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ABSTRACT

Diffusion models have quickly become the state-of-the-art for numerous gener-
ation tasks across many different applications. Encoding samples from the data
distribution back into the model’s underlying prior distribution, often called the in-
version of diffusion models, is an important task that arises from many downstream
applications. Prior approaches for solving this task, however, are often simple
heuristic solvers that come with several drawbacks in practice. In this work, we
propose a new family of solvers for diffusion models by exploiting the connection
between this task and the broader study of algebraically reversible solvers for
differential equations. In particular, we construct a family of reversible solvers
using an application of Lawson methods to construct exponential Runge-Kutta
methods for the diffusion models; we call this family of reversible exponential
solvers Rex. In addition to a rigorous theoretical analysis of the proposed solvers,
we also demonstrate the utility of the methods through a variety of empirical
illustrations.

1 INTRODUCTION

Diffusion models have quickly become the state-of-the-art in generation tasks across many varied
modalities from images (Rombach et al., 2022) and video (Blattmann et al., 2023) to protein gen-
eration (Skreta et al., 2025b) and biometrics (Blasingame & Liu, 2024d). The sampling process of
diffusion models is done through numerically solving an Itô stochastic differential equation (SDE)
or related ordinary differential equation (ODE) which describes the evolution of a sample drawn
for some prior noise distribution to the data distribution. Inversion of the sampling procedure, i.e.,
constructing a bijective map from the data distribution back to the prior distribution, is invaluable for
many downstream applications.

While the true (stochastic) flow maps of diffusion models do provide such a bijection, in practice we
need to solve such models numerically, thereby incurring truncation errors breaking the bijection.
Thus to obtain the exact inversion of a diffusion model we are looking for a scheme which is
algebraically reversible. I.e., we would like a numerical scheme which enables us to move between
the data and prior distribution without any reconstruction errors. Recently, several works have
explored solving this problem for the probability flow ODE, namely, EDICT (Wallace et al., 2023),
BDIA (Zhang et al., 2024), and BELM (Wang et al., 2024).

However, designing such inversion methods is very tricky, as such solvers are plagued by issues of
low order of convergence, lack of stability, amongst other undesirable properties; moreover, it is
even more difficult to construct such schemes for SDEs. To the best of our knowledge there does not
currently exist a scheme for exact inversion for diffusion SDEs without storing the entire trajectory of
the Brownian motion in memory à la Wu & la Torre (2023) which is trivially reversible, but not the
type of reversibility we are interested with.

To address these issues we propose Rex, a family of reversible solvers for diffusion models which can

1. Work for both the probability flow ODE and reverse-time SDE with both data and noise
prediction parameterizations,

2. Obtain an arbitrarily high order of convergence (in the ODE case), and

3. Exactly invert a diffusion SDE without storing the entire realization Brownian motion in
memory.
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2 PRELIMINARIES

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021a;b) have quickly become one of the most popular paradigms for constructing generative models.
Consider the following Itô stochastic differential equation (SDE) defined on time interval [0, T ]:

dXt = f(t)Xt dt+ g(t) dWt, (1)
where f, g ∈ C∞([0, T ])1 form the drift and diffusion coefficients of the SDE and where {Wt}t∈[0,T ]

is the standard Brownian motion on the time interval. The coefficients f, g are chosen such that the
SDE maps clean samples from the data distribution X0 ∼ q(X) at time 0 to an isotropic Gaussian
at time T . More specifically, for a noise schedule αt, σt ∈ C∞([0, T ];R≥0) consisting of a strictly
monotonically decreasing function αt and strictly monotonically increasing function σt, the drift and
diffusion coefficients are found to be

f(t) =
α̇t

αt
, g2(t) = σ̇2

t − 2
α̇t

αt
σ2
t , (2)

where with abuse of notation σ̇2
t denotes the time derivative of the function σ2

t (Lu et al., 2022b;
Kingma et al., 2021)—this ensures that Xt ∼ N (αtX0, σ

2
t I). However, we wish to map from noise

back to data, as such we employ the result of Anderson (1982) to construct the reverse-time diffusion
SDE of Equation (1), which is found to be

dXt = [f(t)Xt − g2(t)∇x log pt(Xt)] dt+ g(t) dW t, (3)

where dt is a negative timestep, {W t}t∈[0,T ] is the standard Brownian motion in reverse-time,
and pt(x) := p(t,x) is the marginal density function. Then, if we can learn the score function
(t,x) 7→ ∇x log pt(x) (Song et al., 2021b)—or some other equivalent reparameterization, e.g., noise
prediction (Song et al., 2021a; Ho et al., 2020) or data prediction (Kingma et al., 2021)—we can then
draw samples from our data distribution q(X) by first sampling some XT ∼ p(X) from the Gaussian
prior and then employing a numerical SDE solver, e.g., Euler-Maruyama, to solve Equation (3) in
reverse-time. Notably, through careful massaging of the Fokker-Planck-Kolomogorov equation for
the marginal density, one can construct an ODE which is equivalent in distribution to Equation (3)
(Song et al., 2021b; Maoutsa et al., 2020), yielding the highly popular probability flow ODE

dxt

dt
= f(t)xt −

g2(t)

2
∇x log pt(xt). (4)

Reversible solvers for neural differential equations. Recently, researchers studying neural
differential equations have begun to propose several algebraically reversible solvers as an alternative
to both traditional discretize-then-optimize and optimize-then-discretize (the continuous adjoint
equations) (Kidger, 2022, Chapters 5.1 & 5.2) which are used to perform backpropagation through
the neural differential quation. Consider some prototypical neural ODE of the form ẋt = uθ(t,xt)
with vector field uθ ∈ Cr(R×Rd;Rd) which satisfies the usual regularity conditions. Then consider
a single-step numerical scheme of the form xn+1 = xn +Φh(tn,xn,uθ). Every numerical scheme
Φ is reversible in the sense that we can rewrite the forward step as an implicit scheme of the form
xn = xn+1 −Φh(tn,xn,uθ); however, this requires fixed point iteration2 and is both approximate
and computationally expensive. This type of reversibility is known as analytic reversibility within
the neural differential equations community (Kidger, 2022, Section 5.3.2.1). What we would prefer,
however, is a form of reversibility that can be expressed in closed-form.

Beyond symplectic solvers (Vogelaere, 1956) which are trivially reversible3, several algebraically
reversible solvers have been proposed in light of the large popularity of neural ODEs. Namely, the
following methods have been proposed: the asynchronous leapfrog method (Mutze, 2013; Zhuang
et al., 2021), reversible Heun method (Kidger et al., 2021), and McCallum-Foster method (McCallum
& Foster, 2024). The last of these is of particular interest to us, as it is the only algebraically
reversible ODE solver to have a non-trivially region of stability and arbitrarily high convergence
order. As McCallum & Foster (2024) simply refer to their method as reversible X where X is the
underlying single-step solver, we opt to refer to their method as the McCallum-Foster method which
we summarize below in Definition 2.1.

1We let Cr(X;Y ) denote the class of r-th differentiable functions from X to Y . If Y is omitted then Y = R.
2If the step size h is small enough.
3Due to symplectic integrators being developed for solving Hamiltonian systems, they are intrinsically

reversible by construction (Greydanus et al., 2019).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

xn + + xn+1

Ψh Ψ−h

x̂n x̂n+1−

× ζ
wn ×wn+1

× 1
wn ×wn+1

× 1−ζ
wn

(a) Forward step

xn − − xn+1

Ψh Ψ−h

x̂n x̂n+1+

×wn

ζ
× 1

wn+1

×wn
× 1

wn+1

×(1− ζ)

(b) Backward step

Figure 1: The computation graph of the Rex solver. Here Ψh denotes an exponentially weighted
Runge-Kutta scheme (cf . Section 3.1) or exponential stochastic Runge-Kutta scheme (cf . Section 3.2),
ζ ∈ (0, 1) is a coupling parameter, and {wn}Nn=1 denotes the set of weighting variables derived
from the exponential schemes. The particular values of wn are discussed in Proposition 3.3. The
visualization of the computation graph is inspired by McCallum & Foster (2024, Figure 2).

Definition 2.1 (McCallum-Foster method). Initialize x̂0 = x0 and let ζ ∈ (0, 1]. Consider a step
size of h, then a forward step of the McCallum-Foster method is defined as

xn+1 = ζxn + (1− ζ)x̂n +Φh(tn, x̂n),

x̂n+1 = x̂n −Φ−h(tn+1,xn+1),
(5)

and the backward step is given as

x̂n = x̂n+1 +Φ−h(tn+1,xn+1),

xn = ζ−1xn+1 + (1− ζ−1)x̂n − ζ−1Φh(tn, x̂n).
(6)

3 REX

In this section we introduce the Rex family of reversible solvers for diffusion models. Whilst one
could straightforwardly apply a pre-existing reversible solver like asynchronous leapfrog, reversible
Heun, or the McCallum-Foster method directly to the probability flow ODE in Equation (4), there
are several reasons to consider an alternative approach. Stepping back from reversible solvers for a
moment, we consider the broader literature of constructing numerical schemes for diffusion models.
It is well known that we can exploit the structure of the drift and diffusion coefficients, i.e., f(t)
and g(t), to remove the discretization error from the linear term and transform the stiff ODE into a
non-stiff form (Lu et al., 2022b; Zhang & Chen, 2023); a similar idea also holds for the reverse-time-
diffusion SDE (see Lu et al., 2022a; Gonzalez et al., 2024; Blasingame & Liu, 2024a). Moreover,
recall that the definitions of the drift and diffusion coefficients contain the time derivatives of the
noise schedule (αt, σt), this structure enables us to greatly simplify the ODE/SDE and express a
number of terms in closed-form again reducing approximation errors.

In Figure 1 we present an overview of the Rex computational graph. N.B., the graph for both the
ODE and SDE formulations are identical with the only difference being the weighting terms {wn}
and the underlying numerical scheme Ψh. The rest of this section is organized as follows: first we
discuss applying the exponential integrators to the probability flow ODEs (see Section 3.1), then the
reverse-time SDEs (see Section 3.2), and lastly we present the general Rex scheme (see Section 3.3).

3.1 PROBABILITY-FLOW ODE

Before constructing Rex we must first discuss the construction of Ψh from Φh and how to derive the
reparameterized ODE, i.e., step 1 in Figure 2. In this section we review how to reparameterize the
ODE in Equation (4) into this more convenient form.

Generalized nomenclature for data and noise prediction models. As alluded to earlier, there exist
two popular reparameterizations of the score function which are used widely in practice, namely the
noise prediction (Ho et al., 2020) and data prediction (Kingma et al., 2021) formulations. Following
the conventions of Lipman et al. (2024) we write noise prediction model as xT |t(x) = E[XT |Xt =

3
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dxt

dt = β̇T

βt
xt +

σtα̇t−σ̇tαt

βt
fθ(t,xt)

dyσ

dς = βTfθ

(
ς, βς

βT
yς

)

xn+1 = wn+1

wn
xn +Ψh(tn,xn) yn+1 = yn +Φh(tn,yn)

Exponential integrators &
change-of-variables

Lawson method

Figure 2: Overview of the construction of Ψ for the probability flow ODE from an underlying
Runge-Kutta scheme Φ for the reparameterized ODE in Equation (8). The parameters βt and ςt are
chosen to suit the data or noise prediction parameterizations (cf . Section 3.1). The graph holds for
the SDE case mutatis mutandis.

x] and write data prediction model as x0|t(x) = E[X0|Xt = x]. In this work we consider both
a trained noise and data prediction model which we will denote generally by the neural network
fθ(t,x). Additionally, we place the usual regularity constraints (cf . Lu et al., 2022b, Appendix B.1)
on the model to ensure the existence and uniqueness of the ODE/SDE solutions. It is well known
(Blasingame & Liu, 2025, Equation (19)) that the ODE in Equation (4) can be rewritten as

dxt

dt
=

β̇t

βt
xt +

σtα̇t − σ̇tαt

βt
fθ(t,xt), (7)

where βt = −αt for noise prediction with and βt = σt for target prediction. This choice of β and fθ

thus depends on the particulars of the noise or data reparameterization.
Remark 3.1. Without loss of generality any of the results for the probability flow ODE apply to any
arbitrary flow model which models an affine probability path (Lipman et al., 2024) with the correct
conversions to the flow matching conventions.4

It is well observed that the structure of the ODE in Equation (7) can be greatly simplified via
exponential integrators (Lu et al., 2022b; Zhang & Chen, 2023; Blasingame & Liu, 2024a). We
make use of this insight to rewrite the ODE in a form which eliminates the discretization error in the
f(t)xt linear term along with a time reparameterization which will simplify the construction of the
reversible solver. To achieve the time reparameterization we introduce a new variable ςt defined as
the signal-to-noise ratio (SNR) αt/σt for the data prediction formulation and defined as the inverse
SNR σt/αt for the noise prediction formulation. Using this time change we find Proposition 3.1, in
Section C.1.1 we provide the full derivation of this result.
Proposition 3.1 (Reparameterization of the probability flow ODE). The probability flow ODE in
Equation (7) can be rewritten in ςt as

dyς

dς
= βTfθ

(
ς,

βς

βς
yς

)
, (8)

where yt =
βT

βt
xt.

The remaining step to constructing Rex is to perform a similar process but for an underlying explicit
Runge-Kutta scheme by making use of Lawson methods (a particular class of exponential integrators)
(Lawson, 1967; Hochbruck et al., 2020). However, since both the ODE and SDE version of Rex share
the same computational graph, we will delay this presentation until we have discussed the SDE case.

3.2 REVERSE-TIME DIFFUSION SDE

Unlike with the ODE scenario the forms of the data and noise prediction formulations differ more
significantly. As such we opt to focus only on the data prediction formulation which slightly less
complicated and leave the details on the noise prediction formulation to Appendix C.2. It is well
known (Lu et al., 2022a) that the reverse-time diffusion SDE in Equation (3) can be rewritten in terms
of the data prediction model as

dXt =

[(
f(t) +

g2(t)

σ2
t

)
Xt −

αtg
2(t)

σ2
t

xθ
0|t(Xt)

]
dt+ g(t) dW t. (9)

4I.e., sampling in forward-time such that X1 ∼ q(X) and X0 ∼ p(X).
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Remarkably, following a similar derivation to the one above for the probability flow ODE yields a
time-changed SDE with a very similar form to the one above, sans the Brownian motion term and
different weighting terms. We present this result in Proposition 3.2 with the full proof in Section C.2.2.
Proposition 3.2 (Time reparameterization of the reverse-time diffusion SDE). The reverse-time SDE
in Equation (9) can be rewritten in terms of the data prediction model as

dYϱ =
σT

γT
xθ
0|ϱ

(
γTσϱ

σT γϱ
Yϱ

)
dϱ+

σT

γT
dWϱ, (10)

where Yt =
σ2
Tαt

σ2
tαT

Xt and ϱt :=
α2

t

σ2
t

.

Stochastic Runge-Kutta. Before constructing a reversible solver for the reverse-time SDE in
Equation (10), we will zoom out to contextualize the discussion within the study of neural SDEs
and to introduce stochastic Runge-Kutta (SRK) methods. Constructing a numerical scheme for
SDEs is greatly more complicated than ODEs due to the complexities of stochastic processes
and in particular stochastic integrals. Unlike numerical schemes for ODEs which are usually
built upon truncated Taylor expansions, SDEs require constructing truncated Itô or Stratonovich-
Taylor expansions (Kloeden & Platen, 1991) which results in numerous iterated stochastic integrals.
Approximating these iterated integrals, or equivalently Lévy areas, of Brownian motion is quite
difficult (Clark & Cameron, 2005; Mrongowius & Rößler, 2022); however, SDEs with certain
constraints on the diffusion term may use specialized solvers to further achieve a strong order of
convergence with simple approximations of these iterated stochastic integrals. As such there are
several ways to express SRK methods depending on the choice of approximating these iterated
integrals. We choose to follow the work of Foster et al. (2024) which makes usage of the space-time
Lévy area in constructing such methods. The space-time Lévy area (see Foster et al., 2020, Definition
3.5; cf . Rößler, 2010) is defined below in Definition 3.2.
Definition 3.2 (Space-time Lévy area). The rescaled space-time Lévy area of a Brownian motion
{Wt} on the interval [s, t] corresponds to the signed area of the associated bridge process

Hs,t :=
1

h

∫ t

s

(
Ws,u − u− s

h
Ws,t

)
du, (11)

where h := t− s and Ws,u = Wu −Ws for u ∈ [s, t].

In particular, for additive-noise SDEs which our SDE in Equation (10) is, the Itô and Stratonovich
integrals coincide and the numerical scheme is significantly simpler, for more details we refer to
Appendix B.

3.3 THE REX SOLVER

Equipped with both Proposition 3.1 and Proposition 3.2 we are now ready to construct Rex. The key
idea is to construct a reversible scheme from an explicit (S)RK scheme (we provide more detail in
Appendix B) for the reparameterized differential equation using the McCallum-Foster method and
then apply Lawson methods to bring the scheme back to the original state variable, cf . Figure 2.

We present the full scheme for the Rex solver below in Proposition 3.3 with the full derivation found
in Appendix C.
Proposition 3.3 (Rex). Without loss of generality let Φ denote an explicit SRK scheme for the SDE
in Equation (10) with extended Butcher tableau aij , bi, ci, a

W
i , aHi , bW , bH . Fix an ω ∈ Ω and let

W be the Brownian motion over time variable ς . Then the reversible solver constructed from Φ in
terms of the underlying state variable Xt is given by the forward step

Xn+1 =
wn+1

wn

(
ζXn + (1− ζ)X̂n

)
+ wn+1Ψh(ςn, X̂n,Wn(ω)),

X̂n+1 =
wn+1

wn
X̂n − wn+1Ψ−h(ςn+1,Xn+1,Wn(ω)),

(12)

and backward step

X̂n =
wn

wn+1
X̂n+1 + wnΨ−h(ςn+1,Xn+1,Wn(ω)),

Xn =
wn

wn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − wnζ

−1Ψh(ςn, X̂n,Wn(ω)),
(13)

5
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with step size h := ςn+1 − ςn and where Ψ denotes the following scheme

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Ψh(ςn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω),

(14)

where fθ denotes the data prediction model, wn = σn

γn
and ςt = ϱt. The ODE case is recovered

for an explicit RK scheme Φ for the ODE in Equation (70) with wn = σn and ςt = γt For noise
prediction models we have fθ denoting the noise prediction model with wn = αn and ςt =

σn

αn
.

We still have yet to address how to construct an algebraically reversible scheme for a stochastic
process, but merely stated it above in Proposition 3.3, we will now, however, justify our design
decisions above. The key idea is to use the same realization of the Brownian motion in both the
forward pass or backward pass. This has been explored in prior works studying the continuous
adjoint equations for neural SDEs (Li et al., 2020; Kidger et al., 2021) and essentially amounts to
fixing the realization of the Brownian motion along with clever strategies for reconstructing the same
realization. Formally, let (Ω,F ,P) be the probability space and let Wt : Ω → Rdw be the standard
Brownian motion on [0, T ]. Then for each reversible solve we fix an ω ∈ Ω. This can be justified if
we view the SDE from a roughs path perspective, i.e., the Itô-Lyons map (Lyons, 1998) provides a
deterministic continuous map from the initial condition of the SDE and realization of the Brownian
motion to the solution trajectory, see Appendix F for a more detailed explanation.

