Under review as a conference paper at ICLR 2026

REX: REVERSIBLE SOLVERS FOR DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have quickly become the state-of-the-art for numerous gener-
ation tasks across many different applications. Encoding samples from the data
distribution back into the model’s underlying prior distribution, often called the in-
version of diffusion models, is an important task that arises from many downstream
applications. Prior approaches for solving this task, however, are often simple
heuristic solvers that come with several drawbacks in practice. In this work, we
propose a new family of solvers for diffusion models by exploiting the connection
between this task and the broader study of algebraically reversible solvers for
differential equations. In particular, we construct a family of reversible solvers
using an application of Lawson methods to construct exponential Runge-Kutta
methods for the diffusion models; we call this family of reversible exponential
solvers Rex. In addition to a rigorous theoretical analysis of the proposed solvers,
we also demonstrate the utility of the methods through a variety of empirical
illustrations.

1 INTRODUCTION

Diffusion models have quickly become the state-of-the-art in generation tasks across many varied
modalities from images (Rombach et al., 2022) and video (Blattmann et al., 2023) to protein gen-
eration (Skreta et al., 2025b) and biometrics (Blasingame & Liu, 2024d). The sampling process of
diffusion models is done through numerically solving an It6 stochastic differential equation (SDE)
or related ordinary differential equation (ODE) which describes the evolution of a sample drawn
for some prior noise distribution to the data distribution. Inversion of the sampling procedure, i.e.,
constructing a bijective map from the data distribution back to the prior distribution, is invaluable for
many downstream applications.

While the true (stochastic) flow maps of diffusion models do provide such a bijection, in practice we
need to solve such models numerically, thereby incurring truncation errors breaking the bijection.
Thus to obtain the exact inversion of a diffusion model we are looking for a scheme which is
algebraically reversible. I.e., we would like a numerical scheme which enables us to move between
the data and prior distribution without any reconstruction errors. Recently, several works have
explored solving this problem for the probability flow ODE, namely, EDICT (Wallace et al., 2023),
BDIA (Zhang et al., 2024), and BELM (Wang et al., 2024).

However, designing such inversion methods is very tricky, as such solvers are plagued by issues of
low order of convergence, lack of stability, amongst other undesirable properties; moreover, it is
even more difficult to construct such schemes for SDEs. To the best of our knowledge there does not
currently exist a scheme for exact inversion for diffusion SDEs without storing the entire trajectory of
the Brownian motion in memory a la Wu & la Torre (2023) which is trivially reversible, but not the
type of reversibility we are interested with.

To address these issues we propose Rex, a family of reversible solvers for diffusion models which can
1. Work for both the probability flow ODE and reverse-time SDE with both data and noise
prediction parameterizations,
2. Obtain an arbitrarily high order of convergence (in the ODE case), and

3. Exactly invert a diffusion SDE without storing the entire realization Brownian motion in
memory.

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021a;b) have quickly become one of the most popular paradigms for constructing generative models.
Consider the following It6 stochastic differential equation (SDE) defined on time interval [0, T:

dX, = f(t) X, dt + g(t) AW, (M

where f,g € C*>([0,T])" form the drift and diffusion coefficients of the SDE and where { W };¢(0,7]
is the standard Brownian motion on the time interval. The coefficients f, g are chosen such that the
SDE maps clean samples from the data distribution Xy ~ ¢(X) at time 0 to an isotropic Gaussian
at time T'. More specifically, for a noise schedule oy, o, € C*°([0,T]; R>() consisting of a strictly
monotonically decreasing function o and strictly monotonically increasing function o, the drift and
diffusion coefficients are found to be

