally suited to recurrent modeling and expressing algorithmic tasks.
Our theoretical results completely characterize shortcut solutions, whereby a shal-
low Transformer with only o(T) layers can exactly replicate the computation of
an automaton on an input sequence of length T . By representing automata using
the algebraic structure of their underlying transformation semigroups, we obtain
O(log T)-depth simulators for all automata and O(1)-depth simulators for all au-
tomata whose associated groups are solvable. Empirically, we perform synthetic
experiments by training Transformers to simulate a wide variety of automata, and
show that shortcut solutions can be learned via standard training. We further in-
vestigate the brittleness of these solutions and propose potential mitigations.

1 INTRODUCTION

Modern deep learning pipelines demonstrate an increasing capability to perform combinatorial rea-
soning: pretrained on large, diverse distributions of natural language, math, and code, they are
nascently solving tasks which seem to require a rigid “understanding” of syntax, entailment, and
state inference. How do these neural networks represent the primitives of logic and the algorithms
they execute internally?

When considering this question, there is an immediate mismatch between classical sequential mod-
els of computation (e.g., Turing machines) and the Transformer architecture, which has delivered
many of the recent breakthroughs in reasoning domains. If we are to think of an algorithm as a set of
sequentially-executed computational rules, why would we use a shallow1 non-recurrent network?

We study this question through the lens of finite semiautomata, which compute state sequences
q1, . . . , qT from inputs σ1, . . . , σT by application of a transition function δ (and initial state q0):

qt = δ(qt−1, σt).

Semiautomata are the underlying structures governing the computations realizable by automata
(such as regular expression parsers or finite-state transducers), which are simply semiautomata
equipped with mappings from states to output. Thus, one natural motivation for studying them
comes from the question of whether Transformers can subsume the structures found in classical
NLP pipelines. Another motivation comes from the perspective of reinforcement learning and con-
trol, where Transformers are beginning to be used as world models: semiautomata specify determin-
istic discrete-state dynamical systems.

We perform a theoretical and empirical investigation of whether (and how) non-recurrent Trans-
formers learn semiautomata. We characterize and analyze how shallow Transformers find shortcut

∗The majority of this work was completed while B. Liu was an intern at Microsoft Research NYC.
†This work was completed while S. Goel was at Microsoft Research NYC.

1Compared to the number of symbols it can process. For example, DistilBERT (Sanh et al., 2019) can handle
thousands of tokens with 6 sequential layers.

1

Published as a conference paper at ICLR 2023

even odd

0 0
1
1

Q = {even, odd}
Σ = {0, 1}

♦♣
⊥, σ♣ ⊥, σ♦

σ♣
σ♦

Q = {♣, ♦}
Σ = {σ♣, σ♦, ⊥}

%
&

%
&

%
&1 2 3 4

Q = {1, 2, 3, 4}
Σ = {&, %}

parity counter memory unit 1D gridworld

& %

Q = {1 . . 3} × {1 . . 4}
Σ = {← , → , ↑ , ↓}

Q = {54 stickers}
Σ = {6 face rotations}

.
σ1

σ6

(a) (b) (c) (d) (e)Figure 1: Various examples of semiautomata. From left to right: a mod-2 counter, a 2-state memory
unit, Grid4, a 2-dimensional gridworld constructible via a direct product Grid3 × Grid4, and a
Rubik’s Cube, whose transformation semigroup is a very large non-abelian group.

solutions, which correctly and efficiently simulate the transition dynamics of semiautomata with far
fewer sequential computations than required for iteratively inferring each state qt.

Our contributions. Our theoretical results provide structural guarantees for the representability of
semiautomata by shallow, non-recurrent Transformers. In particular, we show that:

• Shortcut solutions, with depth logarithmic in the sequence length, always exist (Theorem 1).
• Constant-depth shortcuts exist for solvable semiautomata (Theorem 2). There do not exist

constant-depth shortcuts for non-solvable semiautomata, unless TC0 = NC1 (Theorem 4).
• For a natural class of semiautomata corresponding to path integration in a “gridworld” with

boundaries, we show that there are even shorter shortcuts (Theorem 3), beyond those guaranteed
by the general structure theorems above.

We accompany these theoretical findings with an extensive set of experiments:

• End-to-end learnability of shortcuts via SGD (Section 4). The theory shows that shortcut solu-
tions exist; is the non-convexity of the optimization problem an obstruction to learning them in
practice? For a variety of semiautomaton simulation problems, we find empirically that there
is no such obstruction. Shallow non-recurrent Transformers are able to learn shortcuts which
generalize near-perfectly in-distribution.

• More challenging settings (Section 5). We compare non-recurrent and recurrent models in the
presence of additional considerations: out-of-distribution generalization (including to unseen se-
quence lengths) and limited supervision. This reveals the brittleness of non-recurrent models, in
line with prior “spurious representation” notions of shortcuts in deep learning. Toward mitigat-
ing these drawbacks and obtaining the best of both worlds, we show that with recency-biased
scratchpad training, Transformers can be guided to learn the robust recurrent solutions.

1.1 RELATED WORK

Emergent reasoning in neural sequence models. Neural sequence models, both recurrent (Wu
et al., 2016; Peters et al., 2018; Howard & Ruder, 2018) and non-recurrent (Vaswani et al., 2017;
Devlin et al., 2018), have ushered in an era of broadly-applicable and (with pretraining) sample-
efficient natural language understanding. Building on this, large-scale non-recurrent Transformer
models have demonstrated capabilities in program synthesis, mathematical reasoning, and in-context
multi-task adaptation. A nascent frontier is to leverage neural dynamics models, again both recur-
rent (Hafner et al., 2019) and non-recurrent (Chen et al., 2021a; Janner et al., 2021), for decision
making. At the highest level, the present work seeks to idealize and understand the mechanisms
behind which deep learning solves tasks requiring combinatorial and algorithmic reasoning.

Computational models of neural networks. In light of the above, it is empirically evident that
neural networks are successfully learning circuits which generalize on some combinatorial tasks.
Many efforts in the theory and empirical science of deep learning are dedicated towards the rigor-
ous analysis of this phenomenon. Various perspectives map self-attention to bounded-complexity
circuits (Hahn, 2020; Elhage et al., 2021; Merrill et al., 2021; Edelman et al., 2022), declarative
programs (Weiss et al., 2021), and Turing machines (Dehghani et al., 2019). The research program
of BERTology (Clark et al., 2019; Vig, 2019; Tenney et al., 2019) interprets trained models in terms
of known linguistic and symbolic primitives.

The most relevant theoretical work to ours is (Barrington & Thérien, 1988), which acts as a “Rosetta
Stone” between classical circuit complexity and semigroup theory. The core technical ideas for

2

Published as a conference paper at ICLR 2023

Theorems 1 (NC1 prefix sum), 2 (Krohn-Rhodes), and 4 (Barrington) are inspired by the results and
discussions therein. In the language of circuit complexity, our work establishes that shallow, non-
recurrent Transformers can efficiently represent all of the constructions involved in the (simple) NC1

and (significantly more complex) ACC0 solutions to sequential multiplication in semigroups. On the
other hand, the shorter shortcut from Theorem 3 carefully leverages self-attention to improve upon
these results; we were unable to find an analogous refinement in the circuit complexity literature.

Synthetic combinatorial tasks. Our problem setting of simulating finite-state semiautomata unifies
the settings of several recent investigations of whether (and how) Transformers learn bounded-depth
Dyck languages (Yao et al., 2021), parities (Anil et al., 2022), adders (Nogueira et al., 2021; Nanda
& Lieberum, 2022), regular languages (Bhattamishra et al., 2020), and sparse logical predicates
(Edelman et al., 2022; Barak et al., 2022). Zhang et al. (2022) empirically analyze the behavior and
inner workings of Transformers on random-access group operations and note “shortcuts” (which
skip over explicit program execution) similar to those we study. We provide an expanded discussion
of related work in Appendix A.5.

2 PRELIMINARIES

2.1 SEMIAUTOMATA AND THEIR ALGEBRAIC STRUCTURE

A semiautomaton A := (Q,Σ, δ) consists of a set of states Q, an input alphabet Σ, and a transition
function δ : Q× Σ → Q. In this work, Q and Σ will always be finite sets. For all positive integers
T and a starting state q0 ∈ Q, A defines a map from input sequences (σ1, . . . , σT) ∈ ΣT to state
sequences (q1, . . . , qT) ∈ QT : qt := δ(qt−1, σt) for t = 1, . . . , T . This is a deterministic Markov
model, in the sense that at time t, the future states qt+1, . . . , qT only depend on the current state qt
and the future inputs σt+1, . . . , σT .

We define the task of simulation: given a semiautomaton A, starting state q0, and input sequence
(σ1, . . . , σT), output the state trajectory AT,q0(σ1, . . . , σT) := (q1, . . . , qT). Let f : ΣT → QT

be a function (which in general can depend on A, T, q0). We will say that f simulates AT,q0 if
f(σ1:T) = AT,q0(σ1:T) for all input sequences σ1:T . Finally, for a positive integer T , we say that a
function class F of functions from ΣT → QT is said to simulate A at length T if, for each q0 ∈ Q,
there is a function in F which simulates (A, T, q0).
Every semiautomaton induces a transformation semigroup T (A) of functions ρ : Q → Q under
composition, generated by the per-input-symbol state mappings δ(·, σ) : Q → Q. When T (A)
contains the identity function, it is called a transformation monoid. When all of the functions are
invertible, T (A) is a permutation group. See Figure 1 for some examples which appear both in our
theory and experiments; additional background (including a self-contained tutorial on the relevant
concepts in finite group and semigroup theory) is provided in Appendix A.2. An elementary but
interesting example is a parity counter (Figure 1, left): the state is a bit, and the inputs are {“toggle
the bit”, “do nothing”}; the transformation semigroup is C2, the cyclic group of order 2. Parity has
been studied in previous synthetic experiments (Zhang et al., 2022; Anil et al., 2022).

2.2 RECURRENT AND NON-RECURRENT NEURAL SEQUENCE MODELS

A sequence-to-sequence neural network of length T and dimension d is a function fnn : RT×d ×
Θ → RT×d, with trainable parameters θ ∈ Θ. Equipped with an encoding layer E : Σ → Rd and
decoding layer W : Rd → Q (applied position-wise), the function (W ◦ fnn ◦ E) : ΣT → QT has
the same input and output types as AT,q0 . This work will investigate when the functions defined by
neural networks can simulate semiautomata.

A recurrent neural network (RNN) is a sequence-to-sequence neural network defined by iterated
composition of a recurrent unit g : Rd × Rd × Θ → Rd. For a given initial hidden state h0 ∈ Rd,
and input sequence u1, . . . , uT ∈ Rd, it produces an output hidden state sequence

ht := g(ht−1;ut; θ), t = 1, . . . , T.

Thus, for any fixed θ, an RNN defines a semiautomaton with infinitely many states and inputs:
Q = Σ = Rd. Thus, as long as g can represent δ, RNNs can simulate all semiautomata. In this
sense, the computational models of RNNs and semiautomata naturally coincide.

3

Published as a conference paper at ICLR 2023

An L-layer Transformer is another sequence-to-sequence network, consisting of alternating self-
attention blocks and feedforward MLP blocks

ftf := (id + f
(L)
mlp) ◦ (id + f

(L)
attn) ◦ (id + f

(L−1)
mlp) ◦ ... ◦ (id + f

(1)
attn) ◦ (id + P).

Briefly, an attention layer performs ℓ1-normalized mixing operations across positions t, while a
constant-layer MLP block performs position-wise function approximation (with no mixing between
positions); id denotes the identity function (residual connections), and P encodes the position t.2 We
use fairly standard positional encodings in both theory and experiments. Importantly, the standard
Transformer is convolutional (in that the weights in fattn and fmlp are shared across positions t),
but is non-recurrent: parameters are not shared across blocks.

All architectures have a notion of computational depthD (succinctly, depth) when processing inputs
of length T , which is the longest path in the computational graph. For RNNs, this is Θ(T) while an
L-layer Transformer (with constant-layer MLPs) has depth Θ(L). For Transformers, since they co-
incide up to constant factors, we use depth and number of layers interchangeably. We will also track
the layers L, embedding dimension d, attention width (the largest number of parallel attention head
outputs), and MLP width (the largest number of parallel hidden activations in the MLP blocks).3

3 THEORY: SHORTCUTS ABOUND

A T -layer Transformer can trivially simulate a semiautomaton at length T sequentially: like an
RNN, the t-th layer can implement (an embedding of) the state transition qt−1 7→ qt. Yet, Trans-
formers succeed in practice with long contexts (≥ 103) and fewer layers (as few as 6). A natural
theoretical question is that of representability: can Transformers efficiently simulate semiautomata
with parallel shortcut solutions, whose depths are much smaller than the sequence length T ?

Definition 1 (Shortcut solution). Let A be a semiautomaton. Suppose that for every T ≥ 1, there
is sequence-to-sequence neural network fT which simulates A at length T . We call this sequence
{fT }T≥1 a shortcut solution to the problem of simulating A if its depth D satisfies D ≤ o(T).

By this definition, shortcuts are quite general and some are less interesting than others. For exam-
ple, it is always possible to construct a constant-depth neural network which memorizes all |Σ|T
values of AT,q0 , but these networks must be exceptionally wide. We could also “fast-forward” state
simulation, letting each of (say)

√
T layers simulate

√
T consecutive state transitions, but, without

exploiting the structure of the semiautomaton, this would require width Ω(2
√
T). To rule out these

cases and focus on interesting shortcuts for Transformers, we want the other size parameters (at-
tention and MLP width) to be small: say, scaling polynomially with T , or even dependent only on
|Q|, |Σ|. To construct such shortcuts, we need ideas beyond explicit iteration of state transitions.

3.1 SEMIAUTOMATA ADMIT SHALLOW PARALLEL SHORTCUTS

We begin by noting that polynomial-width shortcuts always exist. This may be counterintuitive if
we restrict ourselves to viewing a network’s intermediate activations as representations of states qt.
When we instead view them as encoding state transformations δ(·, σ) : Q→ Q and their composi-
tions, a divide-and-conquer construction is evident (see Figure 2a), detailed in Appendix C.2:

Theorem 1 (Simulation is parallelizable; informal). Transformers can simulate all semiautomata
A = (Q,Σ, δ) at length T , with depth O(log T), embedding dimension O(|Q|), attention width
O(|Q|), and MLP width O(|Q|2).

If we assume that an attention head can only select a constant number of indices, Theorem 1 is unim-
provable: the receptive field of a sublogarithmic-depth Transformer is not large enough. However,
it is known in theory and practice that soft-attention heads are capable of attending broadly, repre-
senting certain non-sparse dependencies (Clark et al., 2019; Yao et al., 2021). Thus, we can ask a
more challenging question: can the dense operations of attention enable even shallower shortcuts?

2We omit layer normalization. This discrepancy is superficial; see the discussion in Appendix A.4.
3Full statements and proofs also track ∞-weight norms (the largest absolute value of any parameter) and bit
precision of each floating-point computation. We defer precise definitions and discussion to Appendix A.4.

4

Published as a conference paper at ICLR 2023

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

δ(⋅ , σ1:8)

∘

∘ ∘ ∘

∘∘

∘

+p

z1 z2 z3 z4 z5 z6 z7 z8

sum(z1:6) mod p

♣ ⊥ ⊥ ♦ ⊥ ⊥ ⊥ ♣

♦

(a) (b) (c) (d)
& ' & & & ' ' &

M +
(sin, cos)

distinct
boundary

q7

Figure 2: Intuitions for the theoretical constructions. (a) Divide-and-conquer function composi-
tion yields logarithmic-depth shortcuts (Theorem 1). (b) The two “atoms” of the constant-depth
Krohn-Rhodes decomposition (Theorem 2) of a solvable semiautomaton: modular addition and se-
quentially resettable memory. (c) Information flow of the cascade product, which is used to glue
these atoms together, and easily implemented with residual connections. (d) An even shorter short-
cut solution for gridworld simulation (Theorem 3; see Appendix C.4).

The key to resolving this question comes from Krohn-Rhodes theory, which gives us tools to reason
about the structure of arbitrary semiautomata and their transformation semigroups. A landmark
result (Krohn & Rhodes, 1965), a vast generalization of the uniqueness of prime factorizations for
integers, shows that to simulate any semiautomaton, we only need to handle two types of elementary
objects: simple groups, and a memory unit (Figure 1b). When the Krohn-Rhodes decomposition
contains no non-abelian groups (we call such a semiautomaton solvable4), there exist constant-depth
circuits for simulation, which we manifest as neural networks.

It turns out that positional weight sharing (a.k.a. “width-1 convolutions”), non-recurrence, and self-
attention are particularly well-suited for efficiently representing the Krohn-Rhodes decomposition of
a semiautomaton: uniform-sum attention heads perform abelian group operations, proximity-based
selection heads implement memory units, and the rest of the architecture (MLPs and residual con-
nections) implements the cascade product (Definition 4) which combines these atomic operations.
Overall, we conclude:
Theorem 2 (Transformer Krohn-Rhodes; informal). Transformers can simulate all solvable semi-
automataA = (Q,Σ, δ), with depthO(|Q|2 log |Q|), embedding dimension 2O(|Q| log |Q|), attention
width 2O(|Q| log |Q|), and MLP width |Q|O(2|Q|) + 2O(|Q| log |Q|) · T .5

It is quite counterintuitive6 that as T → ∞, no additional depth is needed for such a large class of
problems. We provide background and details (including the definition and implementation of this
notion of semigroup product) in Appendices A.2 and C.3. In Figure 2b and 2c, we illustrate the
three key ingredients: efficient implementations of the two atoms (modular counting and memory
lookups), and the procedure for gluing them together (building a transformation cascade).

What does each layer do? The construction in Theorem 1 recursively composes functions, as
opposed to the naive solution of directly emulating states. Theorem 2 takes a very different approach:
it relies on the holonomy decomposition variant of the Krohn-Rhodes theorem (Eilenberg, 1974).
Rather than simulating qt or composing functions, the computational paths correspond to a |Q|-
level tree of nested coarsenings of the semiautomaton’s dynamics: “which subset of states could
qt be in right now?” Within each level of this tree, the network must implement (generally non-
commutative) group operations. This can be done with O(|Q| log |Q|) layers, by leveraging the
Jordan-Hölder decompositions and the universal embedding theorem (Krasner & Kaloujnine, 1951).

Can we get even shallower shortcuts? Finally, we show that on a natural class of problems, the
computational model of self-attention leads to further fine-grained improvements over the guarantees
of Krohn-Rhodes theory. Motivated by the application of Transformers in modeling environment

4See Definition 6. Among the solvable groups are the dihedral groups D2n, the permutation groups Sn, An for
n ≤ 4, the quaternion group Q8, all groups of order < 120 except A5, and all groups of odd order.

5Perhaps surprisingly, the only place where a width of T is used is to implement a mod-n gate. This dependence
can be removed entirely if we allow for periodic activation functions such as x 7→ sin(x).

6From the back cover of Rhodes et al. (2010): the underlying theorem launched a theory which “reveals deep
and unexpected connections between algebra (semigroups) and areas of science and engineering”.

5

Published as a conference paper at ICLR 2023

dynamics, we consider the semiautomaton Gridn corresponding to a “gridworld”: n states on a line,
with input symbols “move left if possible” and “move right if possible” (see Figure 1, middle). We
show that self-attention enables an extremely concise solution, with depth independent of both T
and |Q| = n:
Theorem 3 (Depth-2 shortcut for gridworld; informal). For all positive integers n, T , Transformers
can simulate Gridn at length T , with depth 2,7 embedding dimension O(1), attention width O(n),
and MLP width O(T).8

The proof builds a concise parallel nearest boundary detector, and can be found in Appendix C.4.
We note that this particular setting is known to be an extremal case for the holonomy construction
in Krohn-Rhodes theory (Maler (2010) discusses this, calling it the elevator automaton). It would
be interesting to generalize our improvement and characterize the class of problems for which self-
attention affords O(1) instead of poly(|Q|)-depth solutions.

Aren’t neural networks universal function approximators? Sufficiently wide neural networks
with sufficiently expressive nonlinearities can fit arbitrary functions (Hornik et al., 1989; Cybenko,
1989). However, if we constrain complexity measures such as depth and width, one cannot hope
to apply universality directly. It is true that one can take the discrete circuit constructions in (Bar-
rington & Thérien, 1988), “compile” every gate to a constant-depth network, and recover shortcut
solutions with o(T) depth and poly(T) width. However, our constructions go far beyond black-box
reductions– the roles of self-attention and positional parameter sharing allow for such efficient con-
structions that no parameter count depends on T (except the MLP width, which is removable with a
periodic activation function). Furthermore, the constructions are so simple and natural that they are
corroborated by the preliminary “reverse engineering” investigation in Section 4.

3.2 LOWER BOUNDS

Can Theorem 2 be improved to handle non-solvable semiautomata? (Equivalently: can Theorem 1
be improved to constant depth?) It turns out that as a consequence of a classic result in circuit
complexity (Barrington, 1986), this question is equivalent to the major open question of TC0 ?

= NC1

(thus: conjecturally, no). Unless these complexity classes collapse, Theorems 1 and 2 are optimal.
In summary, simulating non-solvable semiautomata with constant depth is provably hard:
Theorem 4 (Transformer Barrington). Let A be a non-solvable semiautomaton. Then, for suffi-
ciently large T , no O(log T)-precision Transformer with depth independent of T and width polyno-
mial in T can continuously simulate A at length T , unless TC0 = NC1.

This is proven in Appendix C.5. The smallest example of a non-solvable semiautomaton is the one
on |Q| = 5 states, whose transitions generate A5 (all of the even permutations).

Finally, we note that although our width bounds might be improvable, an exponential-in-|Q| number
of hypotheses (and hence a network with poly(|Q|) parameters) is unavoidable if one wishes to
learn an arbitrary |Q|-state semiautomaton from data: there are |Q||Q|·|Σ| of them, which generate
|Q|Ω(|Q|2) distinct semigroups (Kleitman et al., 1976). If we wish to study how machine learning
models can efficiently identify large algebraic structures, we will need finer-grained inductive biases
to specify which semiautomata to prefer, a direction for future work.

4 EXPERIMENTS: CAN SGD FIND THE SHORTCUTS?

Our theorems are limited to representability: concise shallow solutions exist, but whether gradient-
based local search (i.e., standard training) finds them is another matter entirely. For example, em-
bedded within the problem of learning to simulate the 2-state parity semiautomaton is a well-known
non-convex optimization problem (Daniely & Malach, 2020; Edelman et al., 2022; Nichani et al.,
2022). In general, even detecting whether T (A) contains a cycle is PSPACE-hard (Cho & Huynh,
1991). Theoretically understanding how the training dynamics of deep learning transcend the worst-
case hardness of non-convex optimization is a major frontier of research, that we do not attempt to
7This requires max-pooling. If we do not use max-pooling, we can instead use an MLP with width 2O(n) and
depth O(1), or width O(n) and depth O(logn).

8As with Theorem 2, the width can be reduced to O(n) if we employ periodic activation functions.

6

Published as a conference paper at ICLR 2023

Dyck

Grid9

C2

C3

C3
2

D6

D8

Q8

A5

S5

1 2 3 4 5 6 7 8 12 16

99.3 100 100 100 100 100 100 100 100 100

92.2 100 100 100 100 100 100 100 100 100

77.6 99.8 99.9 100 100 99.5 100 99.7 100 100

54.6 94.6 96.7 99.4 100 100 99.8 100 100 100

65.0 77.9 99.9 97.9 100 99.8 98.2 99.9 95.9 80.6

25.4 27.2 47.4 75.2 100 100 100 100 100 100

45.6 98.0 100 100 100 100 100 100 100 100

31.6 49.2 59.6 60.4 73.5 99.3 100 100 100 100

12.5 23.1 32.5 46.7 71.2 98.8 100 100 100 100

7.9 11.8 14.6 19.7 26.0 28.4 32.8 51.8 97.2 99.9

(a) Accuracy across tasks (rows) and net-
work depths (columns). (b) Attention heatmaps (Grid8); unstable training (C2 and S5).

Figure 3: Overview of the empirical results in Section 4, on in-distribution learnability of shortcuts
by standard Transformer training. (a) Truncated table of results (in-distribution accuracy); rows
specify semiautomaton simulation problems, and columns specify network depth. (b) Attention
heads implement a nearest boundary detector (top); training is highly unstable (bottom).

address here. Instead, we approach the question of optimization through an empirical lens. Our
primary goal is to understand if gradient-based training can find shortcut solutions at all, rather than
whether such training is stable. Accordingly, unless otherwise noted, we report the performance of
the best model among 20 replicates; the median performance is provided in Appendix B.

For a selection of 19 semiautomata corresponding to various groups and semigroups, we train
shallow Transformers to output their state sequences given random inputs. Specifically, we apply
GPT-2-like models (Radford et al., 2019) with 1-16 layers on freshly-sampled sequences of length
T = 100.9 Strikingly, we obtain positive results (> 99% in-distribution accuracy) for all of them,
including ones which generate the non-solvable groups A5 and S5.10 Figure 3a gives a selection of
our full results (in Appendix B.1). We find that more complex semiautomata (corresponding to non-
abelian groups) require deeper networks to learn, in agreement with our theoretical constructions.

Which shallow solutions are learned? Our theoretical results identify shortcut solutions which
follow multiple, mutually incompatible paradigms. In general, we do not attempt a full investigation
of mechanistic interpretability of the trained models. As preliminary evidence, we visualize some of
the attention patterns in Figure 3b (top) within successfully-trained models, finding attention heads
which perform flat summations (with uniform attention) and conditional resets.

Optimization quirks. Although sufficiently deep networks find the solutions with non-negligible
probability, the training dynamics are unstable; Figure 3b (bottom) shows some training curves, ex-
hibiting high variance, negative progress, or accuracy that decays with continued training. In the
same vein as the “synthetic reasoning tasks” introduced by Zhang et al. (2022), we hope that semi-
automaton simulation will be useful as a clean, nontrivial testbed (with multiple difficulty knobs)
for debugging and improving training algorithms, and perhaps the neural architectures themselves.