Numerical simulation of the Brownian motion. The naïve way to fix the realization of the
Brownian motion for both the forward pass is to simply store the entire realization of the Brownian
motion in system memory, i.e., record {Wn(ω)}Nn=1 à la Wu & la Torre (2023).5 However, recent
work by Li et al. (2020); Kidger et al. (2021); Jelinčič et al. (2024) have proposed much more elegant
solutions which enable one to recalculate any realization of the Brownian motion from a single seed
given access to a splittable pseudo-random number generator (PRNG) (Salmon et al., 2011). N.B.,
we discuss the more nuanced technical details of such approaches in Appendix G, for now it suffices
to say we adopt a more elegant solution to reconstructing the Brownian motion in the backward step.

4 THEORETICAL RESULTS

4.1 CONVERGENCE ORDER AND STABILITY

A nice property of the McCallum-Foster is that the the convergence order of the underlying explicit
RK scheme Φ is inherited by the resulting reversible scheme McCallum & Foster (2024, Theorem
2.1). However, does this property hold true for Rex? Fortunately, it does indeed hold true which we
show in Theorem 4.1 with the proof provided in Appendix D.2.
Theorem 4.1 (Rex is a k-th order solver). Let Φ be a k-th order explicit Runge-Kutta scheme for
the reparameterized probability flow ODE in Equation (70) with variance preserving noise schedule
(αt, σt). Then Rex constructed from Φ is a k-th order solver, i.e., given the reversible solution
{xn, x̂n}Nn=1 and true solution xtn we have

∥xn − xtn∥ ≤ Chk, (15)

for constants C, hmax > 0 and for step sizes h ∈ [0, hmax].

We can show a similar result for the underlying scheme Ψ constructed from an explicit SRK Φ with
the full proof provided in Appendix D.3.
Theorem 4.2 (Convergence order for stochastic Ψ). Let Φ be a SRK scheme with strong order of
convergence ξ > 0 for the reparameterized reverse-time diffusion SDE in Equation (10) with variance
preserving noise schedule (αt, σt) and αT > 0. Then Ψ constructed from Φ has strong order of
convergence ξ.

5This clearly prohibits the use of adaptive step-size solvers.
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(a) DDIM (b) EDICT (c) BDIA (d) O-BELM (e) Rex (RK4)

Figure 3: Qualitative comparison of unconditional sampling with different reversible solvers with a
pre-trained DDPM model on CelebA-HQ (256× 256) with the non-reversible DDIM as a baseline.
Each method used 10 discretization steps.

Stability. One drawback of reversible solvers is their rather unimpressive stability, in fact until the
work of McCallum & Foster (2024) there were no reversible methods which had a non-trivial region
of stability. We discuss this more in detail Appendix A.2 along with illustrating the poor stability
characteristics of BDIA and O-BELM (see Corollaries A.4.1 and A.3.2). However, since Rex is built
upon the McCallum-Foster method the ODE solver has some stability.6

4.2 RELATION TO EXISTING SOLVERS

Next we show that several variants of Rex are actually the reversible versions of several well-known
solvers in the literature for diffusion models, e.g., the DPM-Solvers (Lu et al., 2022b). We state this
result below in Theorem 4.3 with the full details and proofs in Appendix E.

Theorem 4.3 (Rex subsumes previous solvers). The underlying scheme used Ψ in Rex given by

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Xn+1 =
wn+1

wn
Xn + wn+1

h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω)

 ,

(16)
subsumes the following solvers for diffusion models

1. DDIM (Song et al., 2021a),

2. DPM-Solver-1, DPM-Solver-2, DPM-Solver-12 (Lu et al., 2022b),

3. DPM-Solver++1, DPM-Solver++(2S), SDE-DPM-Solver-1, SDE-DPM-Solver++1 (Lu
et al., 2022a),

4. SEEDS-1 (Gonzalez et al., 2024), and

5. gDDIM (Zhang et al., 2023).

Corollary 4.3.1 (Rex is reversible version of previous solvers). Rex is the reversible revision of the
well-known solvers for diffusion models in Theorem 4.3.

5 EMPIRICAL RESULTS

5.1 IMAGE GENERATION

Unconditional image generation. Following prior works (Wang et al., 2024; Wallace et al., 2023)
we begin by exploring the ability of Rex to function as a traditionaly solver for diffusion models.
To evaluate this we drew 10,240 samples using a DDPM model (Ho et al., 2020) pretrained on the

6I.e., in the sense of the linear test equation, see Appendix A.2 for more details.
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Table 1: Quantitative comparison of different reversible solvers for unconditional image generation
with a pre-trained DDPM model on CelebA-HQ (256 × 256) with the non-reversible DDIM as a
baseline. † denotes γ = 0.5 and ‡ denotes γ = 1.0 for BDIA hyperparameter.

Steps Solver FD (↓) FD∞ (↓) Precision (↑) Recall (↑) Density (↑) Coverage (↑)

10

EDICT 1042.89 1034.82 0.49 0.10 0.19 0.11
BDIA† 900.95 894.23 0.61 0.10 0.28 0.14
BDIA‡ 1284.48 1274.46 0.41 0.00 0.14 0.05
O-BELM 605.52 596.47 0.78 0.18 0.56 0.34
Rex (RK4) 633.90 617.11 0.81 0.22 0.64 0.36
Rex (Midpoint) 607.20 597.04 0.78 0.21 0.60 0.37
Rex (Euler-Maruyama) 610.16 598.56 0.79 0.10 0.61 0.37

DDIM 727.75 716.41 0.75 0.14 0.49 0.27

20

EDICT 752.68 743.89 0.68 0.15 0.36 0.21
BDIA† 611.47 601.37 0.76 0.19 0.50 0.30
BDIA‡ 982.30 968.62 0.54 0.10 0.22 0.10
O-BELM 489.94 477.82 0.82 0.23 0.71 0.43
Rex (RK4) 547.24 533.30 0.82 0.27 0.71 0.43
Rex (Midpoint) 539.96 527.85 0.81 0.26 0.66 0.41
Rex (Euler-Maruyama) 460.42 447.01 0.86 0.21 0.91 0.51

DDIM 570.11 555.26 0.79 0.20 0.62 0.38

50

EDICT 551.13 534.73 0.78 0.24 0.60 0.37
BDIA† 500.79 489.24 0.82 0.27 0.70 0.44
BDIA‡ 798.47 790.17 0.71 0.12 0.39 0.18
O-BELM 476.29 463.07 0.84 0.29 0.77 0.45
Rex (RK4) 511.17 498.94 0.80 0.27 0.69 0.44
Rex (Midpoint) 505.67 494.94 0.81 0.29 0.70 0.44
Rex (Euler-Maruyama) 391.93 381.01 0.87 0.28 0.98 0.56

DDIM 490.88 479.87 0.80 0.26 0.67 0.45

CelebA-HQ (Karras et al., 2018) dataset with the various solvers each using the same fixed seed.
Following Stein et al. (2023), we report the Fréchet distance (FD) with DINOv2 (Oquab et al., 2023)
feature extractor along with FD∞ (Chong & Forsyth, 2020). We also report the precision and recall
metrics (Kynkäänniemi et al., 2019); along with density and coverage metrics (Naeem et al., 2020)
which serve as a proxy for fidelity and sample diversity respectively. We provide more details on
these metrics in Section I.1.2. In Table 1 we compare pre-existing methods for exact inversion with
diffusion models against Rex, along with including the non-reversible DDIM solver as a baseline. We
observe that the Rex family of reversible solvers performs exceedingly well, surpassing the baseline
non-reversible DDIM scheme, handily beating EDICT and BDIA, and often outperforming O-BELM.
We observe that our reversible SDE scheme consistently performs quite well outside of the very few
step-size regime (a well known limitation of SDE schemes). N.B., that unlike the results reported
for the other reversible solvers we did not search for the optimal hyperparameters for Rex for the
sampling task. In Figure 3 we present a visual qualitative comparison of the different solvers using
the same initial noise. We provide additional experimental details in Appendix I.1.

Table 2: Quantitative comparison of different reversible solvers in terms of average CLIP score,
Image Reward, and PickScore. for conditional text-to-image generation with Stable Diffusion v1.5
(512× 512) with the non-reversible DDIM as a baseline.

CLIP score (↑) Image Reward (↑) PickScore (↑)

Solver / Steps 10 20 50 10 20 50 10 20 50

EDICT 27.97 31.04 31.17 -1.219 -0.134 -0.055 19.52 20.84 21.05
BDIA γ = 0.96 31.11 31.52 31.54 -0.111 0.067 0.087 20.52 21.01 21.19
BDIA γ = 0.5 31.57 31.48 31.48 -0.006 0.055 0.066 20.98 21.16 21.21
O-BELM 31.47 31.43 31.51 0.051 0.105 0.160 20.88 21.00 21.16
Rex (Midpoint) 31.62 31.64 31.60 0.119 0.179 0.198 21.28 21.38 21.41
Rex (RK4) 31.69 31.60 31.57 0.156 0.187 0.195 21.35 21.40 21.41
Rex (Euler-Maruyama) 31.68 31.56 31.33 0.222 0.239 0.264 21.50 21.66 21.70
Rex (ShARK) 31.55 31.56 31.39 0.239 0.249 0.263 21.51 21.66 21.72

DDIM 31.78 31.76 31.24 0.033 0.136 0.247 21.06 21.29 21.04
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(a) DDIM (b) EDICT (c) BDIA (d) O-BELM (e) Rex (RK4)

Figure 4: Qualitative comparison of text-to-image conditional sampling with different reversible
solvers with Stable Diffusion v1.5 (512 × 512) and 10 discretization steps. Prompts from top to
bottom are: “White plate with fried fish and lemons sitting on top of it.”, “A lady enjoying a meal of
some sort.”, and “A young boy riding skis with ski poles.”.

Conditional image generation. To further evaluate Rex we drew text-conditioned samples using
Stable Diffusion v1.5 (Rombach et al., 2022) with a set of 1000 randomly selected captions from
COCO (Lin et al., 2014) with the various solvers each using the same fixed seed. We report
performance in terms of the CLIP Score (Hessel et al., 2021); in terms of the state-of-the-art text-to-
image scoring function PickScore (Kirstain et al., 2023); and in terms of the state-of-the-art Image
Reward metric (Xu et al., 2023) which assigns a score that reflects human preferences, namely,
aesthetic quality and prompt adherence. The later metric was recently become a popular metric
for evaluating the performance of diffusion models (Skreta et al., 2025a). In Table 2 we compare
pre-existing methods for exact inversion with diffusion models against Rex, along with including the
non-reversible DDIM solver as a baseline. We observe that Rex does very well compared to other
reversible solvers, and in particular the stochastic variants of Rex perform extremely well. In Figure 4
we present a visual qualitative comparison of the different solvers using the same initial noise. We
provide additional experimental details in Appendix I.2.

5.2 IMAGE INTERPOLATION

We explore interpolating between the inversions of two images, a difficult problem as the inverted
space is often non-Gaussian (Blasingame & Liu, 2024b). We illustrate an example of this in Figure 5
exploring interpolation with an unconditional DDPM model. We notice the that stochastic Rex has
much better interpolations properties than both ODE inversions corroborating with Nie et al. (2024).
Both ODE variants seem to fail quite noticeably, unable to smoothly interpolate between the two
samples. N.B., we noticed that the inverted samples with ShARK had variance much closer to one,
whereas the other inverted samples had much larger variance, likely contributing to the distortions,
we discuss this more in Appendix K.
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Figure 5: Unconditional interpolation between two real images from FRLL (DeBruine & Jones, 2017)
with a DDPM model trained on CelebA-HQ. Top row is BELM, middle is Rex (Euler), and bottom is
Rex (ShARK). 50 steps used for each method.

6 CONCLUSION

We propose Rex a family of algebraically reversible solvers for diffusion models which can obtain
arbitrarily a high order of convergence (for the ODE case). Moreover, we propose (to the best of
our knowledge) the first method for exact inversion for diffusion SDEs without storing the entire
trajectory of the Brownian motion. Our empirical illustrations show that not only does Rex have nice
theoretical properties but it also functions as a capable numerical scheme for sampling with diffusion
models. The proposed method can be incorporated into preexisting applications wherein preserving
the bijections of flow maps is important, leading to many exciting possible applications.

ETHICS STATEMENT

We recognize that Rex as numerical scheme for sampling with diffusion models could potentially be
misused used for malicious applications particularly when used in editing pipelines.

REPRODUCIBILITY STATEMENT

To aid with reproducibility we include detailed derivations of Rex in Appendix C along with additional
proofs in Appendix D. We draw connections between Rex and other solver for diffusion models in
Appendix E. We include through implementation details in Appendix H and experimental details
in Appendix I; in particular, we mention all code repositories and datasets we used in Appendix I.5.
Moreover, we provide code illustrations of the core components of Rex in Appendix J.
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A RELATED WORKS

In this section we provide a detailed comparison with relevant related works. We begin in Ap-
pendix A.1 by providing an overview of algebraically reversible solvers. Then in Appendix A.2
we introduce the stability of an ODE solver, a helpful tool in comparing reversible solvers. Using
this tool along with examining the convergence order we compare a variety of reversible solvers for
diffusion models in Appendix A.3. Lastly, in Appendix A.4 we explore related work on constructing
SDE solvers for diffusion models.

A.1 REVERSIBLE SOLVERS

The earliest work on reversible solvers can be traced back to the pioneering work on symplectic
integrators by Vogelaere (1956); Ruth (1983); Feng (1984). Due to symplectic integrators being
developed for solving Hamiltonian systems they are intrinsically reversible by construction (Grey-
danus et al., 2019). More recently, Matsubara et al. (2021) explored the use of symplectic solvers
for solving the continuous adjoint equations. Likewise, work by Pan et al. (2023) extended this idea,
making use of symplectic solvers for solving the continous adjoint equations for diffusion models.
However, in this section we will focus on non-symplectic reversible solvers.

Throughout this section we consider solving the following d-dimensional IVP:

x(0) = x0,
dx

dt
(t) = f(t,x(t)), (17)

over the time interval [0, T ] with numerical solution {xn}Nn=0.

A.1.1 ASYNCHRONOUS LEAPFROG METHOD

To the best of our knowledge the asynchronous leapfrog definition was the first algebraically reversible
non-symplectic solver, initially proposed by Mutze (2013) and popularized in a modern deep learning
context by Zhuang et al. (2021). The asynchronous leapfrog method is a modification of the leapfrog
method which converts it from a multi-step to single-step method. The method keeps track of a
second state, {vn} which is supposed to be sufficiently close to the value of the vector field. We
define the method below in Definition A.1.

Definition A.1 (Asynchronous leapfrog method). Initialize v0 = f(0,x0). Consider a step size of h
and let t̂n = tn + h/2, then a forward step of the asynchronous leapfrog method is defined as

x̂n = xn +
1

2
vnh,

vn+1 = 2f(t̂n, x̂n)− vn,

xn+1 = xn + f(t̂n, x̂n)h,

(18)

and the backward step is given as

x̂n = xn+1 −
1

2
vn+1h,

xn = xn+1 − f(t̂n, x̂n)h,

vn = 2f(t̂n, x̂n)− vn+1.

(19)

Remark A.2. The method is a second-order solver (Zhuang et al., 2021, Theorem 3.1).

A.1.2 REVERSIBLE HEUN METHOD

Later work by Kidger et al. (2021) proposed the reversible Heun method, a general purpose reversible
solver which is symmetric and is an algebraically reversible SDE solver in addition to being a
reversible ODE solver. This solver keeps track of an auxiliary state variable x̂n and an extra copy
of previous evaluations of the drift and diffusion coefficients. We present this method below in
Definition A.3.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Definition A.3 (Reversible Heun method for ODEs). Initialize x̂0 = x0. Consider a step size of h,
then a forward step of the reversible Heun method is defined as

x̂n+1 = 2xn − x̂n + f(tn, x̂n)h,

xn+1 = xn +
1

2
(f(tn+1, x̂n+1) + f(tn, x̂n))h.

(20)

and the backward step is given as

x̂n = 2xn+1 − x̂n+1 − f(tn+1, x̂n+1)h,

xn = xn+1 −
1

2
(f(tn+1, x̂n+1) + f(tn, x̂n))h.

(21)

Remark A.4. This method is a second-order solver (Kidger, 2022, Theorem 5.18).

Recall that simulating SDEs in reverse-time is much trickier than simulating ODEs in reverse-time.
This observation is even more true of algebraically reversible methods for SDEs. To the best of our
knowledge, the only general reversible solver for SDEs is the reversible Heun method. The main
idea of the SDE formulation of the reversible Heun method is to extend the Euler-Heun method7 like
how Heun’s method was extended to the reversible Heun solver for ODEs. We define the method in
Kidger et al. (2021, Algorithm 1) below in Definition A.5.
Definition A.5 (Reversible Heun method for SDEs). Initialize x̂0 = x0. Consider a step size of h
and let Wh := Wtn+1 −Wtn , then a forward step of the reversible Heun method is defined as

x̂n+1 = 2xn − x̂n + µ(tn, x̂n)h+ σ(tn, x̂n)Wh,

xn+1 = xn +
1

2
(µ(tn+1, x̂n+1) + µ(tn, x̂n))h

+
1

2
(σ(tn+1, x̂n+1) + σ(tn, x̂n))Wh.

(22)

and the backward step is given as

x̂n = 2xn+1 − x̂n+1 − µ(tn+1, x̂n+1)h− σ(tn, x̂n)Wh,

xn = xn+1 −
1

2
(µ(tn+1, x̂n+1) + µ(tn, x̂n))h

− 1

2
(σ(tn+1, x̂n+1) + σ(tn, x̂n))Wh.

(23)

Remark A.6. This method requires some tractable solution for recalculating the Brownian motion
from a splittable PRNG.

A.1.3 MCCALLUM-FOSTER METHOD

Recent work by McCallum & Foster (2024) created a general method for constructing n-th order
solvers from preexisting explicit single-step solvers while also addressing the stability issues that
earlier methods suffered from. As McCallum & Foster (2024) simply refer to their method as
reversible X where X is the underlying single-step solver we opt to refer to their method as the
McCallum-Foster method. We restate the definition below.
Definition 2.1 (McCallum-Foster method). Initialize x̂0 = x0 and let ζ ∈ (0, 1]. Consider a step
size of h, then a forward step of the McCallum-Foster method is defined as

xn+1 = ζxn + (1− ζ)x̂n +Φh(tn, x̂n),

x̂n+1 = x̂n −Φ−h(tn+1,xn+1),
(5)

and the backward step is given as

x̂n = x̂n+1 +Φ−h(tn+1,xn+1),

xn = ζ−1xn+1 + (1− ζ−1)x̂n − ζ−1Φh(tn, x̂n).
(6)

Remark A.7. N.B., the ζ and ζ−1 terms in the forward and backward steps determine the stability of
the system.