O 2 -2)

f(t) ay ’ g (t) Oy 26% Ut) (2)
where with abuse of notation 62 denotes the time derivative of the function o2 (Lu et al., 2022b;
Kingma et al., 2021)—this ensures that X; ~ A (a; X0, o7I). However, we wish to map from noise
back to data, as such we employ the result of Anderson (1982) to construct the reverse-time diffusion
SDE of Equation (1), which is found to be

dX; = [f() X — ¢°(t) Ve log pr (X)) dt + g(t) AW, A3)

where dt is a negative timestep, {Wt}te[O,T] is the standard Brownian motion in reverse-time,
and p;(x) = p(t,x) is the marginal density function. Then, if we can learn the score function
(t,x) — Vg logpi(x) (Song et al., 2021b)—or some other equivalent reparameterization, e.g., noise
prediction (Song et al., 2021a; Ho et al., 2020) or data prediction (Kingma et al., 2021)—we can then
draw samples from our data distribution ¢(X) by first sampling some X7 ~ p(X) from the Gaussian
prior and then employing a numerical SDE solver, e.g., Euler-Maruyama, to solve Equation (3) in
reverse-time. Notably, through careful massaging of the Fokker-Planck-Kolomogorov equation for
the marginal density, one can construct an ODE which is equivalent in distribution to Equation (3)
(Song et al., 2021b; Maoutsa et al., 2020), yielding the highly popular probability flow ODE

g (1)
2

dx
o = We -

Vz log pt(mt)' @

Reversible solvers for neural differential equations. Recently, researchers studying neural
differential equations have begun to propose several algebraically reversible solvers as an alternative
to both traditional discretize-then-optimize and optimize-then-discretize (the continuous adjoint
equations) (Kidger, 2022, Chapters 5.1 & 5.2) which are used to perform backpropagation through
the neural differential quation. Consider some prototypical neural ODE of the form &; = ug(t, ;)
with vector field up € C"(R x R%; R%) which satisfies the usual regularity conditions. Then consider
a single-step numerical scheme of the form @, 11 = @,, + ®p(¢y, T, up). Every numerical scheme
® is reversible in the sense that we can rewrite the forward step as an implicit scheme of the form
Ty = Tpy1 — Pp(tn, Tn, wg); however, this requires fixed point iteration” and is both approximate
and computationally expensive. This type of reversibility is known as analytic reversibility within
the neural differential equations community (Kidger, 2022, Section 5.3.2.1). What we would prefer,
however, is a form of reversibility that can be expressed in closed-form.

Beyond symplectic solvers (Vogelaere, 1956) which are trivially reversible?®, several algebraically
reversible solvers have been proposed in light of the large popularity of neural ODEs. Namely, the
following methods have been proposed: the asynchronous leapfrog method (Mutze, 2013; Zhuang
et al., 2021), reversible Heun method (Kidger et al., 2021), and McCallum-Foster method (McCallum
& Foster, 2024). The last of these is of particular interest to us, as it is the only algebraically
reversible ODE solver to have a non-trivially region of stability and arbitrarily high convergence
order. As McCallum & Foster (2024) simply refer to their method as reversible X where X is the
underlying single-step solver, we opt to refer to their method as the McCallum-Foster method which
we summarize below in Definition 2.1.

'We let C"(X; Y') denote the class of r-th differentiable functions from X to Y. If Y is omitted then Y = R.

?If the step size h is small enough.

3Due to symplectic integrators being developed for solving Hamiltonian systems, they are intrinsically
reversible by construction (Greydanus et al., 2019).

Under review as a conference paper at ICLR 2026

1

— @@ ~Q-Q—=

L0 O]
@% x(1-¢) @ @

Xas @anﬂ @ \ o

(a) Forward step (b) Backward step

XWp,

RGN

Figure 1: The computation graph of the Rex solver. Here ¥;, denotes an exponentially weighted
Runge-Kutta scheme (cf. Section 3.1) or exponential stochastic Runge-Kutta scheme (cf. Section 3.2),
¢ € (0,1) is a coupling parameter, and {w, }2Y_; denotes the set of weighting variables derived
from the exponential schemes. The particular values of w,, are discussed in Proposition 3.3. The
visualization of the computation graph is inspired by McCallum & Foster (2024, Figure 2).