5 FURTHER EXPERIMENTS: MORE CHALLENGING SETTINGS

For a wide family of algebraic structures, we have proven that the function class of shallow non-
recurrent networks subsumes deeper finite-state recurrent models. Furthermore, the experiments in
Section 4 have shown that despite the non-convexity of the optimization problem, standard training
works: Transformers can learn shortcuts to semiautomaton simulation, end-to-end. While encourag-
ing, the experiments in Section 4 are idealized in several ways, and it is natural to ask if Transformers
perform similarly in more challenging semiautomaton simulation scenarios. Towards answering this
9Using freshly-sampled data ensures that the model cannot achieve good performance by brute-force memo-
rization in a number of training steps we could ever execute computationally (for sufficiently large T such as
T = 100), since there are an exponential number of sequences.

10Explanations on why certain groups are harder to learn are provided in Appendix B.1.1.

7

Published as a conference paper at ICLR 2023

Task Dyck4,8 Grid9 S5 C4 D8 (abab)⋆

Observation stack top 1boundary π1:t(1) 10 mod 4 location accept

Accuracy 100.0 99.7 98.0 99.7 99.8 100.0

(a) Accuracies with indirect supervision. LSTM gets 100% on all tasks.

(b) Varying preveal (log spacing). (c) C2 (parity): accuracy at different Pr[σ = 1] and T .

Figure 4: Overview of the empirical results in Section 5. (a) Learning in the latent-state setting, with
various observation maps φ(qt). (b) Learning from incomplete state sequences: final accuracy vs.
position-wise probability of a hidden token. (c) OOD generalization: Transformers fail to generalize
to different distributions and lengths.

question, in this section, we consider some challenges that may arise in practice and an associated
set of experimental results; further details are deferred to Appendix B.2.

5.1 INCOMPLETE AND INDIRECT SUPERVISION

Automata are partially observable semiautomata. Consider the case of partial observabil-
ity. For any semiautomaton A = (Q,Σ, δ) and a (generally non-invertible) observation function
φ : Q → Q̃, we can define the problem of predicting q̃t := φ(qt). If we can only obtain observa-
tions q̃t (i.e., the state is latent), this fully captures the problem of learning a finite-state automaton
from data. The results in this paper have shown that this is equivalent to the fully-observable case
in terms of representation. However, the learning problem can be much harder; indeed, this may
account for Bhattamishra et al. (2020)’s negative results on learning regular languages with constant-
depth Transformers. Note that this also captures autoregressive next-token prediction tasks induced
by distributions (e.g., generating Dyck languages (Yao et al., 2021)) where the sequence’s contin-
uations depend on a latent semiautomaton’s state (e.g., the current stack for Dyck). Despite these
potential challenges, we find that Transformers are able to find a solution with good in-distribution
performance for all partially observable settings we consider; see Figure 4(a).

Learning from incomplete state sequences. Next, we consider the setting which is identical to
that described in Section 4, but each state qt is randomly revealed from the training data with some
probability 0 ≤ preveal ≤ 1. As with partial observability, this does not affect representation issues,
but can make learning/optimization much harder. Figure 4b shows the accuracy of S5 for models
trained on length 100 sequences for various preveal. It can be seen that Transformers may be unable
to find good solutions when the labels become sparser, whereas LSTM’s performance stays robust
across all choices of preveal.

5.2 OUT-OF-DISTRIBUTION SHORTCOMINGS OF SHORTCUT SOLUTIONS

The theoretical construction of modular counters (Lemma 6) suggests a possible failure mode: if
attention performs prefix addition and the MLP computes the sum modulo n, the MLP could fail on
sums unseen during training. This suggests that if the distribution over σ1:T shifts between training
and testing (but the semiautomaton remains the same), a non-recurrent shortcut solution might map
inputs into an intermediate latent variable space (like the sum) which fails to generalize.

Indeed, we observe that with the same models which obtain the positive in-distribution results in
Section 4, accuracy degrades as distribution shift increases; see Figure 4(c) (left), where the per-
formance drops as the probability of seeing input σ = 1 deviates from the training distribution
(Pr[σ = 1] = 0.5). From the viewpoint of mechanistic interpretation, this is further (but not abso-
lutely conclusive) evidence that with standard training, Transformers learn implementations similar
to those predicted by the theory. We provide details and further empirical evidence in Section B.2.3.

8

Published as a conference paper at ICLR 2023

More ambitiously, we could try to use these models to extrapolate to longer sequence lengths T than
those seen in the training data. Promoting this difficult desideratum of length generalization is an
intricate problem in its own right; see Yao et al. (2021); Anil et al. (2022) for more experiments
similar to ours. Figure 4(c) (right) shows the performance on sequences of various lengths, where
Transformer’s accuracy drops sharply as we move to lengths unseen during training. In contrast,
LSTM performs perfectly in both out-of-distribution scenarios. Details are deferred to Section B.2.4.

Shortcuts as “unintended” solutions. Throughout the deep learning literature, the term shortcut
is often used in a statistical sense to connote undesired (i.e., misleading, spurious, or overfitting)
learned representations (Geirhos et al., 2020; Robinson et al., 2021). The experiments in this sec-
tion show why our circuit-depth shortcuts are statistical shortcuts. Specifically, we have identified
a problem with learning relaxations to sequential state simulation: the models may “hallucinate”
statistically suboptimal latent variables. The positive results in Sections 3 and 4 suggest that this
may only be robustly diagnosable via out-of-distribution evaluation.

Finally, we empirically show that this flaw is circumventable. Using a combination of scratchpad
(a.k.a. “chain-of-thought”) (Nye et al., 2021; Wei et al., 2022) and recency bias (Press et al., 2022),
we demonstrate that Transformers can be guided towards learning recurrent (depth-T) solutions that
generalize out-of-distribution and to longer sequence lengths (Figure 4(c), yellow curves).

Computational-statistical tradeoffs. The experiments in this section highlight a statistical price
for learning shortcuts to semiautomaton simulation. On the other hand, the shallowness of these
shortcuts is computationally appealing: leveraging parallel computation, they enjoy much lower
latency (O(log T) or O(1), compared to O(T)), in both training and inference. Whether the best of
both worlds is attainable is an interesting avenue for future work.

6 CONCLUSIONS AND FUTURE WORK

We have conducted a theoretical and empirical analysis of how shallow Transformers can learn
shortcut solutions to the problem of simulating the transitions of semiautomata (and thus, the al-
gebraic structures which underlie regular expressions, finite-state transducers, and deterministic
MDPs). Using tools from semigroup theory and circuit complexity, we have constructed explicit
logarithmic-depth and constant-depth shortcuts for semiautomaton simulation. Experimentally, we
have shown that gradient-based optimization finds shortcut solutions which generalize near-perfectly
in-distribution (Section 4), but are brittle out-of-distribution (Section 5). We hope that these results
shed new light on the power and limitations of applying shallow non-recurrent models, even when
the dynamics we wish to represent are deep and recurrent.

Beyond Transformers? The theory and experiments in this work are specialized to the Transformer
architecture, to provide a concrete and timely setting. However, we note that the underlying themes
(continuous arithmetic circuits; parameter sharing across input positions and/or iterated function
compositions; local vs. global computational units) are not specialized to any particular neural
architecture11, nor the field of deep learning at all. The question of “which architectures are even
more natural for learning discrete automata, while being optimizable by gradient-based search?” is
extremely open-ended. We believe that the themes of sufficient depth and recurrent vs. non-recurrent
function composition are relevant to the study of other (and future) deep learning methods.

Future topics. In terms of theory, we have only scratched the surface of the possible interplay be-
tween neural architectures and classical ideas from the complexity theories of circuits and automata.
One salient direction is to generalize the shorter shortcut constructions in Theorem 3. Also, we have
made no attempt to treat stochastic environments, which would fully capture probabilistic Markov
models and MDPs. Section 5 alludes to a landscape of algorithm design challenges in the presence
of distribution shift and limited supervision. The latter (i.e., latent state inference) is known to lead
to worst-case computational hardness (Papadimitriou & Tsitsiklis, 1987), but yields powerful em-
pirical tools when tractable. Towards fully understanding and leveraging the circumstances which
allow learning algorithms to decode and simulate qt, there is much work to be done.

11In fact, the divide-and-conquer construction of Theorem 1 is almost recurrent with log(T) depth, and re-
sembles WaveNet-like hierarchical pooling (van den Oord et al., 2016; Larsson et al., 2016), more than
Transformers.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We are very grateful to Abhishek Shetty for helpful discussions about circuit complexity. We also
thank Ashwini Pokle for thoughtful comments and suggestions towards improving clarity and read-
ability.

REPRODUCIBILITY STATEMENT

Complete proofs of the theoretical results are provided in Appendix C, with a self-contained tutorial
of relevant group-theoretic concepts in Appendix A.2. For the empirical results, all our datasets
are derived from synthetic distributions, which are clearly described in Appendix B.1 and B.2. The
architectures, implementations (with references to popular base repositories), and hyperparameters
(including training procedure) are documented in Appendix B.3. We intend to release our code as
open source prior to publication.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. arXiv:2207.04901, 2022.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum,
and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Logical extrapola-
tion without overthinking. arXiv:-2202.05826, 2022.

Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril
Zhang. Hidden progress in deep learning: SGD learns parities near the computational limit.
arXiv:2207.08799, 2022.

David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. In Symposium on the Theory of Computing, 1986.

David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of NC1. Journal
of the ACM, 1988.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transform-
ers to recognize formal languages. In Conference on Empirical Methods in Natural Language
Processing, 2020.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv:2104.13478, 2021.

Ashok K Chandra, Steven Fortune, and Richard Lipton. Unbounded fan-in circuits and associative
functions. In Symposium on Theory of Computing, 1983.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. In Advances in Neural Information Processing Systems, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philipp Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leiki, Josh Achiam, Vedant Misra, Evan Morikawa, Alec

10

Published as a conference paper at ICLR 2023

Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. arXiv:2107.03374, 2021b.

Sang Cho and Dung T Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theoretical
Computer Science, 1991.

Noam Chomsky and Marcel P Schützenberger. The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics. 1959.

Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Conditional positional encodings for vision transformers. arXiv preprint arXiv:2102.10882, 2021.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? An analysis of BERT’s attention. In ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 1989.

Amit Daniely. Depth separation for neural networks. In Conference on Learning Theory, pp. 690–
696. PMLR, 2017.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural Infor-
mation Processing Systems, 2020.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Marcus Hutter, Shane Legg, and Pedro A Ortega. Neural networks and the chomsky hierarchy.
arXiv preprint arXiv:2207.02098, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin Liu,
Linda Chen, Sunny Tran, Newman Cheng, Roman Wang, Nikhil Singh, Taylor L. Patti, Jayson
Lynch, Avi Shporer, Nakul Verma, Eugene Wu, and Gilbert Strang. A neural network solves,
explains, and generates university math problems by program synthesis and few-shot learning at
human level. Proceedings of the National Academy of Sciences, 2022.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize Dyck-n
languages? In Findings of the Association for Computational Linguistics: EMNLP, 2020.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, 2022.

Attila Egri-Nagy and Chrystopher L Nehaniv. Computational holonomy decomposition of transfor-
mation semigroups. arXiv:1508.06345, 2015.

Samuel Eilenberg. Automata, languages, and machines. Academic Press, 1974.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference
on learning theory, pp. 907–940. PMLR, 2016.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Gan-
guli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
URL https://transformer-circuits.pub/2021/framework/index.html.

Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierar-
chy. Mathematical Systems Theory, 1984.

11

https://transformer-circuits.pub/2021/framework/index.html

Published as a conference paper at ICLR 2023

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2020.

Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning the ReLU in
polynomial time. In Conference on Learning Theory, 2017.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. arXiv:1711.02281, 2017.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv:1912.01603, 2019.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 2020.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. arXiv:2203.16634, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Christoph Hertrich, Amitabh Basu, Marco Di Summa, and Martin Skutella. Towards lower bounds
on the depth of ReLU neural networks. In Advances in Neural Information Processing Systems,
2021.

W Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Communications of the ACM, 1986.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 1989.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv:1801.06146, 2018.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers. arXiv:2203.07852, 2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas,
Yi Mao, Weizhu Chen, and Noah A Smith. Finetuning pretrained transformers into rnns.
arXiv:2103.13076, 2021.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. arXiv
preprint arXiv:2006.15595, 2020.

Daniel J Kleitman, Bruce R Rothschild, and Joel H Spencer. The number of semigroups of order n.
Proceedings of the American Mathematical Society, 1976.

László Kovács and Cheryl Praeger. Finite permutation groups with large abelian quotients. Pacific
Journal of Mathematics, 1989.

Marc Krasner and Léo Kaloujnine. Produit complet des groupes de permutations et probleme
d’extension de groupes II. Acta Scientiarum Mathematicarum, 1951.

Kenneth Krohn and John Rhodes. Algebraic theory of machines, I: Prime decomposition theorem
for finite semigroups and machines. Transactions of the American Mathematical Society, 1965.

12

Published as a conference paper at ICLR 2023

Guillaume Lample and François Charton. Deep learning for symbolic mathematics.
arXiv:1912.01412, 2019.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. FractalNet: Ultra-deep neural net-
works without residuals. arXiv:1605.07648, 2016.

Holden Lee, Rong Ge, Tengyu Ma, Andrej Risteski, and Sanjeev Arora. On the ability of neural
nets to express distributions. In Conference on Learning Theory, pp. 1271–1296. PMLR, 2017.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. arXiv:2203.07814, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101, 2017.

Oded Maler. On the Krohn-Rhodes cascaded decomposition theorem. In Time for Verification. 2010.

Oded Maler and Amir Pnueli. On the cascaded decomposition of automata, its complexity and its
application to logic (Draft). 1994.

Carlo Mereghetti and Beatrice Palano. Threshold circuits for iterated matrix product and powering.
RAIRO-Theoretical Informatics and Applications, 2000.

William Merrill, Yoav Goldberg, Roy Schwartz, and Noah A. Smith. On the power of saturated
Transformers: A view from circuit complexity. arXiv:2106.16213, 2021.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world models.
arXiv:2209.00588, 2022.

Anirbit Mukherjee and Amitabh Basu. Lower bounds over boolean inputs for deep neural networks
with ReLU gates. arXiv:1711.03073, 2017.

Neel Nanda and Tom Lieberum. A mechanistic interpretability anal-
ysis of grokking. Alignment Forum, 2022. URL https:
//www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/
a-mechanistic-interpretability-analysis-of-grokking.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D. Manning. The EOS decision and
length extrapolation. In BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks
for NLP, 2020.

Eshaan Nichani, Yu Bai, and Jason D Lee. Identifying good directions to escape the NTK regime
and efficiently learn low-degree plus sparse polynomials. arXiv:2206.03688, 2022.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks. arXiv:2102.13019, 2021.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models.
arXiv:2112.00114, 2021.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of Markov decision processes.
Mathematics of Operations Research, 1987.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas K”opf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Processing Systems, 2019.

13

https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking

Published as a conference paper at ICLR 2023

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv:1802.05365, 2018.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv:2009.03393, 2020.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

John H. Reif and Stephen R. Tate. On threshold circuits and polynomial computation. SIAM Journal
on Computing, 1992.

John Rhodes, Chrystopher L Nehaniv, and Morris W Hirsch. Applications of automata theory and
algebra: via the mathematical theory of complexity to biology, physics, psychology, philosophy,
and games. World Scientific, 2010.

Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra. Can con-
trastive learning avoid shortcut solutions? Advances in Neural Information Processing Systems,
2021.

Itay Safran, Ronen Eldan, and Ohad Shamir. Depth separations in neural networks: what is actually
being separated? In Conference on Learning Theory, pp. 2664–2666. PMLR, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108, 2019.

Tal Schuster, Ashwin Kalyan, Alex Polozov, and Adam Kalai. Programming puzzles. In Advances
in Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.

Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information and
Control, 1965.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. In Advances in Neural Information Processing Systems, 2021.

Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets. In Confer-
ence on Learning Theory, 1992.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pp.
1517–1539. PMLR, 2016.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline.
arXiv:1905.05950, 2019.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio. arXiv:1609.03499, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake A. Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In IEEE
Conference on Computer Vision and Pattern Recognition, 2021.

Jesse Vig. Visualizing attention in transformer-based language representation models.
arXiv:1904.02679, 2019.

14

Published as a conference paper at ICLR 2023

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
arXiv:2201.11903, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like Transformers. In International Confer-
ence on Machine Learning, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing. arXiv:1910.03771, 2019.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s
neural machine translation system: Bridging the gap between human and machine translation.
arXiv:1609.08144, 2016.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-yan Liu. A survey
on non-autoregressive generation for neural machine translation and beyond. arXiv:2204.09269,
2022.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks.
arXiv:2009.11848, 2020.

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. In Association for Computational Linguistics,
2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 2021.

H Paul Zeiger. Cascade synthesis of finite-state machines. Information and Control, 1967.

Chiyuan Zhang, Maithra Raghu, Jon Kleinberg, and Samy Bengio. Pointer value retrieval: A new
benchmark for understanding the limits of neural network generalization. arXiv:2107.12580,
2021a.

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup
help with robustness and generalization? In International Conference on Learning Representa-
tions, 2021b.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling Transformers with LEGO: a synthetic reasoning task. arXiv:2206.04301, 2022.

Karl-Heinz Zimmermann. On Krohn-Rhodes theory for semiautomata. arXiv:2010.16235, 2020.

15

Published as a conference paper at ICLR 2023

Appendix

Table of Contents
A Additional background and notation 17

A.1 Notation . 17
A.2 Automata, semigroups, and groups . 17
A.3 Shallow circuit complexity classes . 21
A.4 The Transformer architecture . 22
A.5 Additional discussion of related work . 24

B Experiments 26
B.1 Section 4: SGD finds the shortcuts, under ideal supervision 26
B.2 Section 5: Failures of shortcuts in more challenging settings 31
B.3 Additional details . 37

C Proofs 38
C.1 Useful definitions and lemmas . 38
C.2 Proof of Theorem 1: Logarithmic-depth shortcuts via parallel prefix sum 40
C.3 Proof of Theorem 2: Constant-depth shortcuts via Krohn-Rhodes decomposition 42
C.4 Proof of Theorem 3: Even shorter shortcuts for gridworld 56
C.5 Proof of Theorem 4: Depth lower bound for non-solvable semiautomata 64

16

Published as a conference paper at ICLR 2023

A ADDITIONAL BACKGROUND AND NOTATION

A.1 NOTATION

Below, we list our notational conventions for indices, vectors, matrices, and functions.

• For a natural number n, [n] denotes the index set {1, 2, . . . , n}.
• For a vector v ∈ Rn and i ∈ [n], vi denotes the i-th entry. When v is an expression, we use

[v]i for clarity. Vectors can be instantiated by square brackets (like [1 2 3] ∈ R3). They can be
indexed by slices: va:b denotes [va va+1 . . . vb]. We adhere to the convention that all vectors
are column vectors.

• For a matrix M ∈ Rm×n, i ∈ [m], j ∈ [n]: Mij (or [M]ij) denotes the (i, j)-th entry. Mi,: and
M:,j denote the i-th row and j-th column, respectively. Importantly, we note the convention that
this “slice” notation converts all vectors into column vectors.

• When the first dimension of a matrix M ∈ RT×d is to be interpreted as a sequence length,
we will implicitly convert a sequence of vectors v1, . . . , vT ∈ Rd into a matrix (v1, . . . , vT) ∈
RT×d whose rows the vectors vt. This is an arbitrary choice (compared to concatenating columns
and obtaining a matrix in Rd×T), selected to adhere to previously standardized notation for the
Transformer.

• We will sometimes index vectors and matrices with named indices (such as ⊥ for padding to-
kens) instead of integers, for clarity.

• ei denotes the i-th elementary (one-hot) unit vector. Likewise as above, we sometimes use non-
integer indices (e.g. e⊥).

• For vectors u, v ∈ Rd, ⟨u, v⟩ = u⊤v both denote the inner product.

• For a function f : X × Y → Z and all y ∈ Y , we will let f(·, y) : X → Z denote the
restriction of f to y (and similarly for other restrictions). This appears in the per-input state
transition functions δ(·, σ) : Q → Q, as well as the functions represented by neural networks
for a particular choice of weights.

• For functions f, g, f ◦ g denotes composition: (f ◦ g)(x) := f(g(x)). When we compose neural
networks f : X × Θf → Y, g : Y × Θg → Z with parameter spaces Θf ,Θg , we will use
f ◦ g : X × (Θf ×Θg)→ Z to indicate the composition f(g(x; θg)θf).

• (·)+ : R→ R denotes the ReLU (a.k.a. positive part) function: (x)+ = max{x, 0}. In function
compositions, we use σ to denote the entry-wise ReLU (e.g. f ◦ σ ◦ g).

A.2 AUTOMATA, SEMIGROUPS, AND GROUPS

Recall that a semiautomatonA = (Q,Σ, δ) has a state spaceQ, an input alphabet Σ, and a transition
function δ : Q × Σ → Q. For any natural number T and a starting state q0 ∈ Q, by repeated
composition of the transition function δ, one can use A to define a map from a sequence of inputs
(σ1, . . . , σT) ∈ ΣT to a sequence of states (q1, . . . , qT) ∈ QT via:

qt := δ(qt−1, σt),∀t ∈ [T].

Here and below, it is helpful to use a matrix-vector notation to express the computation of semi-
automata. For a given semiautomaton we can always identify the state space Q with index set
{1, . . . , |Q|} and use a one-hot encoding of states into {0, 1}|Q|. For each input symbol σ ∈ Σ, we
associate a transition matrix δ(·, σ) ∈ {0, 1}|Q|×|Q| with entries [δ(·, σ)]q′,q = 1{δ(q, σ) = q′}.
This implies that for all q, σ, we have eδ(q,σ) = δ(·, σ)eq , so that the computation of the semiau-
tomaton amounts to repeated matrix-vector multiplication.

While semiautomata are remarkably expressive, we discuss a few simple examples throughout this
background section to elucidate the key concepts.

Example 1 (Parity). Let Q = Σ = {0, 1} and let δ(q, 0) = q and δ(q, 1) = 1 − q. Then, starting
with q0 = 0, the state at time t, qt, is 1 if the binary sequence (σ1, . . . , σt) has an odd number of 1s.

17

Published as a conference paper at ICLR 2023

Example 2 (Flip-flop). Let Q = {1, 2},Σ = {⊥, 1, 2} and let δ be given by

δ(·,⊥) = I2×2, δ(·, 1) =
(
1 1
0 0

)
, δ(·, 2) =

(
0 0
1 1

)
As the name suggests, this semiautomaton implements a simple memory operation where the state
at time t is the value of the most recent non-⊥ input symbol.

Example 3 (1D gridworld). Let S be a natural number, Q = {0, 1, . . . , S} and Σ = {L,⊥, R}.
Then the transition matrices are given by:

δ(·,⊥) = IS+1×S+1, δ(·, L) =

1
. . .

0 IS×S...
. . .

0 0

 δ(·, R) =

 0 0. . .
...

IS×S 0. . . 1

 .

This semiautomaton describes the movement of an agent along a line segment where actions−1 and
+1 correspond to decrementing and incrementing the state respectively, except that the decrement
input has no effect at state 0 and the increment input has no effect at state S.

Note that we have chosen a convention which differs slightly from the main paper (i.e. Figure 1):
we enumerate the indices starting from 0 rather than 1. This is because the proofs are stated more
naturally when the boundaries of the gridworld are identified with the indices 0 and S.

For a semiautomaton A = (Q,Σ, δ) each input symbol σ ∈ Σ defines a function δ(·, σ) : Q → Q.
These functions can be composed in the standard way, and we use δ(·, σ1:t) to denote the t-fold
function composition. Note that δ(q0, σ1:t) is precisely the value of the state at time t on input σ1:t.
Thus, the set of all functions that can be obtained by composition of the transition operator, formally

T (A) := {δ(·, σ1:t) : t ∈ N, σ1:t ∈ Σt},

plays a central role in describing the computation of the semiautomaton. This object is a transfor-
mation semigroup. We now turn to describing the necessary algebraic background.

Recall that a group (G, ·) is a set G equipped with a binary operation · : G × G → G such that

• (identity) There exists an identity element e ∈ G such that e · g = g · e = g for all g ∈ G.

• (invertibility) Every element g ∈ G has an inverse g−1 ∈ G such that g · g−1 = g−1 · g = e

• (associativity) The binary operation is associative: (g1 · g2) · g3 = g1 · (g2 · g3).

A monoid is less structured than a group; there must be an identity element and the binary opera-
tion must be associative, but invertibility is relaxed. A semigroup is even less structured: the only
requirement is that the binary operation is associative.

It is common to let G be a subset of functions from Q → Q where Q is some ground set and
let the binary operation be function composition. In this case, the structure is called a permutation
group or transformation monoid/semigroup depending on which subset of the above properties hold.
For transformation groups, since every element has an inverse under function composition, it is
immediate that every element is some permutation over the ground set.

In fact, taking G to be a subset of functions as above is without loss of generality: by Cayley’s
theorem every group is isomorphic (equivalent after renaming elements) to a transformation group
on some ground set, and we can take the ground set to have the same number of elements as the
original group (for finite groups). Analogously, all semigroups are isomorphic to a transformation
semigroup, but the ground set may need one additional element (for the identity); this is Cayley’s
theorem for semigroups. It is also clear that every transformation semigroup can be realized by some
semiautomaton by trivially having the input symbols correspond to the functions in G.12 Therefore
we have lost no structure when passing from finite semiautomata to finite semigroups.

Before discussing the compositional structure of semigroups, we give one more canonical example.

12More succinctly, inputs can correspond to a generating set of the group, but this is not relevant for our results.

18

Published as a conference paper at ICLR 2023

Example 4 (Cyclic group). Let S be a natural number let Q = {0, 1, . . . , S − 1} and let Σ =
{1} have only one element. The dynamics are given by δ(q, 1) = (q + 1) mod S. Clearly this
semiautomaton implements counting modulo S. The underlying group is the cyclic group, denoted
CS , which is isomorphic to the integers mod S with addition as the binary operation. Note that in
this case, the operation is commutative, which makes the group abelian.

Let us now turn to the compositional structure of groups and semigroups. Since it is without loss
of generality to consider transformation (semi)groups, we always take the binary operation to be
function composition. A subgroup H of a group G is a subset of the elements of G that is also
a group, denoted as H ≤ G. In particular it must be closed under the binary operation. N is a
normal subgroup, denoted N ◁ G, if in addition to being a subgroup, it satisfies that {gn : n ∈
N} = {ng : n ∈ N}. (These sets are known as the left and right cosets of N in G and denoted
gN and Ng respectively.) 13 Normal subgroups can also arise as the kernel of a mapping from G
to a subgroup H of G. Let ϕ : G → H be a mapping that preserves the group operation (i.e., a
group homomorphism) and let ker(ϕ) := {g : ϕ(g) = id}. Then ker(ϕ) is a normal subgroup of G.
We will see below that normal subgroups provide a weak form of commutativity, that allows us to
construct more complex groups out of simpler ones.