7This converges with strong order 1
2

in the Stratonovich sense (Rüemelin, 1982).
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Interestingly, McCallum & Foster (2024, Theorem 2.1) showed that this reversible method inherits
the convergence order of single-step solver Φh enabling the construction of an arbitrarily high-order
reversible solver. We restate this result below in Theorem A.1.
Theorem A.1 (Convergence order of the McCallum-Foster method). Consider the ODE in Equa-
tion (17) over [0, T ] with fixed time horizon T > 0. Let T = Nh where N > 0 is the number of
discretization steps and h > 0 is the step size. Let Φ be a k-th order ODE solver such that it satisfies
the Lipschitz condition

∥Φη(·,a)−Φη(·, b)∥ ≤ L|η|∥a− b∥, (24)
for all a, b ∈ Rd and η ∈ [−hmax, hmax] for some hmax > 0. Consider the reversible solution
{xn, x̂n}ninN admitted by Equation (5). Then there exists constants hmax > 0, C > 0, such that,
for h ∈ (0, hmax],

∥xn − x(tn)∥ ≤ Chk. (25)

A.2 A NOTE ON STABILITY

Historically, the stability properties of reversible solvers has been one of their weakest attributes
(Kidger, 2022), limiting their use in practical applications. We formally introduce the notation of
stability following Kidger (2022, Definition C.39), which we rewrite below in Definition A.8.
Definition A.8 (Region of stability). Fix some numerical differential equation solver and let
{xλ,h

n }n∈N be the solution admitted by the numerical scheme solving the linear (or Dahlquist)
test equation

x(0) = x0,
dx

dt
= λx(t), (26)

where λ ∈ C, h > 0 is the step size, and x0 ∈ Rd is a non-zero initial condition. The region of
stability is defined as

{hλ ∈ C : {xλ,h
n }n∈N is uniformly bounded over tn}. (27)

I.e., there exists a constant C depending on λ and h but independent of tn such that ∥xλ,h
n ∥ < C.

With the linear test equation Equation (26) the ODE converges asymptotically when ℜ(λ) ≤ 0,8
and thus we are interested in numerical schemes which are bounded when the underlying analytical
solution converges. Ideally, a numerical scheme would converge for all hλ with ℜ(λ) < 0.9 Thus,
the larger the region of stability the larger the step size we can take, wherein the numerical scheme
still converges.
Remark A.9. Regrettably, the reversible Heun, leapfrog, and asynchronous leapfrog methods have
poor stability properties. Specifically, the region of stability for all the methods is the complex
interval [−i, i], see Kidger (2022, Theorem 5.20) for reversible Heun, Shampine (2009, Section 2)
for leapfrog, and Zhuang et al. (2021, Appendix A.4) for asynchronous leapfrog.

In other words, all previous reversible solvers are nowhere linearly stable for any step size h.10 The
instability in both asynchronous leapfrog and reversible Heun can be attributed to a step of general
form 2A−B, i.e., we can write the source of instability as

2f(t̂n, x̂n)− vn, (asynchronous leapfrog)
2xn+1 − x̂n+1. (reversible Heun)

Thus the instability in these reversible schemes is caused by a decoupling between vn and f(tn,xn)
(asynchronous leapfrog); and xn and x̂n (reversible Heun). The strategy of McCallum & Foster
(2024) is to couple xn and x̂n together with the coupling parameter ζ. Using this strategy, they
showed that it was possible to construct a reversible solver with a non-trivial region of convergence.
Let Φh(tn,xn) = R(hλ)xn and let R(hλ) denote the transfer function used in analysis of Runge-
Kutta methods with step size h (see Stewart, 2022). We restate McCallum & Foster (2024, Theorem
2.3) below.

8The ODE converges to 0 when ℜ(λ) < 0.
9A region of stability which satisfies is known as a region of absolute stability.

10Linearly stability refers to stability for linear test equations with ℜ(λ) < 0.
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Theorem A.2 (Region of stability for the McCallum-Foster method). Let Φ be given by an explicit
Runge-Kutta solver. Then the reversible numerical solution {xn, x̂n}n∈N given by Equation (5) is
linearly stable iff

|Γ| < 1 + ζ, (28)

where
Γ = 1 + ζ − (1− ζ)R(−hλ)−R(−hλ)R(hλ). (29)

Remark A.10. The McCallum-Foster method when constructed from explicit Runge-Kutta methods
have a non-trivial region of stability. Note, however, that this region of stability is smaller than the
original region of stability from the original Runga-Kutta method.

A.3 EXACT INVERSION OF DIFFUSION MODELS

Independent of the work on reversible solvers for neural ODEs several researchers have developed
reversible methods for solving the probability flow ODE—often in the literature on diffusion models
this is called the exact inversion of diffusion models.

A.3.1 EDICT SAMPLER

The first work to explore this topic of exact inversion with diffusion models was that of Wallace et al.
(2023), who inspired by coupling layers in normalizing flows (Dinh et al., 2015) proposed a reversible
solver which they refer to as exact diffusion inversion via coupled transformations (EDICT). Like
all reversible solvers this method keeps track of an extra state, denoted by {yn}n∈N, with y0 = x0.
Letting an = αn+1

αn
and bn = σn+1 − αn+1

αn
σn, this numerical scheme can be described as

xinter
n = anxn + bnx

θ
T |tn(yn),

yinter
n = anyn + bnx

θ
T |tn(x

inter
n ),

xn+1 = ξxinter
n + (1− ξ)yinter

n

yn+1 = ξxinter
n + (1− ξ)xn+1,

(30)

where ξ ∈ (0, 1) is a mixing parameter.11 This method can be inverted to obtain a closed form
expression for backward step:

yinter
n =

yn+1 − (1− ξ)xn+1

ξ
,

xinter
n =

yn+1 − (1− ξ)yinter
n

ξ
,

yn =
yinter
n − bnx

θ
T |tn(x

inter
n )

an
,

xn =
xinter
n − bnx

θ
T |tn(yn)

an
.

(31)

Notably, the EDICT solver was developed in the context of discrete-time diffusion models and the
connection to reversible solvers for ODEs was not considered in the original work. N.B., to the best
of our knowledge our work is the first to draw the connection between the work on reversible ODE
solvers and exact inversion with diffusion models. Unfortunately, this method suffers from poor
convergence issues (see Remark A.11) and generally has poor performance when used to perform
sampling with diffusion models, thereby limiting its utility in practice (Zhang et al., 2024; Wang
et al., 2024).

Remark A.11. Later work by Wang et al. (2024, Proposition 6) showed that EDICT is actually a
zero-order method, i.e., the local truncation error is O(h), making it generally unsuitable in practice.

11In practice, when used for image editing the authors found that the parameter ξ controlled how closely the
EDICT sampler aligned with the original sample, with lower values corresponding to higher agreement with the
original sample.
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A.3.2 BDIA SAMPLER

Later work by Zhang et al. (2024) proposed a reversible solver for the probability flow ODE which
they call bidirectional integration approximation (BDIA). The core idea is to use both single-step
methods Φtn,tn−1

and Φtn,tn+1
to induce reversibility.12 Then using these two approximations—

both of which are computed from a discretization centered around xn—the process is update via a
multistep process with a forward step of13

xn+1 = xn−1 −Φtn,tn−1(xn) +Φtn,tn+1(xn). (32)

The backwards step can easily be expressed as

xn−1 = xn+1 +Φtn,tn−1
(xn) +Φtn,tn+1

(xn). (33)

In practice, BDIA uses the DDIM solver (i.e., Euler) for Φ, but in theory one could use a higher-order
method—this was not explored in Zhang et al. (2024).

Proposition A.3 (BDIA is the leapfrog/midpoint method). The BDIA method described in Equa-
tion (32) is the leapfrog/midpoint method when Φh(t,x) = huθ

t (x), i.e., the Euler step.

Proof. This can be shown rather straightforwardly by substitution, i.e.,

xn+1 = xn−1 + 2huθ
tn(xn). (34)

Corollary A.3.1 (BDIA is a first-order method). BDIA is first-order method, i.e., the local truncation
error is O(h2).

Remark A.12. This result was also observed in Wang et al. (2024, Proposition 6).

Corollary A.3.2 (BDIA is nowhere linearly stable). BDIA is nowhere linearly stable, i.e., the region
of stability is the complex interval [−i, i].

Proof. This follows straightforwardly from Proposition A.3 and Shampine (2009, Section 2).

Zhang et al. (2024) introduce a hyperparameter γ ∈ [0, 1] which is used below

Φ̂tn,tn−1(xn) = (1− γ)(xn−1 − xn) + γΦtn,tn−1(xn), (35)

to modify the BDIA update rule in Equation (32). Thus, γ can be viewed as a parameter which
interpolates between the midpoint and Euler schemes. For image editing applications the authors
found this parameter to control how closely the BDIA sampler aligned with the original image, with
lower values corresponding to higher agreement with the original image (making it similar to the ξ
parameter from BDIA).

A.3.3 BELM SAMPLER

Recently, Wang et al. (2024) proposed a linear multi-step reversible solver for the probability flow
ODE called the bidirectional explicit linear multi-step (BELM) sampler. First, they reparameterize
the probability flow ODE as

dx(t) = xθ
T |σt

(x(t)) dσt, (36)

where x(t) := x(t)/αt, σ(t) := σt/αt, and xθ
T |σt

(x(t)) = xθ
T |t(x(t)).

14 The BELM sampler
makes use of the variable-stepsize-variable-formula (VSVF) linear multi-step methods (Crouzeix

12N.B., in the original paper, Zhang et al. (2024) use quite different notation for explaining their idea; however,
we find our presentation to be simpler for the reader as it more easily enables comparison to other methods.

13In some sense, this is reminiscent of the idea from the more general McCallum-Foster method; however,
this approach results in a multi-step method unlike the single-step method of McCallum & Foster (2024).

14N.B., this is a popular parameterization of diffusion models and affine conditional flows. This can be done
mutatis mutandis for target prediction models retrieving (Blasingame & Liu, 2025, Proposition D.2).
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& Lisbona, 1984) to construct the numerical solver. The k-step VSVF linear multi-step method for
solving the reparameterized probability flow ODE in Equation (36) is given by

xn+1 =

k∑
m=1

an,mxn+1−m (37)

+

k−1∑
m=1

bn,mhn+1−mxθ
T |σn+1−m

(xn+1−m). (38)

where an,m ̸= 0,15 and bn,m are coefficients chosen using dynamic multi-step formulæ to find the
coefficients (Crouzeix & Lisbona, 1984); and hn are step sizes chosen beforehand. This scheme can
be reversed via the backward step

xn+1−k =
1

an,k
xn+1 −

k−1∑
m=1

an,m
an,k

xn+1−m (39)

−
k−1∑
m=1

bn,m
an,k

hn+1−mxθ
T |σn+1−m

(xn+1−m). (40)

Remark A.13. The BELM samplers require k − 1 extra to be stored in memory in order to be
reversible. In contrast, McCallum & Foster (2024) only requires storing one extra states, irregardless
of the desired convergence order. Additionally, poor stability is a concern with such linear multi-step
methods (see Kidger, 2022, Remark 5.24).
Remark A.14. Interestingly, the earlier EDICT and BDIA methods can be viewed as instances of
the BELM method (Wang et al., 2024, Appendicies A.7 and A.8).

By solving the multi-step formulæ to minimize the local truncation error Wang et al. (2024) propose
an instance of the BELM solver which they refer to as O-BELM defined as16

xn+1 =
h2
n

h2
n−1

xn−1 +
h2
n−1 + h2

n

h2
n−1

xn − hn(hn + hn+1)

hn+1
x0|σn

(xn). (41)

Notably, the O-BELM sampler can also be viewed as instance of the leapfrog/midpoint method.
Theorem A.4 (O-BELM is the leapfrog/midpoint method). Fix a step size hn = h for all n, then
O-BELM is the leapfrog/midpoint method.

Proof. This follows from substitution of hn = h.

Corollary A.4.1 (O-BELM is nowhere linearly stable). Fix a step size hn = h, then O-BELM is
nowhere linearly stable, i.e., the region of stability is the complex interval [−i, i].

A.3.4 CYCLEDIFFUSION

To our knowledge, the only other work to propose exact inversion with the SDE formulation of
the diffusion models is the work of Wu & la Torre (2023). However, there a several noticeable
distinctions, the largest being that they store the entire solution trajectory in memory. Given a
particular realization of the Wiener process that admits xt ∼ N (αtx0 | σ2

t I), then given xs and
noise ϵs ∼ N (0, I) we can calculate

xt =
αt

αs
xs + 2σt(e

h − 1)x̂T |s(xs) + σt

√
e2h − 1ϵs. (42)

Wu & la Torre (2023) propose to invert this by first calculating, for two samples xt and xs, the noise
ϵs. This can be calculated by rearranging the previous equation to find

ϵs =
xt − αt

αs
xs + 2σt(e

h − 1)ϵθ(xs, z, s)

σt

√
e2h − 1

(43)

With this the sequence {ϵti}Ni=1 of added noises can be calculated which can be used to reconstruct
the original input from the initial realization of the Wiener process. However, unlike our approach,
this process requires storing the entire realization in memory.

15This is to ensure that the method is reversible.
16N.B., the original equation in Wang et al. (2024, Equation (18)) had a sign difference for the coefficient of

bi,1; however, this is due to differences in convention in handling integration in reverse-time.
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Table 3: Comparison of different (non-symplectic) reversible ODE solvers. We note that some of
the solvers were developed particularly for the probability flow ODE (an affine conditional flow)
whilst others work for general ODEs. In the first column we denote the number of extra states the
numerical scheme needs to keep in memory to ensure algebraic reversibility. For BELM k denotes
the number of steps and for McCallum-Foster k denotes the convergence order of the underlying
single-step solver. For the column labeled region of linear stability we mean there exists some subset
of C which is the region of stability and the set is not a null set. The proof of convergence for BELM
is only provided for the special case (called O-BELM in Wang et al. (2024)) with k = 2.

Number of Local Region of Proof of
Solver extra states truncation error linear stability convergence
Probability flow ODEs
EDICT 1 O(h) ✗ ✗
BDIA 1 O(h2) ✗ ✗
BELM k − 1 O(hk+1) ✗ ∼
Rex 1 O(hk+1) ✓ ✓

General ODEs
Asynchronous leapfrog 1 O(h3) ✗ ✓
Reversible Heun 1 O(h3) ✗ ✓
McCallum-Foster 1 O(hk+1) ✓ ✓

A.3.5 SUMMARY

We present a summary of related works on either exact inversion or reversible solvers below in
Table 3. N.B., we omit CycleDiffusion because it is more orthogonal to the general concept of a
reversible solver and is only reversible in the trivial sense.

A.4 SDE SOLVERS FOR DIFFUSION MODELS

Next we discuss related works on SDE solvers for the reverse-time diffusion SDE in Equation (3).
Now there are numerous stochastic Runge-Kutta (SRK) methods in the literature all tailor to specific
types of SDEs, which we can distinguish by the their strong order of convergence (see Definition D.1)
and strong order conditions. For example the classic Euler-Maruyama scheme (Kloeden & Platen,
1992) has strong order of convergence of 0.5 and was straightforwardlly applied to the reverse-time
diffusion SDE in Jolicoeur-Martineau et al. (2021) as a baseline. Song et al. (2021b) proposed an
ancestral sampling scheme for a discretization of the forward-time diffusion SDE in Equation (1) with
additional Langevin dynamics; likewise, the DDIM solver from Song et al. (2021a) can be viewed
a sort of Euler-Maruyama scheme. Other classic SDE schemes like SRA1/SRA2/SRA3 schemes
(Rößler, 2010) all have strong order of convergence 1.5 for additive noise SDEs and were tested for
diffusion models in Jolicoeur-Martineau et al. (2021).

More recently, researchers have explored exponential solvers for SDEs, e.g., the exponential Euler-
Maruyama method (Komori et al., 2017) and the stochastic Runge-Kutta Lawson (SRKL) schemes
(Debrabant et al., 2021). From an initial inspection the SRKL schemes of Debrabant et al. (2021,
Algorithm 1) is somewhat similar to our method for constructing Ψ; however, upon closer inspection
they are some key fundamental differences.17 The largest of these is how the underlying SRK schemes
are represented. In particular the SRKL schemes choose to follow the conventions of Burrage &
Burrage (2000) (for Stratonovich SDEs) in constructing the underlying SRK schemes; whereas we
follow the SRK schemes outlined by Foster et al. (2024) (cf . Appendix B). These differences stem
from how one chooses to handle the the iterated stochastic integrals from the Stratonovich-Taylor (or
Itô-Taylor) expansions.

17N.B., in general Debrabant et al. (2021) consider full stochastic Lawson schemes where the integrating
factor is a stochastic process given by the matrix exponential applied to linear terms in the drift and diffusion
coefficients; conversely, the drift stochastic Lawson schemes are more similar to what we study.
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A.4.1 COMPARISON WITH SEEDS

Mostly directly relevant to our work on constructing a stochastic Ψ is the SEEDS family of solvers
proposed by Gonzalez et al. (2024). Similar to us, they also approach using exponential methods to
simplify the expression of diffusion models Gonzalez et al. (2024, Appendix B.1). There are two key
distinctions, namely, 1) that they use the stochastic exponential time differencing (SETD) method
(Adamu, 2011), whereas, we construct stochastic Lawson schemes;18 and 2) that they use a different
technique for modeling the iterated stochastic integrals for high-order solvers. In particular, SEEDS
introduces a decomposition for the iterated stochastic integrals produced by the Itô-Taylor expansions
of Equation (3) such that the decomposition preserves the Markov property, i.e., the random variables
used to construct model the Brownian increments from iterated integrals are independent on non-
overlapping intervals and dependent on overlapping intervals (see Gonzalez et al., 2024, Proposition
4.3). By making use of the SRK schemes of Foster et al. (2024) developed from using the space-time
Lévy area to construct high-order splitting methods we have an alternative method for ensuring this
property. This results in our solver based on ShARK (see Appendix B.3, cf . Theorem 4.2) having a
strong order of convergence of 1.5; whereas, SEEDS-3 only achieves a weak order of convergence of
1.

This brings us to another large difference, the SEEDS solvers focus on the weak approximation to
Equation (3); whereas, as we are concerned with the strong approximation to Equation (3). The
difference between these two is that the weak convergence is considered with the precisions of the
moments; whereas, strong convergence is concerned with the precision of the path. Moreover, by
definition a strong order of convergence implies a weak order of convergence, the converse is not true.
In particular, for our application of developing reversible schemes this strong order of convergence is
particularly important as we care about the path. Thus the technique SEEDS uses to replace iterated
Itô integrals with other random variables with equivalent moment conditions is wholely unsuitable
for our purposes as we desire a strong approximation.

B STOCHASTIC RUNGE-KUTTA METHODS

Recall that the general Butcher tableau for a s-stage explicit RK scheme (Stewart, 2022, Section
6.1.4) for a generic ODE is written as

c1
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 · · · as(s−1)

b1 b2 · · · bs−1 bs

=
c a

b
. (44)

E.g., the famous 4-th order Runge-Kutta (RK4) method is given by

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

. (45)

However, for SDEs this is much trickier due to the presense of iterated stochastic integrals in the
Itô-Taylor or Stratonovich-Taylor expansions (Kloeden & Platen, 1992). Consider a d-dimensional
Stratonovich SDE driven by dw-dimensional Brownian motion {Wt}t∈[0,T ] defined as

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt, (46)

18N.B., for certain scenarios these two different viewpoints converge, particularly, in the deterministic case.
See our discussion on the family of DPM-Solvers which also use (S)ETD in Appendix E.
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where µθ ∈ C2(R× Rd;Rd) and σθ ∈ C3(R× Rd;Rd×dw) satisfy the usual regularity conditions
for Stratonovich SDEs (Øksendal, 2003, Theorem 5.2.1) and where ◦dWt denotes integration in the
Stratonovich sense.