Definition 2.1 (McCallum-Foster method). Initialize &9 = x(and let ¢ € (0, 1]. Consider a step
size of h, then a forward step of the McCallum-Foster method is defined as

Tnt1 = <wn + (1 - C)i'n + (I’h(tn7(%n)7

. . &)
Lpt+1 = Tp — th(thrlvwnqu)a
and the backward step is given as
:on - :inJrl + th(thrl; wn+1)7
(6)

Ly = C_la’nJrl + (1 - C_l)in - C_lq)h(tmfi’n)'
3 REX

In this section we introduce the Rex family of reversible solvers for diffusion models. Whilst one
could straightforwardly apply a pre-existing reversible solver like asynchronous leapfrog, reversible
Heun, or the McCallum-Foster method directly to the probability flow ODE in Equation (4), there
are several reasons to consider an alternative approach. Stepping back from reversible solvers for a
moment, we consider the broader literature of constructing numerical schemes for diffusion models.
It is well known that we can exploit the structure of the drift and diffusion coefficients, i.e., f(t)
and g(t), to remove the discretization error from the linear term and transform the stiff ODE into a
non-stiff form (Lu et al., 2022b; Zhang & Chen, 2023); a similar idea also holds for the reverse-time-
diffusion SDE (see Lu et al., 2022a; Gonzalez et al., 2024; Blasingame & Liu, 2024a). Moreover,
recall that the definitions of the drift and diffusion coefficients contain the time derivatives of the
noise schedule (o, o), this structure enables us to greatly simplify the ODE/SDE and express a
number of terms in closed-form again reducing approximation errors.

In Figure 1 we present an overview of the Rex computational graph. N.B., the graph for both the
ODE and SDE formulations are identical with the only difference being the weighting terms {w,, }
and the underlying numerical scheme ¥. The rest of this section is organized as follows: first we
discuss applying the exponential integrators to the probability flow ODEs (see Section 3.1), then the
reverse-time SDEs (see Section 3.2), and lastly we present the general Rex scheme (see Section 3.3).

3.1 PROBABILITY-FLOW ODE

Before constructing Rex we must first discuss the construction of ¥, from ®;, and how to derive the
reparameterized ODE, i.e., step 1 in Figure 2. In this section we review how to reparameterize the
ODE in Equation (4) into this more convenient form.

Generalized nomenclature for data and noise prediction models. As alluded to earlier, there exist
two popular reparameterizations of the score function which are used widely in practice, namely the
noise prediction (Ho et al., 2020) and data prediction (Kingma et al., 2021) formulations. Following
the conventions of Lipman et al. (2024) we write noise prediction model as 7, () = E[X7|X; =

Under review as a conference paper at ICLR 2026

Exponential integrators &

e 5 T, change-of-variables dy 5
Eal A e (1 GE) > Sac = Prfo (g’ﬁyg)

: |

On Lawson method
LTn+1 = %mn + \I’h(tna mn) < Yntl = Yn + q:'h(tn7 yn)

Figure 2: Overview of the construction of ¥ for the probability flow ODE from an underlying
Runge-Kutta scheme ® for the reparameterized ODE in Equation (8). The parameters 3; and ¢; are
chosen to suit the data or noise prediction parameterizations (cf. Section 3.1). The graph holds for
the SDE case mutatis mutandis.

x] and write data prediction model as xq;(z) = E[X|X; = «]. In this work we consider both
a trained noise and data prediction model which we will denote generally by the neural network
fo(t,). Additionally, we place the usual regularity constraints (¢f. Lu et al., 2022b, Appendix B.1)
on the model to ensure the existence and uniqueness of the ODE/SDE solutions. It is well known
(Blasingame & Liu, 2025, Equation (19)) that the ODE in Equation (4) can be rewritten as

da; Bt o1y — 010y

=t " fl(t 7

@~ 5%t 5, Jo(t, xt), (7
where 5; = —ay for noise prediction with and /3, = o, for target prediction. This choice of 5 and fy

thus depends on the particulars of the noise or data reparameterization.

Remark 3.1. Without loss of generality any of the results for the probability flow ODE apply to any
arbitrary flow model which models an affine probability path (Lipman et al., 2024) with the correct
conversions to the flow matching conventions.*

It is well observed that the structure of the ODE in Equation (7) can be greatly simplified via
exponential integrators (Lu et al., 2022b; Zhang & Chen, 2023; Blasingame & Liu, 2024a). We
make use of this insight to rewrite the ODE in a form which eliminates the discretization error in the
f(t)ax; linear term along with a time reparameterization which will simplify the construction of the
reversible solver. To achieve the time reparameterization we introduce a new variable ¢; defined as
the signal-to-noise ratio (SNR) o /o for the data prediction formulation and defined as the inverse
SNR o/« for the noise prediction formulation. Using this time change we find Proposition 3.1, in
Section C.1.1 we provide the full derivation of this result.