Direct products. The most natural way to compose larger groups from smaller ones is via the
direct product. Given two groups G and H , we can form a new group with elements {(g, h) : g ∈
G, h ∈ H} with a binary operation that is applied component-wise (g, h) · (g′, h′) = (g · g′, h · h′)
(here, · is overloaded to be the group operation for all three groups). This direct product group is
denoted G × H . In the context of permutation groups, say G is a permutation group over ground
set QG and H is over ground set QH . Then G × H has ground set QG × QH and every function
in G×H factorizes component-wise, i.e., every element in G×H is identified with a permutation
(qG, qH) 7→ (g(qG), h(qH)) where g ∈ G, h ∈ H .

Observe that G×H contains normal subgroups which are isomorphic to both G and H . To see this,
take N = {(eG, h) : h ∈ H} where eG is the identity element in G. Then since geG = eGg and
since H is closed under its group operation, we have (g, h)N = N(g, h) for all (g, h) ∈ G×H . A
symmetric argument shows that G is also a normal subgroup of the direct product.

Note that we can analogously define direct products in the absence of the group axioms, and thus
for monoids and semigroups. This gives a natural construction of the semigroup corresponding
to moving around both axes of a 2-dimensional rectangular gridworld, as a concatenation of two
non-interacting 1-dimensional gridworlds:
Example 5 (2D gridworld). If GS is the transformation semigroup of the 1-d grid world with S+1
states, then GS ×GS corresponds to a 2-dimensional gridworld. A semiautomaton that yields this
transformation semigroup has state spaceQ = {(i, j) : i, j ∈ {0, . . . , S}} and 5 actions: increment
or decrement i or j, subject to boundary effects, or do nothing.

The definition of direct product extends straightforwardly to more than two termsG1×G2×. . .×Gn;
we identify the items with tuples (g1, g2, . . . , gn).

Semidirect products. However, it is possible to compose larger groups so that one of the sub-
groups is not a normal subgroup. This operation is called a semidirect product, with the group law
(g, h) ·(g′, h′) = (g ·ϕh(g′), h ·h′) for some ϕh to be defined later. Observe that in the direct product
G×H , we have constructed the elements from ordered pairs (g ∈ G, h ∈ H), lifting G and H into
a shared product space (i.e., the Cartesian product of the underlying sets of G and H), defining the
group operation as simply applying those of G and H separately.

In fact, there are other ways, to define the group operation in the product space, but a difficulty
arises: we need to find other nontrivial multiplication rules on pairs (g, h), and we cannot take for
granted that an arbitrary binary operation satisfies the group axioms. We would like to define other
operations (g, h) ·(g′, h′) which output an element of g and an element of h. An attempt would be to
pick two arbitrary injective homomorphisms ϕG, ϕH which embed G and H into a “shared space,”
so that elements of G and H can be multiplied together:

(g, h) · (g′, h′) := ϕG(g) · ϕH(h) · ϕG(g′) · ϕH(h′).

13An equivalent definition of a normal group is a subgroup N such that g−1ng ∈ N , ∀g ∈ G, n ∈ N .

19

Published as a conference paper at ICLR 2023

However, we need to ensure that this group operation is closed. Since all elements of the group are
of the form (g, h) where g ∈ G and h ∈ H , we must find a pair (g̃, h̃) that yields the right hand side
of the above display when embedded into the shared space via ϕG, ϕH . For this, the most natural
choice is g̃ = g · g′ and h̃ = h · h′, and thus we must check that:

ϕG(g · g′) · ϕH(h · h′) = ϕG(g) · ϕG(g′) · ϕH(h) · ϕH(h′)

= ϕG(g) · ϕH(h) · ϕG(g′) · ϕH(h′) = (g, h) · (g′, h′)

However, the middle equality may not hold, because ϕG(g′) and ϕH(h) are not guaranteed to com-
mute. (Observe that for the special case of g 7→ (g, eH), h 7→ (eG, h), these two elements always
commute, giving rise to the direct product.)

Eliding ϕG, ϕH and simply using g, h as elements of the shared space, a sufficient condition for this
to hold is that hg′h−1 ∈ G, since then, for some g̃ ∈ G,

(g, h) · (g, h′) = ghg′(h−1h)h′ = g(hg′h−1)hh′ = gg̃hh′,

which is of the form ϕG(·) · ϕH(·) since both G and H are themselves closed. This condition is
precisely that G is a normal subgroup.

There is a degree of freedom here: for each pair h and g′, we can choose which element of G is
given by hg′h−1. When we make this choice we must ensure all of the group axioms are preserved,
e.g., when h = eH we should always have eHg′eH = g′. Suppose we make this choice and
define ϕh : g 7→ hgh−1 ∈ G (this ϕ is a homomorphism from H → Aut(G), where Aut(·)
denotes the automorphism group, the group of bijections on G that preserve the group axioms,
under composition). Then, these ordered pairs do indeed form a group, but the group operation is

(g, h) · (g′, h′) = gϕh(g
′)hh′

This object is the semidirect product, and it is denoted G⋊H . Note that the choice of mapping ϕ is
unspecified in the notation, and, in general, different choices of ϕ will yield different structures for
the semidirect product.

Finally, when G = N ⋊ H , both N and H are subgroups of G, but N is also a normal subgroup.
To see this, we need to check that hN = Nh for any h ∈ H . This is equivalent to hnh−1 ∈ N
for each h, n, but we defined the group operation to be hnh−1 = ϕh(n) ∈ N , specifically so this
would hold. On the other hand, H may not be a normal subgroup, and in this sense the semidirect
product is a generalization of the direct product (for which both subgroups are normal). However,
when the mapping ϕ is trivial, that is ϕh(n) = n then both N and H are normal subgroups, and one
can verify that in this case the semidirect product and direct product coincide.
Example 6 (Dihedral group). Consider a semiautomaton with Q = {0, . . . , S − 1} × {−1,+1}
and input alphabet Σ = {advance, reverse}. The transitions are given by:

δ((s, b), advance) = (s+ b mod S, b)

δ((s, b), reverse) = (s,−b)

The transformation semigroup for this semiautomaton is CS⋊C2 where CS is the cyclic group on S
elements (cf. Example 4). C2 has two elements, the identity e and one element h such that hh = e.
CS has S elements where each element g is a function that adds some number k ∈ {0, . . . , S − 1}
to the input modulo S. The inverse g−1 is naturally to subtract k to the input, modulo S. The
homomorphism ϕ in the semidirect product is such that ϕe(g) = g and ϕh(g) = g−1.

Wreath products. We define one more type of product between groups N and H: the wreath
product N ≀H := (N × . . .×N)⋊H . This is a group containing |N ||H| · |H| elements (rather than
|N | · |H|, like the direct and semidirect products). Intuitively, it is defined by creating one copy of
N per element in H via the direct product, then letting H specify a way to exchange these copies.
Formally, N ≀H is the unique group generated by

(g1, . . . , g|H|, h) ∀gi ∈ N,h ∈ H,

where

(g1, . . . , g|H|, eH) · (g′1, . . . , g′|H|, eH) := (g1 · g′1, . . . , g|H| · g′|H|, eH) ∀gi, g′i ∈ N,

20

Published as a conference paper at ICLR 2023

and
(g1, . . . , g|H|, eH) · (eN , . . . , eN , h) := (gπh(1), . . . , gπh(|H|), eH) ∀gi ∈ N,h ∈ H, (A.1)

where we have enumerated the elements of H in arbitrary order, such that each πh : [H] → [H] is
the permutation defined by right multiplication h′ 7→ h′h (by convention).

To write this explicitly as a semidirect product N ≀H := (N × . . .×N)⋊H , the homomorphism
into the direct product’s automorphism group ϕ : H → Aut(N × . . . × N) is given by A.1: for
each h ∈ H , ϕ is the automorphism defined by permuting the indices between the terms in the direct
product, according to the permutation induced by right multiplication by h.
Example 7 (Rubik’s Cube). A naive way to construct the Rubik’s Cube is to assign labels
{1, . . . , 54} to the stickers on the cube, and define the Rubik’s Cube group G via the sticker config-
urations reachable by the 6 face turns (which each specify a permutation δL, δR, δU , δD, δB , δF :
[54]→ [54] of the stickers). This establishes G as a subgroup of S54. First, notice that the 6 central
stickers never move (so this is really improvable to S48). Next, notice that the 24 = 8 × 3 vertex
stickers never switch places with the 24 = 12× 2 edge stickers. The vertex stickers form a subset of
the wreath product C3 ≀ S8, while the edge stickers form a subset of the wreath product C2 ≀ S12. In
all, this realizes G as a subgroup of a direct product of wreath products:

G ≤ (C3 ≀ S8)× (C2 ≀ S12).

Among other consequences towards solving the Rubik’s Cube, this gives an improved upper bound
on the size of G (which turns out to still be off by a factor of 12, because of nontrivial invariants
preserved by the face rotations, a.k.a. unreachable configurations).

Quotients, simple groups, and maximal subgroups. When N is a normal subgroup of G, the
quotient group G/N is defined as {gN : g ∈ G} with binary operation (gN)(g′N) = (gg′)N . The
fact that N is a normal subgroup implies that this is a well defined group. We can also check that
if G = N ⋊ H then the quotient group G/N is isomorphic to H , which matches the intuition for
multiplication and division.

A G group is simple if it has no non-trivial normal subgroups. Intuitively, a simple group cannot
be factorized into components; this generalizes the fact that a prime number admits no non-trivial
factorization. When G is not simple then it has a non-trivial normal subgroup, say N . We call N
proper ifN ̸= G. We call a proper subgroupN maximal if there is no other proper normal subgroup
N ′ ◁G such that N ◁N ′. Equivalently, N is a maximal proper normal subgroup if and only if G/N
is simple. This is akin to extracting a prime factor from a number, since the quotient group G/N
cannot be further factorized. We will revisit this idea of factorization when defining composition
series and solvable groups in Section C.3.2.

Group extensions. Finally, we provide some additional terminology related to these different no-
tions of products, which provide a cleaner unifying language in which to state our constructions. Let
N,H be arbitrary groups. Which groups G contain a normal subgroup isomorphic N , such that the
quotient G/N is isomorphic to H? Such a group G is said to be an extension of N over H . The
direct product G = N ×H is known as the trivial extension. A semidirect product G = N ⋊H is
known as a split extension. However, not all extensions are split extensions; the smallest example
is the quaternion group Q8, the group of unit quaternions {±1,±i,±j,±k} under multiplication
(i2 = j2 = k2 = ijk = −1), which cannot be realized as a semidirect product of smaller groups. In
general, it is very hard to derive interesting properties of a group extension based on the properties
of N and H . Fortunately, there is a characterization of general extensions. The Krasner-Kaloujnine
universal embedding theorem (Krasner & Kaloujnine, 1951) states that all extensionsG can be found
as subgroups of the wreath product N ≀H . The proof of Theorem 2 essentially shows how to imple-
ment the different kinds of group extensions, given constructions which implement the substructures
N,H . In the worst case, we will have to implement a wreath product.

A.3 SHALLOW CIRCUIT COMPLEXITY CLASSES

We provide an extremely abridged selection of relevant concepts in circuit complexity. For a system-
atic introduction, refer to (Arora & Barak, 2009). In particular, we discuss each circuit complexity
class and inclusion below:

NC0 ⊂ AC0 ⊂ ACC0 ⊆ TC0 ⊆ NC1.

21

Published as a conference paper at ICLR 2023

• NC0 is the class of constant-depth, constant-fan-in, polynomial-sized AND/OR/NOT circuits.
If a constant-depth Transformer only uses the constant-degree sparse selection constructions in
(Edelman et al., 2022), it can be viewed as representing functions in this class. However, the
representational power of these circuits is extremely limited: they cannot express any function
which depend on a number of inputs growing with T .

• AC0 is the class of constant-depth, unbounded-fan-in, polynomial-sized AND/OR circuits, al-
lowing NOT gates only at the inputs. A classic result is that the parity of T bits is not in
AC0 (Furst et al., 1984); Hahn (2020) concludes the same for bounded-norm (and thus bounded-
Lipschitz-constant) constant-depth Transformers.

• ACC0 extends AC0 with an additional type of unbounded-fan-in gate known as MODp for any
prime number p, which checks if the sum of the input bits is a multiple of p. Theorem 2 comes
from the fact that the semigroup word problem (which is essentially identical to semiautomaton
simulation) is in this class; see (Barrington & Thérien, 1988).

• TC0 extends AC0 with an additional type of unbounded-fan-in gate called MAJ, which computes
the majority of an odd number of input bits (a threshold gate). It is straightforward to simulate
modular counters using a polynomial number of parallel thresholds (i.e. ACC0 ⊆ TC0). Whether
this inclusion is strict (can you simulate a threshold in constant depth with modular counters?)
is a salient open problem in circuit complexity. Threshold circuits are a very natural model for
objects of interest in machine learning like decision trees and neural networks (Merrill et al.,
2021).

• NC1 is the class of O(log T)-depth, constant-fan-in, polynomial-sized AND/OR/NOT circuits.
It is an extremely popular and natural complexity class capturing efficiently parallelizable algo-
rithms. It is unknown whether any of the inclusions in the “larger” classes TC0 ⊆ NC1 ⊆ L ⊆ P
are strict.

A.4 THE TRANSFORMER ARCHITECTURE

In this section, we define the Transformer function class used in our theoretical results, and discuss
remaining discrepancies with the true architecture.

An L-layer Transformer is a sequence-to-sequence network ftf : RT×d ×Θtf → RT×d, consisting
of alternating self-attention blocks and feedforward blocks

ftf := f
(L)
mlp ◦ f

(L)
attn ◦ f

(L−1)
mlp ◦ ... ◦ f (1)attn.

The parameter space Θtf is the Cartesian product of those of the individual blocks (without recurrent
weight sharing across layers, by default). We define these two types of blocks below.

Attention. A single-headed (H = 1) self-attention block is a sequence-to-sequence network
fattn : RT×d × Θattn → RT×d, parameterized by θattn = (WQ,WK ,WV ,WC). With an inner
embedding dimension k, the shapes of these matrices are as follows: WQ,WK ,WV ,W

⊤
C ∈ Rd×k.

Each head, indexed by t ∈ [T], computes pairwise query-key alignment scores ⟨W⊤
Q xt,W

⊤
Kxt′⟩ for

each position t′ ∈ [T], normalizes them with a T -dimensional causally-masked softmax (forcing
weights for positions t > t′ to be 0), and uses these attention weights α ∈ RT to mix value embed-
dings:

∑
t′∈[T] αt′W

⊤
V xt′ . This mixture is mapped back into Rd by multiplying by WC , to form the

t-th row of the output matrix. In a single equation:

fattn(X;WQ,WK ,WV ,WC) := CausalAttn(XWQW
⊤
KX

⊤)XWVWC ,

where CausalAttn : RT×T → RT×T applies a row-wise causally-masked T -dimensional softmax
function. The standard softmax function softmax(z) : RT → RT is defined by

[softmax(z)]t :=
ezt∑

t′∈[T] e
zt′

;

the causally-masked softmax at row t is defined to be softmax(z1:t) on the first t coordinates,
and 0 on the rest. To implement the causal masking operation, it is customary to set the en-
tries above the diagonal of the attention score matrix XWQW

⊤
KX

⊤ to −∞, then obtaining
CausalAttn(XWQW

⊤
KX

⊤) via a row-wise softmax (letting e−∞ evaluate to 0).

22

Published as a conference paper at ICLR 2023

In general, for any positive integer H , a multi-headed self-attention block consists of a sum of H
copies of the above construction, each with its own parameters.

This component is often called soft attention: the softmax performs continuous selection, taking a
convex combination of its inputs. In contrast, hard attention refers to attention heads which perform
truly sparse selection (putting weight 1 on the position with the highest score, and 0 on all others).

Feedforward MLP. An L′-layer position-wise feedforward MLP block is a sequence-to-sequence
network fmlp : RT×d × Θmlp → RT×d, parameterized by θmlp = (W1, b1, . . . ,WL′ , bL′). For a
choice of activation function σ : R→ R (which is always ReLU in our theoretical constructions, for
simplicity), fmlp applies the same nonlinear map (x 7→WL′x+ bL′) ◦σ ◦ . . . ◦σ ◦ (x 7→W1x+ b1)
to each row t of the input matrix X ∈ RT×d (with the same parameters per position t); here, σ is
applied pointwise.

Finally, an extra term P ∈ RT×d is added to the first layer’s input, the matrix of position encodings.

Residual connections. It is typical to add residual connections which bypass each block. That is,
letting id denote the identity function in RT×d, the network (with position encodings) becomes

ftf := (id + f
(L)
mlp) ◦ (id + f

(L)
attn) ◦ (id + f

(L−1)
mlp) ◦ ... ◦ (id + f

(1)
attn) + (id + P).

At the level of granularity of the results in this paper (up to negligible changes in the width and
weight norms), this changes very little from the viewpoint of representation. A residual connection
can be implemented (or negated) by appending two ReLU activations to a non-residual network:

x = (x)+ − (−x)+.
Similarly, a residual connection can be implemented with one attention head (with internal embed-
ding dimension k = d), as long as it is able to select its own position (which will be true in all of
our constructions).

In some of our constructions, we choose to use residual connections (sometimes restricted to certain
dimensions); it will be very natural to view the embedding space Rd as a “workspace”, where
residual connections ensure that downstream layers can access the input (and position) embeddings,
as well as outputs of all earlier layers. We will specify whether to use residual connections in each
construction, to make the proofs as clear as possible. When we do so, we do not add the extra
weights explicitly to fattn and fmlp.

Layer normalization. For simplicity of presentation, we omit the normalization layers which are
usually present after each attention and MLP block. It would be straightforward (but an unnecessary
complication) to modify the function approximation gadgets in our constructions to operate with
unit-norm embeddings.

Padding tokens. Finally, it will greatly simplify the constructions to add padding tokens: to sim-
ulate a semiautomaton at length T , we will choose to prepend τ tokens, with explicitly chosen
embeddings, which do not depend on the input σ1:T . Theorem 1 uses τ = Θ(T) padding, and
Theorem 2 uses τ = 1. In both cases, padding is not strictly necessary (the same functionality could
be implemented by the MLPs without substantially changing our results), but we find that it leads to
the most intuitive and concise constructions.

Complexity measures. We define the following quantities associated with a Transformer network,
and briefly outline their connection to familiar concepts in circuit complexity:

• The dimensions according to the definition of a sequence-to-sequence network: sequence length
T and embedding dimension d. Up to a factor of bit precision, this corresponds to the number
of inputs in a classical Boolean circuit. We will exclusively define architectures where d is
independent of T .

• Its depth L, the number of repeated fmlp ◦ fattn blocks. When each of these modules contains
a constant number of sequential computations, this coincides with the usual notion of circuit
depth, up to a constant factor. This is true in practice and our theoretical treatment (the attention
and MLP have a constant number of layers).

23

Published as a conference paper at ICLR 2023

• The other shape parameters from the definition of the architecture: number of heads (per layer
and position) H14, and internal embedding dimension k. When fmlp is an L′-layer MLP, it has
MLP intermediate widths d1, . . . , dL′−1. We will exclusively think of L′ as a small constant, so
that the number of sequential matrix multiplications in the entire network is within a constant
factor of L.

• Its attention width wattn is defined to be the maximum of {d,Hk}, and its MLP width wmlp

is defined as the maximum of {d1, . . . , dL′−1}. Taking w = max(wattn, wmlp) as a coarse
upper bound we will use to summarize the number of per-position trainable embeddings in our
constructions. To map this to the usual notion of circuit size, note that the computations are
repeated position-wise. Thus, Transformers induce a computational graph with O(T · L · w)
gates and O(T · L · w2) wires. The position-wise parameter-sharing induces a special notion of
circuit uniformity.

• A bound on its ∞-weight norms: the largest absolute value of any trainable parameter. These
can be converted into norm-based generalization bounds via the results in Edelman et al. (2022).
Note that the results in this paper go beyond the sparse variable creation constructions of
bounded-norm attention heads; in general, the norms scale with T . The attention heads ex-
press meaningful non-sparse functions. Aside from the positive experimental results, we do not
directly investigate generalization in this paper.

• The bit precision (length of finite-precision truncation of real numbers in a computational graph
implementing ftf), which lets us implement approximate real-valued computations as Boolean
(or discrete arithmetic) circuits. With infinite-precision real numbers, there are pathological
constructions for RNNs (Siegelmann & Sontag, 1992) and Transformers (Merrill et al., 2021)
which give single parameters of neural networks infinite representational power. Throughout
this work, our circuits will work with O(log T) bit precision, which can represent real numbers
(as integers ⌊x · 2c⌋ in their binary representation, for some choice of c = Θ(log T)) with
magnitude up to O(poly(T)), with O(1/poly(T)) approximation error. Since this is far from
the focus of our results, we will elide details for the remainder of this paper, returning to these
considerations only to make Theorem 4 more concrete. All of our constructions are robust up
to this noise level: this is because the internal weight norms and activations are bounded by a
quantity at most polynomial in T , and the function approximation construction in Lemmas 1 and
2 can tolerate 1/poly(T) perturbations using poly(T) weight norms.

A.5 ADDITIONAL DISCUSSION OF RELATED WORK

Relevant applications. We first provide references for the “reasoning-like” applications of neural
networks mentioned in the main paper.

• Program synthesis: (Chen et al., 2021b; Schuster et al., 2021; Li et al., 2022).
• Mathematical reasoning: (Lample & Charton, 2019; Polu & Sutskever, 2020; Drori et al., 2022).
• Neural dynamics models for decision-making: recurrent (Hafner et al., 2019; Ye et al., 2021;

Micheli et al., 2022) and non-recurrent (Chen et al., 2021a; Janner et al., 2021).

Synthetic combinatorial experiments (and relations). We provide an expanded discussion of
empirical analyses of neural networks trained on synthetic combinatorial tasks.

• Pointer Value Retrieval: Zhang et al. (2021a) propose a benchmark of tasks based on pointer
value retrieval (PVR) to study the generalization ability (in-distribution as well as distribution
shift) of different neural network architectures. Their key idea behind the task is “indirection
through a pointer rule”, that is, a specific position of the input acts as a pointer to the relevant
position (window) of the input which contains the answer. Using our results, we can implement a
certain sub-class of PVR tasks: (1) we use the first attention layer to identify the pointer, and (2)
we use the second attention layer to select the window between the pointer value and the width.
(2) is doable with O(1) attention heads if we are computing a function that is based on the sum
(for example, mod n). Otherwise it would require the window size number of attention heads
similar to our grid-world construction.

14There will be a notational collision between h,H denoting attention heads, and h ∈ H denoting an element
in a group. We keep the overloaded notation for clarity, and this will certainly be unambiguous.

24

Published as a conference paper at ICLR 2023

• LEGO: Zhang et al. (2022) propose a task based on solving a simple chain-of-reasoning problem
based on group-based equality constraints. They study the ability of transformers to generalize
the entire chain of reasoning given only part of the chain while training. A direct comparison to
our setting is not clear since this task is not modelled as a sequence-to-sequence task, however it
serves as another example of the emergence of “shortcut” solutions: transformers solve certain
variables without resolving the chain of reasoning.

• Dyck: Several works (Hahn, 2020; Ebrahimi et al., 2020; Newman et al., 2020; Yao et al., 2021)
have studied the ability of Transformers to represent Dyck languages, both for generation and
closing bracket prediction. The most closely related to our work is Yao et al. (2021), which
constructs a clever depth-2 as well as a depth-D solution for bounded-depth D Dyck languages.
Bounded-depth Dyck can be captured by our semiautomata formalism and our main construction
would recover the depth-2D solution by default. Their depth-2 construction bears semblance to
the constructions we use in Theorem 3: they implement a counter in the first layer similar to our
mod n construction, and implement a proximity-based depth matching in the second layer. Our
grid-world construction generalizes their construction to a significantly more complex problem.
We view our work as a generalization of their results to a wider class of semiautomata.

• Parity: Another commonly studied synthetic setup is the task of learning parities. Edelman
et al. (2022); Barak et al. (2022) perform a theoretical and empirical study of the ability of
Transformers (and other architectures) to learn sparse parities where the support size k ≪ T .
Bhattamishra et al. (2020); Schwarzschild et al. (2021) study the task of computing prefix sum
in the binary basis (which is essentially parity of the prefix sum) for Transformers and recurrent
models, repsectively. Anil et al. (2022); Wei et al. (2022) study essentially the same problem
however they model the task as a natural language task and use pretrained Transformers.

• Modular addition: In the pursuit of understanding grokking, Nanda & Lieberum (2022) focus on
the task of adding two 5 digit numbers modulo a large prime (113 in their setting). They take the
viewpoint of mechanistic interpretability and attempt to reverse engineer what the Transformer
is learning on this task in the low sample regime. They claim that the trained model learns
sinusoidal encodings that we also use in our theoretical constructions. Note that our setting
of modular counters performs a T -way summation, while their setting involves only a 2-way
summation (with carryover). Inspired by their work, we do some preliminary investigation into
interpreting the trained Transformer on the grid world (see Figure 7).

Formal languages and neural networks. Dyck languages are particularly interesting for
their completeness property: the Chomsky-Schützenberger representation theorem (Chomsky &
Schützenberger, 1959) states that all context-free languages can be (homomorphically) represented
by the intersection of a Dyck language and a regular language. For more on this topic, see the
discussion in Yao et al. (2021). In the context of regular languages (which in general induce finite-
state automata), our findings imply that O(log T)-depth networks can simulate all context-free lan-
guages (Theorem 1), and O(1)-depth networks can represent some of them. The obstructing reg-
ular languages are the ones whose associated syntactic monoids are non-solvable. We further note
that the gridworld semigroups are aperiodic and thus simulable by star-free regular expressions
(Schützenberger, 1965) and AC0 circuits (Chandra et al., 1983; Barrington & Thérien, 1988). We
did not see a way for this to generically entail O(1)-depth shortcuts with self-attention. For the
relation between the Chomsky hierarchy and various neural networks in practice, Delétang et al.
(2022) provide an extensive empirical study for memory-augmented RNNs and Transformers on
tasks spanning all 4 levels of the hierarchy, and conclude the Transformers lack the ability to even
recognize regular languages. Their results do not contradict with ours, since they measure perfor-
mance on “inductive inference”, which is similar to our length generalization setup where we also
see the failure of Transformer.

