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Abstract

Non-Euclidean foundation models increasingly place representations in curved
spaces such as hyperbolic geometry. We show that this geometry creates a
boundary-driven asymmetry that backdoor triggers can exploit. Near the boundary,
small input changes appear subtle to standard input-space detectors but produce
disproportionately large shifts in the model’s representation space. Our analysis
formalizes this effect and also reveals a limitation for defenses: methods that act
by pulling points inward along the radius can suppress such triggers, but only
by sacrificing useful model sensitivity in that same direction. Building on these
insights, we propose a simple geometry-adaptive trigger and evaluate it across
tasks and architectures. Empirically, attack success increases toward the boundary,
whereas conventional detectors weaken, mirroring the theoretical trends. Together,
these results surface a geometry-specific vulnerability in non-Euclidean models
and offer analysis-backed guidance for designing and understanding the limits of
defenses.

1 Introduction

Hyperbolic neural networks have gained significant traction for modeling hierarchical and tree-like
data structures, finding applications in recommendation systems Chamberlain et al. [2019], knowledge
graphs Chami et al. [2019], Cao et al. [2020], and natural language processing Tifrea et al. [2019].
These models leverage the unique properties of hyperbolic geometry to capture complex relationships
more efficiently than their Euclidean counterparts. As hyperbolic networks transition from research
prototypes to production systems in major technology companies Vinh et al. [2019], understanding
their security properties becomes critical.

The security of traditional neural networks has been extensively studied. Backdoor attacks, where
models behave normally on clean inputs but produce attacker-chosen outputs for inputs containing
specific triggers, represent a particularly severe threat Gu et al. [2017]. Recent incidents have demon-
strated that backdoor models can pass standard validation while harboring malicious functionality
Goldblum et al. [2022], making them especially dangerous for deployed systems. Although numerous
backdoor techniques and defenses have been developed for Euclidean networks Li et al. [2022], the
security implications of non-Euclidean geometry remain unexplored.

This gap is concerning for several reasons. First, hyperbolic networks are deployed in security-
critical domains, including fraud detection Liu et al. [2019], drug discovery Chen et al. [2021],
and social network analysis Pareja et al. [2020]. Second, the distinctive properties of hyperbolic
space, particularly the exponential growth of volume and non-uniform distance metrics, suggest that
traditional security assumptions may not hold. Third, practitioners currently apply Euclidean defense
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Figure 1: In Euclidean space (left), a fixed input-space change produces a comparable effect through-
out the domain. In hyperbolic space (right), the same small input-space change produces a much
larger movement in representation space as points approach the boundary, while looking compara-
tively subtle to standard input-space detectors. This boundary-driven asymmetry underlies our attack
design and theoretical analysis.

mechanisms to hyperbolic models without understanding whether these approaches remain effective
in non-Euclidean settings. Figure 1 illustrates this key geometric distinction: in hyperbolic space,
the same input-space perturbation produces different effects depending on position, with boundary
regions exhibiting amplified sensitivity.

This paper presents the study of backdoor vulnerabilities in hyperbolic neural networks. We discover
that the geometric properties of hyperbolic space alter the backdoor threat. Specifically, the non-
uniform curvature creates regions where triggers can be simultaneously more effective and harder to
detect than in Euclidean space. Our key insight is that the varying sensitivity to perturbations across
the hyperbolic manifold can be exploited to design powerful geometric backdoors that evade existing
defenses. We develop a framework for backdoor attacks tailored to hyperbolic geometry, prove
theoretical limits on detection and defense, and empirically demonstrate that our attacks outperform
Euclidean baselines.

2 Related Work

Hyperbolic Neural Networks. The use of hyperbolic geometry in deep learning was pioneered
by Nickel and Kiela [2017], who introduced Poincaré embeddings for hierarchical data. This
was extended to full neural network architectures by Ganea et al. [2018] with hyperbolic neural
networks and Chami et al. [2019] with hyperbolic graph convolutional networks. Recent work has
explored various applications including natural language processing Tifrea et al. [2019], computer
vision Khrulkov et al. [2020], and recommendation systems Chamberlain et al. [2019]. Although
these works establish the representational benefits of hyperbolic geometry, none address security
vulnerabilities.