Proposition 3.1 (Reparameterization of the probability flow ODE). The probability flow ODE in
Equation (7) can be rewritten in ¢, as

dy, Be

ZJs _ e 8
< Br fo <€, 5.Y) (®)
where Yy, = %wt.

The remaining step to constructing Rex is to perform a similar process but for an underlying explicit
Runge-Kutta scheme by making use of Lawson methods (a particular class of exponential integrators)
(Lawson, 1967; Hochbruck et al., 2020). However, since both the ODE and SDE version of Rex share
the same computational graph, we will delay this presentation until we have discussed the SDE case.

3.2 REVERSE-TIME DIFFUSION SDE

Unlike with the ODE scenario the forms of the data and noise prediction formulations differ more
significantly. As such we opt to focus only on the data prediction formulation which slightly less
complicated and leave the details on the noise prediction formulation to Appendix C.2. It is well
known (Lu et al., 2022a) that the reverse-time diffusion SDE in Equation (3) can be rewritten in terms
of the data prediction model as

dX, = [(f(t) + gi(;)) X, — atf(t)mglt(xt) dt + g(t) dW,.)

2
t 0%

*I.e., sampling in forward-time such that X ~ ¢(X) and X ~ p(X).

Under review as a conference paper at ICLR 2026

Remarkably, following a similar derivation to the one above for the probability flow ODE yields a
time-changed SDE with a very similar form to the one above, sans the Brownian motion term and
different weighting terms. We present this result in Proposition 3.2 with the full proof in Section C.2.2.

Proposition 3.2 (Time reparameterization of the reverse-time diffusion SDE). The reverse-time SDE
in Equation (9) can be rewritten in terms of the data prediction model as

or Y10, ar

2
O (e}
where Yy = “F— X, and ¢o; = =%.
gyar i

Stochastic Runge-Kutta. Before constructing a reversible solver for the reverse-time SDE in
Equation (10), we will zoom out to contextualize the discussion within the study of neural SDEs
and to introduce stochastic Runge-Kutta (SRK) methods. Constructing a numerical scheme for
SDEs is greatly more complicated than ODEs due to the complexities of stochastic processes
and in particular stochastic integrals. Unlike numerical schemes for ODEs which are usually
built upon truncated Taylor expansions, SDEs require constructing truncated Itd or Stratonovich-
Taylor expansions (Kloeden & Platen, 1991) which results in numerous iterated stochastic integrals.
Approximating these iterated integrals, or equivalently Lévy areas, of Brownian motion is quite
difficult (Clark & Cameron, 2005; Mrongowius & RoBler, 2022); however, SDEs with certain
constraints on the diffusion term may use specialized solvers to further achieve a strong order of
convergence with simple approximations of these iterated stochastic integrals. As such there are
several ways to express SRK methods depending on the choice of approximating these iterated
integrals. We choose to follow the work of Foster et al. (2024) which makes usage of the space-time
Lévy area in constructing such methods. The space-time Lévy area (see Foster et al., 2020, Definition
3.5; ¢f. RoBler, 2010) is defined below in Definition 3.2.

Definition 3.2 (Space-time Lévy area). The rescaled space-time Lévy area of a Brownian motion
{W;} on the interval [s, t] corresponds to the signed area of the associated bridge process

1 [t uU—S
Hg; = — - — 11
s,t L [’ <Ws7u h Ws,t) du; ()

where h ==t — sand W, , = W,, — W for u € [s, t].

In particular, for additive-noise SDEs which our SDE in Equation (10) is, the Itd and Stratonovich
integrals coincide and the numerical scheme is significantly simpler, for more details we refer to
Appendix B.

3.3 THE REX SOLVER

Equipped with both Proposition 3.1 and Proposition 3.2 we are now ready to construct Rex. The key
idea is to construct a reversible scheme from an explicit (S)RK scheme (we provide more detail in
Appendix B) for the reparameterized differential equation using the McCallum-Foster method and
then apply Lawson methods to bring the scheme back to the original state variable, cf. Figure 2.