Rößler (2025) write one such class of an s-stage explicit SRK methods (cf . Burrage & Burrage, 2000;
Rößler, 2010) for Equation (46) as

Z
(0)
i = Xn + h

i−1∑
j=1

a
(0)
ij µθ(tn + c

(0)
j ,Z

(0)
j ),

Z
(k)
i = Xn + h

i−1∑
j=1

a
(1)
ij µθ(tn + c

(0)
j ,Z

(0)
j ) +

i−1∑
j=1

dw∑
l=1

a
(2)
ij I(l,k),nσθ(tn + c

(1)
j ,Z

(l)
i ),

Xn+1 = Xn + h

s∑
i=1

b
(0)
i µθ(tn + c

(0)
i ,Z

(0)
j ) +

s∑
i=1

dw∑
k=1

(
b
(1)
i I(k),n + b

(2)
i

)
σθ(tn + c

(1)
j ,Z

(k)
i ),

(47)
for k = 1, . . . , dw and where

I(k),n =

∫ tn+1

tn

◦dW k
u = W k

tn+1
−W k

tn , (48)

I(l,k),n =

∫ tn+1

tn

∫ u

tn

◦dW l
v ◦ dW k

u , (49)

let Î denote the iterated integrals for the Itô case mutatis mutandis. This scheme is described the by
the extended Butcher tableau (Rößler, 2025)

c(0) a(0)

c(1) a(1) a(2)

b(0) b(1) b(2)
. (50)

These iterated integrals I(l,k),n are very tricky to work with and can raise up many practical concerns.
As alluded to earlier (cf . Section A.4.1) it is common to use a weak approximation of such integrals
via a random variables with corresponding moments. This results in two drawbacks: 1) the resulting
SDE scheme only converges in the weak sense and 2) the solution yielding by the scheme is not a
Markov chain in general. SEEDS overcomes the second issue by using a special decomposition to
preserve the Markov property, see the ablations in Gonzalez et al. (2024) for more details on this
topic in practice.

B.1 FOSTER-REIS-STRANGE SRK SCHEME

Conversely, Foster et al. (2024) propose another SRK scheme based on higher-order splitting methods
for Stratonovich SDEs. For the Stratonovich SDE in Equation (46) Foster et al. (2024) write an
s-stage SRK as

µi
θ = µθ(tn + cih,Zi),

σi
θ = σθ(tn + cih,Zi),

Zi = Xn + h

i−1∑
j=1

aijµ
j
θ

+Wn

i−1∑
j=1

aWij σ
j
θ

+Hn

i−1∑
j=1

aHijσ
j
θ

 ,

Xn+1 = Xn + h

(
s∑

i=1

biµ
i
θ

)
+Wn

(
s∑

i=1

bWi σi
θ

)
+Hn

(
s∑

i=1

bHi σi
θ

)
,

(51)

where h = tn+1 − tn is the step size and Wn := Wtn,tn+1
and Hn := Htn,tn+1

are the Brownian
and space-time Lévy increments (cf . Definition 3.2) respectively; and where aij , a

W
ij , a

H
ij ∈ Rs×s,

bi, b
W
i , bHi ∈ Rs, and ci ∈ Rs for the coefficients for an extended Butcher tableau (Foster et al., 2024)

which is given as
c a aW aH

b bW bH
. (52)
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E.g., we can write the famous Euler-Maruyama scheme as

0 0 0 0

1 1 0
. (53)

B.2 INDEPENDENCE OF THE BROWNIAN AND LÉVY INCREMENTS

Remarkably, in Foster et al. (2020, Theorem 2.2) present a polynomial Karhunen-Loève theorem for
the Brownian bridge (cf . Definition G.1)—picture an stochastic analogue to the Fourier series of a
function on a bounded interval—which leads to a most useful remark (Foster et al., 2020, Remark
3.6) which we restate below.
Remark B.1. We have that Hs,t ∼ N (0, 1

12h) is independent of Ws,t when d = 1, likewise, since
the coordinate processes of a Brownian motion are independent, one can write Ws,t ∼ (0, hI) and
Hs,t ∼ N (0, 1

12hI) are independent.

Thus we have found another remedy to the problem of independent increments, whilst still being able
to obtain a strong approximation of the SDE.

B.3 SHARK

Recently, Foster et al. (2024) developed shifted additive-noise Runge-Kutta (ShARK) for additive
noise SDEs which is based on Foster et al. (2024, Equation (6.1)). This scheme has converges
strongly with order 1.5 for additive-noise SDEs and makes two evaluations of the drift and diffusion
per step.

ShARK is described via the following extended Butcher tableau

0 0 1

5
6

5
6

5
6 1

0.4 0.6 1 0

−0.6 0.6

. (54)

The second row for the b variable describes the coefficients used for adaptive-step size
solvers to approximate the error at each step. The Butcher tableau for this scheme
can be found here: https://github.com/patrick-kidger/diffrax/blob/main/
diffrax/_solver/shark.py.

C DERIVATION OF REX

We derive the Rex scheme presented in Proposition 3.3 in the main paper.

C.1 REX (ODE)

In this section we derive the Rex scheme for the probability flow ODE. We present derivations for
both the data prediction and noise prediction formulations.

C.1.1 PROOF OF PROPOSITION 3.1

We restate Proposition 3.1 below.
Proposition 3.1 (Reparameterization of the probability flow ODE). The probability flow ODE in
Equation (7) can be rewritten in ςt as

dyς

dς
= βTfθ

(
ς,

βς

βς
yς

)
, (8)

where yt =
βT

βt
xt.
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Proof. Recall that from Equation (7) we have that the ODE is given by

dxt

dt
=

β̇t

βt
xt +

σtα̇t − σ̇tαt

βt
fθ(t,xt). (55)

We can use the technique of exponential integrators to rewrite the ODE as
d

dt

[
e
∫ t
T
− β̇u

βu
duxt

]
= e

∫ t
T
− β̇u

βu
duσtα̇t − σ̇tαt

βt
fθ(t,xt), (56)

recalling that we integrate from initial time T in reverse-time. Then the exponential terms simplify to

e
∫ t
T
− β̇u

βu
du =

β0

βT
. (57)

We introduce a change-of-variables yt =
β0

βT
xt to rewrite the ODE as

dyt

dt
=

βT

βt

σtα̇t − σ̇tαt

βt︸ ︷︷ ︸
=κt

fθ

(
t,
βT

βt
yt

)
. (58)

Next we define
ς̇t = sgn(βT )

σtα̇t − σα̇t

β2
t

, (59)

which we will now justify. Now recall that βt is either −αt or σt depending on the whether fθ

denotes the data or noise prediction model. Moreover we know that αt is a strictly monotonically
decreasing in t and that σt is a strictly monotonically increasing in t. We will now prove that there
exists and inverse function for ςt such that tς(ςt) = t for both cases.

Case βt = −αt. We can write κt as

κt = αT
σ̇tαt − σtα̇t

α2
t

, (60)

(i)
= αT

d

dt

(
σt

αt

)
, (61)

where (i) holds by the quotient role. Clearly, we have that

ς̇t =
d

dt

(
σt

αt

)
, (62)

ςt =
σt

αt
, (63)

It follows from (αt, σt) that ςt is strictly monotonically increasing in t and thus we can construct its
inverse.

Case βt = σt. We can write κt as

κt = σT
σtα̇t − σ̇tαt

σ2
t

, (64)

(i)
= σT

d

dt

(
αt

σt

)
, (65)

where (i) holds by the quotient role. Clearly, we have that

ς̇t =
d

dt

(
αt

σt

)
, (66)

ςt =
αt

σt
, (67)

It follows from (αt, σt) that ςt is strictly monotonically decreasing in t and thus we can construct its
inverse.

Thus we can rewrite the ODE via a time-change to find
dyς

dς
= β0fθ

(
ς,

βT

βς
yς

)
, (68)

with the usual abuse-of-notation yς := ytς(ς), βς := βtς(ς), &c.
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Remark C.1. When in the noise prediction formulation with Proposition 3.1 we recover the following
reparameterization of Equation (7)

dzχ
dχ

= αTx
θ
T |χ

(
αχ

αT
zχ

)
, (69)

where αT > 0, zt = αT

αT
xt and χt =

σt

αt
, which has been observed by numerous prior works (see

Song et al., 2021a, Equation (14); Pan et al., 2023, Equation (11); Wang et al., 2024, Equation (6)).
Remark C.2. When in the data prediction formulation, Proposition 3.1 recovers Blasingame & Liu
(2025, Proposition D.2) which states that Equation (7) can be written as

dyγ

dγ
= σTx

θ
0|γ

(
σγ

σT
yγ

)
, (70)

where yt =
σT

σt
xt and γt =

αt

σt
.

C.1.2 DATA PREDICTION

We present this derivation in the form of Lemma C.1 below.
Lemma C.1 (Rex (ODE) for data prediction models). Let Φ be an explicit Runge-Kutta solver for
the ODE in Equation (70) with Butcher tableau aij , bi, ci. The reversible solver for Φ in terms of the
original state xt is given by the forward step

xn+1 =
σn+1

σn
(ζxn + (1− ζ)x̂n) + σn+1Ψh(γn, x̂n),

x̂n+1 =
σn+1

σn
x̂n − σn+1Ψ−h(γn+1,xn+1),

(71)

and backward step

x̂n =
σn

σn+1
x̂n+1 + σnΨ−h(γn+1,xn+1),

xn =
σn

σn+1
ζ−1xn+1 + (1− ζ−1)x̂n − σnζ

−1Ψh(γn, x̂n),
(72)

with step size h := γn+1 − γn and where Ψ denotes the following scheme

ẑi =
1

σn
xn + h

i−1∑
j=1

aijx
θ
0|γn+cjh

(σγn+cjhẑj),

Ψh(γn,xn) = h

s∑
i=1

bix
θ
0|γn+cih

(σγn+cihẑi),

(73)

Proof. Recall that the forward step of the McCallum-Foster method for Equation (70) given Φ is
given as

yn+1 = ζyn + (1− ζ)ŷn +Φh(γn, ŷn),

ŷn+1 = ŷn −Φ−h(γn+1,yn+1),
(74)

with step size h = γn+1 − γn. We use the definition of yt =
σT

σt
xt to rewrite the forward pass as

xn+1 =
σn+1

σn
(ζxn + (1− ζ)x̂n) +

σn+1

σT
Φh

(
γn,

σT

σn
x̂n

)
,

x̂n+1 =
σn+1

σn
x̂n − σn+1

σT
Φ−h

(
γn+1,

σT

σn+1
xn+1

)
.

(75)

Mutatis mutandis we find the backward step in xt to be given as

x̂n =
σn

σn+1
x̂n+1 +

σn

σT
Φ−h

(
γn+1,

σT

σn+1
xn+1

)
,

xn =
σn

σn+1
ζ−1xn+1 + (1− ζ−1)x̂n − σn

σT
ζ−1Φh

(
γn,

σT

σn
x̂n

)
,

(76)
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Next we simplify the explicit RK scheme Φ(γn,yn) for the time-changed probability flow ODE in
Equation (70). Recall that the RK scheme can be written as

zi = yn + h

i−1∑
j=1

aijσTx0|γn+cjh

(
σγn+cjh

σT
zj

)
,

Φh(γn,yn) = h

s∑
i=1

biσTx0|γn+cih

(
σγn+cih

σT
zi

)
.

(77)

Next, we replace yt back with xt which yields

zi = σT

 1

σn
xn + h

i−1∑
j=1

aijx0|γn+cjh

(
σγn+cjh

σT
zj

) ,

Φh

(
γn,

σT

σn
xn

)
= σTh

s∑
i=1

bix0|γn+cih

(
σγn+cih

σT
zi

)
.

(78)

To further simplify let σT ẑi = zi and define Ψh(γn,xn) := σTΦ(γn,
σT

σn
xn).

Thus we can write the following reversible scheme with forward step

xn+1 =
σn+1

σn
(ζxn + (1− ζ)x̂n) + σn+1Ψh(γn, x̂n),

x̂n+1 =
σn+1

σn
x̂n − σn+1Ψ−h(γn+1,xn+1),

(79)

and the backward step

x̂n =
σn

σn+1
x̂n+1 + σnΨ−h(γn+1,xn+1),

xn =
σn

σn+1
ζ−1xn+1 + (1− ζ−1)x̂n − σnζ

−1Ψh(γn, x̂n),
(80)

with the numerical scheme

ẑi =
1

σn
xn + h

i−1∑
j=1

aijx
θ
0|γn+cjh

(σγn+cjhẑj),

Ψh(γn,xn) = h

s∑
i=1

bix
θ
0|γn+cih

(σγn+cihẑi).

(81)

C.1.3 NOISE PREDICTION

We present this derivation in the form of Lemma C.2 below.

Lemma C.2 (Rex (ODE) for noise prediction models). Let Φ be an explicit Runge-Kutta solver for
the ODE in Equation (69) with Butcher tableau aij , bi, ci. The reversible solver for Φ in terms of the
original state xt is given by the forward step

xn+1 =
αn+1

αn
(ζxn + (1− ζ)x̂n) + αn+1Ψh(χn, x̂n),

x̂n+1 =
αn+1

αn
x̂n − αn+1Ψ−h(χn+1,xn+1),

(82)

and backward step

x̂n =
αn

αn+1
x̂n+1 + αnΨ−h(χn+1,xn+1),

xn =
αn

αn+1
ζ−1xn+1 + (1− ζ−1)x̂n − αnζ

−1Ψh(χn, x̂n),
(83)
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with step size h := χn+1 − χn and where Ψ denotes the following scheme

ẑi =
1

αn
xn + h

i−1∑
j=1

aijx
θ
T |χn+cjh

(αχn+cjhẑj),

Ψh(χn,xn) = h

s∑
i=1

bix
θ
T |χn+cih

(αχn+cihẑi),

(84)

Proof. Recall that the forward step of the McCallum-Foster method for Equation (69) given Φ is
given as

zn+1 = ζzn + (1− ζ)ẑn +Φh(χn, ẑn),

ẑn+1 = ẑn −Φ−h(χn+1, zn+1),
(85)

with step size h = χn+1 − χn. We use the definition of zt = αT

αt
xt to rewrite the forward pass as

xn+1 =
αn+1

αn
(ζxn + (1− ζ)x̂n) +

αn+1

αT
Φh

(
χn,

αT

αn
x̂n

)
,

x̂n+1 =
αn+1

αn
x̂n − αn+1

αT
Φ−h

(
χn+1,

αT

αn+1
xn+1

)
.

(86)

Mutatis mutandis we find the backward step in xt to be given as

x̂n =
αn

αn+1
x̂n+1 +

αn

αT
Φ−h

(
χn+1,

αT

αn+1
xn+1

)
,

xn =
αn

αn+1
ζ−1xn+1 + (1− ζ−1)x̂n − αn

αT
ζ−1Φh

(
χn,

αT

αn
x̂n

)
,

(87)

Next we simplify the explicit RK scheme Φ(χn, zn) for the time-changed probability flow ODE in
Equation (70). Recall that the RK scheme can be written as

zi = zn + h

i−1∑
j=1

aijαTx0|χn+cjh

(
αχn+cjh

αT
zj

)
,

Φh(χn, zn) = h

s∑
i=1

biαTx0|χn+cih

(
αχn+cih

αT
zi

)
.

(88)

Next, we replace zt back with xt which yields

zi = αT

 1

αn
xn + h

i−1∑
j=1

aijx0|χn+cjh

(
αχn+cjh

αT
zj

) ,

Φh

(
χn,

αT

αn
xn

)
= αTh

s∑
i=1

bix0|χn+cih

(
αχn+cih

αT
zi

)
.

(89)

To further simplify let αT ẑi = zi and define Ψh(χn,xn) := αTΦ(χn,
αT

αn
xn).

Thus we can write the following reversible scheme with forward step

xn+1 =
αn+1

αn
(ζxn + (1− ζ)x̂n) + αn+1Ψh(χn, x̂n),

x̂n+1 =
αn+1

αn
x̂n − αn+1Ψ−h(χn+1,xn+1),

(90)

and the backward step

x̂n =
αn

αn+1
x̂n+1 + αnΨ−h(χn+1,xn+1),

xn =
αn

αn+1
ζ−1xn+1 + (1− ζ−1)x̂n − αnζ

−1Ψh(χn, x̂n),
(91)
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with the numerical scheme

ẑi =
1

αn
xn + h

i−1∑
j=1

aijx
θ
T |χn+cjh

(αχn+cjhẑj),

Ψh(χn,xn) = h

s∑
i=1

bix
θ
T |χn+cih

(αχn+cihẑi).

(92)

C.2 REX (SDE)

In this section we derive the Rex scheme for the reverse-time diffusion SDE along with several helper
derivations. We begin by deriving the reparameterization of Equation (9) in Section C.2.2 and then
performing an analogous derivation for the noise prediction scenario in Section C.2.3.

C.2.1 TIME-CHANGED BROWNIAN MOTION

Before detailing this proof we first review some necessary preliminary results about continuous local
martingales and Brownian motion. In particular we will show that we can simplify the stochastic
integrals in Equation (9) and the corresponding reparameterization with noise prediction models.

Dambis-Dubins-Schwarz representation theorem. We restate the Dambis-Dubins-Schwarz rep-
resentation theorem (Dubins & Schwarz, 1965) which shows that continuous local martingales can
be represented as time-changed Brownian motions.
Theorem C.3 (Dambis-Dubins-Schwarz representation theorem). Let M be a continuous local
martingale adapted to a filtration {Ft}t≥0 beginning at 0 (i.e., M0 = 0) such that ⟨M⟩∞ = ∞
almost surely. Define the random variables {τt}t≥0 by

τt = inf {s ≥ 0 : ⟨M⟩s > t} = sup {s ≥ 0 : ⟨M⟩s = t}. (93)

Then for any given t the random variable τt is an almost surely finite stopping time, and the process19

Bt = Mτt is a Brownian motion w.r.t. the filtration {Gt}t≥0 = {Fτt}t≥0. Moreover,

Mt = B⟨M⟩t . (94)

A multi-dimensional version of the Dambis-Dubins-Schwarz representation theorem. In our
work we are interested in a d-dimensional local martingale M := (M1, . . .Md). As such we discuss
a multi-dimensional extension of Theorem C.3 which requires that the d-dimensional continuous
local martingale if the quadratic (covariation) matrix ⟨M⟩ijt =

〈
M i,M j

〉
t

is proportional to the
identity matrix. We adapt the following theorem from Lowther (2010, Theorem 2) and Bourgade
(2010, Theorem 4.13) (cf . Revuz & Yor, 2013).
Theorem C.4 (Multi-dimensional Dambis-Dubins-Schwarz representation theorem). Let M =
(M1, . . . ,Md) be a collection of continuous local martingales with M0 = 0 such that for any
1 ≤ 1 ≤ d, ⟨M⟩ii∞ = ∞ almost surely. Suppose, furthermore, that ⟨M i,M j⟩t = δijAt, where δ
denotes the Kronecker delta, for some process A and all 1 ≤ i, j ≤ d and t ≥ 0. Then there is a
d-dimensional Brownian motion B w.r.t. a filtration {Gt}t≥0 such that for each t ≥ 0, ω 7→ At(ω) is
a G-stopping time and

Mt = BAt
. (95)

Enlargement of the probability space. Recall that in Theorems C.3 and C.4 we stated that
quadratic variation of the continuous local martingale needed to tend towards infinity as t → ∞.
What when ⟨M⟩∞ has a nonzero probability of being finite? It can be shown that Theorems C.3
and C.4 holds under an enlargement of the probability space (not the filtration). Consider both
our original probability space (Ω,F , P ) and another probability space (Ω′,F ′, P ′) along with a
measurable surjection f : Ω′ → Ω preserving probabilities such that P (A) = P ′(f−1(A)) for all
A ∈ F , i.e., f∗P ′ is a pushforward measure. Thus any process on the original probability space

19Defined up to a null set.
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can be lifted to (Ω′,F ′, P ′) and likewise the filtration is also lifted to F ′
t = {f−1(A) : A ∈ Ft}.