Backdoor Attacks in Neural Networks. Backdoor attacks were first identified by Gu et al. [2017],
demonstrating that neural networks can be compromised through poisoned training data. Subsequent
work explored various trigger designs including invisible perturbations Chen et al. [2017], semantic
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Table 1: Key differences between our curvature-aware backdoor attack framework and prior works,
highlighting novel contributions such as geometry-exploiting triggers and theoretical proofs of
inherent vulnerabilities
Related Work Key Focus Limitations Our Departures
Adversarial Attacks on Hyperbolic Networks van Spengler et al. [2024] Curvature-exploiting

adversarial attacks
(FGM/PGD).

Evasion-only; no
backdoors or spar-
sity.

First backdoor framework;
adds sparse, adaptive triggers
and geometry metrics.

HyperDefender Malik et al. [2025] Defenses for hyperbolic
GNNs via Gromov δ.

Defense-focused;
GNN-limited.

Offensive backdoors for pure
hyperbolic NNs; theoretical
geometric proofs.

Graph Neural Backdoor Yang et al. [2024] Backdoor review for
GNNs with trigger
hiding.

Graph-specific; no
curvature focus.

Hyperbolic adaptation; confor-
mal scaling and boundary poi-
soning.

Lipschitz Robustness in Hyperbolic NNs Li et al. [2024] Lipschitz-based adversar-
ial robustness.

Defense/analysis;
no backdoors.

Attack exploitation; high ASR
with low degradation.

Backdoor Attacks on Quantum-Hybrid NNs Guo et al. [2025] Backdoors in quantum
NNs.

Quantum-specific;
no geometry trig-
gers.

Hyperbolic extension; mani-
fold optimizations.

triggers Bagdasaryan and Shmatikov [2021], and dynamic patterns Salem et al. [2022]. Defense
mechanisms have been proposed including activation clustering Chen et al. [2018], fine-pruning
Liu et al. [2018], and certified defenses Wang et al. [2022]. However, all existing work focuses
exclusively on Euclidean space, leaving geometric deep learning models unexamined.

Adversarial Robustness in Non-Euclidean Spaces. Limited work exists on adversarial robustness
for geometric deep learning. Jin et al. [2020] studied adversarial attacks on graph neural networks but
focused on discrete graph structures rather than continuous manifolds. Huster et al. [2021] analyzed
adversarial robustness through Riemannian geometry but only for Euclidean networks with geometric
regularization. Most recently, Liu et al. [2022] examined adversarial examples in hyperbolic space
but focused on evasion attacks rather than backdoor poisoning.

Security of Geometric Deep Learning. The broader security of geometric deep learning remains
nascent. Zügner et al. [2018] pioneered adversarial attacks on graph neural networks, while Bo-
jchevski and Günnemann [2019] proposed certified defenses. For hyperbolic models specifically, Sun
et al. [2021] provided initial security analysis but focused on privacy rather than integrity attacks.
The unique challenges of non-Euclidean geometry, such as varying metric distortion and exponential
volume growth, have not been leveraged for backdoor attacks until this work.

Our work differs from previous research by identifying and exploiting the intrinsic geometric prop-
erties of hyperbolic space for backdoor attacks. While previous studies either focus on Euclidean
backdoors or non-backdoor attacks in hyperbolic space, we demonstrate that the conformal factor
creates a natural vulnerability that makes hyperbolic networks inherently more susceptible to back-
door attacks than their Euclidean counterparts. Table 1 summarizes the key distinctions between our
curvature-aware backdoor framework and prior works.

Main Contributions. This work makes three key contributions to the security of geometric deep
learning:

(1) We propose a simple geometry-adaptive trigger for models that embed data in a hyperbolic space,
demonstrating that curved geometry creates a boundary-driven advantage for backdoor attacks.