Different axes of generalization: length, size, and algorithmic. There has been much recent
interest in quantifying out of distribution generalization of trained models under distribution shifts
that maintain some notion of “logical” invariance. Wei et al. (2022); Anil et al. (2022) empiri-
cally investigate the ability of pre-trained Transformers to generalize to longer sequence length for
parity-like problems modelled as language tasks. Xu et al. (2020) study size generalization in graph
neural networks where they train on small graphs and evaluate on larger sized graphs with similar
structural properties. Schwarzschild et al. (2021); Bansal et al. (2022) focus on length and algorith-
mic generalization for recurrent models where they train on simple/easy instances of the underlying

25

Published as a conference paper at ICLR 2023

problem and evaluate on harder/complex instances using the power of recurrence to simulate ex-
tra computational steps, inspired by the ideas of Neural Turing Machines (Graves et al., 2014) and
Adaptive Computation Time (Graves, 2016). We view our results as complementing those of Yao
et al. (2021); Anil et al. (2022) for a richer class of problems. Our use of scratchpad is inspired by
Nye et al. (2021); Wei et al. (2022); Anil et al. (2022).

Recurrent Transformers. Our work is not the first to notice that Transformer architectures make
brittle predictions out-of-distribution. Indeed, even the seminal paper introducing the architecture
(Vaswani et al., 2017) notes that length generalization is promoted by a subtle hyperparameter choice
(namely, the positional encoding scheme). Furthermore, there have been several attempts to recon-
cile this gap by modifying Transformers to behave more like RNNs; (Dehghani et al., 2019; Nye
et al., 2021; Wei et al., 2022; Anil et al., 2022; Hutchins et al., 2022). Kasai et al. (2021) consider
training a non-recurrent Transformer, and finetuning it into an RNN. All of these works have some
element of natural language experiments: either the task is end-to-end language modeling, or the
synthetic reasoning task is framed as a natural language problem, for a pretrain-finetune pipeline.
We view our work as strengthening the foundations of these lines of inquiry. Theoretically, we
provide structural guarantees for how shallow non-recurrent models can (perhaps deceptively) fit
recurrent dynamics over long sequences. Empirically, we perform a pure (no confounds arising
from the influence of a natural langauge corpus) analogue of the experiments seeking to help neural
networks follow long chains of reasoning.

Recurrent vs. non-recurrent sequence transduction. As mentioned briefly towards the end of
Section 5, the setting of indirectly-supervised semiautomata matches that of autoregressive gener-
ative modeling (a.k.a. next-token prediction), if the continuations of the sequence depend on the
state of a latent semiautomaton. This is the case in (for example) generating Dyck languages (Yao
et al., 2021), where the possible continuations are {all possible open brackets, if the stack qt is not
full}∪{close bracket which pairs with the top of the stack qt}. We note that when an autoregressive
model is used for sequence generation via a token-by-token inference procedure, this amounts to
a special case of scratchpad inference (with a naive 1-step training procedure): the constant-depth
network is used as a single iteration of a recurrent network, whose state is the completed prefix of
the current generated sequence. Non-autoregressive natural language generation and transduction
are an exciting area of research (Gu et al., 2017); for a recent survey, see Xiao et al. (2022). Our
results are relevant to this line of work, suggesting that there may not be an expressivity barrier
to expressing deep recurrent linguistic primitives, but there may be issues with out-of-distribution
robustness.

Algebraic structures in deep learning. Another area where tools from abstract algebra are used
to reason about neural networks is geometric deep learning, a research program which seeks to
understand how to specify inductive biases stemming from algebraic invariances. For a recent sur-
vey, see Bronstein et al. (2021). In contrast, this work studies the ability of a fixed architecture to
learn a wide variety of algebraic operations, in the absence of special priors (but a large amount of
data). There are certainly possible connections (e.g. “how do you bias an architecture to perform
operations in a known group, when there is limited data?”) to explore in future work.

Theoretical role of depth. Our theoretical results can be interpreted as a depth separation result:
contingent on TC0 ̸= NC1, it takes strictly more layers to simulate non-solvable semiautomata,
compared to their solvable counterparts. In a similar spirit, there have been several works establish-
ing depth separation for feed-forward neural networks (mostly using ReLU activations) (Telgarsky,
2016; Eldan & Shamir, 2016; Daniely, 2017; Lee et al., 2017; Safran et al., 2019). These results are
usually constructive in nature, that is, they show the existence of functions that can be represented
by depth L but would require exponential-width for depth L− 1 (or

√
L, depending on the result).

B EXPERIMENTS

B.1 SECTION 4: SGD FINDS THE SHORTCUTS, UNDER IDEAL SUPERVISION

This section contains a full description and discussion of the in-distribution simulation experiments
from Section 4.

26

Published as a conference paper at ICLR 2023

B.1.1 SHALLOW TRANSFORMERS SIMULATE SMALL GROUPS AND SEMIGROUPS

The main experiments in this paper investigate whether gradient-based training of Transformers
finds low-depth solutions to the problem of simulating semiautomata. In these experiments, we con-
sider a wide variety of semiautomata A, corresponding to various groups and semigroups, and con-
struct a distribution DA over input sequences (σ1, . . . σT) and their corresponding state sequences
(q1, . . . , qT) = AT,q0(σ1:T). In each setting, the σt are chosen uniformly at random from the set of
valid tokens in Σ. 15 Given this distributionDA, and a sequence-to-sequence neural network (with a
token embedding and a linear classification head) which maps ΣT to token predictions Y ∈ RT×|Q|

(such that Yt,q := P̂rθ(qt = q|σ1:t)), we establish the task of minimizing the cross-entropy loss

L(θ) :=
1

T

T∑
t=1

log(1/Yt,qt).

This defines a supervised learning problem over sequences.

Note that without intermediate states in the input these problems exhibit long-range dependencies:
for example, in the parity semiautomaton (and for any semiautomaton whose transformation semi-
group is a group), every qt depends on every preceding input {σt′ : t′ < t}. Indeed, this is why
previous studies have used group operations as a benchmark for reasoning (Anil et al., 2022; Zhang
et al., 2022).

Settings. We proceed to enumerate the semiautomata considered in these simulation experiments.

• Cyclic groups C2, C3, . . . , C8. For each cyclic group Cn (realized as Q := {0, 1, . . . , n −
1} under mod-n addition), we choose the generator set Σ to be the full set of group elements
{0, . . . , n− 1}. An alternative could be to let Σ be a minimal16 set {0, 1}, which we do not use
in the experiments.

• Direct products of cyclic groups C2×C2, C2×C2×C2, realized as concatenated copies of the
component semiautomata. Note that C6 (which is isomorphic to C2×C3), included in the above
set, is another example.

• Dihedral groups D6, D8. Our realization of D2n chooses Q = {0, 1, . . . , n − 1} × {0, 1} and
Σ = {(1, 0), (0, 1)}. Since these groups are non-abelian, it is already not so straightforward
(compared to parity) to see why constant-depth shortcuts should exist.

• Permutation groups A4, S4, A5, S5. We choose Q to be the set of n! permutations for Sn (sym-
metric group), and Q to be the set of n!

2 even permutations for An (alternating group on n
elements). The generator set for Sn consists of the minimal generators, a transposition and
an n-cycle, as well as 6 other permutations. 17 For An, we choose the 3-cycles of the form
(12i) for i ∈ {3, 4, · · · , n}. Note that A4, S4 are solvable (leading to constant-depth short-
cuts), while A5, S5 are not. Also, note that to learn a constant-depth shortcut for A4, a model
needs to discover the wondrous fact that A4 has a nontrivial normal subgroup, that of its double
transpositions.

• The quaternion group Q8. This is the smallest example of a non-abelian solvable group which is
not realizable as a semidirect product of smaller groups, thus requiring the full wreath product
construction (Lemma 10) in our theory.

• The Dyck language Dyckn,k (correctly nested brackets of k types, with depth at most n). We
take n = 4, k = 2 in the experiments. To realize Dyckn,k as a semiautomaton simulation
problem, the state Q is the state of the stack which implements Dyck language recognition
(there are thus

∑n
i=0 k

i distinct states); 18 Σ is the set of 2k opening and closing brackets. The
15Take for instance the Dyck language, if the current stack is empty, then σt is chosen uniformly from the

choices of open parentheses but not the closing parentheses. This is in accordance with Yao et al. (2021).
16In the sense that it induces a non-trivial learning problem on this group.If we only pick the generator {1}, the

output sequence is deterministic, and there is no learning problem.
17These other permutations are chosen following the ordering given by the sympy.combinatorics package.

They are not necessary for covering the state space (since the minimal set of 2 permutations already suffice
to cover Q), but can help speed up the mixing of the states.

18In the experiments we use (k + 1)n classes (i.e. each of the n positions can take (k + 1) possible values),∑n
i=0 k

i of which are reachable.

27

https://docs.sympy.org/latest/modules/combinatorics/perm_groups.html

Published as a conference paper at ICLR 2023

distribution in inputs is slightly different, since there is a notion of “illegal” inputs: if the stack
is empty, then the set of feasible inputs contain all the opening brackets; if the stack is full (i.e.
reaching depth n), then the only feasible input is the closing bracket for the opening bracket at
the top of the stack.

• Gridworld semiautomata Grid4,Grid9, where Q = {0, 1, · · · , n − 1} (for n = 4 or 9) and
Σ = {±1}.19 For this special case, we have a constant-depth solution as stated in Theorem 3.

Training. We focus on the online learning setting for all experiments in this paper: at training
iteration i, draw a fresh minibatch of samples from DA, compute the network’s loss and gradients
on this minibatch, and update the model’s weights using a standard first-order optimizer (we use
AdamW (Loshchilov & Hutter, 2017)). This is to mitigate the orthogonal challenge of overfitting;
note that the purpose of these experiments is to determine whether standard gradient-based training
finds shortcut solutions in these combinatorial settings (in a reasonable amount of time), not how
efficiently. We do not investigate how to improve sample efficiency in this paper. The results in the
paper are based on sinusoidal positional encodings (Vaswani et al., 2017) unless otherwise specified.

Sequence length. We report our main results with sequence length T = 100, which is large
enough to rule out memorization: for this choice of T , the inputs come from a uniform distribution
over |Σ|100 > 1030 sequences, rendering it overwhelmingly unlikely for a sample to appear twice
between training and evaluation. We observed positive results in most of the settings for larger
T , but training became prohibitively unstable and computationally expensive; mitigating this is an
interesting direction for future empirically-focused studies.

Depth. We seek to investigate the sufficient depth for learning to simulate each semiautomaton.
Thus, for each problem setting, we vary the number of layers L in the Transformer between 1 and
16. Note that we do not attempt in this work to distinguish between depths O(log T) and O(1), nor
do we attempt to tackle the problem of exhaustively enumerating and characterizing the shortcut
solutions for any particular semiautomaton.

Results. For each task and number of layers, we report the highest (Figure 5) and median (Figure
6) accuracies over 20 runs. The accuracy is calculated at token level (i.e. 1

T

∑
t∈[T] 1[q̂t = qt]),

as opposed to the sequence-level accuracy (i.e. 1[q̂1:T = q1:T]) as reported in Bhattamishra et al.
(2020). We evaluate in-distribution accuracy on independent (unseen) samples ofDA, which contain
2048 sequences of length T = 100. 20 As shown in Figure 5, Transformers, trained with standard
gradient-based methods, are able to find solutions which generalize well (in-distribution) on all of
the tasks. Performance tends to improve as the number of layers increases (there is a small amount
of non-monotonicity in some settings due to training instability); the sufficient depth to achieve high
accuracy varies depending on the problem setting, as discussed below.

Trends in sufficient depth. The minimum number of layers required to achieve 99%+ perfor-
mance reflects our beliefs on the difficulty of the task: a high-level trend is that the semigroups which
don’t contain groups (which only require memory lookups) are the easiest to learn, and among the
groups, the larger non-abelian groups require more layers to learn, with the non-solvable group S5

requiring the largest depth.21 Between the non-abelian groups, the difficulty of learning Q8 com-
pared to D8 (which has the same cardinality) agrees with our theoretical characterizations of the
respective constant-depth shortcuts for these groups: D8 can be written as a semidirect product of
smaller groups, while Q8 cannot, so our theoretical construction of a constant-depth shortcut must
embed Q8 in a larger structure (i.e. the wreath product).

Improving training stability. Throughout these experiments, we observe the following forms of
training instability: high variance in training curves (based on initialization and random seeds for

19−1 for L, 1 for R. We omit the no-op ⊥ in the experiment which does not change the difficulty of the task.
20This size is sufficient for evaluating the model performance: for example, for C2 (i.e. parity), evaluating a

model on 10 evaluation sets of this size gives a standard deviation of 0.031% in the accuracy.
21However, we stress that these experiments do not control for the fact that larger groups have richer supervision

(for example, A5 has more informative labels than A4), possibly accounting for the counterintuitive result
that the latter requires more layers, despite being a subgroup of the former.

28

Published as a conference paper at ICLR 2023

Dyck

Grid4

Grid9

C2

C3

C4

C5

C6

C7

C8

C2
2

C3
2

D6

D8

Q8

A4

A5

S4

S5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

99.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

92.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

77.6 99.8 99.9 100 100 99.5 100 99.7 100 100 100 100 100 100 100 100

54.6 94.6 96.7 99.4 100 100 99.8 100 99.9 100 100 100 100 100 99.8 100

95.1 92.3 84.2 99.9 99.7 99.9 100 100 100 100 100 100 100 100 100 100

89.0 99.1 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100

59.8 98.7 75.5 99.9 99.8 99.9 99.9 100 100 100 99.8 99.9 100 99.8 99.9 99.9

90.9 95.0 99.9 99.9 100 99.9 100 100 100 100 100 99.8 100 100 100 100

79.6 96.2 99.8 99.8 99.9 100 99.9 99.9 100 99.4 99.9 99.9 99.9 100 99.9 99.9

90.5 98.8 99.9 100 100 99.9 100 100 99.9 99.9 100 100 100 100 100 100

65.0 77.9 99.9 97.9 100 99.8 98.2 99.9 100 100 91.9 95.9 91.7 90.6 87.5 80.6

25.4 27.2 47.4 75.2 100 100 100 100 100 100 100 100 100 100 100 100

45.6 98.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100

31.6 49.2 59.6 60.4 73.5 99.3 100 100 100 100 100 100 100 100 100 100

25.0 35.4 49.1 59.3 62.6 82.3 90.9 98.0 98.0 99.1 99.8 100 99.7 100 100 100

12.5 23.1 32.5 46.7 71.2 98.8 100 100 100 100 100 100 100 100 100 100

11.3 17.6 22.0 27.1 37.7 44.8 50.8 72.5 91.3 97.1 97.9 98.7 99.9 100 99.8 99.9

7.9 11.8 14.6 19.7 26.0 28.4 32.8 51.8 86.3 94.8 90.2 97.2 99.3 99.1 99.9 99.9

Figure 5: A complete version of Figure 3, for various tasks (rows) and numbers of network layers
(columns). Reported performance is the maximum test accuracy over 20 runs.

29

Published as a conference paper at ICLR 2023

Dyck

Grid4

Grid9

C2

C3

C4

C5

C6

C7

C8

C2
2

C3
2

D6

D8

Q8

A4

A5

S4

S5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

98.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

91.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

56.4 83.0 79.9 80.9 89.1 85.2 84.8 84.9 88.8 94.5 98.3 86.4 90.4 88.7 94.6 99.3

40.3 69.1 78.2 85.0 84.0 84.9 87.9 96.2 99.4 89.2 82.5 99.3 87.4 98.0 89.6 92.0

56.8 63.8 56.2 64.2 69.5 71.5 75.9 73.7 85.8 68.0 77.1 84.1 64.9 71.1 64.3 99.3

75.6 62.7 99.0 99.5 99.8 99.9 99.8 99.5 99.8 99.8 99.7 99.8 99.8 99.9 99.9 99.7

45.8 49.0 53.0 59.6 75.5 77.0 95.6 91.2 83.4 59.6 98.4 72.9 89.7 94.5 99.8 87.5

51.0 76.2 99.7 99.7 99.6 99.6 99.4 99.7 99.7 99.6 99.6 99.6 99.7 99.6 99.8 99.7

60.5 58.8 99.0 98.5 99.6 99.7 99.4 99.5 99.6 98.5 99.5 99.8 99.8 99.6 99.3 99.7

62.6 73.1 78.4 73.4 74.9 79.8 84.1 82.4 77.0 70.6 69.0 71.9 70.6 76.9 68.3 59.3

50.0 61.4 60.6 60.7 72.4 63.2 63.8 66.4 69.8 59.0 63.4 54.6 59.5 53.0 44.7 48.4

24.8 26.8 40.8 57.2 81.3 91.6 100 99.6 100 100 93.0 96.2 100 97.7 99.6 99.3

38.1 63.6 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100

29.0 45.8 38.5 42.7 57.4 79.5 84.7 89.2 95.9 98.1 98.8 97.8 99.8 98.3 98.8 99.4

19.7 30.4 41.0 45.4 44.7 52.8 60.0 68.3 72.8 74.1 91.4 82.6 88.2 97.9 99.0 98.5

10.5 18.7 26.6 30.5 40.6 63.9 77.2 99.4 99.3 100 100 100 100 100 99.9 100

10.7 15.1 18.8 22.9 25.0 31.1 36.6 43.6 56.2 71.0 73.1 88.1 91.0 97.6 95.6 97.8

7.1 11.0 13.1 16.5 20.9 24.3 29.4 37.6 40.1 59.0 60.4 91.3 91.2 94.6 98.0 99.1

Figure 6: The median accuracy for various tasks (rows) and numbers of network layers (columns).
Reported performance is the median test accuracy over 20 runs.

30

Published as a conference paper at ICLR 2023

the gradient-based optimization algorithm), and negative progress (i.e. non-monotonic loss curves),
even for training runs which eventually converge successfully. This is evident in Figure 3(b),(c) and
in the significant difference between the maximum accuracies in Figure 5 and the median in Figure
6.

To stabilize training, we experiment with dropout and exponential moving average (EMA)22. The
effectiveness of dropout varies across datasets; for example, we find using a dropout of 0.1 (the best
among {0, 0.1, 0.2, 0.3}) to be helpful for Dihedral and Quaternion, while such dropout hurts the
training of Dyck and Gridworld. We find EMA to be generally useful, and fix the decay parameter
γ = 0.9 in the experiments since the performance of the EMA model does not seem to be sensitive
to the choice of γ ∈ {0.85, 0.9, 0.95}. Further, increasing the patience of the learning rate scheduler
can be helpful.

B.1.2 VISUALIZING AND INTERPRETING ATTENTION HEADS

Although we defer a fine-grained mechanistic interpretability study (“which group/semigroup fac-
torizations did these shallow Transformers discover, if any?”) to future work, we provide some
preliminary visualizations of attention heatmaps which strongly corroborate their theoretical coun-
terparts. In particular, consider the gridworld setup in Theorem 3. The theoretical construction
consists of two steps: the first attention layer calculates the prefix sum of the actions (i.e. the sum
of {σ̃i}i∈[T] ∈ {0,±1}T), and the second attention layer identifies the last time the process is at a
boundary state (i.e. 0 or S) where the process can be “reset” (i.e. the model can ignore the history
before the boundary state and only needs to calculate the sum of subsequent actions).

We have seen in Figure 3 that the network indeed learns to 1) compute the prefix sum, as evidenced
by the uniform attention in the first layer, and 2) detect boundary states, as highlighted by large
attention scores in the last layer. Figure 7 provides more examples of attention patterns, which are
taken from the last layer of a 4-layer GPT-2 model on two randomly selected Grid9 sequences.
We highlight the locations where the process is at a boundary state (white strips for state 0 or gray
strips for state S = 8), which align well with the highly activated positions of the attention heads,
showing that the model learns to locate the closest boundary states. Moreover, when processing
tokens appearing later in the sequence than these highly activated positions, no attention weight is
put on tokens before these positions. This suggests that these highly activated locations reset the
state so that the model does not need to look further back past them.

B.2 SECTION 5: FAILURES OF SHORTCUTS IN MORE CHALLENGING SETTINGS

Our theoretical and main empirical findings have shown that not only do shallow non-recurrent
networks subsume deeper finite-state recurrent models in theory, these shallow solutions can also
be found empirically via standard gradient-based training. However, experiments in Section 4 and
Appendix B are in an idealized setting, with full state supervision during training and in-distribution
evaluation at test time. This section studies more challenging settings where these assumptions are
relaxed. We consider training under indirect (Section B.2.1) or incomplete (Section B.2.2) state
supervision, and evaluation on sequences that is out-of-distribution (Section B.2.3) or of longer
lengths (Section B.2.4).

B.2.1 CHALLENGES FROM INDIRECT SUPERVISION

One type of limited supervision is that the observations may not provide full information of the
underlying state. To model this, we consider the case where instead of observing the state q directly,
we get a function of the state, denoted φ(q), where φ : Q → Q̃ is non-injective (i.e. |Q̃| < |Q|).
In each of the experiments involving partially-observable semiautomata, we specify the underlying
semiautomaton, as well as the observation function φ.

• Dyck language with stack top observations: For Dyckn,k, the state Q is the state of the stack
which takes

∑n
i=0 k

i values. We take φ to be the function that takes in a stack and returns the
element at the top of the stack, which is either one of the k open brackets if the stack if non-

22We use the EMA implementation from https://github.com/fadel/pytorch ema.

31

https://github.com/fadel/pytorch_ema

Published as a conference paper at ICLR 2023

(a)

(b)

Figure 7: Visualization of the entire set of 8 attention heads on two randomly selected length-128
sequences for models trained on Grid9. The lower triangles visualize the attention patterns, while
the upper triangles are ignored by the attention head because of the causal mask. We use the upper
triangles to visualize the positions of state 0 and state S = 8 in the output: white strips mark the
position of state 0 and gray strips mark state S = 8. Example heads that clearly detect state 0 and
S are highlighted with blue and red frames, respectively. Note that in many cases, the white/gray
strips align with the locations of high attention scores (the bright yellow patterns). This suggests
that the model indeed learns to identify the boundary states and that the construction in Theorem 3
agrees with solutions found in practice.

32

Published as a conference paper at ICLR 2023

Task Dyck4,8 Grid9 S5 C4 D8 (abab)⋆, (1) (abab)⋆, (2)

Observation stack top 1boundary π1:t(1) 10 mod 4 location accept accept

Accuracy 100.0 100.0 99.6 99.9 100.0 100.0 100.0

Figure 8: Accuracies with indirect supervision, extending results in Figure 4(a). The numbers are
the maximum over 25 runs. As a reference, LSTM gets 100% on all tasks.

empty, or a special token ⊥ indicating an empty stack, i.e. Q̃ := {1, 2, · · · , k,⊥}. We consider
k = 8 (as opposed to k = 2 in Section 4) to make the prediction task more challenging.

• Gridworld with boundary observations: We consider the case where the underlying semiau-
tomaton is Grid9 with Q = {0, 1, · · · , 8}. The observation function φ : Q → {0, 1} outputs
whether the current state is of two boundary states, i.e. at state 0 or state S = 8.

• Permutations with single-element observations: We take the permutation group S5 with Q is
the set of 5! operations. The observation function φ : Q → {1, 2, 3, 4, 5} returns the first value
of the permutation. For example, φ((2, 1, 4, 3, 5) = 2. We use a set of 5 generators for the
experiments.

• Cyclic group with “0 mod 4” observations: We take C4 as the underlying group with Q =
{0, 1, 2, 3}. The observation function computes whether the current state is state 0, i.e. φ(q) =
1[q = 0].

• Dihedral group with rotation component only: Recall that D2n = Cn⋊C2. We take n = 4 with
Q = {0, 1, 2, 3}× {0, 1}, and let the observation function ψ output only the the first component
(i.e. Q̃ = {0, 1, 2, 3}).

• (abab)∗: We consider one semiautomaton which is not featured in Section 4: the one which
recognizes the regular expression (abab)∗, which is also studied in Bhattamishra et al. (2020).
The underlying semiautomaton has 5 states: 4 states are in a cyclic fashion when seeing repeated
patterns of abab, and a fifth absorbing “failure” state is entered if any other pattern is seen. For
example, the input sequence abababaaabab corresponds to states 012301244444, where the 5th

“a” leads to the absorbing state. The observation function φ computes whether the current state
is the “accepting” state (i.e. state 3), with Q̃ = {0, 1}. For example, the output of φ for the
input sequence ababababa is 000100010, and the output for the input sequence ababbabab is
000111111, i.e. the sequence enters the absorbing state at position 5 and never recovers.
We consider two distributions on the input sequences: (1) the input is always a sequence of
the form abababa · · · (i.e. the process is never in the absorbing state), which is the setup in
Bhattamishra et al. (2020); and (2) the input is of the form abababa · · · with probability 0.5,
and is some randomly drawn string of a, b otherwise. Note that case (1) can be solved purely
based on the positional encoding, since the label is 1 when the position is a multiple of 4 and 0
otherwise, while case (2) is more difficult since the model needs to take into account the input
tokens.

Results. We train GPT-2-like models on sequences of length 40. We use 16 layers for S5 and 8
layers for other tasks, with embedding dimension d = 512 and H = 8 attention heads. As shown
in Figure 8, the model is able to achieve near-perfect in-distribution accuracies for all tasks. An
interesting side finding is that the choice of positional encoding turns out to be important for both
cases of (abab)∗: learning is challenging for linear encoding (i.e. pi ∝ i) but is easy when using
sinusoidal positional encoding, which is likely because the sinusoidal encoding naturally matches
the periodicity in (abab)∗. In all other experiments, we use sinusoidal positional encodings unless
otherwise noted.

B.2.2 CHALLENGES FROM INCOMPLETE SUPERVISION

Another challenge of limited supervision is that the observation sequence may be incomplete, that
is, we may not be able to get supervision on the states at every time step. We consider the task of
learning length 100 sequences, where the state at each position is revealed with some probability
preveal ∈ (0, 1].

33

Published as a conference paper at ICLR 2023

Figure 9: Learning from incomplete state sequences, extending results from Figure 4(b): accuracy
vs. position-wise probability of a hidden token (i.e. preveal), for GPT and LSTM. While LSTM
is able to maintain a perfect accuracy across different values of preveal, GPT’s performance may
degrade as labels get sparser. The mean and standard deviation are taken over 25 runs.