We present the full scheme for the Rex solver below in Proposition 3.3 with the full derivation found
in Appendix C.

Proposition 3.3 (Rex). Without loss of generality let ® denote an explicit SRK scheme for the SDE
in Equation (10) with extended Butcher tableau a;j;, b;, c;, aZW, af{, bW bH . Fix anw € Q and let
W be the Brownian motion over time variable . Then the reversible solver constructed from ® in
terms of the underlying state variable X is given by the forward step

Wn - -~
Xn+1 = TH (CXn + (1 - C)Xn) + wn+1‘:[lh(§n7Xna Wn(w))7

- wnil > (42
Xnt1 = ” X = W1 (o1, Xng1, Wi (w)),
and backward step
. Wy &
X, = W1 Xn,+1 + wn‘I’—h(gn-l'l? X”+1’ Wn(w))’
n+
(13)
Wn —1\ v - X
Xn = = K+ (1= D X = w0l h(sn, X, Wa (),
n+

Under review as a conference paper at ICLR 2026

with step size h ‘= ¢, +1 — G, and where W denotes the following scheme

i—1
~ 1 ~
Z;, = w—Xn + hz [aijfg (gn +cjh, wgn_kcthj)] + a}/VWn(w) + af{Hn(w),

s (14)
\Ilh(gnv Xna Wg(w)) =h Z |:bif0 <§n + Ciha w§n+c,iiLZAj):| + bWWn(w) + bHHn(w)a
j=1

where f? denotes the data prediction model, w,, = 2= and ¢; = p;. The ODE case is recovered
p o @

for an explicit RK scheme ® for the ODE in Equationﬂ (70) with w,, = o, and ¢; = ~y; For noise
prediction models we have f° denoting the noise prediction model with w, = o, and ¢, = g—’;
We still have yet to address how to construct an algebraically reversible scheme for a stochastic
process, but merely stated it above in Proposition 3.3, we will now, however, justify our design
decisions above. The key idea is to use the same realization of the Brownian motion in both the
forward pass or backward pass. This has been explored in prior works studying the continuous
adjoint equations for neural SDEs (Li et al., 2020; Kidger et al., 2021) and essentially amounts to
fixing the realization of the Brownian motion along with clever strategies for reconstructing the same
realization. Formally, let (€2, F, P) be the probability space and let W} : 2 — R%= be the standard
Brownian motion on [0, T']. Then for each reversible solve we fix an w € 2. This can be justified if
we view the SDE from a roughs path perspective, i.e., the Itd6-Lyons map (Lyons, 1998) provides a
deterministic continuous map from the initial condition of the SDE and realization of the Brownian
motion to the solution trajectory, see Appendix F for a more detailed explanation.

Numerical simulation of the Brownian motion. The naive way to fix the realization of the
Brownian motion for both the forward pass is to simply store the entire realization of the Brownian
motion in system memory, i.e., record { W,,(w)}_; a la Wu & la Torre (2023).> However, recent
work by Li et al. (2020); Kidger et al. (2021); JelinCic et al. (2024) have proposed much more elegant
solutions which enable one to recalculate any realization of the Brownian motion from a single seed
given access to a splittable pseudo-random number generator (PRNG) (Salmon et al., 2011). N.B.,
we discuss the more nuanced technical details of such approaches in Appendix G, for now it suffices
to say we adopt a more elegant solution to reconstructing the Brownian motion in the backward step.

4 THEORETICAL RESULTS

4.1 CONVERGENCE ORDER AND STABILITY

A nice property of the McCallum-Foster is that the the convergence order of the underlying explicit
RK scheme @ is inherited by the resulting reversible scheme McCallum & Foster (2024, Theorem
2.1). However, does this property hold true for Rex? Fortunately, it does indeed hold true which we
show in Theorem 4.1 with the proof provided in Appendix D.2.

Theorem 4.1 (Rex is a k-th order solver). Let ® be a k-th order explicit Runge-Kutta scheme for
the reparameterized probability flow ODE in Equation (70) with variance preserving noise schedule
(at,0¢). Then Rex constructed from ® is a k-th order solver, i.e., given the reversible solution
{@n, 2, }N_, and true solution =, we have

< Ch¥, (15)

Tn — xt,

for constants C, hyyqr > 0 and for step sizes h € [0, hinaa)-

We can show a similar result for the underlying scheme W constructed from an explicit SRK ® with
the full proof provided in Appendix D.3.