(2) We formally show that near the boundary, small input changes (i) become harder to spot for
standard input space (Euclidean-Lipschitz) detectors, and (ii) induce disproportionately large move-
ments in the representation space. We also prove that radial defenses can suppress this effect only by
sacrificing useful model sensitivity along the same direction.

(3) We provide an attack that is easy to implement and evaluate across tasks and architectures.
Empirically, attack success rises toward the boundary while conventional detectors weaken.
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3 Preliminaries

3.1 Hyperbolic Geometry and Neural Networks

We work in the Poincaré ball model Dn = {x ∈ Rn : ∥x∥ < 1}, which represents n-dimensional
hyperbolic space. The Riemannian metric is given by gx = λ2

xg
E where gE is the Euclidean metric

and λx = 2
1−∥x∥2 is the conformal factor.1 This factor creates a non-uniform geometry: near the

origin (∥x∥ ≈ 0), λx ≈ 2 resembles Euclidean space, while approaching the boundary (∥x∥ → 1),
λx →∞ exhibits extreme metric distortion.

The hyperbolic distance between the points x, y ∈ Dn is:

dD(x, y) = arccosh
(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
(1)

Key operations in hyperbolic neural networks include the exponential map expDx(v) projecting tangent
vectors to the manifold, and Möbius addition x⊕ y for vector operations. The Riemannian gradient
is gradxf = λ−2

x ∇xf , scaling the Euclidean gradient to respect the local geometry.

3.2 Backdoor Attacks

A backdoor attack on a classifier fθ : X → Y creates a modified model fθ′ that behaves normally on
clean inputs but consistently misclassifies inputs containing a trigger pattern τ to a target class yt.
The attack involves poisoning a fraction of the training data by adding triggers and relabeling to yt.
Success is measured by the attack success rate on the triggered input while maintaining clean accuracy.
The key challenge in hyperbolic space is that the non-uniform geometry creates position-dependent
vulnerability to triggers, which we exploit through geometric design.

4 Methodology

We present a framework for backdoor attacks in hyperbolic neural networks that exploits the non-
uniform geometry of hyperbolic space. Consider a neural network classifier fθ : Dn → {1, ..., C}
operating on the Poincaré ball. Our goal is to inject a backdoor that causes misclassification of the
target class yt when a specific trigger is present, while maintaining normal behavior on clean inputs.

The key idea is that the conformal factor λx = 2
1−∥x∥2 creates regions of varying sensitivity to

perturbations. Near the boundary where ∥x∥ → 1, small Euclidean perturbations correspond to large
hyperbolic displacements, enabling powerful yet hard-to-detect triggers. We design a trigger function
τ : Dn → Dn that adapts to local geometry:

τ(x) = expx(s(x) · P0→x(δ)) (2)

where δ ∈ T0Dn is a base trigger pattern in the tangent space at the origin, P0→x denotes parallel
transport along the geodesic from origin to x, and s(x) is an adaptive scaling function:

s(x) = α ·
(
λ0

λx

)β

(3)

with base strength α > 0 and adaptation parameter β ∈ [0, 1]. This scaling ensures consistent trigger
effectiveness across different manifold regions by compensating for local metric distortion.

To enhance stealthiness, we impose sparsity on the trigger pattern. Let S ⊆ {1, ..., n} denote the
active dimensions with |S| = k ≪ n. The sparse trigger is obtained by solving:

δ∗ = arg max
∥δ∥0≤k

Ex∼p(x) [Lattack(fθ(τδ(x)), yt)] (4)

The optimization respects the Riemannian structure through the scaled gradient gradxL = λ−2
x ∇xL,

ensuring updates follow the manifold geometry.