Figure 10: OOD generalization performance on C2: (Left) Accuracy on sequences of the same
length as training, with varying Pr[σ = 1] = 0.5. GPT fails at OOD generalization, whereas
recurrent solutions implemented by LSTM and Scratchpad with recency bias is robust to different
distributions. (Right) Accuracy on sequences of the same length as training, with a varying number
of 1s in each sequence. GPT has worse performance on counts less frequently seen during training.
The lines show the mean accuracy (with shadows showing standard error) over 25 replicates.

Results. Figure 9 shows the accuracy against preveal, for S5 and C2 (i.e. parity). Transformer
training pipeline is worse than LSTM at tolerating incomplete supervision: while Transformer is
able to maintain the performance across preveal for C2, the performance degrades significantly at
lower preveal for S5. We leave improving the robustness to sparse supervision to future work.

B.2.3 OUT-OF-DISTRIBUTION GENERALIZATION

The previous subsections show positive results on learning shallow non-recurrent shortcuts with
limited supervision during training, either in the form of indirect observations or incomplete obser-
vation sequences. In this section, we study challenges at test time, and evaluate Transformers on
their out-of-distribution generalization performance. For this and the next subsection, the models
are trained in the standard way with full state supervision. The training sequences are of length 40,
where each position has an equal probability of being 0 or 1, i.e. Pr[σ = 1] = 0.5. At test time, the
sequences of the same length as training, but the Bernoulli parameter Pr[σ = 1] varies in the range
{0.05, 0.1, 0.15, . . . , 0.9, 0.95}.

Negative results for vanilla Transformers. Figure 10 (left) shows the accuracy as Pr[σ = 1]
varies. The performance of the Transformer degrades sharply as the test distribution changes away
from training, failing at out-of-distribution generalization. Given the theoretical construction of
modular counters (Lemma 6), our hypothesis is that Transformer may be learning a shortcut solution
that computes the parity by counting the number of 1s, and that counts less frequently seen during
training will cause the model to fail. The experimental results agree with the hypothesis: as Pr[σ =
1] deviates from 0.5, it is less likely for the value of the count (which concentrates around T ×
Pr[σ = 1]) to be seen during training, hence the performance degrades. In contrast, an LSTM
recurrent network maintains perfect accuracy when evaluated on all values of Pr[σ = 1].

We further test this hypothesis by checking how the accuracy changes as we vary the count (i.e. the
number of 1s) in the input sequence. As shown in Figure 10 (right), Transformer’s performance

34

Published as a conference paper at ICLR 2023

degrades as the count moves away from the expected number during training, agreeing with the
hypothesis. It might appear strange that GPT fails at a lower count more than a higher count.
However, this may be because the shortcut learns a correlation between the count and the position:
during training, a lower count is more likely to appear early in an input sequence, as opposed to
the testing scenario where a lower count is equally likely to appear at a later part of an sequence.
This is further supported by the observation that training the model with randomly shifted positions
significantly improves the performance at lower counts.

Guiding the Transformer to learn the recurrent solution. We investigate one established mit-
igation for the out-of-distribution brittleness of non-recurrent Transformers: scratchpad train-
ing and inference. Given a sequence of inputs (σ1, . . . , σT) and states (q1, . . . , qT), in the
standard (non-recurrent) sequence-to-sequence learning pipeline, the network receives σ1:T as
input, and outputs the sequence of predictions for qt. In scratchpad training (Nye et al.,
2021; Wei et al., 2022), we instead feed the network an interleaved sequence of inputs and
states (σ1, q1, σ2, q2, σ3, q3, . . . , qT−1, σT) (with an appropriately expanded token vocabulary),
and define the network’s state predictions to be those at the appropriately aligned positions:
(q̂1,⊥, q̂2,⊥, . . . ,⊥, q̂T) (where ⊥ denotes a position where the prediction is ignored by the loss
function). During inference, we iteratively fill in the state predictions. This removes the need for
the network to learn long-range dependencies in a single non-recurrent pass, by splitting it into T
sequential state prediction problems which can depend on previous predicted state q̂t−1; one can
think of this as a way to guide a shallow Transformer to learn the recurrent solution (i.e. explicit
depth-Θ(T) iteration of the state transition function), rather than a shortcut.

We note that introducing the scratchpad itself is not sufficient to remove the parallel solution, since
the model can simply ignore the scratchpad positions and find the same parallel shortcut as before.
The good news is that we can couple scratchpad with an explicit recency bias in the attention mech-
anism (Press et al., 2022) which biases the model towards putting more attention weights on closer
input. Intuitively, if the model is only allowed to put attention on the current input token and the cur-
rent scratchpad (which is simply the current state), then the model is forced to be recurrent; recency
bias can be considered as a soft relaxation of the same idea. Combining scratchpad and recency
bias, we are able to train a Transformer to learn the recurrent solution, which is resilient to distri-
bution shift; see Figure 10 (left). Notice that this mitigation completely foregoes the computational
advantage of a shallow shortcut; we leave it to future work to obtain shortcuts which are resilient to
distribution shift. Towards this, the constructions used in the proof of Theorem 1 may be helpful.
Finally as a side note, even though the state transitions are Markov, the dependency in the input
sequence can still be long range, so we do not expect recency bias to help without scratchpad, since
in this case the output can depend uniformly on each input positions (e.g. consider parity).

B.2.4 LENGTH GENERALIZATION

Settings for length generalization. Our final setup is length generalization, where the model is
evaluated on sequences of lengths unseen during training. Promoting this difficult desideratum of
length generalization is an intricate problem in its own right; see Yao et al. (2021); Anil et al.
(2022) for more experiments similar to ours and more discussions on length generalization in A.5.
In the following, we check the length generalization performance on Dyck4,2 and C2 (with Pr[σ =
1] = 0.5), where the model is trained on sequences of length 40 and tested on sequences of length
{8, 16, 24, · · · , 120, 128}.

Results. Figure 11 shows the performance on sequences of various lengths. In contrast to LSTM’s
perfect performance on all scenarios, Transformer’s accuracy drops sharply as we move to lengths
unseen during training. This is not purely due to unseen values of the positional encoding: randomly
shifting the positions during training can cover all the positions seen during testing, which helps
improve the length generalization performance but cannot make it perfect; we see similar results
for removing positional encodings altogether. However, similar to the OOD setup in the previous
subsection, we empirically show that the above flaws are circumventable. Using a combination
of scratchpad (a.k.a. “chain-of-thought”) (Nye et al., 2021; Wei et al., 2022) and recency bias
(Press et al., 2022), we demonstrate that Transformers can be guided towards learning recurrent
(depth-T) solutions, which generalize out-of-distribution and to longer sequence lengths (Figure 11,

35

Published as a conference paper at ICLR 2023

(a) Mean accuracy over 25 replicates, with shadows showing standard error.

(b) Max accuracy over 25 replicates.

Figure 11: Length generalization on Dyck and C2: Transformer fails to generalize, but adding
Scratchpad (Nye et al., 2021) and recency bias (Press et al., 2022) serves as a remedy. For “GPT–
Shifted positions”, the positions in a sequence are shifted by a random number. For “GPT–No
positional encoding”, no position encodings are provided but the causal mask is still present.

Figure 12: Choice of the positional encoding: while having similar or even superior in-distribution
performance (on sequences of length T = 40), sinusoidal positional encoding may suffer a larger
generalization gap than linear positional encoding when testing on length 2T . The lines show the
mean accuracy over 25 replicates.

yellow curves). The results also confirm that the inclusion of recency bias is necessary: without it,
scratchpad training shows no improvement on length generalization.

Impact of positional encoding. Figure 11 also shows some interesting findings related to posi-
tional encoding, which is believed to be a key component for Transformers and a topic with active
research (Ke et al., 2020; Chu et al., 2021). While this work does not aim to improve positional
encoding, some of our results may be of interest for future research.

Sinusoidal vs linear encoding: We find that the conventional sinusoidal encoding (which is the
default for results in this paper) seems to generalize worse to unseen length than linear encoding
(where pi ∝ i), despite having comparable or better in-distribution performance. Figure 12 shows

36

Published as a conference paper at ICLR 2023

examples on Grid9 and partially observed (abab)∗, where we compare the accuracy on freshly
drawn samples of the same length as the training sequences (i.e. in-distribution), or of twice the
training length. For Grid9, both positional encodings achieve comparable accuracy, however the
sinusoidal encoding performs significantly worse when tested on sequences of doubled length. For
partially observed (abab)∗ where the label is whether the current string is a multiple of abab, the
sinusoidal encoding has a clear advantage over the linear encoding on in-distribution performance.
However, when tested on sequences of lengths twice as those during training, the performance gap
between the two positional encodings shrinks significantly.

Training with shifted positions: In general, unseen positions appear to be a major contributor to
Transformer’s failure of length generalization. This is evidenced by the comparison between Trans-
former trained with absolute positional encoding, and Transformers trained with random shifts added
to the positional encoding: for each batch, we sample a random positive integer in [0,400] and add
it to the position indices before calculating the positional encoding; this random integer is the same
for each batch and varies across batches. Figure 11 shows that adding such random shifts gives a
significant boost to Transformer’s length generalization performance, for both Dyck and C2. This
suggests that a main challenge to length generalization is the distribution shifts due to positions un-
seen during training, and finding better positional encoding could be a potential remedy for poor
length generalization.

As a side note, we also find that removing positional encoding altogether helps improve general-
ization for both parity and Dyck. For the former, removing positional encodings makes sense since
parity is a symmetric function where the ordering of the arguments does not matter, 23 though the
positive result for Dyck is less clearly understood. Note that removing positional encoding does not
mean having no position information, since the use of the causal mask implicitly encodes the posi-
tion, which is also noted in Bhattamishra et al. (2020) and concurrent work by Haviv et al. (2022).
Understanding this phenomenon is tangential to the current work and is left to future work.

B.3 ADDITIONAL DETAILS

Hyperparameters. For GPT-2 models, we fix the embedding dimension and MLP width to 512
and the number of heads to 8 in all experiments in Section 4, and vary the number of layers from
1 to 16. For LSTM, we fix the embedding dimension to 64, the hidden dimension to 128, and the
number of layers to 1. We use the AdamW optimizer (Loshchilov & Hutter, 2017), with learning
rate in {3e-5, 1e-4, 3e-4} for GPT-2 or {1e-3, 3e-3} for LSTM, weight decay 1e-4 for GPT-2 or
1e-9 for LSTM, and batch size 16 for GPT-2 or 64 for LSTM. As detailed in Section B.1.1, the
models are trained in an online fashion with freshly drawn samples in each batch. The number of
freshly drawn samples ranges from 600k to 5000k for different datasets, which is much fewer than
the number of possible strings of length 100.

Implementation details. Our experiments are implemented with PyTorch (Paszke et al., 2019).
The Transformers architectures are taken from the HuggingFace Transformers library (Wolf et al.,
2019), using the GPT-2 configuration as a base. The LSTM architecture is the default one provided
by the PyTorch library.

Computational resources. The experiments were performed on an internal cluster with NVIDIA
Tesla P40, P100, V100, and A100 GPUs. For the experiments in Section 4, each training run took
up to 10 hours on a single GPU, for a total of ≈ 104 GPU hours. The remaining experiments in
Section 5 amount to less than 1% of this expenditure.

23Empirically, we are able to achieve non-trivial accuracy (even when evaluated at the sequence level) without
positional encoding, whereas Bhattamishra et al. (2020) reports 0 accuracy. The discrepancy may be due to
different model size: Bhattamishra et al. considers Transformers with up to 4 layers, 4 heads and dimension
up to 32, whereas for the parity experiments we consider Transformers with 8 layers, 8 heads, and dimension
512.

37

Published as a conference paper at ICLR 2023

C PROOFS

C.1 USEFUL DEFINITIONS AND LEMMAS

Formal definitions of simulation. We first recall the notions of simulation introduced in Sec-
tion 2:

• A function can simulate an automaton for particular choices of T, q0. For a semiautomaton
A = (Q,Σ, δ), a function f : ΣT → QT simulates AT,q0 if f(σ1:T) = AT,q0(σ1:T) for all
input sequences σ1:T . Here, the right-hand side denotes the sequence of states q1:T induced by
the input sequence σ1:T under the transitions δ starting from state q0.

• A function class can simulate multiple functions associated with a semiautomaton. For a semi-
automaton A = (Q,Σ, δ) and a positive integer T , a function class F (a set of functions
f : ΣT → QT) simulates A at length T if, for every q0 ∈ Q, there is function fq0 ∈ F
which simulates AT,q0 .

Our proofs rely on composing “gadgets” which simulate various substructures of the transformation
semigroup T (A). Thus, it will be useful to establish a third notion of simulation, which works for
functions in the embedding space Rd rather than the symbol spaces Q,Σ. For clarity, we give this
notion a different name (continuous simulation):

• For a semiautomaton A = (Q,Σ, δ), a function f : Rd → Rd continuously simulates AT,q0 if
there exist functions E : Σ→ Rd,W : imf → Q such that W ◦ f ◦ E simulates AT,q0 .

When W is a linear threshold function z 7→ argmaxq[Wz]q , this corresponds to a standard classi-
fication head. However, our constructions may leverage other encodings of discrete objects.

Function approximation. We provide some simple function approximation results below.
Lemma 1 (1D discrete function interpolation with an MLP). Let X be a finite subset of R, such that
|x| ≤ Bx for all x ∈ X , and |x − x′| ≥ ∆ for all x ̸= x′ ∈ X . Let f : X → Rd be such that
∥f(x)∥∞ ≤ By for all x ∈ X . Then, there is a 2-layer ReLU network for which

fmlp(x+ ξ; θmlp) = f(x) ∀x ∈ X , |ξ| ≤ ∆/4.

The inner dimension is d′ = 4|X |, and the weights satisfy

∥W1∥∞ ≤
4

∆
, ∥b1∥∞ ≤

4Bx

∆
+ 2, ∥W2∥∞ ≤ By, b2 = 0.

Proof. For each x0 ∈ X , we construct an indicator ψx0
(x) for x0, out of 4 ReLU units. Letting

∆′ := ∆/4, the construction is

ψx0
(x) :=

(
x− (x0 − 2∆′)

∆′

)
+

−
(
x− (x0 −∆′)

∆′

)
+

−
(
x− (x0 +∆′)

∆′

)
+

+

(
x− (x0 + 2∆′)

∆′

)
+

.

The second layer simply sums these indicators, weighted by each f(x0).

Lemma 2 (General discrete function interpolation with an MLP). Let X be a finite subset of Rdin ,
such that ∥x∥∞ ≤ Bx for all x ∈ X , and ∥x− x′∥∞ ≥ ∆ for all x ̸= x′ ∈ X . Let f : X → Rdout

be such that ∥f(x)∥∞ ≤ By for all x ∈ X . Then, there is a 3-layer ReLU network for which

fmlp(x+ ξ; θmlp) = f(x) ∀x ∈ X , |ξ| ≤ ∆/4.

Letting Xi denote the set of unique values in coordinate i, the inner MLP dimensions are as follows:

d1 = 4
∑

i∈[din]

|Xi|, d2 = |X |.

The weights satisfy

∥W1∥∞ ≤
4

∆
, ∥b1∥∞ ≤

4Bx

∆
+2, ∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ din, ∥W3∥∞ ≤ By, b3 = 0.

38

Published as a conference paper at ICLR 2023

Proof. The first layer uses the same construction as that in Lemma 1, creating indicators for each
x ∈ Xi for each i. For each x ∈ X , the second layer has an activation which sums the indicators
from each xi, with bias −din (thus creating indicators for each x). The third layer outputs f(x) for
each indicator.

When we apply Lemmas 1 and 2 in recursive constructions, and Bx/∆ ≥ 1, we will opt to use
the bound ∥b1∥∞ ≤ 6Bx/∆, to reduce the clutter of propagating the 2 term without resorting to
asymptotic notation.

We also introduce a simpler version of Lemma 1 for the special case of the threshold function
f(x) := 1[x > 0]:

Lemma 3 (Threshold with an MLP). Let X be a subset of R, and |x| ≥ ∆ for all x ∈ X . Then,
there is a 2-layer ReLU network for which

fmlp(x+ ξ; θmlp) = 1[x > 0] ∀x ∈ X , |ξ| ≤ ∆/4.

The inner dimension is d′ = 2, and the weights satisfy

∥W1∥∞ ≤
1

∆
, ∥b1∥∞ ≤ 1/2, ∥W2∥∞ ≤ 1, b2 = 0.

Proof. We construct the threshold using 2 ReLU units. The construction is

ψ(x) :=

(
x+∆

2∆

)
+

−
(
x−∆

2∆

)
+

.

Selection via soft attention. We record some useful lemmas pertaining to approximating hard
coordinate selection with soft attention. The following is a simplified version of Lemma B.7 from
(Edelman et al., 2022) (which generalizes this to multi-index selection):

Lemma 4 (Softmax approximates hard max). Let z ∈ RT . Let softmax(z) : RT → RT denote the
T -dimensional softmax function:

[softmax(z)]t :=
ezt∑

t′∈[T] e
zt′
.

Let t∗ := argmaxt zt. Suppose that for all t′ ̸= t∗, zt′ ≤ zt∗ − γ. Then,

∥softmax(z)− et∗∥1 ≤ 2T · e−γ .

Proof. Without loss of generality, max z = γ (since the softmax function is invariant under shifting
all inputs by the same value), so that all other coordinates are non-positive. Also, assume T ≥ 2
(the T = 1 case is trivial). We have

[softmax(z)]t∗ =
eγ

eγ +
∑

t̸=t∗ e
t
≥ eγ

eγ + T − 1
= 1− T − 1

eγ + T − 1
≥ 1− T − 1

eγ
,

and for t′ ̸= t,

[softmax(z)]t′ =
et

′

eγ +
∑

t̸=t∗ e
t
≤ 1

eγ
.

Thus, the 1-norm of the difference is bounded by

T − 1

eγ
+ (T − 1) · 1

eγ
<

2T

eγ
,

as claimed.

39

Published as a conference paper at ICLR 2023

Positional embeddings. We note the following elementary fact about 2-dimensional circular em-
beddings.

Proposition 5 (Circular embeddings). Consider p1, . . . , pT , the T equally-spaced points on the
2-dimensional circle:

[pt]1 := cos

(
2πt

T

)
, [pt]2 := sin

(
2πt

T

)
.

Then, for any t ̸= t′,

|⟨pt, pt′⟩| ≤ 1− 2π2

T 2
< 1− 19.7

T 2
.

C.2 PROOF OF THEOREM 1: LOGARITHMIC-DEPTH SHORTCUTS VIA PARALLEL PREFIX SUM

In this section, we give the full statement and proof of the universal existence of logarithmic-depth
shortcuts.

Theorem 1 (Simulation is parallelizable). Let A = (Q,Σ, δ) be a semiautomaton, q0 ∈ Q, and
T ≥ 1. Then, there is a depth-⌈log2 T ⌉ Transformer which continuously simulates AT,q0 , with
embedding dimension 2|Q|+ 2, MLP width |Q|2 + |Q|, and∞-weight norms at most max{4|Q|+
2, 10T

√
log |Q|+ log T}. It has H = 2 heads with embedding dimension |Q| implying 2|Q| + 2

attention width, and a 3-layer MLP.

Proof. The basic idea is that all prefix compositions δ(·, σt) ◦ . . . ◦ δ(·, σ1) can be evaluated in
logarithmic depth using a binary tree whose leaves are the per-input transition functions δ(·, σ) :
Q → Q. The attention heads select the pairs of functions that need to be composed, while the
feedforward networks implement function composition. The network will manipulate functions in
terms of their transition maps: for example, the encoding of f := (1 7→ 1, 2 7→ 1, 3 7→ 2) is∑

q∈{1,2,3}

f(q) · eq = [1 1 2].

Small nuances. We will produce a construction for the case where T is a power of 2; general T
can be handled via padding. To simplify the construction, we also introduce T padding positions
−(T − 1), . . . , 0 at the beginning; while this greatly simplifies the positional selection construction,
this padding construction could be replaced with a slightly more complicated MLP. Also, in this
construction, we do not need to use residual connections; the parallel prefix sum algorithm we use
can be executed “in place”, saving a logarithmic factor in the width. We do assume access to the
2 positional embeddings at each layer; in the absence of residual connections, the identity function
restricted to these 2 dimensions can be implemented by the MLP and attention heads.

Let L = log2 T be the depth of the binary tree. We choose d := 2|Q| + 2. Instead of indexing the
dimensions by [d], we give them names:

• Left function encoding dimensions (q, L) for each q ∈ Q.

• Right function encoding dimensions (q,R) for each q ∈ Q.

• Positional encoding dimensions P1,P2.

Without loss of generality, let Q = [|Q|] = {1, . . . , Q} (selecting an arbitrary enumeration of
the state space). Also, assume |Q| ≥ 2 (if not, add a dummy state). We choose E(σt) :=∑

q∈Q δ(q, σt) · e(q,R), mapping each input symbol to the “transition map” of its transitions. At
the padding positions −(T − 1), . . . , 0, we will encode the “go to q0” function:

∑
q∈Q q0 · e(q,R).

Function composition gadget. We first introduce the construction for function composition with
a 3-layer ReLU MLP, which will be used by all layers. It gives an exponential improvement over
the generic universal function approximation gadget from Lemma 2.

40

Published as a conference paper at ICLR 2023

Lemma 5. There exists a 3-layer ReLU MLP ϕmlp : Rd → Rd, with fixed parameters
W1, b1,W2, b2,W3 whose dimensions and weights only depend onQ, such that for all f, g : Q→ Q,
ϕmlp outputs the transition map of f ◦ g given the concatenated transition maps of f and g. That is,
for all |Q|2|Q| choices of f, g:

ϕ

∑
q∈Q

g(q) · e(q,L) +
∑
q∈Q

f(q) · e(q,R)

 =
∑
q∈Q

(f ◦ g)(q) · e(q,R).

The intermediate dimensions are d1 = |Q|2 + |Q| and d2 = |Q|2, and weight norms are bounded
by 4|Q|+ 2.

Proof. The first layer uses Lemma 1 to create |Q|2 indicators: one to recognize each value along
the e(q,L) direction. Let us index these by q, q′ ∈ Q. Then, this gives us W1 ∈ Rd×4|Q|2 , b1 ∈
R4|Q|2 ,W ′

2 ∈ R|Q|2 such that

[((z →W ′
2z) ◦ σ ◦ (z 7→W1z + b1))(z)]q,q′ = 1[e⊤(q,L)z = q′].

We also add Q more weights which let the inputs pass through along the e(q,R) directions (add Q
more rows e⊤(q,R) to W1,W

′
2, calling these indices •q for all q ∈ Q; set biases to 0), for a total of

4|Q|2 + |Q| hidden units and |Q|2 + |Q| output dimensions of W ′
2.

The second layer implements multiplication between the indicators and function values. The outputs
are again indexed by q, q′ ∈ Q. We define W ′′

2 ∈ R|Q|2×(|Q|2+|Q|) and b′′2 ∈ R|Q|2 to be such that

[W ′′
2](q,q′),(q̄,q̄′) := |Q| · 1[(q, q′) = (q̄, q̄′)], [W ′′

2](q,q′),•q̄ := 1[q′ = q̄], [b′′2](q,q′) = −|Q|,
∀q, q′, q̄, q̄′ ∈ Q.

Overall, so far we have

[(σ ◦ (z 7→W ′′
2 W

′
2z + b′′2) ◦ σ ◦ (z 7→W1z + b1))(z)]q,q′ = g(q′) · 1[e⊤(q,L)z = q′].

The third layer W3 ∈ Rd×|Q|2 simply converts these activations back into an transition map:

W3 =
∑
q′∈Q

e(q,R)e
⊤
q,q′ .

Finally, we note the weight norms:

∥W1∥∞ ≤ 4|Q|, ∥b1∥∞ ≤ 4|Q|+ 2, ∥W ′′
2 W

′
2∥∞ ≤ 4|Q|, ∥b′′2∥∞ = |Q|, ∥W3∥∞ = 1.

Recursive parallel scan. The rest of the construction uses a standard parallel algorithm for com-
puting all prefix function compositions: at layer l ∈ [L], compose the function at position t with the
function at position t− 2l−1. This is a standard algorithm for computing all prefix compositions of
associative binary operations with a logarithmic-depth circuit (Hillis & Steele Jr., 1986). We choose
the position embeddings to enable implementing these “look-backs” with rotation matrices. For
each t ∈ {−T + 1, . . . , 0, 1, . . . , T}, we use the circle embeddings

Pt,P1
:= cos

(
πt

T

)
, Pt,P2

:= sin

(
πt

T

)
.

In detail, for each 1 ≤ l ≤ L:

• Let θ := −π2l−1

T , γ := 100T 2(log |Q|+ log T).

• Let H := 2, k := |Q|. Recall that |Q| ≥ 2. We will index the heads by superscripts [L], [R].

• Select W [L]
Q =W

[R]
Q =W

[R]
K :=

√
γ · (eP1e

⊤
1 + eP2e

⊤
2).

41

Published as a conference paper at ICLR 2023

• Select W [L]
K :=

√
γ · (eP1

e⊤1 + eP2
e⊤2)ρθ, where ρθ is the rotation matrix[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
in the e1, e2 basis.

• Select W [L]
V =W

[R]
V :=

∑
q∈Q e(q,L)e

⊤
q .

• Select W [L]
C =

∑
q∈Q eqe

⊤
(q,L), W

[R]
C =

∑
q∈Q eqe

⊤
(q,R).

At layer l, let α[L], α[R] ∈ R2T denote the attention mixture weights of the two heads. With this
choice of γ, Lemma 4 and Proposition 5, for each t ∈ [T], we are guaranteed that

∥∥α[R] − et
∥∥
1

and∥∥α[L] − et−2l−1

∥∥
1

are both at most 0.1
|Q|·T . Thus, by Hölder’s inequality (noting that this mixture is

over T vectors of∞-norm at most |Q|), this attention layer’s output is 0.1-close in the∞-norm to
the concatenated transition maps of the functions at positions t and t − 2l−1, allowing us to invoke
the perturbation-robust function approximation guarantee of Lemma 1 with ∆ = 1. For the MLP,
we use the function composition gadget.

Thus, at the final layer, the (q,R) dimensions at position t contains the transition map of the prefix
composition

δ(·, σt) ◦ . . . ◦ δ(·, σ1) ◦ (q 7→ q0).

It suffices to choose W to be z 7→ e⊤(q,R)z for an arbitrary q to read out the sequence of states as
scalar outputs in [|Q|]. To output a one-hot encoding, an additional MLP (appended to the end of
the final layer) would be required.