Therefore, it is possible to enlarge the probability space so that Brownian motion is defined. E.g.,
if (Ω′′,F ′′, P ′′) is probability space on which there is a Brownian motion defined, we can take
Ω′ = Ω × Ω′′, F ′ = F ⊗ F ′′, and P ′ = P ⊗ P ′′ for the enlargement, and f :′ Ω → Ω is just the
projection onto Ω.

We now present a lemma for rewriting the stochastic differential in Equation (9) using the Dambis-
Dubins-Schwarz representation theorem. Recall that in Equation (9) we denote the reverse-time
d-dimensional Brownian motion as W t, i.e., by Lévy’s characterization we have W T = 0 and

W t −W s ∼ −N (0, (t− s)I) = N (0, (t− s)I), (96)

for 0 ≤ t < s ≤ T . With this in mind we present Lemma C.5 below.

Lemma C.5. The stochastic differential
√
−dϱt

dt dW t can be rewritten as a time-changed Brownian
motion of the form √

−dϱt
dt

dW t = dWϱ, (97)

where ϱt = γ2
t .

Proof. To simplify the stochastic integral term we first define a continuous local martingale Mt via
the stochastic integral

Mt :=

∫ t

T

√
−dϱ

dt
dW t. (98)

We choose time T as our starting point for the martingale rather than 0 and then integrate in reverse-
time. However, due to the negative sign within the square root term it is more convenient to work
with Wt, i.e., the standard d-dimensional Brownian motion defined in forward time. Recall that the
standard d-dimensional Brownian motion in reverse-time with starting point T is defined as

W t = WT −Wt (99)

which is distributed like Wt in time T − t. Define the function f(t,Wt) = W t. Then by Itô’s
lemma we have

df(t,Wt) = ∂tf(t,Wt) dt+

d∑
i=1

∂xi
f(t,Wt) dW

i
t +

d∑
i,j=1

∂xi,xj
f(t,Wt) d

〈
W i,W j

〉
t
,

(100)
which simplifies to

df(t,Wt) = dW t = −dWt. (101)
Thus we can rewrite Equation (98) as

Mt = −
∫ t

T

√
−dϱ

dt
dWt. (102)

Next we establish a few properties of this martingale. First, MT = 0 by construction. Second, since
the integral consists of scalar noise we have that ⟨M i,M j⟩t = 0 for all i ̸= j. Thus, the quadratic
variation of ⟨Mt⟩ii for each i is found to be

⟨M⟩iit = At = −
∫ t

T

(√
−dϱτ

dτ

)2

dτ, (103)

=

∫ t

T

dϱτ
dτ

dτ, (104)

= ϱt − ϱT =
α2
t

σ2
t

− α2
T

σ2
T

. (105)

Now we have a deterministic mapping from the original time to our new time via At. Now in general
for any valid choice of (αt, σt) we don’t necessarily have that ⟨M⟩ii∞ = ∞ almost surely and as
such we may need to enlarge the underlying probability space. Our constructed martingale can be
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expressed as time-changed Brownian motion, see Theorem C.4, such that Mt = WAt
were Wϱ is

the standard d-dimensional Brownian motion with time variable ϱ.

Now we can rewrite Equation (102) in differential form as

dMt = dWAt . (106)

Because Brownian motion is time-shift invariant we can then write

dMt = dWϱt
. (107)

Remark C.3. Lemma C.5 can similarly be found via Øksendal (2003, Theorem 8.5.7) and Kobayashi
(2011, Lemma 2.3); however, do to the oddness of the reverse-time integration we found it easier to
tackle the problem via the Dambis-Dubins-Schwarz theorem.
Remark C.4. Under the common scenario where σ0 = 0 then we have that ⟨M⟩ii∞ = ∞ almost
surely.

Lemma C.6. Let αT > 0. Then the stochastic differential
√

d
dt (χ

2
t ) dW t can be rewritten as a

time-changed Brownian motion of the form√
d

dt
(χ2

t ) dW t = dW χ2 , (108)

where χt =
σt

αt
.

Proof. To simplify the stochastic integral term we first define a continuous local martingale Mt via
the stochastic integral

Mt :=

∫ t

T

√
d

dt
(χ2

t ) dW t. (109)

We choose time T as our starting point for the martingale rather than 0 and then integrate in reverse-
time, hence the negative sign. Next we establish a few properties of this martingale. First, MT = 0
by construction. Second, since the integral consists of scalar noise we have that ⟨M i,M j⟩t = 0 for
all i ̸= j. Thus, the quadratic variation of ⟨Mt⟩ii for each i is found to be

⟨M⟩iit = At =

∫ t

T

(√
d

dτ
(χ2

τ )

)2

dτ, (110)

=

∫ t

T

d

dτ

(
χ2
t

)
dτ, (111)

= χ2
t − χ2

T =
σ2
t

α2
t

− σ2
T

α2
T

. (112)

Now we have a deterministic mapping from the original time to our new time via At. Now in general
for any valid choice of (αt, σt) we don’t necessarily have that ⟨M⟩ii∞ = ∞ almost surely and as
such we may need to enlarge the underlying probability space. Our constructed martingale can be
expressed as time-changed Brownian motion, see Theorem C.4, such that Mt = WAt

were W χ2 is
the standard d-dimensional Brownian motion with time variable χ2 in reverse-time.

Now we can rewrite Equation (98) in differential form as

dMt = dWAt
. (113)

Because Brownian motion is time-shift invariant we can then write

dMt = dW χ2
t
. (114)

Remark C.5. The constraint of αT > 0 is important to ensure that χT is finite which is necessary
due

W χ2
t
= Wχ2

T
−Wχ2

t
. (115)

In practice this is satisfied with a number of noise schedules of diffusion models (cf . Appendix H.1).
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C.2.2 PROOF OF PROPOSITION 3.2

In this section we provide the proof for Proposition 3.2 along with associated derivations. We restate
Proposition 3.2 below.

Proposition 3.2 (Time reparameterization of the reverse-time diffusion SDE). The reverse-time SDE
in Equation (9) can be rewritten in terms of the data prediction model as

dYϱ =
σT

γT
xθ
0|ϱ

(
γTσϱ

σT γϱ
Yϱ

)
dϱ+

σT

γT
dWϱ, (10)

where Yt =
σ2
Tαt

σ2
tαT

Xt and ϱt :=
α2

t

σ2
t

.

Proof. We rewrite Equation (3) in terms of the data prediction model, using the identity

∇x log pt(x) = − 1

σ2
t

x+
αt

σ2
t

x0|t(x), (116)

to find

dXt =


(
f(t) +

g2(t)

σ2
t

)
︸ ︷︷ ︸

=a(t)

Xt +

(
−αtg

2(t)

σ2
t

)
︸ ︷︷ ︸

=b(t)

x0|t(Xt)

 dt+ g(t) dW t, (117)

where

f(t) =
α̇t

αt
, g2(t) = σ̇2

t − 2
α̇t

αt
σ2
t = −2σ2

t

d log γt
dt

. (118)

Next we find the integrating factor Ξt = exp−
∫ t

T
a(u) du,

Ξt = exp

(∫ T

t

d logαu

du
+

g2(u)

σ2
u

du

)
, (119)

= exp

(∫ T

t

d logαu

du
− 2

d log γu
du

du

)
, (120)

= exp

(∫ T

t

d logαu

du
− 2

[
d logαu

du
− d log σu

du

]
du

)
, (121)

= exp

(∫ T

t

d log σ2
u

du
− d logαu

du
du

)
, (122)

= exp
(
log σ2

T − log σ2
t − (logαT − logαt)

)
, (123)

=
σ2
Tαt

σ2
tαT

. (124)

We can write the integrating factor in terms of γt as

Ξt =
σT γt
σtγT

. (125)

Moreover we can further simplify b(t) as

b(t) =
−αtg

2(t)

σ2
t

, (126)

= 2αt
d log γt

dt
. (127)
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Thus we can rewrite the SDE in Equation (117) as

d

[
σT

γT

γt
σt

Xt

]
= 2

σT

γT

αt

σt
γt
d log γt

dt
x0|t(Xt) dt+

σT

γT

γt
σt

√
−2σ2

t

d log γt
dt

dW t, (128)

dYt
(i)
= 2

σT

γT

αt

σt
γt
d log γt

dt
x0|t

(
γTσt

σT γt
Yt

)
dt+

σT

γT

γt
σt

√
−2σ2

t

d log γt
dt

dW t, (129)

dYt =
σT

γT

dγ2
t

dt
x0|t

(
γTσt

σT γt
Yt

)
dt+

σT

γT

√
−γ2

t

d log γ2
t

dt
dW t, (130)

dYt =
σT

γT

dγ2
t

dt
x0|t

(
γTσt

σT γt
Yt

)
dt+

σT

γT

√
−dγ2

t

dt
dW t, (131)

dYϱ
(ii)
=

σT

γT
x0|ϱ

(
γTσϱ

σT γϱ
Yϱ

)
dϱ+

σT

γT
dWϱ, (132)

where (i) holds by the change-of-variables Yt =
σT γt

γTσt
Xt and (ii) holds by Lemma C.5.

C.2.3 PROOF OF REPARAMETERIZED SDE FOR NOISE PREDICTION MODELS

Proposition C.7 (Time reparameterization of the reverse-time diffusion SDE for noise prediction
models). The reverse-time SDE in Equation (3) can be rewritten in terms of the noise prediction
model as

dYχ = 2αTx
θ
T |χ

(
αχ

αT
Yχ

)
dχ+ αT dW χ2 , (133)

where Yt =
αt

αT
Xt and χt :=

σt

αt
.

Proof. We rewrite Equation (3) in terms of the noise prediction model to find

dXt =

[
f(t)Xt +

g2(t)

σt
xθ
T |t(Xt)

]
dt+ g(t) dW t, (134)

where

f(t) =
α̇t

αt
, g2(t) = σ̇2

t − 2
α̇t

αt
σ2
t = −2σ2

t

d log γt
dt

. (135)

Next we find the integrating factor to be exp−
∫ t

T
f(u) du = αT

αt
. Moreover, we can further simplify

g2(t)
σt

as

g2(t)

σt
= −2σt

d log γt
dt

, (136)

= −2σt
γ̇t
γt
, (137)

= −2
σt

γt

α̇tσt − αtσ̇t

σ2
t

, (138)

= −2
σ2
t

αt

α̇tσt − αtσ̇t

σ2
t

, (139)

= 2
σ2
t

αt

αtσ̇t − α̇tσt

σ2
t

, (140)

= 2
αtσ̇t − α̇tσt

αt
, (141)

(142)
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Let χt :=
σt

αt
= 1

γt
. Thus we can rewrite the SDE in Equation (134) as

d

[
αT

αt
Xt

]
=

αT

αt

g2(t)

σ2
t

xθ
T |t(Xt) dt+

αT

αt

√
−2σ2

t

d log γt
dt

dW t, (143)

dYt
(i)
=

αT

αt

g2(t)

σ2
t

xθ
T |t

(
αt

αT
Yt

)
dt+

αT

αt

√
−2σ2

t

d log γt
dt

dW t, (144)

dYt = 2αT
αtσ̇t − α̇tσt

α2
t

xθ
T |t

(
αt

αT
Yt

)
dt+

αT

αt

√
−2σ2

t

d log γt
dt

dW t, (145)

dYt
(ii)
= 2αT χ̇tx

θ
T |t

(
αt

αT
Yt

)
dt+ αT

√
−2

σ2
t

α2
t

d log γt
dt

dW t, (146)

dYt = 2αT χ̇tx
θ
T |t

(
αt

αT
Yt

)
dt+ αT

√
χ̇2
t dW t, (147)

dYχ
(iii)
= 2αTx

θ
T |χ

(
αχ

αT
Yχ

)
dχ+ αT dW χ2 , (148)

(149)

where (i) holds by the change-of-variables Yt =
αT

αt
Xt, (ii) holds by

−2
σ2
t

α2
t

d log γt
dt

=
σ2
t

α2
t

d(−2 log γt)

dt
, (150)

=
σ2
t

α2
t

d logχ2
t

dt
, (151)

=
σ2
t

α2
t

χ̇2
t

χ2
t

, (152)

= χ̇2
t , (153)

and (iii) holds by Lemma C.5 mutatis mutandis for χt.

C.2.4 DERIVATION OF REX (SDE)

We present derivations for both the data prediction and noise prediction formulations.

Data prediction. We present this derivation in the form of Lemma C.8 below.
Lemma C.8 (Rex (SDE) for data prediction models). Let Φ be an explicit stochastic Runge-Kutta
solver for the additive noise SDE in Equation (10), we construct the following reversible scheme for
diffusion models

Xn+1 =
σn+1γn
γn+1σn

(ζXn + (1− ζ)X̂n) +
σn+1

γn+1
Ψh(ϱn, X̂n,Wϱ(ω)),

X̂n+1 =
σn+1γn
γn+1σn

X̂n − σn+1

γn+1
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

(154)

and the backward step is given as

X̂n =
σnγn+1

γnσn+1
X̂n +

σn

γn
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

Xn =
σnγn+1

γnσn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − σn

γn
ζ−1Ψh(ϱn, X̂n,Wϱ(ω)),

(155)

with step size h := ϱn+1 − ϱn and where Ψ denotes the following scheme

Ẑi =
γn
σn

Xn + h

i−1∑
j=1

[
aijx0|ϱn+cjh

(
σϱn+cjh

γϱn+cjh
Ẑj

)]
+ aWi Wn + aHi Hn,

Ψh(ϱn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bix0|ϱn+cih

(
σϱn+cih

γϱn+cjh
Ẑj

)]
+ bWWn + bHHn.

(156)
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Proof. We write the SRK scheme for the time-changed reverse-time SDE in Equation (10) to construct
the following SRK scheme

Zi = Yn + h

i−1∑
j=1

[
aij

σT

γT
x0|ϱn+cjh

(
γTσϱn+cjh

σT γϱn+cjh
Zj

)]
+

σT

γT
(aWi Wn + aHi Hn),

Yn+1 = Yn + h

s∑
i=1

[
bi
σT

γT
x0|ϱn+cih

(
γTσϱn+cih

σT γϱn+cih
Zi

)]
+

σT

γT
(bWWn + bHHn),

(157)

with step size h = ϱn+1 − ϱn. Next, we replace Yt back with Xt which yields

Zi =
σT

γT

γn
σn

Xn + h

i−1∑
j=1

[
aijx0|ϱn+cjh

(
γTσϱn+cjh

σT γϱn+cjh
Zj

)]
+

σT

γT
(aWi Wn + aHi Hn),

σT γn+1

γTσn+1
Xn+1 =

σT γn
γTσn

Xn

+
σT

γT
h

s∑
i=1

[
bi
σT

γT
x0|ϱn+cih

(
γTσϱn+cih

σT γϱn+cih
Zi

)]
+

σT

γT
(bWWn + bHHn)︸ ︷︷ ︸

=Ψh(ϱn,Xn,Wϱ)

.

(158)
To further simplify let σT

γT
Ẑi = Zi, then we construct the reversible scheme with forward pass:

Xn+1 =
σn+1γn
γn+1σn

(ζXn + (1− ζ)X̂n) +
σn+1

γn+1
Ψh(ϱn, X̂n,Wϱ(ω)),

X̂n+1 =
σn+1γn
γn+1σn

X̂n − σn+1

γn+1
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

(159)

and backward pass

X̂n =
σnγn+1

γnσn+1
X̂n +

σn

γn
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

X̂n+1 =
σnγn+1

γnσn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − σn

γn
ζ−1Ψh(ϱn, X̂n,Wϱ(ω)),

(160)

with step size h := ϱn+1 − ϱn

Ẑi =
γn
σn

Xn + h

i−1∑
j=1

[
aijx0|ϱn+cjh

(
σϱn+cjh

γϱn+cjh
Ẑj

)]
+ aWi Wn + aHi Hn,

Ψh(ϱn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bix0|ϱn+cih

(
σϱn+cih

γϱn+cjh
Ẑj

)]
+ bWWn + bHHn.

(161)

Noise prediction. We present this derivation in the form of Lemma C.9 below.
Lemma C.9 (Rex (SDE) for noise prediction models). Let Φ be an explicit stochastic Runge-Kutta
solver for the additive noise SDE in Equation (133), we construct the following reversible scheme for
diffusion models

Xn+1 =
αn+1

αn
(ζXn + (1− ζ)X̂n) + αn+1Ψh(χn, X̂n,Wχ2(ω)),

X̂n+1 =
αn+1

αn
X̂n − αn+1Ψ−h(χn+1,Xn+1,Wχ2(ω)),

(162)

and the backward step is given as

X̂n =
αn

αn+1
X̂n + αnΨ−h(χn+1,Xn+1,Wχ2(ω)),

Xn =
αn

αn + 1
ζ−1Xn+1 + (1− ζ−1)X̂n − αnζ

−1Ψh(χn, X̂n,Wχ2(ω)),
(163)
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with step size h := χn+1 − χn and where Ψ denotes the following scheme

Ẑi =
1

αn
Xn + h

i−1∑
j=1

[
2aijx

θ
T |χn+cjh

(
αχn+cjhẐj

)]
+ aWi Wn + aHi Hn,

Ψh(χn,Xn,Wχ(ω)) = h

s∑
j=1

[
2bix

θ
T |χn+cih

(
αχn+cihẐj

)]
+ bWWn + bHHn.

(164)

Proof. We write the SRK scheme for the time-changed reverse-time SDE in Equation (133) to
construct the following SRK scheme

Zi = Yn + h

i−1∑
j=1

[
2aijαTxT |χn+cjh

(
αχn+cjh

αT
Zj

)]
+ αT (a

W
i Wn + aHi Hn),

Yn+1 = Yn + h

s∑
i=1

[
2biαTxT |χn+cih

(
αχn+cih

αT
Zi

)]
+ αT (b

WWn + bHHn),

(165)

with step size h = χn+1 − χn. Next, we replace Yt back with Xt which yields

Zi = αT

 1

αn
Xn + h

i−1∑
j=1

[
2aijxT |χn+cjh

(
αχn+cjh

αT
Zj

)]
+ αT (a

W
i Wn + aHi Hn),

αn+1

αT
Xn+1 =

αT

αn
Xn

+ αT h

s∑
i=1

[
2biαTxT |χn+cih

(
αχn+cih

αT
Zi

)]
+ αT (b

WWn + bHHn)︸ ︷︷ ︸
=Ψh(χn,Xn,Wχ)

.

(166)

To further simplify let αT Ẑi = Zi, then we construct the reversible scheme with forward pass:

Xn+1 =
αn+1

αn
(ζXn + (1− ζ)X̂n) + αn+1Ψh(χn, X̂n,Wχ(ω)),

X̂n+1 =
αn+1

αn
X̂n − αn+1Ψ−h(χn+1,Xn+1,Wχ(ω)),

(167)

and backward pass

X̂n =
αn

αn+1
X̂n + αnΨ−h(χn+1,Xn+1,Wχ(ω)),

X̂n+1 =
αn

αn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − αnζ

−1Ψh(χn, X̂n,Wχ(ω)),
(168)

with step size h := χn+1 − χn

Ẑi =
γn
σn

Xn + h

i−1∑
j=1

[
2aijxT |χn+cjh

(
αχn+cjhẐj

)]
+ aWi Wn + aHi Hn,

Ψh(χn,Xn,Wχ(ω)) = h

s∑
j=1

[
2bixT |χn+cih

(
αχn+cihẐj

)]
+ bWWn + bHHn.

(169)

N.B., Wn = W χ2
n+1

−W χ2
n

.