1Note. Our theoretical bounds are explicitly stated in the Euclidean margin δ(x) = 1− ∥x∥; we do not rely
on any claims “exponential blow-up” about the conformal factor. See Theorem 1 and the Appendix remarks.
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Algorithm 1 Position-adaptive trigger (Euclidean additive implementation)

Require: x ∈ Rd with ∥x∥ < 1; sparse direction δ; strength α > 0; exponent β ≥ 0; radius
ρ = 0.95

1: Conformal factor: λx ←
2

1− ∥x∥2

2: Adaptive scale: s(x)← α
(λ0

λx

)β

= α(1− ∥x∥2)β

3: Additive step: x̃← x+ s(x) · δ
4: Small noise: x̃← x̃+ ξ
5: Projection: τ(x)← Πρ(x̃) (radial projection into the ball)
6: Output: τ(x)

Given training data D = {(xi, yi)}Ni=1, we select samples for poisoning based on their geometric
position. The poisoning distribution prioritizes samples where triggers are most effective:

ppoison(x) ∝ exp

(
−dD(x, µc)

2

2σ2

)
· λγ

x (5)

where µc is the Fréchet mean of class c samples, and γ weights the importance of metric distortion.
We poison a fraction ρ of samples by replacing (xi, yi) with (τ(xi), yt) according to this distribution.

The backdoored model is trained with a multi-objective loss balancing clean performance, trigger
effectiveness, and geometric consistency:

Ltotal = Lclean + λ1Lbackdoor + λ2Lgeometric (6)

where the geometric regularization Lgeometric = Ex[λx∥gradxfθ∥2g] penalizes hyperbolic gradient
magnitude uniformly across the manifold (in geodesic units), discouraging sharp sensitivity anywhere
including near the boundary.

5 Theoretical Analysis

We establish fundamental limits on detecting and defending against backdoor attacks in hyperbolic
neural networks. Our analysis reveals that the geometric properties of hyperbolic space create an
inherent advantage for attackers that cannot be mitigated without sacrificing model utility.

Theorem 1 (Geometry-Aware Triggers in the Poincaré Ball). Fix x ∈ Dn with r = ∥x∥ and let
δ(x) =:= 1−r denote the Euclidean margin to the boundary. For s > 0, consider the outward radial
trigger τs(x) obtained by following the outward radial geodesic from x for hyperbolic arclength s.

(i) Exact Euclidean size for a given hyperbolic step. Let κ(x, s) =:= ∥τs(x)− x∥2 be the Euclidean
displacement induced by arclength s. Then

κ(x, s) =

(
1− r2

)
tanh

(
s/2

)
1 + r tanh

(
s/2

) . (7)

In particular,

κ(x, s) ≤
(
1− r2

)
tanh

(
s/2

)
=

2

λx
tanh

(
s/2

)
≤ s

λx
, (8)

with equality in the small-s limit.

(ii) Stealth under Euclidean-Lipschitz detectors. If D is LE-Lipschitz in the Euclidean metric, then

|D(τs(x))−D(x)| ≤ LE κ(x, s) ≤ LE (1− r2) tanh
(
s/2

)
. (9)

Consequently, for any δ ∈ (0, 1) and any x with ∥x∥ ≥ 1− δ,

sup
∥x∥≥1−δ

|D(τs(x))−D(x)| ≤ 2LE δ tanh
(
s/2

)
, (10)
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and, for any random X supported in {x : ∥x∥ ≥ 1− δ},

E
[
|D(τs(X))−D(X))|

]
≤ 2LE δ tanh

(
s/2

)
.

Thus the detectability (in Euclidean-Lipschitz sense) decays linearly in the shell width δ.

(iii) Geodesic amplification for a fixed Euclidean budget. Fix κ ∈ (0, δ(x)) and set y = x+ κux

(radial outward Euclidean step where ux = x/∥x∥). Then

dg(x, y) = ln

(
1 + r + κ

1− r − κ

)
− ln

(
1 + r

1− r

)
≥ ln

(
δ(x)

δ(x)− κ

)
≥ κ

δ(x)
. (11)

In particular, for κ < δ(x) we have

dg(x, y)

κ
≥ 1

δ(x)
,

so the geodesic displacement per unit Euclidean change grows like 1/δ(x) as x approaches the
boundary.