C.3 PROOF OF THEOREM 2: CONSTANT-DEPTH SHORTCUTS VIA KROHN-RHODES
DECOMPOSITION

We begin with the full statement of the theorem:
Theorem 2 (Transformer Krohn-Rhodes). Let A = (Q,Σ, δ) be a solvable semiautomaton (see
Definition 6), q0 ∈ Q, and T ≥ 1. Then, there is a depth-O(|Q|2 log |Q|) Transformer which
continuously simulates AT,q0 , with embedding dimension O(2|Q||T (A)|), MLP width |Q|O(2|Q|) +

O(2|Q||Q| |T (A)|T), attention width O(|Q|2|Q||T (A)|) heads, and weight norms are bounded by
6|Q|T log T + 6max{|Q|, |Σ|}.

We will begin by presenting self-contained constructions for the two atoms in the Krohn-Rhodes
decomposition: a modular counter and a memory unit. In Appendix C.3.2, we will introduce neces-
sary background from Krohn-Rhodes theory (including the definition of a solvable semiautomaton).
In Appendix C.3.3 and C.3.4, we will complete the proof of Theorem 2.

C.3.1 BASE CASES: MODULAR COUNTING AND MEMORY

Base case 1: modular addition. We will start with a construction of a tiny network which lets
us simulate any semiautomaton whose transformation semigroup is a cyclic group. Later on, we
will use copies of this unit to handle all solvable groups. The construction simply uses attention to
perform a flat prefix sum, and an MLP to compute the modular sum.
Definition 2 (Modular counter semiautomaton). For any positive integer n, define the mod-n mod-
ular counter semiautomaton A = (Q,Σ, δ):

Q := {0, . . . , n− 1},
Σ := {0, . . . , n− 1},

δ(q, σ) := (q + σ) mod n, ∀q ∈ Q, σ ∈ Σ.

Lemma 6 (Simulating a modular counter). Let A = (Q,Σ, δ) be the mod-n modular counter
semiautomaton. Let q0 ∈ Q, and T ≥ 1. Then, there is a depth-1 Transformer which continuously
simulates AT,q0 , with embedding dimension 3, width 4nT , and∞-weight norms at most 4nT + 2.
It has H = 1 head with embedding dimension k = 1, and a 2-layer ReLU MLP.

42

Published as a conference paper at ICLR 2023

Proof. The intuition is simply that the lower triangular matrix causal mask can implement simula-
tion in this cyclic group by performing unweighted prefix sums. The only subtlety is that selecting
WQ = WK = 0 does not quite give us prefix sums: the attention mixture weights at position t are
1
t

∑
t′∈[t] et′ , while we would like the normalizing factor to be uniform across positions (1/T rather

than 1/t). It is possible to undo this normalization using the MLP; however, a particulaly simple
solution is to use an additional padding input⊥ and 1-dimensional position embeddings to “absorb”
a fraction of the attention proportional to 1− t/T .

We proceed to formalize this construction, beginning with the input embedding and attention block:

• Select d := 3, k := 1, H := 1. Intuitively, the 3 dimensions implement {input/output, padding,
position} “channels”.

• Select input symbol embeddings E(σ) := σ · e1 ∈ Rd for each σ ∈ Σ.

• Include an extra position ⊥, with embedding E(⊥) := e2 and position encoding P⊥,: := 0.
Think of this as padding at position 0; it is not masked out by the causal attention mask at any
position t ≥ 1.

• For t ∈ [T], select Pt,: := γte3, where γt := log(2T − t) is such that 1
eγt+t =

1
2T .

• Select WQ := e3,WK := e2,WV := e1,W
⊤
C := e1.

• We do not need residual connections.

In the output of this attention module, for any input sequence σ1:T , the 1st channel of the output at
position t is then

s :=
1

2T

∑
t∈[T]

σt.

where zt ∈ {0, . . . , n − 1} is such that δ(·, σt) = gzt . The MLP simply needs to memorize the
function

s · e1 7→ (Ts mod n) · e1.
We invoke Lemma 1, with ∆ = 1

2T , Bx = n−1
2 < n

2 , By = n. The number of possible values of S
(the cardinality of X in Lemma 1) is at most nT .

Base case 2: memory lookups. It turns out that to simulate semigroups instead of groups, the
only additional ingredient is a memory unit, a semiautomaton for which there are “read” and “write”
operations. The minimal example of this is a flip-flop (Example 2), a semiautomaton which can
sequentially remember and retrieve a single bit ∈ {0, 1}, and whose transformation semigroup is the
flip-flop monoid. It will be convenient to generalize this object to Q states:

Definition 3 (Memory semiautomaton). For a given state set Q, define the memory semiautomaton
A = (Q,Σ, δ):

Σ = Q ∪ {⊥},

δ(q, σ) := σ ∀q ∈ Q, σ ∈ Σ, σ ̸= ⊥,

δ(q,⊥) := q ∀q ∈ Q.
Lemma 7 (Simulating a memory semiautomaton). Let A = (Q,Σ, δ) be the memory semiautoma-
ton. Let q0 ∈ Q, and T ≥ 1. Then, there is a depth-1 Transformer which continuously simulates
AT,q0 , with embedding dimension 4, width 4|Q|, and∞-weight norms at most 2T log(|Q|T). It has
H = 1 head with embedding dimension k = 2, and a 2-layer ReLU MLP.

Proof. We start in state q0 ∈ Q. Our goal is to identify the closest non-⊥ token and output the
corresponding state. The attention construction is:

• Select d = 4, k = 2, H = 1.

43

Published as a conference paper at ICLR 2023

• Select input symbol encodings

E(σ) := (1[σ = ⊥]q0 + 1[σ ̸= ⊥]σi)e1 + 1[σ = ⊥]e2 + e4 ∈ Rd,

where the first coordinate denotes the action that sets the state24, the second coordinate denotes
whether the input is the no-op action ⊥, and the fourth coordinate is padding.

• We use positional encoding Pt,: := (t/T) · e3.

• WQ := [−2e4 e4] ∈ R4×2, WK := [ce2 ce3] ∈ R4×2 for c = O(T log(|Q|T)) as explained
below, WV := [e1 0] ∈ R4×2, and W⊤

C := [e1 0] ∈ R4×2.

The unnormalized attention score computed for position i attending to j is c(j/T − 1[σj = ⊥]).
Note that the max attention value is achieved at the closest reset action: the unnormalized scored is
non-negative if and only if σj ̸= ⊥, and j/T increases with j ensuring that the closest position is
chosen.

Denote this max position as jmax. In the setting of hard attention, the output for the ith token after
the attention module is E(σjmax

)⊤e1. In particular, this value is q0 if and only if σj = ⊥,∀j ≤ i,
i.e. the semiautomaton never leaves the starting state. Otherwise, the value is the value of the nearest
non-⊥ state (including the current state).

By Lemma 4 (with γ = c/T), we can approximate hard-attention by soft-attention weights
α ∈ RT , that is, ∥α − ejmax

∥1 ≤ 2T · e−c/T . This implies, that the output of the attention

layer,
∣∣∣∑j≤i αjE(σj)

⊤e1 − E(σjmax)
⊤e1

∣∣∣ ≤ 2T |Q| · e−c/T . Then, the MLP can simply round
the first coordinate, and we can invoke Lemma 1 with ∆ = 8T |Q| exp(−c/T) = 1/2 (for c =
T log(16|Q|T)),Bx = |Q|,By = |Q| to get weight norm bound (4+log(|Q|T))T ≤ 2 log(|Q|T)T
and width 4|Q|.

C.3.2 PRIME DECOMPOSITIONS OF GROUPS AND SEMIGROUPS

The key idea behind the proof of Theorem 2 is that all semigroups (and thus, all transformation
semigroups of semiautomata) admit a “prime factorization” into elementary components, which
turn out to be simple groups and copies of the flip-flop monoid, which have both been discussed in
Appendix A.2. This is somewhat counterintuitive: the only constraint on the algebraic structure of
a semigroup is associativity (and indeed, there are many more semigroups than groups), but all of
these structures can be built using these two types of “atoms”. These components, as well as the
cascade product under which this notion of “factorization” is defined, are naturally and efficiently
implementable by constant-depth self-attention networks.

The special case of groups. We begin by discussing the analogous decomposition for groups,
which generalizes the fact that integers have unique prime factorizations. Let G be a finite group,
and let

G = Hn ▷ Hn−1 ▷ · · · ▷ H1 ▷ H0 = 1

be a composition series: each Hi is a maximal proper normal subgroup of Hi+1; 1 denotes the
trivial group with 1 element. Then the quotient group Hi+1/Hi is called a composition factor. The
Jordan-Hölder theorem tells us that one can think about the set of composition factors as an invariant
of G.

Theorem 6 (Jordan-Hölder). Any two composition series of G are equivalent: they have the same
length n, and the sequences of compositions factorsHi+1/Hi are equivalent under permutation and
isomorphism.

When each Hi+1/Hi is abelian, G is called a solvable group. It turns out that each Hi+1/Hi is
a simple group, so the composition factors of solvable groups can only be cyclic groups of prime
order (because every finitely generated abelian group is a direct product of cyclic groups, and, of
these, only those of prime order are simple). The smallest non-solvable group isA5, realizable as the

24Technically σ = ⊥ does not reset the state. We will see that when q0 is selected, it must be that the semiau-
tomaton is always in state q0.

44

Published as a conference paper at ICLR 2023

group of even permutations of 5 elements. As a part of Theorem 2, we will use the composition series
to iteratively build neural networks which simulates solvable group operations, requiring intricate
constructions to do this with depth independent of the sequence length T .

Adding memory to handle semigroups. Now, we move on to semigroups. When not all of the
input symbols to a semiautomaton induce permutations, we no longer have the group axiom of
invertibility (also, if there is no explicit identity symbol, we are not guaranteed to have the monoid
axiom of an identity element either). Intuitively, this would seem to induce a much larger family of
algebraic structures; an analogy, which is formalizable by representation theory, is that we are now
considering a collection of general matrices under multiplication, instead of only invertible ones.
The non-invertible transitions collapse the rank of the transformations, reducing the set of reachable
transformations whenever they are included in an input sequence.

A landmark result of Krohn & Rhodes (1965) tames the seemingly vast and unorderly universe of
general finite semigroups. It extends the Jordan-Hölder theorem to the case of semigroups, for a
more sophisticated notion of decomposition. Since that work, many variations have arisen, in terms
of its precise statement, construction of the decomposition, and proof of correctness. Out of these,
an important development is the holonomy decomposition method (Zeiger, 1967; Eilenberg, 1974),
which forms the basis of our results. We extract the definitions and theorems from Maler & Pnueli
(1994), whose exposition emphasizes explicitly tracking the construction of the semiautomaton. We
also refer to Maler (2010); Egri-Nagy & Nehaniv (2015); Zimmermann (2020) as recent expositions,
containing historical context.

Definition 4 (Cascade product; cf. (Maler, 2010), Definition 11). Let n be a positive integer. For
each i ∈ [n], let A(i) = (Q(i),Σ(i), δ(i)) be a semiautomaton. For i ∈ {2, . . . , n}, let ϕ(i) :
Q(1) × · · · × Q(i−1) × Σ → Σ(i) denote a dependency function. This object ({A(i)}; {ϕ(i)}) is
called a transformation cascade, and defines a cascade product semiautomaton A = (Q(1) × · · · ×
Q(n),Σ(1), δ) by “feedforward simulation” under the dependency function. We define δ by the i-th
component of its output (which we call δ(≤i) : Q(1) × · · · ×Q(n) × Σ(1) : Q(i)):

δ(≤i)((q(1), . . . , q(n)), σ) := δ(i)(q(i), σ(i)),

where

σ(i) :=

{
σ if i = 1

ϕ(i)(q(1), . . . , q(i−1), σ) otherwise
.

The corresponding transformation semigroup T (A) is known as a cascade product semigroup.

Intuitively, the cascade specifies a way to compose semiautomata hierarchically: the first layer i = 1
maps input sequences to its state sequence, and each internal layer receives an input which depends
on the states of all of the preceding layers. Algebraically, the cascade product semigroup is a sub-
semigroup of the larger wreath product of semigroups (the straightforward analogue of the wreath
product of groups, discussed in Section A.2). Although this is useful from an algebraic point of
view, we will not use this perspective; the cascade product is a smaller substructure of the wreath
product which is sufficient for semiautomaton simulation.

Finally, it will be convenient to define permutation-reset semiautomata, which are a useful interme-
diate step in the Krohn-Rhodes decomposition. To obtain our final result, we will further break these
semiautomata down into flip-flops and simple groups.

Definition 5 (Permutation-reset semiautomaton; cf. (Maler & Pnueli, 1994), Definition 12). A semi-
automaton A = (Q,Σ, δ) is a permutation-reset semiautomaton if, for each σ ∈ Σ, the transition
function δ(·, σ) : Q → Q is either a bijection (i.e. a permutation over the states of Q) or constant
(i.e. maps every state to some q(σ)). Associated with each permutation-reset semiautomaton is its
permutation group, generated by only the bijections.

Now we can state the Krohn-Rhodes theorem, which decomposes every finite semiautomaton into a
transformation cascade.

Theorem 7 (Krohn-Rhodes). Let A = (Q,Σ, δ) be a semiautomaton. Then, there exists a trans-
formation cascade {A(1), . . . ,A(n);ϕ(2), . . . , ϕ(n)}, defining a cascade product semiautomatonA′,
such that:

45

Published as a conference paper at ICLR 2023

(i) The input symbol space of A(1) (and thus, that of A′) is Σ, the same as that of A.

(ii) LettingQ(i) denote the state space ofA(i), there exists a functionW : Q(1)×· · ·×Q(n) →
Q such that W ◦ A′

T,q0
simulates AT,q0 for all T ≥ 1, q0 ∈ Q. For each i ∈ [n], the

transformation semigroup T (A(i)) is a permutation-reset semiautomaton with at most |Q|
states, whose permutation group is a (possibly trivial) subgroup of T (A) (Maler & Pnueli
(1994), Theorem 4).

(iii) The number of semiautomata in the cascade is n ≤ 2|Q|. Furthermore, the cascade has
at most |Q| levels: the indices can be partitioned into at most L ≤ |Q| contiguous subsets
N (1) = {1, . . . , n1}, N (2), {n1 +1, . . . , n1 +n2}, . . . , N (L) = {n−nL +1, . . . , n} such
that ϕ(i) only depends on input indices from previous partitions (Maler & Pnueli (1994),
Claim 11 & Corollary 12).

With this decomposition, we are now able to define a solvable semiautomaton.
Definition 6 (Solvable semiautomaton). LetA = (Q,Σ, δ) be a semiautomaton. We callA solvable
if all the permutation groups associated with all of the permutation-reset automata from Theorem 7
are solvable groups.

The remainder of this section will build our construction from the bottom up:

• Appendix C.3.3 will build up from the base case of cyclic groups (Lemma 6), using increasingly
sophisticated notions of group products, culminating in a recursive construction which simulates
all stages of the Jordan-Hölder composition series. The crucial step is a construction for simulat-
ing the semidirect product of groups, given networks which simulate the individual components;
this allows us to handle the solvable non-abelian groups.

• Appendix C.3.4 will build networks which simulate permutation-reset semiautomata. A new
base case arises: the memory unit (Lemma 7), a semiautomaton whose transformation semigroup
is a generalization of the flip-flop monoid. Combining the constructions for solvable groups and
memory units, we obtain simulators for solvable permutation-reset semiautomata. Finally, the
cascade product guaranteed by Krohn-Rhodes (Theorem 7) glues all of these pieces together,
giving us the final result.

C.3.3 SIMULATING SOLVABLE GROUPS

We begin by handling groups. Now, we are ready to specify the recursive constructions which “glue”
these components together to form solvable groups. We will proceed in a “bottom-up” order:

(i) Define a canonical semiautomatonAG corresponding to each group G (Definition 7), such
that if a network can simulate AG, it can simulate any other semiautomaton whose trans-
formation semigroup T (AG) is G. This lets us talk about simulating groups, rather than
particular semiautomata. We will show how to turn simulators for groups N and H into
simulators for extensions of N by H , for increasingly sophisticated extensions, until all
cases have been captured.

(ii) Show how to build the trivial extension: given networks which simulate the groups N and
H , simulate the direct product G ∼= N × H , by simply running the individual simulators
in parallel (Lemma 8). Combined with Lemma 6, this immediately allows us to simulate
arbitrary abelian groups with depth 1, since every abelian group is isomorphic to a direct
product of cyclic groups.

(iii) Show how to build a split extension: given networks which simulate a normal subgroup N
and quotient H , construct a network which simulates any semidirect product G ∼= N ⋊H
(Lemma 9). This is the first place where we will require a sequential cascade of layers. It
will allow us to handle certain families of non-abelian groups (including S3, D2n, A4, S4)

(iv) Show how to build arbitrary extensions (any G which contains N as a normal subgroup,
and for which the quotient group G/N is isomorphic to H), using the wreath product
(Lemma 10), which contains all of the group extensions. The wreath product is itself
the semidirect product between a |H|-way direct product and H , so this can be done in
a constant number of layers, by the above. This finally lets us implement any step of a

46

Published as a conference paper at ICLR 2023

composition series. In particular, using cyclic groups as a simulable base case, this shows
that we can simulate all solvable groups.

Step (i). It will be convenient to associate with each groupG a canonical “complete” semiautoma-
ton for the class of all semiautomata A for which T (A) = G. It is simply the one whose input
symbol space Σ is every transformation reachable by some sequence of inputs (i.e. every element
of T (A)). (For a semigroup, we would also want to adjoin the identity element if it is missing,
however, we will only find it useful to define this for groups.)

Definition 7 (Canonical group semiautomaton; simulating a group). Let G be a finite group. Then,
we define the canonical group semiautomaton for G as the semiautomaton (Q,Σ, δ) defined by:

• Q := G, the set of elements of G. Note that if (for example) G = Sn, we are setting the state
space to be the set of n! permutations, not the ground set [n].

• Σ := G. That is, we include all functions in the input symbol space.

• δ(g, h) := h · g, for all ∀g ∈ Q, h ∈ Σ. (In algebraic terms, we are embedding the G into its left
regular representation, a.k.a. left multiplication action.) Thus, if we take q0 to be the identity
element, the sequence of states q1, q2, . . . , qT corresponds to qt = σtσt−1 . . . σ1.

• When we simulate the canonical group semiautomaton, we will always choose q0 to be the
identity element eG.

A sequence-to-sequence network is said to continuously simulate G at length T if it continuously
simulates the canonical group semiautomaton of G at length T .

Notation for composable implementations. Let us furthermore formalize an implementation of
group simulation. For any finite group G, T ≥ 1, q0 ∈ G, let AG = (Q,Σ, δ) be the canonical
semiautomaton for G. Then, we summarize a family of concrete implementations of networks
which continuously simulate of AT,eG . We write sim : (G,T) 7→ (E : G → Rd, ftf : RT×d →
RT×d,W : Rd → G), where the shape parameters of the output can depend on G,T .

To reduce notational clutter, we will access the shape attributes of an implementation via “object-
oriented” notation, defining

sim(G,T).{depth, dim, heads, headDim,mlpWidth, normBound}

to respectively denote the complexity-parameterizing quantities

{L, d,H, k,max
j
{d′j}, B},

defined in Appendix A.4. Also, we will let sim(G,T).{E, θ,W} respectively denote the encoding
layer E, network parameters θnn, and decoding layer W .

Canonical encodings of group elements. We also enforce that throughout our constructions of
networks which simulate groups, we will maintain that all networks and their submodules manipu-
late encodings via integer vectors in a consecutive range {0, . . . , n − 1}. Furthermore, the identity
element will always map to the zero vector. We will keep track of the dimensionality of these vec-
tors sim(G,T).repDim ≤ d, and their maximum entries sim(G,T).repSize − 1. All encoders E
and decoders W will map all group elements to and from this kind of representation, and we will
choose W = E−1. In all, the networks will keep a repDim-dimensional “workspace” of integer
vectors, with entries bounded by repSize − 1. When combining groups via the various products
constructions, we will combine the components’ individual workspaces to create a larger workspace
for the product group’s elements.

We make some additional remarks on implementations:

• Note that the canonical semiautomaton “forgets” about the semiautomaton abstraction, and never
assumes that G is a permutation group on the original state space Q of the semiautomaton we
would like to simulate. Indeed, when N ◁ G are permutation groups on Q, there is no natural

47

Published as a conference paper at ICLR 2023

(g(1)
t , g(2)

t , g(3)
t) (g(1)

≤t , g(2)
≤t , g(3)

≤t)×

simulate all G(i)

Figure 13: Recursive construction for simulating a direct product of groups G(1) × · · · ×G(n). Any
number of groups can be simulated in parallel without increasing the depth.

permutation group on Q associated with the quotient H ∼= G/N ; it turns out that will consider
simulators for N and H .25

• To return to solving the simulation problem for some semiautomaton A = (Q,Σ, δ) whose
transformation semigroup is isomorphic to G (at length T and initial state q0), let µ : G → SQ

denote this isomorphism. We use AG
T,eG

(σ1:T) as the network, with an encoding layer E ◦ µ−1,
and decoding layer (π 7→ π(q0)) ◦µ ◦W , which can be memorized by an MLP of width O(|G|)
via Lemma 2.

• The modular counter semiautomaton, for which we constructed a simulator in Lemma 6, is the
canonical group semiautomaton for the corresponding cyclic groupCn. Calling this construction
simCn , we can easily verify that it satisfies the canonical simulator’s conditions, and:

◦ simCn
.depth = 1.

◦ simCn
.dim = 3.

◦ simCn
.heads = 1.

◦ simCn
.headDim = 1.

◦ simCn
.mlpWidth = 4|G| · T .

◦ simCn
.normBound ≤ 4|G| · T + 2 ≤ 6|G| · T .

◦ simCn .repDim = 1.
◦ simCn .repSize = |G|.

Step (ii). As a precursor to the more sophisticated products, we formalize the obvious fact that
two non-interacting parallel semiautomata can be simulated without increasing the depth. First, we
define the direct product semiautomaton:

Definition 8 (Direct product of semiautomata). Let A = (Q,Σ, δ),A′ = (Q′,Σ′, δ′) be two semi-
automata. Then, A×A′ = (Q×Q′,Σ∪ {e}×Σ′ ∪ {e}, δ× δ′) denotes the natural direct product
semiautomaton. Its states are ordered pairs (q ∈ Q, q′ ∈ Q′). Its input symbols are defined simi-
larly, adjoining identity inputs (so that δ(q, e) = q, δ′(q′, e) = q′). The transitions δ× δ′ are defined
such that

(δ × δ′)((q, q′), (σ, σ′)) := (δ(q, σ), δ′(q′, σ′)).

Note that under this definition, we have T (A×A′) = T (A)×T (A′). In particular, for two groups
G,H , we have G×H = T (AG)× T (AH) = T (AG×H) = G×H .

Lemma 8 (Direct product via parallel simulation). Let G(1), . . . , G(n) be a collection of finite
groups, and let T ≥ 1. Suppose each group admits a simulation simi := sim(G(i), T). Then,
there is a simulation of the direct product group sim× := sim(G(1) × . . . × G(n), T), whose sizes
satisfy:

25There is nothing in general preventing quotient groups from being extremely large groups which are not
realizable as smaller permutation groups. For concrete examples, see (Kovács & Praeger, 1989). When
we ultimately specialize to simulating the composition series of solvable groups, the largest groups we will
handle will be the cyclic groups of prime order, so we will in the end be guaranteed that the groups we want
to simulate are realizable with ≤ |Q| states, but not directly or canonically.

48

Published as a conference paper at ICLR 2023

simulate H

simulate N

ϕ−1
h

mix

(gt, ht) (g≤t, h≤t)⋊

ϕh

unmix

Figure 14: Recursive construction for simulating the semidirect productN ⋊H . The quotient group
H is simulated first; these outputs are used to “re-map” the inputs into the simulator for N .

◦ sim×.depth = maxi{simi.depth}.
◦ sim×.dim =

∑
i{simi.dim}.

◦ sim×.heads =
∑

i{simi.heads}.
◦ sim×.headDim = maxi{simi.headDim}.
◦ sim×.mlpWidth =

∑
i{simi.mlpWidth}.

◦ sim×.normBound ≤ maxi{simi.normBound}.
◦ sim×.repDim =

∑
i{simi.repDim}.

◦ sim×.repSize = maxi{simi.repSize}.

Proof. First, we pad all of the individual simi with layers implementing identity (add residual con-
nections, and set attention WV and all MLP weight matrices to 0), so that all of them have depth
maxi{simi.depth}.
Then, the intuition is to construct the direct product semiautomaton by concatenating the
“workspaces” of each G(i). In other words, we set the canonical encoding sim×.E of
(g(1), . . . , g(n)) to be the concatenation of each simi’s encodings.

The direct product simply lets each simi take inputs and outputs in its individual workspace.
To enable this, we need enough parallel dimensions. We set an embedding space of dimension∑

i{simi.dim} (and similarly within the heads and MLPs), partitioning the coordinates such that in
the product construction, each simi.E and simi.θ only reads and writes to its own dimensions.

This clearly simulates the direct product group. Figure 13 provides a sketch of this construction.

Note that the direct product construction already allows us to simulate all finite abelian groups in
constant depth, since each such group is isomorphic to the direct product of a collection of abelian
groups of prime power order.

Step (iii). Now, as a harder (and conceptually crucial) case, we show how to simulate a group
which is a semidirect product of two groups we already know how to simulate. This encompasses
the direct product as a special case, but can now handle some non-abelian groups which admit such
decompositions (like the dihedral group D2n). The catch is that we will have to simulate these
groups using a sequential cascade of the individual simulators. This is the key lemma which lets us
simulate non-abelian groups:

Lemma 9 (Semidirect product via 4-stage cascade). Let G be a finite group which is isomorphic
to a semidirect product: G ∼= N ⋊ H , where N is a normal subgroup of G. Let T ≥ 1. Suppose
N,H admit simulations simN := sim(N,T), simH := sim(H,T). Then, there is a simulation of G,
sim⋊ := sim(G,T), whose sizes satisfy:

◦ sim⋊.depth = simN .depth+ simH .depth+ 2.
◦ sim⋊.dim = simN .dim+ simH .dim.
◦ sim⋊.heads = max{simN .heads, simH .heads}.
◦ sim⋊.headDim = max{simN .headDim, simH .headDim}.
◦ sim⋊.mlpWidth = max{sim{N,H}.mlpWidth, 4|G|}.