C.3 PROOF OF PROPOSITION 3.3

We now can construct Rex.
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Proposition 3.3 (Rex). Without loss of generality let Φ denote an explicit SRK scheme for the SDE
in Equation (10) with extended Butcher tableau aij , bi, ci, a

W
i , aHi , bW , bH . Fix an ω ∈ Ω and let

W be the Brownian motion over time variable ς . Then the reversible solver constructed from Φ in
terms of the underlying state variable Xt is given by the forward step

Xn+1 =
wn+1

wn

(
ζXn + (1− ζ)X̂n

)
+ wn+1Ψh(ςn, X̂n,Wn(ω)),

X̂n+1 =
wn+1

wn
X̂n − wn+1Ψ−h(ςn+1,Xn+1,Wn(ω)),

(12)

and backward step

X̂n =
wn

wn+1
X̂n+1 + wnΨ−h(ςn+1,Xn+1,Wn(ω)),

Xn =
wn

wn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − wnζ

−1Ψh(ςn, X̂n,Wn(ω)),
(13)

with step size h := ςn+1 − ςn and where Ψ denotes the following scheme

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Ψh(ςn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω),

(14)

where fθ denotes the data prediction model, wn = σn

γn
and ςt = ϱt. The ODE case is recovered

for an explicit RK scheme Φ for the ODE in Equation (70) with wn = σn and ςt = γt For noise
prediction models we have fθ denoting the noise prediction model with wn = αn and ςt =

σn

αn
.

Proof. This follows by Lemmas C.1, C.2, C.8 and C.9 mutatis mutandis.

D CONVERGENCE ORDER PROOFS

D.1 ASSUMPTIONS

Beyond the general regularity conditions imposed on the learned diffusion model itself (see Lu
et al., 2022b; Blasingame & Liu, 2024a; 2025) we also assert that in the noise prediction setting that
αT > 0. In practice most commonly used diffusion noise schedules like the linear or scaled linear
schedule satisfy this, (see Appendix H.1; cf . Lin et al., 2024).

D.2 PROOF OF THEOREM 4.1

Theorem 4.1 (Rex is a k-th order solver). Let Φ be a k-th order explicit Runge-Kutta scheme for
the reparameterized probability flow ODE in Equation (70) with variance preserving noise schedule
(αt, σt). Then Rex constructed from Φ is a k-th order solver, i.e., given the reversible solution
{xn, x̂n}Nn=1 and true solution xtn we have

∥xn − xtn∥ ≤ Chk, (15)

for constants C, hmax > 0 and for step sizes h ∈ [0, hmax].

Proof. ‘ We will prove this for both the data prediction and noise prediction formulations.

Data prediction. By Theorem A.1 we have that reversible Φ is a k-th order solver, and thus

∥yn − ytn∥ ≤ Chk. (170)

We use the change of variables from Equation (70) to find∥∥∥∥σT

σn
xn − σT

σn
xtn

∥∥∥∥ ≤ Chk, (171)
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which simplifies to
∥xn − xtn∥ ≤ σn

σT
Chk. (172)

Now by definition for variance preserving type diffusion SDEs we have that σt ≤ 1 for all t. Thus
we can write

∥xn − xtn∥ ≤ C1h
k, (173)

where C1 = C
σT

.

Noise prediction. By Theorem A.1 we have that reversible Φ is a k-th order solver, and thus

∥yn − ytn∥ ≤ Chk. (174)

We use the change of variables from Equation (69) to find∥∥∥∥αT

αn
xn − αT

αn
xtn

∥∥∥∥ ≤ Chk, (175)

which simplifies to
∥xn − xtn∥ ≤ αn

αT
Chk. (176)

Now by definition we have αt ≤ 1 for all t and we assume that αT > 0. Thus we can write

∥xn − xtn∥ ≤ C1h
k, (177)

where C1 = C
σT

.

D.3 PROOF OF THEOREM 4.2

Definition D.1 (Strong order of convergence). Suppose an SDE solver admits a numerical solution
Xn and we have a true solution Xtn . If

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤ Ch2α, (178)

where C > 0 is a constant and h is the step size, then the SDE solver strongly converges with order
α.

Theorem 4.2 (Convergence order for stochastic Ψ). Let Φ be a SRK scheme with strong order of
convergence ξ > 0 for the reparameterized reverse-time diffusion SDE in Equation (10) with variance
preserving noise schedule (αt, σt) and αT > 0. Then Ψ constructed from Φ has strong order of
convergence ξ.

Proof. We will prove this for both the data prediction and noise prediction formulations.

Data prediction. By definition we have Φ has strong order of convergence ξ and thus,

sup
0≤n≤N

E∥Yn − Ytn∥2 ≤ Ch2ξ, (179)

where h =
σ2
n+1

αn+1
− σ2

n

αn
. We use the change of variables from Equation (10) to find

sup
0≤n≤N

E
∥∥∥∥σ2

Tαn

σ2
nαT

Xn − σ2
Tαn

σ2
nαT

Xtn

∥∥∥∥2 ≤ Ch2ξ, (180)

which simplifies to

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤
σn

√
αT

σT
√
αn

Ch2ξ. (181)

Since by definition of αn is a monotonically decreasing function, σn is a monotonically increasing
function, αT > 0, and σT ≤ 1 we can write

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤ Ch2ξ, (182)
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as
σn

√
αT

σT
√
αn

≤ 1. (183)

Noise prediction. By definition we have Φ has strong order of convergence ξ and thus,

sup
0≤n≤N

E∥Yn − Ytn∥2 ≤ Ch2ξ, (184)

where h = σn+1

αn+1
− σn

αn
. We use the change of variables from Equation (133) to find

sup
0≤n≤N

E
∥∥∥∥αn

αT
Xn − αn

αT
Xtn

∥∥∥∥2 ≤ Ch2ξ, (185)

which simplifies to

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤
√
αT√
αn

Ch2ξ. (186)

Since by definition of αn is a monotonically decreasing function strictly less than 1 and αT > 0 we
can write

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤ Ch2ξ. (187)

E RELATION TO OTHER SOLVERS FOR DIFFUSION MODELS

While this paper primarily focused on Rex and the family of reversible solvers created by it, we wish
to discuss the relation between the underlying scheme Ψ constructed from our method and other
existing solvers for diffusion models.

dxt

dt = β̇T

βt
xt +

σtα̇t−σ̇tαt

βt
fθ(t,xt)

dyσ

dς = βTfθ

(
ς, βς

βT
yς

)

xn+1 = wn+1

wn
xn +Ψh(tn,xn) yn+1 = yn +Φh(tn,yn)

Exponential integrators &
change-of-variables

Lawson method

Figure 6: Overview of the construction of Ψ for the probability flow ODE from an underlying RK
scheme Φ for the reparameterized ODE. This graph holds for the SDE case mutatis mutandis.

Surprisingly, we discover that using Lawson methods outlined in Figure 6 (cf . Figure 2 from the main
paper) is a surprisingly generalized methodology for construing numerical schemes for diffusion
modes, and that it subsumes previous works. This means that several of the reversible schemes we
presented here are reversible variants of well known schemes in the literature in diffusion models.
Theorem 4.3 (Rex subsumes previous solvers). The underlying scheme used Ψ in Rex given by

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Xn+1 =
wn+1

wn
Xn + wn+1

h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω)

 ,

(16)
subsumes the following solvers for diffusion models

1. DDIM (Song et al., 2021a),

2. DPM-Solver-1, DPM-Solver-2, DPM-Solver-12 (Lu et al., 2022b),
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3. DPM-Solver++1, DPM-Solver++(2S), SDE-DPM-Solver-1, SDE-DPM-Solver++1 (Lu
et al., 2022a),

4. SEEDS-1 (Gonzalez et al., 2024), and

5. gDDIM (Zhang et al., 2023).

Proof. We prove the connection to each solver in the list within a set of separate propositions
for easier readability. The statement holds true via Propositions E.1 to E.8 and Corollaries E.1.1
to E.6.1.

Corollary 4.3.1 (Rex is reversible version of previous solvers). Rex is the reversible revision of the
well-known solvers for diffusion models in Theorem 4.3.

Remark E.1. The SDE solvers constructed from Foster-Reis-Strange SRK schemes are wholly
unique (with the exception of the trivial Euler-Maruyama scheme) and have no existing counterpart
in the literature in diffusion models. Thus Rex (ShARK) is not only a novel reversible solver, but a
novel solver for diffusion models in general.

E.1 REX AS REVERSIBLE ODE SOLVERS

Here we discuss Rex as reversible versions for well-known numerical schemes for diffusion models.
Recall that the general Butcher tableau for a s-stage explicit RK scheme (Stewart, 2022, Section
6.1.4) is written as

c1
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 · · · a(s−1)s

b1 b2 · · · bs−1 bs

=
c a

b
. (188)

Embedded methods for adaptive step sizing are of the form

c1
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 · · · a(s−1)s

b1 b2 · · · bs−1 bs
b∗1 b∗2 · · · b∗s−1 b∗s

, (189)

where the lower-order step is given by the coefficients b∗i .

E.1.1 EULER

In this section we explore the numerical schemes produced by choosing the Euler scheme for Φ. The
Butcher tableau for the Euler method is

0 0

1
. (190)

Proposition E.1 (Rex (Euler) is reversible DPM-Solver++1). The underlying scheme of Rex (Euler)
for the data prediction parameterization of diffusion models in Equation (70) is the DPM-Solver++1
from Lu et al. (2022a).

Proof. Apply in the Butcher tableau for the Euler scheme to Ψ constructed from Equation (69) to
find

xn+1 =
σn+1

σn
xn + σn+1hx

θ
0|γn

(xn), (191)

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

with h = γn+1 − γn. We can rewrite the step size as

σn+1h = σn+1

(
αn+1

σn+1
− αn

σn

)
, (192)

=

(
αn+1 − αn

σn+1

σn

)
, (193)

=

(
αn+1

αn+1

αn+1
− αn

αn+1

σn+1

σn

)
, (194)

= −αn+1

(
αn

αn+1

σn+1

σn
− 1

)
, (195)

= −αn+1

(
γn

γn+1
− 1

)
, (196)

= −αn+1

(
e
log γn

γn+1 − 1
)
, (197)

= −αn+1

(
elog γn−log γn+1 − 1

)
, (198)

(i)
= −αn+1

(
eλn−λn+1 − 1

)
, (199)

(ii)
= −αn+1

(
e−hλ − 1

)
, (200)

where (i) holds by the letting λt = log γt following the notation of Lu et al. (2022b;a) and (ii) holds
by letting hλ = λn+1 − λn. Plugging this back into Equation (191) yields

xn+1 =
σn+1

σn
xn − αn+1

(
e−hλ − 1

)
xθ
0|tn(xn), (201)

which is the DPM-Solver++1 from Lu et al. (2022a).

Corollary E.1.1 (Rex (Euler) is reversible deterministic DDIM for data prediction models). The
underlying scheme of Rex (Euler) for the data prediction parameterization of diffusion models in
Equation (70) is the deterministic DDIM solver from Song et al. (2021a).

Proof. This holds because DPM-Solver++1 is DDIM see Lu et al. (2022a, Equation (21)) with
η = 0.

Proposition E.2 (Rex (Euler) is reversible DPM-Solver-1). The underlying scheme of Rex (Euler)
for the data prediction parameterization of diffusion models in Equation (69) is the DPM-Solver-1
from Lu et al. (2022b, Equation (3.7)).

Proof. Apply in the Butcher tableau for the Euler scheme to Ψ from Rex (see Proposition 3.3) to find

xn+1 =
αn+1

αn
xn + αn+1hx

θ
T |χn

(xn), (202)
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with h = χn+1 − χn. We can rewrite step size as

αn+1h = αn+1

(
σn+1

αn+1
− σn

αn

)
, (203)

=

(
σn+1 − σn

αn+1

αn

)
, (204)

=

(
σn+1

σn+1

σn+1
− σn

σn+1

αn+1

αn

)
, (205)

= −σn+1

(
σn

σn+1

αn+1

αn
− 1

)
, (206)

= −σn+1

(
χn

χn+1
− 1

)
, (207)

= −σn+1

(
e
log χn

χn+1 − 1
)
, (208)

= −σn+1

(
elogχn−logχn+1 − 1

)
, (209)

(i)
= −σn+1

(
e−λn+λn+1 − 1

)
, (210)

(ii)
= −σn+1

(
ehλ − 1

)
, (211)

where (i) holds by the letting λt = log γt = − logχt following the notation of Lu et al. (2022b;a)
and (ii) holds by letting hλ = λn+1 − λn. Plugging this back into Equation (191) yields

xn+1 =
αn+1

αn
xn − σn+1

(
ehλ − 1

)
xθ
T |tn(xn), (212)

which is the DPM-Solver-1 from Lu et al. (2022b).

Corollary E.2.1 (Rex (Euler) is reversible deterministic DDIM for noise prediction models). The
underlying scheme of Rex (Euler) for the noise prediction parameterization of diffusion models in
Equation (69) is the deterministic DDIM solver from Song et al. (2021a).

Proof. This holds because DPM-Solver-1 is DDIM see Lu et al. (2022b, Equation (4.1)).

E.1.2 SECOND-ORDER METHODS

In this section we explore the numerical schemes produced by choosing the explicit midpoint method
for Φ. We can write a generic second-order method as

0

η η

1− 1
2η

1
2η

, (213)

for η ̸= 0 (Butcher, 2016). The choice of η = 1
2 yields the explicit midpoint, η = 2

3 gives Ralston’s
second-order method, and η = 1 gives Heun’s second-order method.

Proposition E.3 (Rex (generic second-order) is reversible DPM-Solver++(2S)). The underlying
scheme of Rex (generic second-order) for the data prediction parameterization of diffusion models in
Equation (70) is the DPM-Solver++(2S) from Lu et al. (2022a, Algorithm 1).

Proof. The DPM-Solver++(2S) (Lu et al., 2022a, Algorithm 1) is defined as

u =
σp

σn
xn − αp

(
e−rλhλ − 1

)
xθ
0|tn(xn),

D =

(
1− 1

2rλ

)
xθ
0|tn(xn) +

1

2rλ
xθ
0|tp(u),

xn+1 =
σn+1

σn
xn − αn+1

(
e−hλ − 1

)
D,

(214)
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for some intermediate timestep tn > tp > tn+1 and with rλ =
λp−λn

λn+1−λn
. Notice that rλ describes

the location of the midpoint time in the λ-domain as a ratio, i.e., we could say

λp = λn + rλhλ, (215)

where rλ ∈ (0, 1) denotes the interpolation point between the initial timestep λn and terminal
timestep λn+1. Thus we fix η = rλ as the step size ratio of the intermediate point.

Now we return to the underlying scheme of Rex applied to the generic second-order scheme, see
Equation (213), Apply in the Butcher tableau for generic second-order scheme to Ψ constructed from
Equation (69) to find

z =
1

σn
xn + ηhxθ

0|γn
(xn),

xn+1 =
σn+1

σn
xn + σn+1h

((
1− 1

2η

)
xθ
0|γn

(xn) +
1

2η
xθ
0|γn+ηh(σpz)

)
,

(216)

with h = γn+1 − γn and σp = σγn+ηh with γp = γn + ηh. We can write

σpz =
σp

σn
xn + σpηhx

θ
0|γn

(xn). (217)

Plugging this back into Equation (216) yields

σpz =
σp

σn
xn + σpηhx

θ
0|γn

(xn),

xn+1 =
σn+1

σn
xn + σn+1h

((
1− 1

2η

)
xθ
0|γn

(xn) +
1

2η
xθ
0|γn+ηh(σpz)

)
︸ ︷︷ ︸

=D̂

, (218)

which is the DPM-Solver++1 from Lu et al. (2022a). Now recall from Proposition E.1 that

σn+1h = −αn+1

(
e−hλ − 1)

)
, (219)

it follows that
σpηh = −αp

(
e−rλhλ − 1

)
, (220)

due to λp − λn = rλhλ and ηh = λp − λn. Thus by letting σpz = u and D̂ = D we recover the
DPM-Solver++(2S) solver.

Proposition E.4 (Rex (generic second-order) is reversible DPM-Solver-2)). The underlying scheme
of Rex (generic second-order) for the noise prediction parameterization of diffusion models in
Equation (69) is the DPM-Solver-2 from Lu et al. (2022b, Algorithm 4 cf. Algorithm 1).

Proof. This follows as straightforward derivation from Proposition E.2 and Proposition E.3.

Proposition E.5 (Rex (Euler-Midpoint) is DPM-Solver-12). The underlying scheme of Rex (Euler-
Midpoint) for the noise prediction parameterization of diffusion models in Equation (69) is the
DPM-Solver-12 from Lu et al. (2022b).

Proof. The explicit midpoint method with embedded Euler method for adaptive step sizing is given
by the Butcher tableau

0
1
2

1
2

0 1

1 0

. (221)

From Proposition E.2 and Proposition E.4 we have shown that Rex (Euler) and Rex (Midpoint)
correspond to DPM-Solver-1 and DPM-Solver-2 respectively. Thus the Butcher tableau above
outlines DPM-Solver-12.
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E.1.3 THIRD-ORDER METHODS

For third-order solvers like DPM-Solver-3 (Lu et al., 2022b, Algorithm 5) our constructed scheme
differs from solvers derived using ETD methods due to the presence of φ2 terms where

φk+1(t) =

∫ 1

0

e(1−δ)t δ
k

k!
dδ, (222)

this also reasoning extends to the DPM-Solver-4 from Gonzalez et al. (2024, Algorithm 7).

E.2 REX AS REVERSIBLE SDE SOLVERS

In this section we discuss the connections between Rex and preexisting SDE solvers for diffusion
models.

E.2.1 EULER-MARUYAMA

The extended Butcher tableau for the Euler-Maruyama scheme is given by

0 0 0 0

1 1 0
. (223)

Proposition E.6 (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver++1). The underlying
scheme of Rex (Euler-Maruyama) for the data prediction parameterization of diffusion models in
Equation (10) is the SDE-DPM-Solver++1 from Lu et al. (2022a, Equation (18)).

Proof. Apply in the Butcher tableau for the Euler-Maruyama scheme to Ψ constructed from Equa-
tion (133) to find

xn+1 =
σ2
n+1αn

σ2
nαn+1

xn +
σ2
n+1

αn+1
hxθ

0|ϱn
(xn) +

σ2
n+1

αn+1
Wn, (224)

with h = ϱn+1 − ϱn. We can rewrite the step size as

σ2
n+1

αn+1
h =

σ2
n+1

αn+1

(
α2
n+1

σ2
n+1

− α2
n

σ2
n

)
, (225)

=

(
αn+1 −

α2
n

αn+1

σ2
n+1

σ2
n

)
, (226)

= αn+1

(
1− α2

n

α2
n+1

σ2
n+1

σ2
n

)
, (227)

= αn+1

(
1− ϱn

ϱn+1

)
, (228)

= αn+1

(
1− e

2 log γn
γn+1

)
, (229)

= αn+1

(
1− e2 log γn−2 log γn+1

)
, (230)

(i)
= αn+1

(
1− e2λn−2λn+1

)
, (231)

(ii)
= αn+1

(
1− e−2hλ

)
, (232)

where (i) holds by the letting λt = log γt following the notation of Lu et al. (2022b;a) and (ii) holds
by letting hλ = λn+1 − λn. Now recall that

σ2
n+1αn

σ2
nαn+1

=
σn+1

σn
e−hλ . (233)

Plugging these back into Equation (224) yields

xn+1 =
σn+1

σn
e−hλxn + αn+1

(
1− e−2hλ

)
xθ
0|tn(xn) +

σ2
n+1

αn
Wn. (234)
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Now recall that the Brownian increment Wn := Wϱn+1
−Wϱn

has variance h. Thus via the Itô
isometry we can write

Wn ∼
√
hϵ, (235)

with ϵ ∼ N (0, I). Then we have

σ2
n+1

αn+1

√
h =

σ2
n+1

αn+1

√
α2
n+1

σ2
n+1

− α2
n

σ2
n

, (236)

=

√
σ2
n+1 −

α2
n

α2
n+1

σ4
n+1

σ2
n

, (237)

= σn+1

√
1− α2

n

α2
n+1

σ2
n+1

σ2
n

, (238)

= σn+1

√
1− ϱn

ϱn+1
, (239)

= σn+1

√
1− e−2hλ . (240)

Thus we have re-derived the noise term of the SDE-DPM-Solver++1, and putting everything together
we have obtained the SDE-DPM-Solver++1 from Lu et al. (2022a) which is

xn+1 =
σn+1

σn
e−hλxn + αn+1

(
1− e−2hλ

)
xθ
0|tn(xn) + σn+1

√
1− e−2hλϵ. (241)

Thus we have shown that the SDE-DPM-Solver++1 is the same as the underlying scheme of Rex
(Euler-Maruyama).