Proof Sketch. Part (i) integrates the radial geodesic ODE in the Poincaré ball to obtain a closed
form for the radius after arclength s, yielding the exact formula and bounds for κ(x, s). Part
(ii) is immediate from Euclidean Lipschitzness and the bounds from (i); the shell bound uses
1 − r2 ≤ 2(1 − r) ≤ 2δ. Part (iii) computes the exact hyperbolic distance for a radial outward
Euclidean move and lower-bounds it by ln

(
δ/(δ − κ)

)
≥ κ/δ via − ln(1− x) ≥ x on (0, 1).

The full proof appears in Appendix A.

Summary. Near the boundary, (i) the detectable change under the Euclidean-Lipschitz detectors
shrinks linearly in the shell width δ, and (ii) for any fixed Euclidean budget the geodesic displacement
per unit Euclidean change grows like 1/δ.

Theorem 2 (Defense-Utility Trade-off). Let P be an arbitrary distribution in Dn and fθ : Dn → RC

be a neural network classifier. Fix s > 0 (trigger size), α ∈ (0, 1] (recovery fraction), β ∈ (0, 1]
(success probability). Assume:

1. M is a radial defense with L∆-Lipschitz radial profile: it moves points inward along radial
geodesics with displacement ∆(ρ) = 2(ρ −m(ρ)) depending only on hyperbolic radial
coordinate ρ = artanh(∥x∥).

2. M recovers (α, β)-fraction of outward radial triggers of size s:

P
[
∆
(
ρ(Φs(X))

)
≥ αs

]
≥ β

where Φs is the outward radial flow by hyperbolic arc length s.

3. fθ has radial sensitivity µg > 0: for y inward of x on the same radial ray,

∥fθ(y)− fθ(x)∥ ≥ µg · dg(x, y).

Then with αeff = α− L∆/2 (assumed nonnegative), we have:

P
[
dg
(
M(X), X

)
≥ αeffs

]
≥ β, (12)

E
[
dg
(
M(X), X

)]
≥ β αeffs, (13)

E[∥fθ(M(X))− fθ(X)∥] ≥ µg β αeffs, (14)

E
[
∥fθ(M(X))− fθ(X)∥2

]
≥ β µ2

g α
2
effs

2. (15)

In words: any radial defense that (with probability β) pulls triggered inputs inward by at least an
α-fraction of the trigger size must, on clean inputs, change at least a β fraction by at least αeffs in
hyperbolic distance, causing expected output deviations that scale linearly (and in second moment,
quadratically) in s.
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Proof Sketch. Let X be clean and Z = Φs(X) be the triggered version. By radiality, the inward
displacement ofM at any point depends only on its radial coordinate: dg(M(·), ·) = ∆(ρ(·)). The
recovery assumption states that with probability β over X ,

∆
(
ρ(Z)

)
= ∆

(
ρ(X) + s

2

)
≥ αs.

Lipschitzness of ∆ in ρ implies, for the same X ,

∆
(
ρ(X)

)
≥ ∆

(
ρ(X) + s

2

)
− L∆ · s2 ≥ (α− L∆

2 )s = αeffs.

Hence, the event {dg(M(X), X) ≥ αeffs} occurs with probability at least β, giving the probability
and expectation bounds. The radial sensitivity assumption converts hyperbolic displacement into
output change, yielding the first moment bound; the second moment bound follows since at least a
β-fraction of the mass incurs change ≥ µgαeffs. The full proof appears in Appendix B.