49

Published as a conference paper at ICLR 2023

◦ sim⋊.normBound ≤ max{sim{N,H}.normBound, 6 sim{N,H}.repSize, simN .repDim +
simH .repDim}.

◦ sim⋊.repDim = simN .repDim+ simH .repDim.
◦ sim⋊.repSize = max{simN .repSize, simH .repSize}.

Proof. The intuition is as follows, using the dihedral group D2n
∼= Cn ⋊ C2 as an example:

• For simplicity, let us think of the “reversible car on a circular world” semiautomaton, whose
transformation semigroup is D2n. Its state consists of a direction ∈ {+1,−1}, and a position
∈ {0, 1, . . . , n − 1}. It has two types of inputs: “advance by i” (increment the position by i in
the current direction, modulo n), and “reverse” (flip the sign of the direction). Our simulation
task is to track the car’s state sequence, given a sequence of inputs (in constant depth, of course).

• It is intuitively clear that we can (and should) compute the sequence corresponding to “direction
at time t”, which is equivalent to simulating the parity semiautomaton.

• We will convert the “advance” moves via a “basis transformation”: whenever the current direc-
tion is −1, an “advance by i” should be converted into −i. Then, we have reduced the problem
to the prefix sum.

Algorithm. This intuition essentially shows us how to implement arbitrary semidirect products;
we derive the basis change from ϕ. Before implementing it with Transformer operations, we formal-
ize this “basis transformation”. Recall that by the definition of a semidirect product, the elements of
N ⋊H can be written as pairs (g ∈ N,h ∈ H), equipped with a homomorphism ϕ : h→ Aut(N)
which specifies a multiplication rule:

(g, h) · (g′, h′) := (gϕh(g
′), hh′).

Let us write down the properties of ϕ:

• ϕ is a homomorphism. That is, ϕh·h′ = ϕh(ϕh′(·)) = ϕh ◦ ϕh′ as permutations on N .

• The output of that homomorphism, ϕh, is also a homomorphism. That is, ϕh(gg′) = ϕh(g) ·
ϕh(g

′).

Let us roll out the definition of the semidirect product, given a sequence of inputs (gt, ht):

(g2, h2) · (g1, h1) = (g2 · ϕh2
(g1), h2h1),

(g3, h3) · (g2, h2) · (g1, h1) = (g3 · ϕh3
(g2 · ϕh2

(g1)), h3h2h1),

(g4, h4) · · · (g1, h1) = (g4 · ϕh4
(g3 · ϕh3

(g2 · ϕh2
(g1))), h4h3h2h1).

In general, by induction, letting (g≤t, h≤t) denote (gt, ht) · · · (g1, h1), we have

g≤t = gt · ϕht
(gt−1) · ϕhtht−1

(gt−2) · · ·ϕht...h3
(g2) · ϕht...h2

(g1).

Applying ϕ−1
h≤t

on both sides, we notice that

ϕ−1
h≤t

(g≤t) = ϕ−1
h≤t

(gt) · ϕ−1
h≤t−1

(gt−1) · · ·ϕ−1
h≤2

(g2) · ϕ−1
h≤1

(g1).

Thus, it suffices to compute each h≤t = htht−1 . . . h1, map each gt 7→ ϕ−1
h≤t

(gt), compute the prefix
products in these “coordinates”, then invert the mapping to get back g≤t.

Implementation. Like before, we partition the embedding dimension in our construction sim⋊
into blocks, one for each component simulator. Let us index the dimensions by the dN := simN .dim
indices in the “N channel” and analogously for the dH -dimensional “H channel”. We choose the
canonical encoding E to map elements to their individual channels:

E(g, h) = simN .E(g) (in the N channel) + simH .E(h) (in the H channel).

We proceed to specify the construction layer-by-layer. Let L{N,H} denote sim{N,H}.depth.

50

Published as a conference paper at ICLR 2023

Layers 1 through LH : quotient group simulation. As suggested by the intuitive sketch, we
begin with LH Transformer layers, which are just a copy of simH .θ, reading and writing in the H
channel, with a parallel residual layer in the N channel. So far, after these LH layers, the output at
each position t is an integer vector, whose H channel contains h≤t, and whose N channel contains
simN .E(gt).

Layer LH + 1: basis change. Now, let us add one more “mixing” Transformer layer, whose
attention block is identity26; we only need a 3-layer MLP block, which represents the function

(g ∈ N,h ∈ H) 7→ ϕ−1
h (g).

To do this, we invoke Lemma 2 (choosing the output to be in the same representation as that used
by simN .E, in the N channel), with

∆ = 1, din = simN .repDim+ simH .repDim,

Bx = max{simN .repSize, simH .repSize}, By = simN .repSize,

giving us a construction with

d1 ≤ 4(|N |+ |H|), d2 ≤ |N | · |H|,

∥W1∥∞ ≤ 4, ∥b1∥∞ ≤ 6max{simN .repSize, simH .repSize},
∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ simN .repDim+ simH .repDim, ∥W3∥∞ ≤ simN .repSize.

We also add residual connections in the H channel. In summary, after this layer, the output at
each position t is an integer vector, whose H channel contains h≤t, and whose N channel contains
ϕ−1
h≤t(gt).

Layers LH+1 through LH+LN +1: normal group simulation. The next LN layers are a copy
of simH .θ, with residual connections in theH channel. After these layers, the output at each position
t is an integer vector, whose H channel contains h≤t, and whose N channel contains ϕ−1

h≤t(g≤t).

Layer LH + LN + 2: undoing the basis change. Now, we add one more Transformer layer,
whose attention block is identity; we will again use a 3-layer MLP block to represent the inverse of
our mapping function

(g ∈ N,h ∈ H) 7→ ϕh(g).

This uses Lemma 2, with exactly the same bounds.

At the end of this final “unmixing” layer, the output at each position t is an integer vector, whose
H channel contains h≤t, and whose N channel contains g≤t; thus, this is a valid simulation of the
semidirect product.

This construction is sketched in Figure 14.

Step (iv). Note thatH ∼= G/N does not imply thatG is a semidirect product ofN andH . Thus, al-
though simulating semidirect products allows us to handle some families of non-abelian groups, this
does not yet allow us to handle general solvable groups (i.e. general steps of a composition series,
even with a cyclic quotient group). The smallest example is the non-abelian quaternion group Q8,
the group of unit quaternions under multiplication, which cannot be realized as a semidirect product
of subgroups. Instead, we need to appeal to the Krasner–Kaloujnine universal embedding theorem
(Krasner & Kaloujnine, 1951): a characterization of all of the groups G which are extensions of N
by H , as subgroups of the wreath product N ≀H .

Lemma 10 (Wreath product via direct and semidirect products). Let G be a finite group which
is isomorphic to a wreath product: G ∼= N ≀ H . Let T ≥ 1. Suppose N,H admit simulations
simN := sim(N,T), simH := sim(H,T). Then, there is a simulation of G, sim≀ := sim(G,T). In
the case where sim≀.repDim = 1, the sizes satisfy:

26Even when an attention block simply implements identity, we choose to include it, rather than combining
the preceding and subsequent MLPs into a single MLP. This is to ensure that if we compose a number of
Transformer layers that depends on |Q|, the depth of each MLP is bounded by an absolute constant.

51

Published as a conference paper at ICLR 2023

(g(1)
t , . . . , g(|H|)

t , ht)

simulate all G(i)

simulate H mix unmix

(identical)

ϕ−1
h ϕh

(g(1)
≤t , . . . , g(|H|)

≤t , h≤t)≀

Figure 15: Recursive construction for simulating the wreath product N ≀H . One independent copy
of N is instantiated for each element of H , while the simulator for H permutes them.

◦ sim≀.depth = simN .depth+ simH .depth+ 2.
◦ sim≀.dim = |H| · simN .dim+ simH .dim.
◦ sim≀.heads = max{|H| · simN .heads, simH .heads}.
◦ sim≀.headDim = max{simN .headDim, simH .headDim}.
◦ sim≀.mlpWidth = max{|H| · simN .mlpWidth, simH .mlpWidth, 5|H|2|N |}.
◦ sim≀.normBound ≤ max{sim{N,H}.normBound, 6 |H|}.
◦ sim≀.repDim = |H| · simN .repDim+ 1.
◦ sim≀.repSize = max{simN .repSize, simH .repSize}.

Proof. Even though the wreath product’s algebraic structure can be very complex, the construction
just requires us to implement its relatively simple description. Applying Lemma 8, we have a net-
work sim× which simulatesN× . . .×N . Then, we simply apply Lemma 9, using simH to “re-map”
inputs to sim× for the normal subgroup. This construction is sketched in Figure 15.

Concise implementation of reindexing. We can make one interesting improvement over a generic
application of Lemmas 8 and 9: the structure of the mixing function ϕ, which specifies the semidirect
product, is extremely regular. Very fortunately, the structure of ϕ allows us to avoid any dependence
on the size of the wreath product group (|N ||H| · |H|) in the size measures of the implementation. A
general automorphism on N × · · · ×N is specified by its |N ||H| values. However, in this case, ϕ is
just a permutation, specified by how each of the |H| channels should switch places. Thus, much like
the function composition gadget in Theorem 1, we can construct a simpler MLP than the generic
one from Lemma 2.

Specifically, we would like to approximate the function ϕ : H × (N × · · · ×N)→ (N × · · · ×N),
which simply applies πh to the indices:

ϕh(g
(1), . . . , g(|H|)) := (g(πh(1)), . . . , g(πh(|H|))).

In the component neural networks’ representation space, we need the MLP to implement(
simN .E(g(1)), . . . , simN .E(g(|H|)), simH .E(h)

)
7→

(
simN .E(g(πh(1))), . . . , simN .E(g(πh(|H|)))

)
,

recalling that the elements of g, h are represented by integer vectors with ∞-norm at most
sim{N,H}.repBound. Notice that when the representation of |H| is a single integer, restricting to
any particular coordinate in the representation of an element g, this is the same composition prob-
lem of function transition maps solved by Lemma 5 in the proof of Theorem 1, which uses its left
inputs to permute its right inputs (modulo converting the representations from {0, . . . , |H| − 1} to

52

Published as a conference paper at ICLR 2023

{1, . . . , |H|}, which we can do by shifting the indicators at the input and final-layer output weights).
Thus, |N | · simN .dim parallel copies of the 3-layer function composition MLP suffice, yielding

d1 = 4|H|2|N |+ |H| · |N | < 5|H|2|N |, d2 = |H|2|N |,

∥W1∥∞ ≤ 4|H|, ∥b1∥∞ ≤ 6|H|, ∥W ′′
2 W

′
2∥∞ ≤ 4|H|, ∥b′′2∥∞ = |H|, ∥W3∥∞ = 1.

When the information about group elements in H is encoded by multiple integers, it is straightfor-
ward to extend this construction, by replacing the one-dimensional indicator with the multidimen-
sional indicator from Lemma 2. We will skip the details of this case, since our final results are only
about solvable groups; when we want to simulate a general group extension, it will always come
from the composition series, so that H is always a cyclic group of prime order.

Thus, for general group extensionsG, we can construct sim≀, the wreath product simulator forN ≀H ,
and combine the individual simulators. Note that we can throw away the excess group elements from
the simulator: only include in sim≀.E, sim≀.W the group elements which correspond to the subgroup
isomorphic toG. Then, no part of this construction needs to maintain a width or matrix entry scaling
with |N ≀H|.
Putting all of this together, we state an intermediate theorem, which is our most general result for
groups:

Theorem 8 (Simulation of solvable groups). Let G be a solvable group which is isomorphic to
a permutation group on n elements. Let T ≥ 1. Then, there is a Transformer network sim :=
sim(G,T) which simulates G at length T , for which we have the following size bounds:

◦ sim.depth ≤ 3 log2 |G|.
◦ sim.dim ≤ 2|G|.
◦ sim.heads ≤ 2|G|.
◦ sim.headDim = 1.
◦ sim.mlpWidth ≤ 20nT |G|.
◦ sim.normBound ≤ 6nT .
◦ sim.repDim ≤ 2|G|.
◦ sim.repSize ≤ n.

Proof. Let
G = Hℓ ▷ Hℓ−1 ▷ · · · ▷ H1 ▷ H0 = 1

denote the composition series. Then, because G is solvable, all of the quotient groups Ki :=
Hi+1/Hi are abelian, thus cyclic groups of prime order. Since G is assumed to be a subgroup
of Sn, none of these primes can be greater than n. Thus, every quotient group Ki in the chain satis-
fies 2 ≤ |Ki| ≤ n. Also, note that the length of the composition series ℓ is at most log2(|G|) (since
each inclusion halves the size of the group).

We start with a simulation of H1, which must be a cyclic group, and build the sequence of group
extensions recursively until we obtainG. In the worst case (in the sense that the implementation size
bounds from Lemma 10 are maximized), each step in the composition series must be manifested by
a wreath products with K := Cn. Recall that we have:

◦ simK .depth = 1.
◦ simK .dim = 3.
◦ simK .heads = 1.
◦ simK .headDim = 1.
◦ simK .mlpWidth = 4nT .
◦ simK .normBound ≤ 6nT .
◦ simK .repDim = 1.
◦ simK .repSize ≤ n.

At each step i = 0, . . . , ℓ− 1, Lemma 10, with H := Ki, N := Hi, implies:

53

Published as a conference paper at ICLR 2023

◦ simHi+1
.depth ≤ simKi

.depth + 3 (1 more layer to simulate the cyclic group Ki, and 2
from the wreath product’s mixing operations).

◦ simHi+1
.dim ≤ |Ki| · simHi

.dim+1 (noting that all of the components can reuse the same
⊥ and positional encoding dimensions).

◦ simHi+1 .heads ≤ |Ki| · simHi .heads+ 1.
◦ simHi+1

.headDim ≤ max{1, 1, . . . , 1} = 1.
◦ simHi+1

.mlpWidth ≤ max{|Ki| · simHi
.mlpWidth, 4nT, 5|Ki|2 · |Hi|}.

◦ simHi+1
.normBound ≤ max{6nT, 6 |Ki|}.

◦ simHi+1 .repDim = |Ki| · simHi .repDim+ 1.
◦ simHi+1

.repSize ≤ n.

Iterating these recursive inequalities ℓ ≤ ⌊log2 T ⌋ times gives us the desired bounds. Note that
we are using Lagrange’s theorem (

∏
i |Ki| = |G|), as well as the fact that for positive integers

m1, . . . ,mℓ ≥ 2, we have a bound on the series of prefix products:
∑

i

∏
j≤imi ≤ 2

∏
j≤ℓmi.

C.3.4 SIMULATING SEMIGROUPS

Now, using this construction and the results developed in the previous section for groups, we com-
plete the construction for semigroups:

• We combine the memory gate construction (Lemma 7) and any network simulating a group to
implement the corresponding permutation-reset semiautomaton (Definition 5), the elements of
the cascade in Theorem 7.

• To finish, we implement the cascade product (Definition 4) of these permutation-reset semiau-
tomata, guaranteed to exist by Theorem 7. This gives the full result.

First, we summarize the findings of Lemma 7, naming this neural network simM in our “object-
oriented” notation. Note that since we are no longer simulating canonical group semiautomata past
this point, repDim, repSize are no longer well-defined.

◦ simM .depth = 1.
◦ simM .dim = 4.
◦ simM .heads = 1.
◦ simM .headDim = 2.
◦ simM .mlpWidth = 4|Q|.
◦ simM .normBound ≤ 2T log(|Q|T).

Lemma 11 (Simulating a permutation-reset semiautomaton). Let A = (Q,Σ, δ) be a permutation-
reset semiautomaton (see Definition 5), and let G denote its permutation group. Let T ≥ 1, q0 ∈ Q.
Let simG := sim(G,T) be a Transformer network which continuously simulates G at length T .
Then, there is a Transformer network sim′

G which continuously simulates AT,q0 , with size bounds:

◦ sim′
G.depth = simG.depth+ simM .depth+ 1 ≤ 3 log2 |G|+ 2.

◦ sim′
G.dim = simG.dim+ simG.repDim+ simM .dim ≤ |G|+ |Q|+ 4.

◦ sim′
G.heads = simG.heads+ simM .heads ≤ 2|G|+ 1.

◦ sim′
G.headDim = simG.headDim+ simM .headDim+ simG.repDim ≤ |Q|+ 3.

◦ sim′
G.mlpWidth = simG.mlpWidth + simM .mlpWidth + |G|2|Q| ≤ 20nT |G| + 4|Q| +

|G|2|Q|.
◦ sim′

G.normBound ≤ max{simG.normBound, simM .normBound, 6|Q|} ≤ 6|Q|T log T .

Proof. Without loss of generality, we will let Q := [|Q|].
We split the embedding space in our construction into two channels: the simG.dim dimensions used
by G, and a channel consisting of 4 additional dimensions, to be used by a copy of the memory

54

Published as a conference paper at ICLR 2023

semiautomaton, whose symbol set is Q. Let us call these the G and M channels. For the reset
symbols, let EM (σ) denote the 4-dimensional encoding of σ from the memory semiautomaton.

Since we definedG to be isomorphic to the permutation group associated withA, there is a bijection
Φ : G → SQ between group elements and permutations on Q. We choose the embedding E as
follows:

E(σ) :=

{
sim.E(Φ−1(δ(·, σ)) (G channel) + EM (⊥) (M channel) , bijections δ(·, σ)
sim.E(eG) (G channel) + EM (qσ) (M channel) , resets δ(·, σ) = qσ

.

Let LG denote simG.depth.

Layers 1 through LG: group simulation. The first LG layers are chosen to be a copy of simG.θ
in the G channel, and only residual connections in the M channel. At the end of this, given any
inputs σ1:T which map via Φ−1 to gt (letting the group operation be identity when σt is a reset
symbol), the outputs in the G channel will be dG := simG.repDim-dimensional encodings of the
prefix group products g≤t = gtgt−1 · · · g1. Now, letting r(t) denote the most recent reset (τ ≤ t
such that στ is a reset token), we notice that the state we want can be derived from this sequence:

qt = Φ(gtgt−1 · · · gr(t))qσr(t)
= Φ(g≤t · g−1

≤r(t))(qσr(t)
). (C.2)

Here, if there have been no resets up to time t, we define r(t) to be 0. We treat q0 like a reset symbol
at the beginning of the sequence. Also, note that our canonical group semiautomaton simulator
always uses g0 = eG as its initial state.

Layer LG + 1: memory lookup and copy. To implement the above, at layer LG + 1, we put a
copy of the memory semiautomaton in channel M , setting its initial state to q0. We will modify
this construction slightly, extending WV with the identity matrix on the dG group element encoding
dimensions of channel G. Intuitively, when the memory unit “fetches” the last non-⊥ token, we
would like it to copy the corresponding g≤t. Note that simG.repSize, the ∞-norm bound on the
group element encodings, is at most |Q| by Theorem 8, so we do not need to modify the WQ,WK

norms to increase the attention head’s precision. The final modification is that we append to WC

an identity matrix copying the dG embedding dimensions to a new dG dimensional channel, which
we will call the I (for “invert”) channel (set to 0 in the embedding all preceding layers). Then, by
Lemma 7, at the end of this layer, at each position t, the M channel will contain qσr(t)

in dimension
1, and g≤r(t) in channel I . Finally, in channel G, we use only residual connections, preserving g≤t

in channel G.

Layer LG + 2: applying Φ(gh−1) pointwise. This finally allows us to execute Equation C.2 at
each position t. We use one more Transformer layer, with attention block implementing identity. The
MLP memorizes the function (g, h, q) 7→ Φ(gh−1)(q) · e1 (the coordinate is selected arbitrarily),
with the concatenated (dinv := 2 · simG.repSize + 1)-dimensional encodings on the (G, I,M)
channels, whose activations have∞-norms bounded by |Q|. We invoke Lemma 2, with parameters

∆ = 1, din = dinv, Bx = |Q|, By = |Q|,

giving us a construction with

d1 ≤ 4dinv(|Q|+ 1), d2 ≤ |G|2|Q|,

∥W1∥∞ ≤ 4, ∥b1∥∞ ≤ 6|Q|, ∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ dinv, ∥W3∥∞ ≤ |Q|.
From this output, W simply decodes the correct qt from dimension 1.

Lemma 12 (Implementing the transformation cascade). Let A = (Q,Σ, δ) be a semiautomaton,
and let T ≥ 1. Let {A(1), . . . ,A(n);ϕ(2), . . . , ϕ(n)} be the transformation cascade (Definition 4)
which simulates A, as guaranteed by Theorem 7. For each i, let simi be a Transformer network
which continuously simulates the permutation-reset semiautomaton A(i) at length T . Then, there is
a Transformer network simA which simulates A at length T . Its size bounds are:

◦ simA.depth = |Q| · (maxi{simi.depth}+ 1)− 1 ≤ 3|Q|2 log |Q|+ 7|Q|.
◦ simA.dim =

∑n
i=1 simi.dim+ 1 ≤ 2|Q|(|T (A)|+ |Q|+ 4) + 1.

55

Published as a conference paper at ICLR 2023

◦ simA.heads =
∑n

i=1 simi.heads ≤ 2|Q|+1(|T (A)|+ 1).
◦ simA.headDim = maxni=1{simi.headDim} ≤ |Q|+ 3.

◦ simA.mlpWidth =
∑n

i=1 simi.mlpWidth+2|Q| |Q|2|Q| |Σ| ≤ 2|Q|(20|Q| |T (A)|T+4|Q|+
|T (A)|2|Q|+ |Q|2|Q| |Σ|).

◦ simA.normBound ≤ maxni=1{simi.normBound}∪{2|Q|(|T (A)|+5|Q|)}+6max{|Q|, |Σ|}
≤ max{6|Q|T log T, 2|Q|(|T (A)|+ 5|Q|)}+ 6max{|Q|, |Σ|}.

Proof. At this point, most of the work has been done for us.

We create a separate channel i for each component permutation-reset semiautomaton A(i). This
requires a total of

∑n
i=1 simi.dim embedding dimensions. In addition to these channels, we keep

one dimension (with residual connections throughout the network) to represent the input σt. Let eΣ
denotes the unit vector along this coordinate. Choosing an arbitrary enumeration to identify Σ with
[Σ], we select the embeddings to be E(σ) := σ · eΣ.

TheL layers of simA are divided into |Q| subnetworks (which are just Transformer networks), which
we will concatenate sequentially at the end. Let these subnetworks be indexed by ℓ̃ ∈ {1, . . . , L̃}.
Each subnetwork starts with a parallel simulation (as in the direct product construction of Lemma 8,
padding with layers implementing identity if their depths do not match), combining all of the simi.θ
in the ℓ-th level of the Krohn-Rhodes decomposition, as defined by Theorem 7. Each simi.θ is
chosen to operate in its own channel i. We add residual connections on all of the input/output
dimensions in each channel. Then, at the end of each subnetwork except the final one (1 ≤ ℓ̃ ≤
L̃−1), we append one more Transformer layer with identity attention block, whose MLP implements
the “wiring” specified by ϕ(i) from the next level of the decomposition.

Namely, we invoke Lemma 2 with ∆ = 1, Bx = max{|Q|, |Σ|}, By = |Σ|, giving us for each
pre-final-layer i an MLP which represents the function

(sim1.W
−1(q(1)), . . . , simi−1.W

−1(q(i−1)), E(σ)) 7→ simi.E(ϕ(q(1), . . . , q(i−1), σ)),

where the inputs are stored in the respective i′ < i and Σ channels, and the output is written to the i
channel. Here, the number of input dimensions is

din =
∑
i′<i

simi′ .dim+ 1 ≤ 2|Q|(|T (A)|+ |Q|+ 4) + 1 ≤ 2|Q|(|T (A)|+ 5|Q|).

Since the state encodings for each predecessor semiautomaton i′ < i are |Q|-bounded inte-
ger vectors and Σ has been assumed to be a |Σ|-bounded positive integer, it suffices to use
d1 = 4din max{|Q|, |Σ|}. The second hidden layer’s width d2 is the number of possible inputs
|X |, which is bounded by |Q|2|Q| · |Σ| > d1. The weights satisfy

∥W1∥∞ ≤ 4, ∥b1∥∞ ≤ 6max{|Q|, |Σ|},
∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ din, ∥W3∥∞ ≤ |Σ|, b3 = 0.

Between i in the same layer, these routing constructions need to be executed in parallel, so this
incurs another multiplicative factor in the width, bounded conservatively by 2|Q|.

The final construction concatenates these blocks, so that at the output of the last layer, every channel
i contains a representation of its corresponding component’s semiautomaton Qi. TheW guaranteed
by Theorem 7 suffices for the overall choice of W .

C.4 PROOF OF THEOREM 3: EVEN SHORTER SHORTCUTS FOR GRIDWORLD

Recall the gridworld semiautomaton in Example 3, where the state (Q = {0, 1, . . . , S}) either move
to the adjacent state based upon seeing input token L or R (modulo boundary effects), or stay
unmoved upon seeing ⊥. More formally, the transition function is defined as:

δ(q, L) = max(q − 1, 0)

δ(q,R) = min(q + 1, S)

δ(q,⊥) = q.

In this section, we will show how to implement gridworld simulation using only 2 Transformer
layers. Here we restate the theorem in full generality:

56

Published as a conference paper at ICLR 2023

Theorem 3 (Even shallower shortcuts for gridworld). For each positive integer T , Transformers
can simulate the (S+1)-state gridworld semiautomaton with 2 attention layers, where the MLP has
either (i) depth O(logS), width O(T + S), or (ii) depth O(1), width O(T) + 2O(S). The weight
norms are bounded by poly(T).

The depth in (i) can be reduced to O(S) if we allow max pooling, and the dependence on T in the
width can be removed with sinusoidal activation. We discuss this in detail after the proof along with
generalization to the k-dimensional gridworld case.

Note that, in order to find the current state, we need to only know the most recent time at which
the semiautomata was at a boundary. It is not immediately obvious how to compute the most recent
boundary, if one is not allowed to use the trivial sequential simulation algorithm. Our key insight is
that this boundary detector can be computed without needing to parse the entire sequence, using the
most recent S + 1 distinct values of the prefix sums in the sequence.

This algorithm is especially well-suited to the Transformer architecture since: (i) the prefix sum can
be computed using one attention layer as in Lemma 6, and (ii) the identification of distinct values
can be implemented by a sparse value-dependent lookup similar to the memory lookup in Lemma
7 with the help of the self -attention (context-dependent retrieval, as opposed to a static lookup),
and (iii) the positional weight sharing and causal masking enable all of these computations to be
performed in parallel. Overall, Theorem 3 consists of a concise implementation which executes all
of these most-recent-boundary detectors in parallel.