Corollary E.6.1 (Rex (Euler-Maruyama) is reversible stochastic DDIM). The underlying scheme of
Rex (Euler-Maruyama) for the data prediction parameterization of diffusion models in Equation (10)
is the stochastic DDIM solver from Song et al. (2021a) with η = σt

√
1− e−2hλ .

Proof. This holds because SDE-DPM-Solver-1 is DDIM see Lu et al. (2022a, Section 6.1).

Proposition E.7 (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver-1). The underlying scheme
of Rex (Euler-Maruyama) for the noise prediction parameterization of diffusion models in Equa-
tion (133) is the SDE-DPM-Solver-1 from Lu et al. (2022a, Equation (17)).

Proof. Apply in the Butcher tableau for the Euler scheme to Ψ from Rex (see Proposition 3.3) to find

xn+1 =
αn+1

αn
xn + 2αn+1hx

θ
T |χn

(xn) + αn+1Wn, (242)

with h = χn+1 − χn. Recall from Proposition E.2 that we can rewrite the step size

αn+1h = −σn+1

(
ehλ − 1

)
. (243)

Now recall that the Brownian increment Wn := W χ2
n+1

−W χ2
n

has variance χ2
n − χ2

n+1.20 Thus
via the Itô isometry we can write

Wn ∼
√

χ2
n − χ2

n+1ϵ, (244)

20This is because W
2
χ is defined in reverse-time.
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with ϵ ∼ N (0, I). Then we have

αn+1

√
χ2
n − χ2

n+1 = αn+1

√
σ2
n

α2
n

−
σ2
n+1

α2
n+1

, (245)

=

√
σ2
nα

2
n+1

α2
n

− σ2
n+1, (246)

= σn+1

√
σ2
nα

2
n+1

σ2
n+1α

2
n

− 1, (247)

= σn+1

√
χ2
n

χ2
n+1

− 1, (248)

= σn+1

√
e
log

χ2
n

χ2
n+1 − 1, (249)

= σn+1

√
elogχ2

n−logχ2
n+1 − 1, (250)

= σn+1

√
e−2 log γn+2 log γn+1 − 1, (251)

= σn+1

√
e2 log λn+1−2 log λn − 1, (252)

= σn+1

√
e2hλ − 1. (253)

Plugging Equations (243) and (253) back into Equation (242) yields

xn+1 =
αn+1

αn
xn − 2σn+1

(
ehλ − 1

)
xθ
T |χn

(xn) + σn+1

√
e2hλ − 1ϵ, (254)

which is the SDE-DPM-Solver-1 from Lu et al. (2022a).

Corollary E.7.1 (Rex (Euler-Maruyama) is reversible stochastic DDIM for noise prediction models).
The underlying scheme of Rex (Euler-Maruyama) for the noise prediction parameterization of
diffusion models in Equation (133) is the stochastic DDIM solver from Song et al. (2021a) with
η = σt

√
e−2hλ − 1.

Proof. This follows from a straightforwardly from Corollary E.6.1 and Lu et al. (2022b, Equation
(4.1)).

E.3 REX AS REVERSIBLE SEEDS-1

Proposition E.8 (Rex is reversible SEEDS-1). The choice of Euler or Euler-Maruyama for the
underlying scheme of Rex with either the noise prediction parameterization of diffusion models in
Equations (69) and (133) or data prediction in Equations (10) and (69) yields the four variants of
SEEDS-1 outlined in Gonzalez et al. (2024, Equations (28-31)).

Proof. This follows straightforwardly from Propositions E.1, E.2, E.6 and E.7 by definition of
SEEDS-1.

Corollary E.8.1 (Rex (Euler-Maruyama) is reversible gDDIM). The underlying scheme of Rex
(Euler-Maruyama) for the data prediction parameterization of diffusion models in Equation (10) is
the gDDIM solver in Zhang et al. (2023, Theorem 1) for ℓ = 1.

Proof. This follows as an immediate consequence of Proposition E.8 since by Gonzalez et al. (2024,
Proposition 4.5) gDDIM is SEEDS-1.

As mentioned earlier in Section A.4.1 high-order variants of SEEDS use a Markov-preserving noise
decomposition to approximate the iterated stochastic integrals. However, we follow Foster et al.
(2024) and use the space-time Lévy area resulting in numerical schemes that are quite different
beyond the first-order case, albeit that Rex exhibits better convergence properties.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

F A BRIEF NOTE ON THE THEORY OF ROUGH PATHS

To perform reversibility it is useful to consider the pathwise interpretation of SDEs (Lyons, 1998), as
such we introduce a few notations from rough path theory. Let {Wt} be a dw-dimensional Brownian
motion and let W be enhanced by

Ws,t =

∫ t

s

Ws,r ⊗ ◦dWr, (255)

where ⊗ is the tensor product. Then, the pair W := (W ,W) is the Stratonovich enhanced Brownian
rough path.21 Thus consider the dx-dimensional rough differential equation RDE of the form:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, X0 = x0. (256)

where µ : [0, T ]×Rdx → Rdx is Lipschitz continuous in its second argument and σ ∈ C1,3
b ([0, T ]×

Rdx ;L(Rdw ,Rdx)) (Friz & Hairer, 2020, Theorem 9.1).22 Fix an ω ∈ Ω, then almost surely W(ω)
admits a unique solution to the RDE (Xt(ω),σ(t,Xt(ω))) and Xt = Xt(ω) is a strong solution to
the Stratonovich SDE23 started at X0 = x0. To elucidate, consider the commutative diagram below

W
Ψ7−→ (W ,W)

S7−→ X, (257)

where Ψ is a map which merely lifts Brownian motion into a rough path (could be Itô or Stratonovich),
the second map, S, is known as the Itô-Lyons map (Lyons, 1998); this map is purely deterministic
and is also a continuous map w.r.t. to initial condition and driving signal. Thus for a fixed realization
of the Brownian motion we have a pathwise interpretation of the Stratonovich SDE.

G NUMERICAL SIMULATION OF BROWNIAN MOTION

Earlier we mentioned that for reversible methods we need to be able to compute both the same
realization of the Brownian motion. Now sampling Brownian motion is quite simple—recall Lévy’s
characterization of Brownian motion (Øksendal, 2003, Theorem 8.6.1)—and can be sampled by
drawing independent Gaussian increments during the numerical solve of an SDE. A common choice
for an adaptive solver is to use Lévy’s Brownian bridge formula (Revuz & Yor, 2013).
Definition G.1 (Lévy’s Brownian bridge). Given the standard dw-dimensional Brownian motion
{Wt : t ≥ 0} and for any 0 ≤ s < t < u, the Brownian bridge is defined as

Wt|Ws,Wu ∼ N
(
Ws +

t− s

u− s
(Wu −Ws),

(u− t)(t− s)

u− s
I

)
, (258)

and this quantity is conditionally independent of Wv for v < s or v > u.

Sampling the Brownian motion in reverse-time, however, is more complicated as it is only adapted
to the natural filtration defined in forward time. The naïve approach to sampling Brownian motion,
called the Brownian path, is to simply store the entire realization of the Brownian motion from the
forward pass in memory and use Equation (258) when necessary (for adaptive step size methods).
This results in a query time of O(1), but with a memory cost of O(ndw), where n is the number of
samples.

Virtual Brownian Tree. Seminal work on neural SDEs by Li et al. (2020) introduced the Virtual
Brownian Tree which extends the concept of Brownian trees introduced by Gaines & Lyons (1997).
The Brownian tree recursively applies Equation (258) to sample the Brownian motion at any midpoint,
constructing a tree structure; however, storing such a tree would be memory intensive. By making

21See, Friz & Hairer (2020, Chapter 3) for more details.
22Here L(V,W ) denotes the set of continuous maps from V to W , a Banach space.
23If Xt and ∂xXt are adapted and ⟨X,W ⟩t exists, then almost surely∫ T

0

XdWt =

∫ T

0

X ◦ dWt.
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use of splittable pseudo-random number generators PRNGs (Salmon et al., 2011; Claessen & Pałka,
2013) which can deterministically generate two random seeds given an existing seed. Then making
use of a splittable PRNG one can evaluate the Brownian motion at any point by recursively applying
the Brownian tree constructing to rebuild the tree until the recursive midpoint time tr is suitable close
to the desired timestep t, i.e., |t− tr| < ϵ for some fixed error threshold ϵ > 0. This requires constant
O(1) memory but takes O(log(1/ϵ)) time and is only approximate.

Brownian Interval. Closely related work by Kidger et al. (2021) introduces the Brownian Interval
which offers exact sampling with O(1) query times. The primary difference between this method and
Virtual Brownian Trees is that this method focuses on intervals rather than particular sample points.
To elucidate, let Ws,t = Wt −Ws denote an interval of Brownian motion. Then the formula for
Lévy’s Brownian bridge (258) can be rewritten in terms of Brownian intervals as

Ws,t|Ws,u ∼ N
(
t− s

u− s
Ws,u,

(u− t)(s− u)

u− s
I

)
. (259)

Then, the method constructs a tree with stump being the global interval [0, T ] and a random seed for a
splittable PRNG. New leaf nodes are constructed when queries over intervals are made; this provides
the advantage of the tree being query-dependent unlike the Virtual Brownian Tree which has a fixed
dyadic structure. Further computational improvements are made to improve implementation with the
details being found in Kidger (2022, Section 5.5.3). Beyond the numerical efficiency in computing
intervals over points is that we regularly need use intervals in numeric schemes and not single sample
points. Often, solvers which approximate higher-order integrals (e.g., stochastic Runge-Kutta) require
samples of the Lévy area24 which would require the Brownian interval to construct.25

Updated Virtual Brownian Tree. Recent work by Jelinčič et al. (2024) improves upon the Virtual
Brownian Tree (Li et al., 2020) by using an interpolation strategy between query points.26 This
enables the updated algorithm to exactly match the distribution of Brownian motion and Lévy areas
at all query times as long as each query time is at least ϵ apart.

H IMPLEMENTATION DETAILS

H.1 CLOSED FORM EXPRESSIONS OF THE NOISE SCHEDULE

In practice, popular libraries like the diffusers library define the noise schedule for diffusion
models as a discrete schedule {βn}Nn=1 following Ho et al. (2020); Song et al. (2021a) as an
arithemetic sequence of the form

βn =
β0

N
+

n− 1

N(N − 1)
(β1 − β0), (260)

with hyperparameters β0, β1 ∈ R≥0. Song et al. (2021b) defines the continuous-time schedule as

βt = β0 + t(β1 − β0), (261)

for all t ∈ [0, 1] in the limit of N → ∞. Thus one can write the forward-time diffusion (variance
preserving) SDE as

dXt = −1

2
βtXt dt+

√
βt dWt. (262)

Thus we can express the noise schedule (αt, σt) as

αt = exp

(
−1

2

∫
βt dt

)
,

σt =
√

1− α2
t .

(263)

24I.e., for a dw-dimensional Brownian motion over [s, t] the Lévy area is

2Li,j
s,t :=

∫ t

s

W i
s,udW

j
u −

∫ t

s

W j
s,udW

i
u.

25The interested reader can find more details in James Foster’s thesis (Foster, 2020).
26This algorithm is a part of the popular Diffrax library.
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N.B., often the hyperparmeters in libraries like diffusers are expressed as β̂0 = β0

N and β̂1 = β1

N ,
often with N = 1000.

H.1.1 LINEAR NOISE SCHEDULE

For the linear noise schedule in Equation (261) used by DDPMs (Ho et al., 2020), the schedule
(αt, σt) is written as

αt = exp

(
−β1 − β0

4
t2 − β0

2
t

)
,

σt =
√

1− α2
t ,

(264)

for t ∈ [0, 1] with hyperparameters β0 and β1.
Proposition H.1 (Inverse function of γt for linear noise schedule). For the linear noise schedule used
by DDPMs (Ho et al., 2020) the inverse function of γt denoted tγ can be expressed in closed form as

tγ(γ) =
−β0 +

√
β2
0 + 2(β1 − β0) log(γ−2 + 1)

β1 − β0
. (265)

Proof. Let αt be denoted by αt = eat where

at = −β1 − β0

4
t2 − β0

2
t. (266)

Then by definition of γt we can write

γt =
eat

√
1− e2at

, (267)

and with a little more algebra we find√
1− e2at =

eat

γt
, (268)

1− e2at =
e2at

γ2
t

, (269)

e−2at − 1 = γ−2
t , (270)

e−2at = γ−2
t + 1, (271)

−2at = log(γ−2
t + 1). (272)

Then by substituting in the definition of at and letting γ denote the variable produced by γt we have
β1 − β0

2
t2 + β0t− log(γ−2 + 1) = 0. (273)

We then use the quadratic formula to find the roots of the polynomial of t to find

t =
−β0 ±

√
β2
0 + 2(β1 − β0) log(γ−2 + 1)

β1 − β0
. (274)

Since t ∈ [0, 1] we only take the positive root and thus

t =
−β0 +

√
β2
0 + 2(β1 − β0) log(γ−2 + 1)

β1 − β0
. (275)

Corollary H.1.1 (Inverse function of χt for linear noise schedule). It follows by a straightforward
substitution from Proposition H.1 that tχ can be written as

tχ(χ) =
−β0 +

√
β2
0 + 2(β1 − β0) log(χ2 + 1)

β1 − β0
. (276)

Corollary H.1.2 (Inverse function of ϱt for linear noise schedule). It follows by a straightforward
substitution from Proposition H.1 that tϱ can be written as

tϱ(ϱ) =
−β0 +

√
β2
0 + 2(β1 − β0) log(ϱ−1 + 1)

β1 − β0
. (277)
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H.1.2 SCALED LINEAR SCHEDULE

The scaled linear schedule is used widely by latent diffusion models (LDMs) (Rombach et al., 2022)
and takes the discrete form of

βn =

(√
β̂0 +

n− 1

N − 1

(√
β̂1 −

√
β̂0

))2

. (278)

Thus following a similar approach to Song et al. (2021b) we write the scaled linear schedule as a
function of t,

βt = (β1 − 2
√

β1β0 + β0)t
2 + 2t(

√
β1β0 − β0) + β0. (279)

Then using Equation (263) we find the noise schedule (αt, σt) to be defined as

αt = exp

(
−β1 − 2

√
β1β0 + β0

6
t3 −

√
β1β0 − β0

2
t2 − β0

2
t

)
,

σt =
√

1− α2
t .

(280)

Next we will derive the inverse function for γt
Proposition H.2 (Inverse function of γt for scaled linear noise schedule). For the scaled linear noise
schedule commonly used by LDMs (Rombach et al., 2022) the inverse function of γt denoted tγ can
be expressed in closed form as

tγ(γ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(γ−2 + 1)

∆
, (281)

where
∆ = β1 − 2

√
β1β0 + β0. (282)

Proof. Let αt be denoted by αt = eat where

at = −β1 − 2
√
β1β0 + β0

6
t3 −

√
β1β0 − β0

2
t2 − β0

2
t. (283)

Then by definition of γt we can write

γt =
eat

√
1− e2at

, (284)

and with a little more algebra we find√
1− e2at =

eat

γt
, (285)

1− e2at =
e2at

γ2
t

, (286)

e−2at − 1 = γ−2
t , (287)

e−2at = γ−2
t + 1, (288)

−2at = log(γ−2
t + 1). (289)

Then by substituting in the definition of at and letting γ denote the variable produced by γt we have

β1 − 2
√
β1β0 + β0

3
t3 + (

√
β1β0 − β0)t

2 + β0t− log(γ−2 + 1) = 0. (290)

We then use the cubic formula (Cardano, 1545) to find the roots of the polynomial of t. The only real
root is given by

tγ(γ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(γ−2 + 1)

∆
, (291)

where
∆ = β1 − 2

√
β1β0 + β0. (292)
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Corollary H.2.1 (Inverse function of χt for scaled linear noise schedule). It follows by a straightfor-
ward substitution from Proposition H.2 that tχ can be written as

tχ(χ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(χ2 + 1)

∆
, (293)

where
∆ = β1 − 2

√
β1β0 + β0. (294)

Corollary H.2.2 (Inverse function of ϱt for scaled linear noise schedule). It follows by a straightfor-
ward substitution from Proposition H.2 that tϱ can be written as

tϱ(ϱ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(ϱ−1 + 1)

∆
, (295)

where
∆ = β1 − 2

√
β1β0 + β0. (296)

H.2 SOME OTHER INVERSE FUNCTIONS

Gamma to sigma. Additionally, we need to be able to extract the weighting terms from the time
integration variable. For the ODE case we need the function σγ(γ) which describes the map γ 7→ σ.
By the definition of γ we have

γ =
α

σ
, (297)

γ
(i)
=

√
1− σ2

σ
, (298)

σγ =
√

1− σ2, (299)

σ2γ2 = 1− σ2, (300)

σ2γ2 = 1− σ2, (301)

γ2 = σ−2 − 1, (302)

γ2 + 1 = σ−2, (303)

σ2 =
1

γ2 + 1
(304)

σγ(γ) =
1√

γ2 + 1
, (305)

where (i) hold by σ2 = 1− α2 for VP type diffusion SDEs.

Rho to sigma over gamma. Likewise, for the SDE case we need the function which maps ϱ 7→ σ
γ .

Recall that (note we drop the subscript t for the derivation)

ϱ =
α2

σ2
, (306)

thus we have

ϱ
(i)
=

α2

1− α2
, (307)

(1− α2)ϱ = α2, (308)

α−2 − 1 = ϱ−1, (309)

α−2 = ϱ−1 + 1, (310)

α =
1√

ϱ−1 + 1
, (311)
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where (i) hold by σ2 = 1− α2 for VP type diffusion SDEs. Then we can write

σ

γ
=

σ2

α
, (312)

=
σ2

α

α

α
, (313)

=
σ2

α2
α, (314)

= ϱ−1α, (315)

=
1

ρ
√
ρ−1 + 1

. (316)

Chi to alpha. Lastly, for the noise prediction models we need the map χ 7→ α denoted αχ(χ). By
definition of χ we have

χ =
σ

α
, (317)

χ
(i)
=

√
1− α2

α
, (318)

αχ(χ)
(ii)
=

1√
χ2 + 1

, (319)

where (i) hold by σ2 = 1− α2 for VP type diffusion SDEs and (ii) holds by the derivation for σγ(γ)
mutatis mutandis.