6 Empirical Study

Experimental Setup. We evaluate our hyperbolic backdoor attack framework on the 20news-
groups dataset, selecting five diverse categories (comp.graphics, sci.med, rec.sport.baseball,
talk.politics.mideast, alt.atheism) to create a balanced multi-class classification task.
While these categories lack inherent hierarchical structure, they provide a controlled benchmark for
evaluating geometric attack properties. Text documents are vectorized using TF-IDF (600 features,
standard preprocessing), followed by truncated SVD to 50 dimensions. To simulate hyperbolic ge-
ometry while preserving semantic content, we redistribute samples radially: 50% to radius [0.2, 0.5]
(center) and 50% to [0.5, 0.85] (boundary). This controlled positioning isolates geometric effects
from natural clustering patterns. Our defended classifier combines a feedforward network with
statistical outlier detection (Z-score and MAD, threshold τ = 0.13). Training uses Adam (lr = 0.003,
weight decay = 10−4) for 15 epochs with gradient clipping.

We compare two attack variants: (1) Position-adaptive (“hyperbolic-inspired”) attack, which
applies a sparse additive trigger (30% sparsity) with scaling that increases toward the boundary
using the Poincaré conformal factor λx as guidance, and selects samples by geometric position; (2)
Euclidean baseline with uniform trigger scaling and variance-based selection. All experiments are
single-target with target class fixed to 0, α = 0.35, and a 5% poisoning rate. We report targeted
attack success rate (ASR), clean accuracy, detection-evasion rate, effects by geometric position
(center/middle/boundary), and component importance via ablations, averaged over three independent
trials.

Results. Figure 2(a) shows our Enhanced Hyperbolic Attack achieving 97.0% attack success rate
compared to 62.7% for the Euclidean baseline while maintaining >95% clean accuracy. This per-
formance gap demonstrates the advantage of exploiting hyperbolic geometry for backdoor attacks.
Figure 2(b) shows the detection evasion results, revealing that the hyperbolic attack achieves only

(a) Attack success rates and clean accuracy (b) Detection rates for backdoor triggers

Figure 2: Primary experimental results comparing hyperbolic and Euclidean backdoor attacks.
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(a) Ablation study on the 20newsgroups dataset, eval-
uating the impact of removing individual attack com-
ponents.

(b) Attack success rate as a function of radial distance
from the origin in the Poincaré ball model on the
20newsgroups dataset

Figure 3: Empirical analyses of the proposed curvature-aware backdoor attack on hyperbolic neural
networks: (a) Ablation study assessing the contribution of key components to overall performance;
(b) Variation in attack success rate based on the geometric position of data points in hyperbolic space,
illustrating boundary amplification effects.

15.2% detection rate versus 45.8% for Euclidean. The success-detection trade-off positions our ap-
proach in the optimal high-success/low-detection region, whereas the baseline suffers from moderate
success with high detectability.

Figure 3(a) presents ablation studies revealing that conformal factor scaling contributes most to attack
effectiveness: removing it drops success from 97.0% to 84.5% (−12.5%), while removing adaptive
selection or sparse patterns causes similar degradation (−8.8% and −12.5%). Figure 3(b) shows the
geometric position analysis: attack success is highest near the boundary (93.0% center, |x| ≤ 0.5;
91.0% middle, 0.5 < |x| ≤ 0.7; 97.0% boundary, |x| > 0.7), confirming that regions of higher
metric distortion offer natural hiding places for triggers. This pattern is consistent with Theorem 1:
for standard input-space (Euclidean-Lipschitz) detectors, the detectable change shrinks linearly with
the Euclidean margin to the boundary, while the geodesic movement per fixed input change grows
inversely with that margin.

Limitations. While our results demonstrate clear geometric advantages, several limitations merit
discussion. We use position-based scaling inspired by hyperbolic geometry rather than full Rieman-
nian operations (parallel transport, exponential mapping), and our hybrid approach, real text content
with artificial geometric redistribution, may not capture natural hyperbolic clustering patterns. Future
work should explore attacks using complete geometric frameworks and evaluate on datasets with
naturally occurring hyperbolic structure. Validation across multiple dimensions establishes strong
evidence for security challenges in geometric deep learning and provides a foundation for developing
geometry-aware defenses.