In what follows, we first describe the algorithm (Algorithm 1) for computing the state of the semiau-
tomata using the S + 1 distinct prefix sum values, and give a proof of its correctness. Subsequently,
we formalize the Transformer construction that implements the algorithm. A consolidated list of
notations used in the algorithm as well as the proofs is provided in Table 1 for the reader.

C.4.1 THE ALGORITHM SOLVING 1D GRIDWORLD

To convey the essence of the full construction, we first provide pseudocode (rather than Transformer
weights) for computing the final state qT (rather than the entire state sequence).

We map actions σ ∈ {L,R,⊥} to σ̃ ∈ {−1, 1, 0}, i.e. L 7→ −1, R 7→ 1, and ⊥ 7→ 0. Let σ̃(:)

denote the sequence of mapped actions, and let 0 be the initial state. The algorithm (Algorithm 1)
has two steps: first, we identify the last time the agent is at a boundary (wall) and the type of the
boundary (i.e. state 0 or state S). The final state is then simply the sum of all actions in the sub-
sequence, shifted by the last boundary, which is easily computable with 1 attention layer (Lemma
6). Our key insight is that we can identify the boundary using O(S) attention heads in two attention
layers, and therefore do not require a recursive computation from the start state (with depth T).

To show the correctness of Algorithm 1, it suffices to show that the boundary state is detected
correctly, since after that there is no more boundaries and the only step remaining is to calculate the
sum of the actions. Let tuniq, tmin, tmax be as defined in Algorithm 1. Then:
Lemma 13. If tmin > tmax, then state at tmin is 0, otherwise state at tmax is S.

Proof. The proof follows from two observations:

1. min{tmin, tmax} = tuniq,

2. Suppose tmin = tuniq (the argument is symmetric for tmax = tuniq). Then qtmax = S.

First note that σ̃ ∈ {±1} which implies that the prefix sums increment or decrement by 1 at each
index. Therefore, ztmax − ztmin = S + 1. This also applies that between (and including) tmax and
tmin, there must be indices such that they traverse the S + 1 distinct values. Since we take the
shortest suffix satisfying this, tuniq ≥ min{tmax, tmin}. This proves Observation 1.

Assume tmin = tuniq. We can break the analysis into the following 2 cases:

(a) The S + 1 distinct values correspond to S + 1 distinct states (covering both boundaries). This
implies that the minimum and maximum out of these distinct prefix sums must correspond to
the boundaries, that is, qtmax = S and qtmin = 0.

57

Published as a conference paper at ICLR 2023

Notation Definitions

σ An input token; σ ∈ {L,R,⊥}.
σ̃ A mapped input token; σ̃ = −1 if σ = L, σ̃ = 1 if σ = R, and σ̃ = 0 if σ =⊥.

Used in Algorithm 1:

qt The state at position t ∈ [T]; qt ∈ {0, 1, · · · , S}.
z ∈ ZT Prefix sums at all T positions.

tuniq The most recent position for which the prefix sums ztuniq:T contain S + 1 unique values.

tmax, tmin The positions corresponding to the max/min prefix sum among positions tuniq, . . . , T .

tfinal The position of the last boundary state, defined as tfinal := max{tmax, tmin}.

Used in the Transformer construction:

γt The positional encoding for position t ∈ [T], defined as γt := log(2T − t).
x
(1)
attn[t] The output of the first layer attention at position t ∈ [T], defined as x(1)attn[t] :=

1
2T

∑
i∈[t] si.

x
(1)
mlp[t] The output of the first layer MLP at position t ∈ [T], defined as x

(1)
mlp[t] := [x

(1)
attn[t], γt,

1, cos(x
(1)
attn[t]π), sin(x

(1)
attn[t]π)].

j
(s)
max The position which achieves the max attention score for the sth head at time t ∈ [T] (t is omitted for

notational convenience), for s ∈ [0, 1, · · · , 2S].
x
(2)
attn[t] The output of the second layer attention at position t ∈ [T], defined as x

(2)
attn :=

[γ
j
(0)
max

, γ
j
(1)
max

, · · · , γ
j
(2S)
max

].

x
(2)
mlp[t] The output of the second layer MLP at position t ∈ [T], which gives the state at t.

Table 1: Notations for the proof of Theorem 3.

(b) The S +1 distinct values correspond to fewer than S +1 distinct states. This implies that only
one of the two boundaries is visited in the sequence starting from tuniq. In order to get S + 1
distinct values, it must be that this boundary wall is hit, i.e., the sequence tries to make a move
that the boundary blocks. If the sequence does not hit a boundary, then at every time the same
state is revisited, the prefix sum must be the same, and we will not be able to get S + 1 distinct
values. Since tmin = tuniq, we claim that the visited boundary must be S. Suppose this is not
true, then the boundary visited is 0. This implies that qtmin

= 0. Since the sequence does not
hit S, at any position it is at state 0 before hitting the wall, the value will be ztmin

. Thus, when
the sequence first hits the wall at 0 (say index τ), then zτ = ztmin

− 1 which is not possible by
definition of tmin. Thus, the boundary must be S.

Given the above, our algorithm identifies the boundary correctly and then can just use the prefix sum
to evaluate the current state.

C.4.2 TRANSFORMER CONSTRUCTION FOR ALGORITHM 1

In this section we will show how to simulate Algorithm 1 using a 2-layer Transformer with 2S
attention heads.

Proof of Theorem 3. In our construction, the first attention layer will compute the prefix sums. This
can be mapped to a cyclic group from Lemma 6, however for completeness, we will restate the
main construction. The MLP in the first layer will map this prefix sum to a circular embedding

58

Published as a conference paper at ICLR 2023

Algorithm 1: 1D gridworld: computing the final state

Data: σ̃ ∈ {±1}T , S ∈ Z+

Result: Final state yT ∈ {0, 1, · · · , S}
// Pad tokens so there are at least S + 1 distinct values
σ̃ ← [−1,−1, · · · ,−1︸ ︷︷ ︸

S+1

, σ̃]

// Calculate the prefix sum for each index
z ← prefix sum(σ̃) (i.e. zt ←

∑t
τ=1 σ̃t)

// Find a substring containing S + 1 unique values
tuniq ← max{t : |set(zt:)| = S + 1}
// Find positions of the last max and min values
tmin ← max{t : zt = minτ≥tuniq

zτ}
tmax ← max{t : zt = maxτ≥tuniq

zτ}
// Identify the type of boundary
if tmin > tmax then

boundary← 0
else

boundary← S
end
// The final state is the sum of the substring after the last boundary
tfinal ← max{tmin, tmax}
yT = zT − ztfinal

+ boundary

!" " " " "! ! ! !

S (right boundary)

0 (left boundary)
tfinal

tuniq

"" ! " ! "! ! ! "

qt

zt

tfinal

tuniq

Case 1: traversal Case 2: hit one wall

Figure 16: Illustrated examples for 4-state gridworld (Q = {0, 1, 2, 3}). The algorithms compute
the prefix sums zt (as if there were no boundaries; shown as green dots); intuitively, it might seem
like they have no direct relationship with the state sequence qt (gray dots). However, defining
tuniq as the start of the shortest suffix containing S + 1 distinct prefix sums, and tfinal as the most
recent minimum or maximum point within this suffix, our case analysis shows that qtfinal is always
a boundary, resulting in a parallel simulation algorithm.

(see Proposition 5). The second layer attention will use the circular embedding structure to find
S + 1 closest distinct values to the current value zt (suppose we are considering position t ∈ [T])
by identifying the positions for closest values in the set {zt−S, zt−S +1, . . . , zt− 1, zt +1, zt +
2, . . . zt + S}, i.e. S closest distinct values smaller than zt, and S values larger than zt. This closest
distinct value construction can be viewed as a position dependent flip-flop monoid construction,
where we need to identify the closest position with a particular action. Note that this set of values
would contain the distinct S+1 values needed by the Algorithm 1, hence the second layer MLP can
implement the state computation using these values.

Input representation: We select input symbol embedding E(σ) = σ̃ · e1 ∈ Rd where σ̃ is

the action corresponding to σ, that is, s =


−1 if σ = L

1 if σ = R

0 otherwise
. We will use positional encoding

59

Published as a conference paper at ICLR 2023

Pt,: := γte3, where γt := log(2T − t) is such that 1
eγt+t =

1
2T . We will include an extra position⊥,

with embedding E(⊥) := e2 and position encoding P⊥,: := 0. Think of this as padding at position
0; it is not masked by the causal attention mask.

Prefix sum (Layer 1 attention): The attention construction for the first layer, in full detail:

• We select d := 4, k := 1, H := 1.

• Select WQ := e3,WK := e2,WV := e1,W
⊤
C := e4.

With this attention module, the 4th channel of the output at position t is x(1)attn[t] =
1
2T

∑
i∈[t] si,

which is the prefix sum scaled down by 1/2T .

Circular embedding (MLP 1): The first MLP maps x(1)attn[i] 7→ [cos(x
(1)
attn[i]π), sin(x

(1)
attn[i]π)],

where cos, sin are calculated up toO(log T) precision using the construction in Lemma 1 with width
4(2T + 1). 27 and weight norms at most 8T . Together with the input using the skip connection (for
γi) we get x(1)mlp[t] :=

[
x
(1)
attn[t], γt, 1, cos(x

(1)
attn[t]π), sin(x

(1)
attn[t]π)

]
as the embedding to be input

to the second attention layer.

Finding closest S + 1 values (Layer 2 attention): Our goal is to find the shortest subsequence
(looking back from the current position t) that contains S + 1 distinct values for x(1)attn; that is, we
want to find the max τ ≤ t− S such that

∣∣{x(1)attn[i]}ti=τ

∣∣ = S + 1. We will do this by using 2S + 1
heads such that ∀s ∈ {0, 1, · · · , 2S}, the attention score for the sth head on position i ∈ [T] satisfies

α̃
(s)
t,i :=

〈
(W

(s)
Q)⊤x

(1)
mlp[t], (W

(s)
K)⊤x

(1)
mlp[i]

〉
{
= 1− c log(2T − i), if x(1)attn[i] = x

(1)
attn[t] +

s−S
2T ,

≤ 1− c log(2T − i)− π2

8T 2 , otherwise,

where c = π2

(16 log 2)T 2 . That is, for any i, j s.t. x
(1)
attn[i] = x

(1)
attn[t] +

s−S
2T (matched) and

x
(1)
attn[j] ̸= x

(1)
attn[t]+

s−S
2T (unmatched), the difference in the unnormalized attention weights is lower

bounded by α̃(s)
t,i −α̃

(s)
t,j ≥ π2

16T 2 . This can be achieved by lettingW (s)
Q :=


[
0 0 0
0 0 −c
0 0 0

]
0

0 ρθ(s)

 ∈
R5×5 where ρθ(s) the rotation matrix of angle θ(s) := (s−S)π

2T , such that (W
(s)
Q)⊤x

(1)
mlp[t] =[

0,−c, 0, cos
((
x
(1)
attn[t] +

s−S
2T

)
π
)
, sin

((
x
(1)
attn[t] +

s−S
2T

)
π
)]

. W (s)
K ,W

(s)
C are simply the 5×5

identity matrix, and W (s)
V = e1e

⊤
1 + e2e

⊤
2 .

Let j(s)max denote the position that achieves the max attention score for the sth head, then the output
of the sth head 28 is [x(1)attn[j

(s)
max], γj(s)max

, 0, 0, 0]. We can ignore the last three coordinates (which are

0) as well as x(1)attn[j
(s)
max], since we will only need the difference x(1)attn[t]−x

(1)
attn[j

(s)
max] which is s−S

2T
by definition. We then concatenate the outputs from all (2S + 1) heads in a (2S + 1)-dimensional
vector x(2)attn = [γ

j
(0)
max

, γ
j
(1)
max

, · · · , γ
j
(2S)
max

] as the input to the second layer MLP.

Intuitively, each head in the second attention layer is trying to identify the set of positions for which
the prefix sums match a particular value specified by the head. Each head selects the last matching
position if such positions exist, and selects t if not. The following observation will be helpful for

27The width is 1 if we allow sinusoidal activation instead of relu; see the discussion after the proof.
28We assume hard attention here for ease of exposition of the proof; soft attention can be handled with Lemma

4 and Lemma 1 as in our previous constructions. This requires norm poly(T) at max.

60

Published as a conference paper at ICLR 2023

our subsequent MLP construction: the values of coordinates of x(2)attn increase on both sides of the
Sth heads; that is, x(2)attn satisfies the following:

Lemma 14. There exist a < b ∈ {0, 1, . . . , 2S} such that

x
(2)
attn[a] > x

(2)
attn[a+ 1] > . . . > x

(2)
attn[S] < x

(2)
attn[S + 1] < . . . < x

(2)
attn[b]

and all s ∈ {0, 1, . . . , 2S} \ {a, a+ 1, . . . , b} we have x(2)attn[s] = log(2T − t).

Proof. Note that x(2)attn[s] := log(2T − γ
j
(s)
max

) which makes the ordering inverse of the position.
Observe that the unmatched indices correspond to values that have not been reached. This can
only happen for values on either the leftmost or the rightmost coordinates, since the prefix sums
are continuous on integers. Now let’s prove that the value will be decreasing moving away from
index S in both directions. Suppose this was not true, there indeed was s ≤ S such that x(2)attn[s] ≥
x
(2)
attn[s − 1] (s ≥ S case is identical), then it implies that the closest index that achieved relative

value S − s is further away from t than S − s+ 1. However, since the moves can update the prefix
sum by magnitude at most 1, then to get to relative value 0 from relative value S − s+ 1, we would
need to have crossed relative value S − s. This implies that there is another position closer to t with
this value, contradicting our assumption. This proves the result.

Computing state (MLP 2): To compute state from the positional information given by x(2)attn, we
need to do the following computations:

• Step 1: consider S + 1 windows of size-(S + 1), each containing the sth to (s+ S)th heads for
s ∈ {0, 1, . . . , S}, and identify the window that contains positions closest to the end (this would
correspond to the closest S + 1 distinct values to x(1)att[t]);

• Step 2: identify the boundary state in the selected window by comparing the indices of the
endpoints of the window;

• Step 3: output the final state based on the position of the boundary states and its value relative to
the current position t.

We will show two constructions for implementing this, one of which will use O(1) depth and 2O(S)

width, and the other will use O(logS) depth and O(S) width. The trade-off essentially lies in how
a min function is implemented and can be resolved if we allow a min-pooling layer, which we will
discuss after the proof.

1. O(1)-depth construction: The idea is that we can first useO(1) layers to construct “features” that
contain all the information needed to determine the state, then a 3-layer MLP with 2O(S) width
can compute the state as a function of these features by Lemma 2. The features we need are the
following (the labels underneath are to be consistent with Figure 17, left):

{1[x(2)attn[s] > x
(2)
attn[s+ S]]}Ss=0︸ ︷︷ ︸
>

, (C.3)

{1[x(2)attn[s− 1] > x
(2)
attn[s+ S]]}Ss=0︸ ︷︷ ︸

>L

, {1[x(2)attn[s] > x
(2)
attn[s+ S + 1]]}Ss=0︸ ︷︷ ︸
>R

, (C.4)

{1[x(2)attn[s] = log(2T − t)]}2Ss=0︸ ︷︷ ︸
=

}. (C.5)

Here the feature in C.3 compares the end points of the S + 1 windows, the two features in C.4
compare the window with its adjacent windows on each side, and the last feature in C.5 will be
used to eliminate the irrelevant window. Features in C.3 and C.4 can each be computed as a
threshold function (at 0) on the difference between the two elements to be compared, which can
be implemented using 2 layers by Lemma 3.

61

Published as a conference paper at ICLR 2023

(a) First, we show that to compute Step 1 we only need to compare between adja-
cent windows whose S + 1 heads are all matched, which can be computed using
the features above. Consider any window starting at s ∈ [0, 1, · · · , S]. On ei-
ther side, if this window is closer to t than its adjacent window on this side, then it
is closer to the end of the boundary than all the windows on this same side, which
would imply that we can ignore these non-adjacent windows. To prove this, let’s
consider the left side (the right side is analogous) and we want to show: For any
s ∈ [S], if max{x(2)attn[s], x

(2)
attn[s+ S]} < max{x(2)attn[s− 1], x

(2)
attn[s+ S − 1]}, then

max{x(2)attn[s], x
(2)
attn[s+ S]} < max{x(2)attn[s− i], x

(2)
attn[s+ S − i]} for i > 1: the if con-

dition gives us x(2)attn[s− 1] > x
(2)
attn[s+ S], and we know from Lemma 14 that

x
(2)
attn[s− i] > x

(2)
attn[s− 1] > x

(2)
attn[s],

x
(2)
attn[s+ S] > x

(2)
attn[s+ S − 1] > x

(2)
attn[s+ S − i].

Combining these inequalities together concludes the proof.
(b) Given the optimal window, we can use feature C.3 for the relevant window to identify the

boundary, since the closer-to-t index gives us the last boundary state (see Algorithm 1 for
why this suffices).

(c) Now that we have identified the boundary state (suppose it is at position i), the final state
can be computed as the last boundary state (0 or S) plus the difference x(1)attn[t] − x

(1)
attn[i].

The difference is built in to the ordering of the heads, hence we have all the information to
compute the final state and we are done.

Therefore, we can compute this function using 4S + 3 features each taking value in {0, 1} and
the output having S + 1 values. These features themselves can be constructed using Lemma 3
with ∆ = 1/4T since the indices are separated by at least this gap. For the indicator index, we
can compose two such constructions similar to Lemma 1. This gives us the first layer of MLP
with width O(S) and norms O(T). After this, the rest of the function can be constructed using a
3-layer ReLU network with width 2O(S) and norms bounded by O(S) using Lemma 2.

2. O(logS)-depth construction: An alternative solution to the above is to pay O(log(S)) depth, but
reduce the width to beO(S). We will borrow features in equation C.3-C.5, but construct the MLP
explicitly rather than calling Lemma 2 as a black box: the width and depth trade-off essentially
correspond to two ways of implementing the min of S numbers. We describe the corresponding
MLP by components (Fig 17, right):

(a) Ignore the unmatched heads: as a preprocessing step for the cleanness of the proof, we use
a 1-layer MLP to map x(2)attn[s] for heads where x(2)attn[s] = log(2T − t) (i.e. jmax = t) to
log(2T) such that these unmatched heads can be ignored in the following steps. This can be
done by multiplying log(2T) to the threshold function given by Lemma 3 (with ∆ = 1

4T),
where the network has 1 hidden layer with width 2S + 1 and ∞-norm 4T . Note that this
map also changes x(2)attn[S] (i.e. the center head that corresponds to position t) but this will
not affect the correctness of the proof.

(b) Compute the function f1 in Figure 17 (right), which computes f1(a, b) :=

(max{a, b},1[a > b]) for a = x
(2)
attn[s], b = x

(2)
attn[s + S]}, ∀s ∈ {0, 1, · · · , S}. The first

coordinate max{a, b} can be implemented using 1 hidden layer with width 1, and 1[a > b]
is the same as feature C.3 and can be implemented with 1 hidden layer by Lemma 3. There
are S + 1 choices of s, hence the overall width is O(S). For notational convenience, let’s
denote f1(s) := f1(x

(2)
attn[s], x

(2)
attn[s+ S]) (with a slight abuse of notation).

(c) Find the min value of f1(s)[1], denoted as f1,min := mins f1(s)[1]: This can be achieved
using 1 min-pooling layer. If we allow ReLU only, then this can be implemented with
pairwise comparison using a network with ⌈logS + 1⌉ depth, 3S width and and constant
weight norm. 29

(d) Compute the function f (s)2 in Figure 17 (right): f (s)2 takes two inputs: 1) the second output
of f1, which we denote as Bs := f1(s)[2], and 2) Ms := 1[f1,min ≤ f1(s)[1]], which

29The log depth is conjectured to be unimprovable; see discussion after the proof.

62

Published as a conference paper at ICLR 2023

Figure 17: Illustration of the two constructions for second-layer MLP in Theorem C.4, with S =

3. For ease of readability, we replace x(2)attn with x. Left: O(1)-depth solution where the first
block compares the comparison and equality features (see equation C.3- C.5), and the second block
computes the state from these features. Right: O(logS)-depth solution where first block implements
f1(a, b) = (max{a, b},1[a > b]), second block does a min-pooling operation, the third block
implements f2 which takes f1 via a residual connection and output of min-pool to compute the final
state.

indicates whether the sth window is the closest-to-t window or not and can be computed
using a 1-hidden-layer network with width 2. As in the previous construction, the difference
f1,min−f1(s)[1] is built-in in the ordering of the head and hence does not need to be passed
in explicitly. Then by Lemma 2, a 2-hidden-layer network of width O(1) can take Bs,Ms

as input and compute Ms ·
[
B(S − s) + (1−B)(2S + 1− s)

]
. The overall width is O(S)

for S + 1 choices of such f (s)2 .

(e) Finally, the state is computed as
∑

s f
(s)
2 (Bs,Ms), which can be implemented with 1 layer

of width 1.

Improving the construction to remove T width and log(S) depth. Using standard architectural
tools, such as max-pooling, we can improve our construction to get O(1)-depth and O(S)-width for
the MLP.

• Avoiding width T in the MLP 1 using periodic activations. As in the modular addition (Lemma 6)
construction, we can use sin activations in the MLP to directly compute the circular embeddings
that are used as input to the second attention layer. This would require only two hidden nodes
in the MLP. Note that we do not need precision greater than O(log T) for these activations since
we are embedding values only as close as 1/poly(T).

• Avoiding log(S) depth in the MLP 2 using max-pooling. The O(logS)-depth in MLP 2 is
incurred by calculating the min of S numbers and is conjectured to be necessary for ReLU
networks (Goel et al., 2017; Mukherjee & Basu, 2017; Hertrich et al., 2021). However, the
depth can be reduced to 1 if we allow max-pooling layers, which are commonly used in both
theory and practice (Zhang et al., 2021b; He et al., 2016; Vaswani et al., 2021).

Remark: Yao et al. (2021) use layer-norm to compute cos and sin embedding with non-uniform
angles. This could potentially alleviate the width T concern; we leave this exploration to future
work.

Extending beyond 1 dimension. Since a 2-dimensional gridworld is just the direct product of
1-dimensional gridworlds (by the construction in Lemma 8), we can implement both dimensions in

63

Published as a conference paper at ICLR 2023

parallel by concatenating the network for each dimension. This can be done by doubling the dimen-
sions, parallel attention heads, and parallel hidden units in the MLP. The attention head parameters
for each dimension can be chosen to only focus on the relevant dimension and similarly the MLP
can zero out dependence on the other dimension. We can extend this to higher dimension with a
multiplicative increase in the size of the parameters.

C.5 PROOF OF THEOREM 4: DEPTH LOWER BOUND FOR NON-SOLVABLE SEMIAUTOMATA

Theorem 4 (Transformer Barrington). Let A be a non-solvable semiautomaton. Then, for suffi-
ciently large T , no fixed-precision Transformer with depth independent of T and width polynomial
in T can simulate A at length T , unless TC0 = NC1.

Proof. This follows straightforwardly from the fact that simulating A at length T is NC1-complete
under NC0 reductions: given any O(log T)-depth bounded-fan-in AND/OR/NOT circuit C, and
a depth-D circuit C′ which simulates a semiautomaton whose transformation monoid contains a
non-solvable subgroup, there is a procedure which generates a depth-O(D) circuit to simulate C;
see (Barrington & Thérien, 1988). This in turn comes from the construction used in Barrington’s
theorem (Barrington, 1986), which characterizes NC1 as exactly the set of languages recognizable
by bounded-width branching programs. For a closely related reference which follows almost exactly
the same argument, see (Mereghetti & Palano, 2000).

Thus, it suffices to show that a constant-depth Transformer is in TC0. The details of manipulating
floating-point numbers with discrete circuits are peripheral to the main results in this paper, so we
provide a brief proof sketch. A similar argument is used by Merrill et al. (2021) to establish that
“saturated” Transformers (a multi-index analogue of hard-attention Transformers), with O(log T)
bit precision, can be represented with a TC0 circuit. We outline a proof (which applies to the formal
setting considered by Merrill et al. (2021)) for the notion of Transformers defined in this paper.

With O(log T) bits of precision, all n-way (including unary) arithmetic operations mapping Rn →
R can be represented with a constant-depth, poly(T)-width AC0 circuit, as long as n does not de-
pend on T . Although improvements are certainly possible, it suffices to consider the circuit which
memorizes the i-th bit of the output, which has width 2n log T ≤ O(poly(T)). Thus, the position-
wise non-interacting matrix operations (multiplication by X 7→ WQX , etc., the feedforward MLP
layers, and the encoding and decoding layers) can be simulated with poly(T) width.

The only subtlety arises when there is a T -way summation over O(log T)-bit numbers, which occur
in the softmax and attention mixture layers. For this operation, we can use the construction from
(Reif & Tate, 1992), which can even add T poly(T)-bit numbers in TC0.

64

	Introduction
	Related work

	Preliminaries
	Semiautomata and their algebraic structure
	Recurrent and non-recurrent neural sequence models

	Theory: shortcuts abound
	Semiautomata admit shallow parallel shortcuts
	Lower bounds

	Experiments: Can SGD find the shortcuts?
	Further experiments: more challenging settings
	Incomplete and indirect supervision
	Out-of-distribution shortcomings of shortcut solutions

	Conclusions and future work
	Appendix
	 Appendix
	Additional background and notation
	Notation
	Automata, semigroups, and groups
	Shallow circuit complexity classes
	The Transformer architecture
	Additional discussion of related work

	Experiments
	Section 4: SGD finds the shortcuts, under ideal supervision
	Shallow Transformers simulate small groups and semigroups
	Visualizing and interpreting attention heads

	Section 5: Failures of shortcuts in more challenging settings
	Challenges from indirect supervision
	Challenges from incomplete supervision
	Out-of-distribution generalization
	Length generalization

	Additional details

	Proofs
	Useful definitions and lemmas
	Proof of Theorem 1: Logarithmic-depth shortcuts via parallel prefix sum
	Proof of Theorem 2: Constant-depth shortcuts via Krohn-Rhodes decomposition
	Base cases: modular counting and memory
	Prime decompositions of groups and semigroups
	Simulating solvable groups
	Simulating semigroups

	Proof of Theorem 3: Even shorter shortcuts for gridworld
	The algorithm solving 1D gridworld
	Transformer construction for Algorithm 1

	Proof of Theorem 4: Depth lower bound for non-solvable semiautomata