Theorem 4.2 (Convergence order for stochastic ¥). Let ® be a SRK scheme with strong order of
convergence & > 0 for the reparameterized reverse-time diffusion SDE in Equation (10) with variance
preserving noise schedule (o, 0t) and ap > 0. Then ¥ constructed from ® has strong order of
convergence &.

>This clearly prohibits the use of adaptive step-size solvers.

Under review as a conference paper at ICLR 2026

(2) DDIM (b) EDICT (c) BDIA (d) O-BELM (e) Rex (RK4)

Figure 3: Qualitative comparison of unconditional sampling with different reversible solvers with a
pre-trained DDPM model on CelebA-HQ (256 x 256) with the non-reversible DDIM as a baseline.
Each method used 10 discretization steps.

Stability. One drawback of reversible solvers is their rather unimpressive stability, in fact until the
work of McCallum & Foster (2024) there were no reversible methods which had a non-trivial region
of stability. We discuss this more in detail Appendix A.2 along with illustrating the poor stability
characteristics of BDIA and O-BELM (see Corollaries A.4.1 and A.3.2). However, since Rex is built
upon the McCallum-Foster method the ODE solver has some stability.®

4.2 RELATION TO EXISTING SOLVERS

Next we show that several variants of Rex are actually the reversible versions of several well-known
solvers in the literature for diffusion models, e.g., the DPM-Solvers (Lu et al., 2022b). We state this
result below in Theorem 4.3 with the full details and proofs in Appendix E.

Theorem 4.3 (Rex subsumes previous solvers). The underlying scheme used W in Rex given by

1 ! R
Z; = w—Xn + hz [aijfe (gn + cjh,w§n+cthj)] + aV W, (w) + o’ H, (w),

j=1

Xt = Xyt wner (B [0 (s ey, ronZ;)| + 6" Wa(w) + 67 H, (@) | |

(16)
subsumes the following solvers for diffusion models

1. DDIM (Song et al., 2021a),
2. DPM-Solver-1, DPM-Solver-2, DPM-Solver-12 (Lu et al., 2022b),

3. DPM-Solver++1, DPM-Solver++(2S), SDE-DPM-Solver-1, SDE-DPM-Solver++1 (Lu
et al., 2022a),

4. SEEDS-1 (Gonzalez et al., 2024), and
5. gDDIM (Zhang et al., 2023).
Corollary 4.3.1 (Rex is reversible version of previous solvers). Rex is the reversible revision of the

well-known solvers for diffusion models in Theorem 4.3.

5 EMPIRICAL RESULTS

5.1 IMAGE GENERATION

Unconditional image generation. Following prior works (Wang et al., 2024; Wallace et al., 2023)
we begin by exploring the ability of Rex to function as a traditionaly solver for diffusion models.
To evaluate this we drew 10,240 samples using a DDPM model (Ho et al., 2020) pretrained on the

%].e., in the sense of the linear test equation, see Appendix A.2 for more details.

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison of different reversible solvers for unconditional image generation
with a pre-trained DDPM model on CelebA-HQ (256 x 256) with the non-reversible DDIM as a
baseline. 1 denotes v = 0.5 and I denotes v = 1.0 for BDIA hyperparameter.