H.3 BROWNIAN MOTION

We used the Brownian interval (Kidger et al., 2021) provided by the torchsde library. In general
we would recommend the virtual Brownian tree from Jelinčič et al. (2024) over the Brownian interval,
an implementation of this can be found in the diffrax library. However, as our code base made
extensive used of prior projects developed in pytorch and diffrax is a jax library it made more
sense to use torchsde for this project.

I EXPERIMENTAL DETAILS

We provide additional details for the empirical studies conducted in Section 5. N.B., for all ex-
periments we used fixed random seeds between the different software components to ensure a fair
comparision.

I.1 UNCONDITIONAL IMAGE GENERATION

I.1.1 DIFFUSION MODEL

We make use of a pre-trained DDPM (Ho et al., 2020) model trained on the CelebA-HQ 256× 256
dataset (Karras et al., 2018). The linear noise schedule from (Ho et al., 2020) is given as

βi =
β̂0

T
+

i− 1

T (T − 1)
(β̂1 − β̂0). (320)

We convert this into a continuous time representation via the details in Appendix H.1 following Song
et al. (2021b). For this experiment we used β̂0 = 0.0001 and β̂1 = 0.2. To ensure numerical stability
due to 1

σt
terms we solve the probability flow ODE in reverse-time on the time interval [ϵ, 1] with

ϵ = 0.0002. This is a common choice to make in practice see Song et al. (2023).

I.1.2 METRICS

We use several metrics to assess the performance in unconditional image generation following Stein
et al. (2023) by using a DINOv2 feature extractor (Oquab et al., 2023), all of which are calculated
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using the 10k generated samples and 30k real samples from the CelebA-HQ dataset. Throughout this
section we will let {xi}ni=1 denote an empirical distribution drawn from our generated distribution
Pθ and let {x̂i}mi=1 denote an empirical distribution drawn from the data distribution Pdata.

FD. The Fréchet distance (FD) (Dowson & Landau, 1982) is measured using the sample mean and
covariance of the real Pdata and generated Pθ distributions denoted

FD(Pdata∥Pθ) = ∥µdata − µθ∥22 +Tr
(
Σdata +Σθ − 2(ΣdataΣθ)

1
2

)
, (321)

where (µ·,Σ·) denote the sample mean and covariances. This metric corresponds two the 2-
Wasserstein distance between two multivariate Gaussians and is thus a valid metric between the first
two moments. Heusel et al. (2017) popularized the use of this metric within the feature layer of an
Inception-V3 network (Szegedy et al., 2016) to assess the fidelity of unconditional image generation,
this metric is referred to as the Fréchet inception distance or FID. Recent works have challenged the
use of the Inception-V3 network as the feature extractor (Stein et al., 2023; Jayasumana et al., 2024;
Kynkäänniemi et al., 2023) showing that the Inception-V3 network is poorly suited for capturing a
semantic view of images which correlates well to human judgment. In particular, Stein et al. (2023)
shows that using DINOv2 (Oquab et al., 2023) for the feature extractor results in a metric which is
significantly more aligned with human judgment.

FD∞. FD∞ proposed by Chong & Forsyth (2020) is a modification of FD which aims to remove
the inherent bias induced by using a finite number of empirical samples. The samples is determined
by evaluating FD over 15 regular intervals over the number of total samples and fitting a linear trend
to the 15 data points to infer a trend for FD as the number of empirical samples, N → ∞.

Precision, recall, density and coverage. The density metric (Naeem et al., 2020) is used as a
proxy to measure sample fidelity and improves upon the earlier precision metric (Kynkäänniemi
et al., 2019; Sajjadi et al., 2018). The metric is based upon nearest neighbours distance computed in a
representation space and counts how many real-sample neighbourhood balls contain the generated
sample. Likewise to quantify sample diversity we use the coverage metric (Naeem et al., 2020) which
improves upon the earlier recall metric (Kynkäänniemi et al., 2019; Sajjadi et al., 2018). The density
metric is given by

density(Pdata,Pθ) =
1

kn

n∑
i=1

m∑
j=1

1B(x̂j ,δk(x̂j))(xi), (322)

where 1A(·) denotes the indicator function for set A, B(x, r) constructs a Euclidean ball centered at
x with radius r, and δk(x̂j) is the distance to the k-th nearest neighbour in {x̂i}mi=1, excluding itself.
The precision metric is given by

precision(Pdata,Pθ) =
1

n

n∑
i=1

1⋃m
j=1 B(x̂j ,δk(x̂j))(xi). (323)

Similarly, coverage is given by

coverage(Pdata,Pθ) =
1

m

m∑
j=1

max
i=1,...,n

1B(x̂j ,δk(x̂j))(xi). (324)

Likewise, the recall metric is given by

recall(Pdata,Pθ) =
1

m

m∑
j=1

1⋃n
i=1 B(xi,δk(xi))(x̂j). (325)

We used k = 5 and 10k samples throughtout, as standard.

On reporting. When reporting on these metrics like in Table 1 we use bold font to denote the
best performance with a 1% error range. More formally, suppose we have a series of n data points
{xi}ni=1 that is totally ordered by some relation R. We say will denote a query point xi with bold
font if the range-normalized absolute percentage error is less than ϵ > 0, i.e.,

|maxj xj − xi|
maxj xj −mink xk

< ϵ. (326)

In our experiments we report ϵ = 0.01.
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I.1.3 HYPERPARAMETERS

We follow the suggestion of Wallace et al. (2023) and report results with EDICT using the hyper-
parameter p = 0.93. For BDIA, the original paper recommends γ = 1.0 for unconditional image
generation (Zhang et al., 2024, Section 6.1). However, we found γ = 0.5 to yield better performance,
this corroborates with the findings of Wang et al. (2024).

I.2 CONDITIONAL IMAGE GENERATION

I.2.1 DIFFUSION MODEL

We make use of Stable Diffusion v1.5 (Rombach et al., 2022) a pre-trained latent diffusion model
(LDM) model. We also use the scaled linear noise schedule given as

βi =

√ β̂0

T
+

i− 1√
T (T − 1)

(√
β̂1 −

√
β̂0

)2

. (327)

We convert this into a continuous time representation via the details in Appendix H.1 following Song
et al. (2021b). For this experiment we used β̂0 = 0.00085 and β̂1 = 0.012. To ensure numerical
stability due to 1

σt
terms we solve the probability flow ODE in reverse-time on the time interval [ϵ, 1]

with ϵ = 0.0002. This is a common choice to make in practice see Song et al. (2023).

Numerical schemes. We set the last two steps of Rex schemes to be either Euler or Euler-Maruyama
for better stability near time 0.

I.2.2 METRICS

As mentioned in the main paper we use the CLIP Score (Hessel et al., 2021) PickScore (Kirstain
et al., 2023), and Image Reward metrics (Xu et al., 2023) to asses the ability of the text-to-image
conditional generation task. We calculate each by comparing the sampled image and the given text
prompt used to produce the image. We then report the average over the 1000 samples.

CLIP score. The CLIP score measures the cosine similarity between the text and visual embeddings
with pretrained CLIP model (Radford et al., 2021) denoted as

CLIPScore(x, c) = max

{
⟨EI(x), EC(c)⟩
∥EI(x)∥∥EC(c)∥

, 0

}
, (328)

where EI : Rd → V is the image embedder and EC : Rd′ → V is the caption embedder; and where
x is the query image and c is the query caption. Thus this metric aims to measure how well our
generated images align with their prompt. In particular, we use the ViT-L/14 backbone trained by
OpenAI.

PickScore. Similar to CLIP score, PickScore finetunes a CLIP-H model on their proposed Pick-a-
Pic dataset which purportedly aligns better with human preference over CLIP score.

Image Reward. Image Reward (Xu et al., 2023) is the newest of the three metrics and uses BLIP
(Li et al., 2022) over CLIP as the backbone and finetunes the model using reward model training. The
resulting metrics achieves state-of-the-art alignment with human preferences.

On reporting. When reporting on these metrics like in Table 2 we use bold font to denote the best
performance with a 1% error range. In our experiments we report ϵ = 0.01.

I.2.3 HYPERPARAMETERS

We follow the suggestion of Wallace et al. (2023) and report results with EDICT using the hyperpa-
rameter p = 0.93. For BDIA, the original paper recommends γ = 0.5 for text-to-image generation
(Zhang et al., 2024, Section 6.1). We also ran BDIA with γ = 0.96 as suggested by Wang et al.
(2024).
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I.3 INTERPOLATION

Diffusion model. We make use of a pre-trained DDPM (Ho et al., 2020) model trained on the
CelebA-HQ 256× 256 dataset (Karras et al., 2018). We used linear noise schedule from (Ho et al.,
2020). We convert this into a continuous time representation via the details in Appendix H.1 following
Song et al. (2021b). For this experiment we used β̂0 = 0.0001 and β̂1 = 0.2. For the face pairings
we followed Blasingame & Liu (2024a;c) and used the FRLL (DeBruine & Jones, 2017) dataset.

Notably, we used the noise prediction parameterization rather than data prediction as we found that it
performed better for editing. This is likely due to the singularity of the 1

σt
terms as t → 0. Within this

parameterization we could use the time interval [0, 1] instead of [ϵ, 1] like in previous experiments
with data prediction models.

I.4 HARDWARE

All experiments were run using a single NVIDIA H100 80 GB GPU.

I.5 REPOSITORIES

In our empirical studies we made use of the following resources and repositories:

1. google/ddpm-celebahq-256 (DDPM Model)

2. stable-diffusion-v1-5/stable-diffusion-v1-5 (Stable Diffusion v1.5)

3. zituitui/BELM (Implementation of BELM, EDICT, and BDIA)

4. google-research/torchsde (Brownian Interval)

5. layer6ai-labs/dgm-eval (FD, FD∞, KD, Density, and Coverage metrics)

6. torchmetrics (CLIP score)

7. zai-org/ImageReward (Image Reward)

J CODE

In this section we provide some example code for the core components of the model to help illustrate
the core ideas.
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Code J.1: Rex forward step

def rex_forward(model_func, scheduler, xt, xt_hat, timesteps, solver='euler', coupling=0.999,
low_order_final_n_steps=0, bm=None, pred_type='data', sched_type='linear'):↪→
"""
Based on McCallum & Foster's reversible ODE solver and adapted for diffusion models.
"""

# Choose underlying solver
is_sde = (solver in SDE_SOLVERS)
psi = SOLVER_DICT[solver]

if not is_sde:
_t_to_gamma, _gamma_to_t = _gen_time_funcs(sched_type=sched_type, pred_type=pred_type)
t_to_gamma = _t_to_gamma
gamma_to_t = _gamma_to_t
gamma_to_sigma = _gamma_to_sigma if pred_type == 'data' else _chi_to_alpha

else:
_t_to_rho, _rho_to_t = _gen_time_funcs(sched_type=sched_type, rho=True, pred_type=pred_type)
t_to_gamma = _t_to_rho
gamma_to_t = _rho_to_t
gamma_to_sigma = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

# create timesteps in gamma, alt gamma^2 = rho for SDEs
gammas = t_to_gamma(scheduler, timesteps)

# Push gamma reparam back to time t and convert noise pred to data pred
if pred_type == 'data':

wrap_model = lambda gamma, x: _convert_noise_to_data(scheduler, model_func,
gamma_to_t(scheduler, gamma), x, sched_type=sched_type)↪→

else:
p = 2 if is_sde else 1
wrap_model = lambda gamma, x: p * model_func(gamma_to_t(scheduler, gamma), x)

xt.to(torch.float32)
xt_hat.to(torch.float32)

for n in tqdm(range(len(gammas)-1)):
gamma_n = gammas[n]
gamma_n1 = gammas[n+1]
h = gamma_n1 - gamma_n

sigma_n = gamma_to_sigma(gamma_n)
sigma_n1 = gamma_to_sigma(gamma_n1)

if n < (len(gammas) - 1 - low_order_final_n_steps):
if not is_sde:

_psi = lambda t, x, h: psi(wrap_model, t, x, h)
else:

_psi = lambda t, x, h: psi(wrap_model, t, x, h, bm, pred_type=pred_type)
else:

if not is_sde:
_psi = lambda t, x, h: euler(wrap_model, t, x, h)

else:
_psi = lambda t, x, h: euler_maruyama(wrap_model, t, x, h, bm, pred_type=pred_type)

xt = (sigma_n1 / sigma_n) * (coupling * xt + (1-coupling) * xt_hat) + sigma_n1 * _psi(gamma_n,
xt_hat, h)↪→

xt_hat = (sigma_n1 / sigma_n) * xt_hat - sigma_n1 * _psi(gamma_n1, xt, -h)

return xt, xt_hat
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Code J.2: Rex backward step

def rex_backward(model_func, scheduler, xt, xt_hat, timesteps, solver='euler', coupling=0.999,
low_order_final_n_steps=0, bm=None, pred_type='data', sched_type='linear'):↪→
"""
Based on McCallum & Foster's reversible ODE solver and adapted for diffusion models.
"""

# Choose underlying solver
is_sde = (solver in SDE_SOLVERS)
psi = SOLVER_DICT[solver]

if not is_sde:
_t_to_gamma, _gamma_to_t = _gen_time_funcs(sched_type=sched_type, pred_type=pred_type)
t_to_gamma = _t_to_gamma
gamma_to_t = _gamma_to_t
gamma_to_sigma = _gamma_to_sigma if pred_type == 'data' else _chi_to_alpha

else:
_t_to_rho, _rho_to_t = _gen_time_funcs(sched_type=sched_type, rho=True, pred_type=pred_type)
t_to_gamma = _t_to_rho
gamma_to_t = _rho_to_t
gamma_to_sigma = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

# create timesteps in gamma, alt gamma^2 = rho for SDEs
gammas = t_to_gamma(scheduler, timesteps)

# Push gamma reparam back to time t and convert noise pred to data pred
if pred_type == 'data':

wrap_model = lambda gamma, x: _convert_noise_to_data(scheduler, model_func,
gamma_to_t(scheduler, gamma), x, sched_type=sched_type)↪→

else:
p = 2 if is_sde else 1
wrap_model = lambda gamma, x: p * model_func(gamma_to_t(scheduler, gamma), x)

xt.to(torch.float32)
xt_hat.to(torch.float32)

coupling_inv = 1. / coupling

for n in tqdm(range(len(gammas) - 2, -1, -1)):
gamma_n = gammas[n]
gamma_n1 = gammas[n+1]
h = gamma_n1 - gamma_n

sigma_n = gamma_to_sigma(gamma_n)
sigma_n1 = gamma_to_sigma(gamma_n1)

if n < (len(gammas) - 1 - low_order_final_n_steps):
if not is_sde:

_psi = lambda t, x, h: psi(wrap_model, t, x, h)
else:

_psi = lambda t, x, h: psi(wrap_model, t, x, h, bm, pred_type=pred_type)
else:

if not is_sde:
_psi = lambda t, x, h: euler(wrap_model, t, x, h)

else:
_psi = lambda t, x, h: euler_maruyama(wrap_model, t, x, h, bm, pred_type=pred_type)

xt_hat = (sigma_n / sigma_n1) * xt_hat + sigma_n * _psi(gamma_n1, xt, -h)
xt = (sigma_n / sigma_n1) * (coupling_inv * xt) + (1 - coupling_inv) * xt_hat - sigma_n *

coupling_inv * _psi(gamma_n, xt_hat, h)↪→

return xt, xt_hat

In Code J.3 we provide an implementation of the ShARK method. The official implementation can be
found at https://github.com/patrick-kidger/diffrax/blob/main/diffrax/
_solver/shark.py.
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Code J.3: ShARK

def ShARK(model, time_var, x, h, bm, pred_type='data'):
t_to_w = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

x_sg = x / t_to_w(time_var)

if pred_type == 'data':
a, b = time_var, time_var + h

else:
a, b = time_var.pow(2), (time_var + h).pow(2)

if h < 0:
a, b = b, a

h_corr = h if pred_type == 'data' else (time_var + h).pow(2) - time_var.pow(2)

W, U = bm(a, b, return_U=True)
W, U = W.to(x.device), U.to(x.device)

if h < 0:
H = U / (-h_corr) - 0.5 * W
W = -W

else:
H = U / (-h_corr) - 0.5 * W

Z1 = x_sg + H

f1 = model(time_var, t_to_w(time_var) * Z1)

Z2 = x_sg + h * (5/6) * f1 + (5/6) * W + H
f2 = model(time_var + 5/6 * h, t_to_w(time_var + 5/6 * h) * Z2)

return h * (0.4 * f1 + 0.6 * f2) + W
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Figure 7: Inversion followed by sampling with Rex (Euler) 5 steps, ζ = 0.999. Data prediction. Top
row tracks xn, bottom row x̂n.

Figure 8: Inversion followed by sampling with Rex (Euler) 5 steps, ζ = 0.999. Noise prediction. Top
row tracks xn, bottom row x̂n.

K VISUALIZATION OF INVERSION AND THE LATENT SPACE

We conduct a further qualitative study of the latent space produced by inversion and the impact various
design parameters play. First in Figure 7 we show the process of inverting and then reconstructing
a real sample. Notice that while the data prediction formulation worked great in sampling and still
possesses the correct reconstruction, i.e., it is still reversible, the latent space is all messed up. The
variance of (xn, x̂n) tends to about 107, many orders of magnitude too large! We did observe that
raising ζ = 1− 10−9 did help reduce this, but it was still relatively unstable. N.B., these trends hold
in a large number of discretization steps (we tested up to 250); however, for visualization purposes
we chose fewer steps.

Conversely, the noise prediction formulation is much more stable, see Figure 8. The variance of
(xn, x̂n) is on the right order of magnitude this time, however, there are strange artefacting and it is
clear the latent variables are not normally distributed.
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Figure 9: FAILURE CASE! Inversion followed by sampling with Rex (ShARK) 5 steps, ζ = 0.999.
Data prediction. Top row tracks xn, bottom row x̂n.

Figure 10: Inversion followed by sampling with Rex (ShARK) 5 steps, ζ = 0.999. Noise prediction.
Top row tracks xn, bottom row x̂n.

Moving to the SDE case with ShARK in Figure 9, we see that the data prediction formulation is
so unstable in forward-time that we ran into overflow errors and can no longer achieve algebraic
reversibility. However, the noise parameterization with ShARK, see Figure 10, works very well with
the latent variables appearing to be close to normally distributed.

L ADDITIONAL RESULTS

L.1 UNCONDITIONAL IMAGE GENERATION

We present some additional ablations on the underlying solver for Rex in Table 4.

Table 4: Quantitative comparison of different underlying schemes Φ used in Rex in terms of FID (↓)
for unconditional image generation with a pre-trained DDPM model on CelebA-HQ (256× 256).

Solver
Steps Euler Midpoint RK4 Euler-Maruyama ShARK

10 36.65 x 31.00 40.79 59.89
20 24.63 23.36 23.49 27.80 32.18
50 21.45 21.45 21.35 19.77 21.93

L.2 CONDITIONAL IMAGE GENERATION

We present some uncrated samples using Rex with various underlying solvers and discretization
steps.
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Figure 11: Uncurated samples created using Rex (RK4) and Stable Diffusion v1.5 (512× 512) and
10 discretization steps.
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Figure 12: Uncurated samples created using Rex (RK4) and Stable Diffusion v1.5 (512× 512) and
50 discretization steps.
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Figure 13: Uncurated samples created using Rex (ShARK) and Stable Diffusion v1.5 (512× 512)
and 10 discretization steps.

68



3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Figure 14: Uncurated samples created using Rex (ShARK) and Stable Diffusion v1.5 (512× 512)
and 50 discretization steps.
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