7 Conclusion

This work identifies a geometry-specific vulnerability in hyperbolic neural networks. Our analysis
shows that near the boundary, small input changes travel disproportionately far in representation
space while appearing comparatively subtle to standard input-space (Euclidean-Lipschitz) detectors,
an effect we formalize with bounds that scale with the local Euclidean margin to the boundary. We
further prove a limitation for radial defenses: Any method that pulls triggered inputs inward with a
Lipschitz radial profile must, on clean inputs, induce changes that grow with the trigger size; that is,
there is an explicit utility trade-off for this defense class. Experiments mirror these trends, that attack
success rises toward the boundary while conventional detectors weaken.
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8 Appendix A: Detailed Proof of Theorem 1

We recall that λx = 2/(1 − ∥x∥2) denotes the conformal factor and write dg for the hyperbolic
distance. For x ̸= 0, write r = ∥x∥ and the outward radial unit vector ux =:= x/∥x∥.
We collect two standard facts about radial geodesics in the Poincaré ball.
Lemma 3 (Radial geodesics and arclength). Let r(s) denote the Euclidean radius of the outward
radial unit-speed geodesic γx at hyperbolic arclength s, with r(0) = r. Then

dr

ds
=

1− r2

2
, s =

∫ r(s)

r

2

1− ρ2
dρ = ln

(
1 + r(s)

1− r(s)

)
− ln

(
1 + r

1− r

)
,

so in particular
r(s) = tanh

(
artanh(r) +

s

2

)
. (16)

Proof. Along a radial curve the metric reduces to ds = λ(r) dr = 2
1−r2 dr, which yields the ODE

and primitive directly. Solving for r(s) gives the stated formula.

Lemma 4 (Euclidean displacement under an outward radial step). With notation as above, the
Euclidean displacement κ(x, s) = r(s)− r satisfies

κ(x, s) =
(1− r2) tanh(s/2)

1 + r tanh(s/2)
. (17)

Moreover, κ(x, s) ≤ (1− r2) tanh(s/2) ≤ s/λx.

Proof. Using the formula for r(s) from Lemma 3 and the identity tanh(a+ b) =
tanh a+ tanh b

1 + tanh a tanh b
with tanh(artanh r) = r and tanh(s/2) as given, we obtain

r(s) =
r + tanh(s/2)

1 + r tanh(s/2)
.

Subtracting r yields the formula for κ(x, s). Since tanh(s/2) ≤ s/2 and 1 + r tanh(s/2) ≥ 1, we
get

κ(x, s) ≤ (1− r2) tanh(s/2) ≤ (1− r2)
s

2
=

s

λx
.

Proof of Theorem 1. (i) The exact formula for κ(x, s) is given by Lemma 4, with the bounds in its
last line.

(ii) If D is LE-Lipschitz in the Euclidean metric, then

|D(τs(x))−D(x)| ≤ LE ∥τs(x)− x∥2 = LE κ(x, s).

Applying the bounds from part (i), we get |D(τs(x))−D(x)| ≤ LE(1− r2) tanh(s/2). If ∥x∥ ≥
1− δ, then 1− r2 = (1− r)(1 + r) ≤ 2(1− r) ≤ 2δ, which yields

sup
∥x∥≥1−δ

|D(τs(x))−D(x)| ≤ 2LEδ tanh(s/2).

The expectation bound follows immediately.

(iii) Let y = x+ κux with κ ∈ (0, 1− r) so that r′ = ∥y∥ = r + κ < 1 and the segment remains
inside Dn. The hyperbolic distance between two points on the same radial geodesic equals the radial
arclength:

dg(x, y) =

∫ r′

r

2

1− ρ2
dρ = ln

(
1 + r′

1− r′

)
− ln

(
1 + r

1− r

)
.

Substitute r′ = r + κ and rearrange to get

dg(x, y) = ln

(
1− r

1− r − κ

)
+ ln

(
1 +

κ

1 + r

)
≥ ln

(
1− r

1− r − κ

)
.
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Finally, with δ = δ(x) = 1− r and κ < δ, the inequality − ln(1− t) ≥ t for t ∈ (0, 1) gives

ln

(
δ

δ − κ

)
= − ln

(
1− κ

δ

)
≥ κ

δ
.