Steps Solver FD (}) FD. (J) Precision (1) Recall (1) Density (1) Coverage (1)
EDICT 1042.89 1034.82 0.49 0.10 0.19 0.11
BDIAT 900.95 894.23 0.61 0.10 0.28 0.14
BDIA* 1284.48 1274.46 0.41 0.00 0.14 0.05
O-BELM 605.52 596.47 0.78 0.18 0.56 0.34
10 Rex (RK4) 633.90 617.11 0.81 0.22 0.64 0.36
Rex (Midpoint) 607.20 597.04 0.78 0.21 0.60 0.37
Rex (Euler-Maruyama) 610.16 598.56 0.79 0.10 0.61 0.37
DDIM 727.75 716.41 0.75 0.14 0.49 0.27
EDICT 752.68 743.89 0.68 0.15 0.36 0.21
BDIAT 611.47 601.37 0.76 0.19 0.50 0.30
BDIAY 982.30 963.62 0.54 0.10 0.22 0.10
O-BELM 489.94 477.82 0.82 0.23 0.71 0.43
20 Rex (RK4) 547.24 533.30 0.82 0.27 0.71 0.43
Rex (Midpoint) 539.96 527.85 0.81 0.26 0.66 0.41
Rex (Euler-Maruyama) 460.42 447.01 0.86 0.21 0.91 0.51
DDIM 570.11 555.26 0.79 0.20 0.62 0.38
EDICT 551.13 534.73 0.78 0.24 0.60 0.37
BDIAT 500.79 489.24 0.82 0.27 0.70 0.44
BDIAF 798.47 790.17 0.71 0.12 0.39 0.18
O-BELM 476.29 463.07 0.84 0.29 0.77 0.45
50 Rex (RK4) 511.17 498.94 0.80 0.27 0.69 0.44
Rex (Midpoint) 505.67 494.94 0.81 0.29 0.70 0.44
Rex (Euler-Maruyama) 391.93 381.01 0.87 0.28 0.98 0.56
DDIM 490.88 479.87 0.80 0.26 0.67 0.45

CelebA-HQ (Karras et al., 2018) dataset with the various solvers each using the same fixed seed.
Following Stein et al. (2023), we report the Fréchet distance (FD) with DINOv2 (Oquab et al., 2023)
feature extractor along with FD., (Chong & Forsyth, 2020). We also report the precision and recall
metrics (Kynkéddnniemi et al., 2019); along with density and coverage metrics (Naeem et al., 2020)
which serve as a proxy for fidelity and sample diversity respectively. We provide more details on
these metrics in Section I.1.2. In Table 1 we compare pre-existing methods for exact inversion with
diffusion models against Rex, along with including the non-reversible DDIM solver as a baseline. We
observe that the Rex family of reversible solvers performs exceedingly well, surpassing the baseline
non-reversible DDIM scheme, handily beating EDICT and BDIA, and often outperforming O-BELM.
We observe that our reversible SDE scheme consistently performs quite well outside of the very few
step-size regime (a well known limitation of SDE schemes). N.B., that unlike the results reported
for the other reversible solvers we did not search for the optimal hyperparameters for Rex for the
sampling task. In Figure 3 we present a visual qualitative comparison of the different solvers using
the same initial noise. We provide additional experimental details in Appendix I.1.

Table 2: Quantitative comparison of different reversible solvers in terms of average CLIP score,
Image Reward, and PickScore. for conditional text-to-image generation with Stable Diffusion v1.5
(512 x 512) with the non-reversible DDIM as a baseline.

CLIP score (1) Image Reward (1) PickScore (1)
Solver / Steps 10 20 50 10 20 50 10 20 50
EDICT 2797 31.04 31.17 -1.219 -0.134 -0.055 19.52 20.84 21.05
BDIA v = 0.96 31.11 3152 31.54 -0.111 0.067 0.087 20.52 21.01 21.19
BDIA v = 0.5 31.57 3148 3148 -0.006 0.055 0.066 2098 21.16 21.21
O-BELM 3147 3143 3151 0.051 0.105 0.160 20.88 21.00 21.16
Rex (Midpoint) 31.62 31.64 3160 0.119 0.179 0.198 21.28 21.38 2141
Rex (RK4) 31.69 31.60 31.57 0.156 0.187 0.195 2135 2140 2141
Rex (Euler-Maruyama) 31.68 31.56 3133 0.222 0.239 0.264 21.50 21.66 21.70
Rex (ShARK) 3155 3156 3139 0239 0249 0.263 21.51 21.66 21.72
DDIM 31.78 31.76 31.24 0.033 0.136 0247 21.06 2129 21.04

Under review as a conference paper at ICLR 2026

(a) DDIM (b) EDICT (c) BDIA (d) O-BELM (e) Rex (RK4)

Figure 4: Qualitative comparison of text-to-image conditional sampling with different reversible
solvers with Stable Diffusion v1.5 (512 x 512) and 10 discretization steps. Prompts from top to
bottom are: “White plate with fried fish and lemons sitting on top of it.”’, “A lady enjoying a meal of
some sort.”, and “A young boy riding skis with ski poles.”.