Thus dg(x, y) ≥ κ/δ, completing the proof.

Remarks. (1) The stealth guarantee depends linearly on the shell width δ and on tanh(s/2); no
appeal to “exponential” growth of the conformal factor is needed (indeed λx grows rationally in
1−∥x∥2). (2) Part (iii) formalizes amplification without coupling the Euclidean budget κ to δ beyond
the natural feasibility condition κ < δ; the per-unit amplification dg/κ scales like 1/δ near the
boundary. (3) If a detector is Lipschitz in the hyperbolic metric (say, |D(y)−D(x)| ≤ Lg dg(x, y)),
then for the same trigger |D(τs(x))−D(x)| ≤ Lgs; i.e., hyperbolic-aware detectors do not enjoy
the vanishing bound, clarifying which regularity notion matters for stealth.

9 Appendix B: Detailed Proof of Theorem 2

Definition 5 (Radial Defense). A defenseM : Dn → Dn is radial if it preserves direction and moves
points inward along radial geodesics with displacement depending only on the hyperbolic radial
coordinate.
Assumption 6 (Recovery Success). The defense M successfully recovers an (α, β)-fraction of
triggered inputs.
Assumption 7 (Radial Sensitivity). The classifier fθ has radial sensitivity µg > 0 along radial
geodesics.
Lemma 8 (Radial-flow identity). For any x and s > 0, ρ(Φs(x)) = ρ(x)+ s

2 and dg
(
x,Φs(x)

)
= s.

Proof. Along a radial geodesic one has ds = 2
1−r2 dr, which integrates to 2 artanh(r(s)) −

2 artanh(r(0)) = s; hence ρ(Φs(x)) = ρ(x) + s/2 and the geodesic arclength equals s.

Lemma 9 (Radiality reduces to a scalar profile). IfM is radial in the sense of Definition 5, then for
any x with ρ(x) = ρ,

dg
(
M(x), x

)
= ∆(ρ) = 2

(
ρ−m(ρ)

)
,

which depends only on ρ and not on the direction of x.

Proof. By definitionM preserves direction and maps ρ to m(ρ) ≤ ρ along the same radial geodesic.
Hence dg(M(x), x) = 2|ρ−m(ρ)| = 2(ρ−m(ρ)) since m(ρ) ≤ ρ.

Proof of Theorem 2. Let X ∼ P and Z = Φs(X). By Lemma 8, ρ(Z) = ρ(X) + s
2 . By Assump-

tion 6 and Lemma 9,
P
[
∆
(
ρ(X) + s

2

)
≥ αs

]
≥ β. (18)

Since ∆ is L∆-Lipschitz in ρ,
∆
(
ρ(X)

)
≥ ∆

(
ρ(X) + s

2

)
− L∆ · s2 .

Therefore on the event in (18) we have ∆(ρ(X)) ≥ αs− L∆

2 s = αeffs. This implies

P
[
dg
(
M(X), X

)
= ∆(ρ(X)) ≥ αeffs

]
≥ β, (19)

which is the probability lower bound. Taking expectations and using nonnegativity gives:
E
[
dg(M(X), X)

]
≥ E

[
αeffs · 1{∆(ρ(X)) ≥ αeffs}

]
≥ β αeffs. (20)

Next, by Assumption 7 (applied with y =M(X)), for each outcome
∥fθ(M(X))− fθ(X)∥ ≥ µg dg

(
M(X), X

)
.

Taking expectations yields:
E[∥fθ(M(X))− fθ(X)∥] ≥ µg β αeffs. (21)

Finally, since at least a β-fraction of the mass satisfies ∥fθ(M(X)) − fθ(X)∥ ≥ µgαeffs and the
integrand is nonnegative elsewhere,

E
[
∥fθ(M(X))− fθ(X)∥2

]
≥ β (µgαeffs)

2, (22)
which is the second moment bound.
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