Conditional image generation. To further evaluate Rex we drew text-conditioned samples using
Stable Diffusion v1.5 (Rombach et al., 2022) with a set of 1000 randomly selected captions from
COCO (Lin et al., 2014) with the various solvers each using the same fixed seed. We report
performance in terms of the CLIP Score (Hessel et al., 2021); in terms of the state-of-the-art text-to-
image scoring function PickScore (Kirstain et al., 2023); and in terms of the state-of-the-art Image
Reward metric (Xu et al., 2023) which assigns a score that reflects human preferences, namely,
aesthetic quality and prompt adherence. The later metric was recently become a popular metric
for evaluating the performance of diffusion models (Skreta et al., 2025a). In Table 2 we compare
pre-existing methods for exact inversion with diffusion models against Rex, along with including the
non-reversible DDIM solver as a baseline. We observe that Rex does very well compared to other
reversible solvers, and in particular the stochastic variants of Rex perform extremely well. In Figure 4
we present a visual qualitative comparison of the different solvers using the same initial noise. We
provide additional experimental details in Appendix I.2.

5.2 IMAGE INTERPOLATION

We explore interpolating between the inversions of two images, a difficult problem as the inverted
space is often non-Gaussian (Blasingame & Liu, 2024b). We illustrate an example of this in Figure 5
exploring interpolation with an unconditional DDPM model. We notice the that stochastic Rex has
much better interpolations properties than both ODE inversions corroborating with Nie et al. (2024).
Both ODE variants seem to fail quite noticeably, unable to smoothly interpolate between the two
samples. N.B., we noticed that the inverted samples with ShARK had variance much closer to one,
whereas the other inverted samples had much larger variance, likely contributing to the distortions,
we discuss this more in Appendix K.

Under review as a conference paper at ICLR 2026

Figure 5: Unconditional interpolation between two real images from FRLL (DeBruine & Jones, 2017)
with a DDPM model trained on CelebA-HQ. Top row is BELM, middle is Rex (Euler), and bottom is
Rex (ShARK). 50 steps used for each method.

6 CONCLUSION

We propose Rex a family of algebraically reversible solvers for diffusion models which can obtain
arbitrarily a high order of convergence (for the ODE case). Moreover, we propose (to the best of
our knowledge) the first method for exact inversion for diffusion SDEs without storing the entire
trajectory of the Brownian motion. Our empirical illustrations show that not only does Rex have nice
theoretical properties but it also functions as a capable numerical scheme for sampling with diffusion
models. The proposed method can be incorporated into preexisting applications wherein preserving
the bijections of flow maps is important, leading to many exciting possible applications.

ETHICS STATEMENT

We recognize that Rex as numerical scheme for sampling with diffusion models could potentially be
misused used for malicious applications particularly when used in editing pipelines.

REPRODUCIBILITY STATEMENT

To aid with reproducibility we include detailed derivations of Rex in Appendix C along with additional
proofs in Appendix D. We draw connections between Rex and other solver for diffusion models in
Appendix E. We include through implementation details in Appendix H and experimental details
in Appendix I; in particular, we mention all code repositories and datasets we used in Appendix L.5.
Moreover, we provide code illustrations of the core components of Rex in Appendix J.

REFERENCES

Iyabo Ann Adamu. Numerical approximation of SDEs & the stochastic Swift-Hohenberg equa-
tion. Ph.d. thesis, Heriot-Watt University, 2011. URL https://www.ros.hw.ac.uk/
bitstream/handle/10399/2460/AdamuIA_0711_macs.pdf.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982.

Zander W. Blasingame and Chen Liu. Adjointdeis: Efficient gradients for diffusion models. In
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 2449-2483. Curran Associates,
Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/04badd3b048315c8c3alcal7eff723d7-Paper—Conference.pdf.

10

https://www.ros.hw.ac.uk/bitstream/handle/10399/2460/AdamuIA_0711_macs.pdf
https://www.ros.hw.ac.uk/bitstream/handle/10399/2460/AdamuIA_0711_macs.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Zander W. Blasingame and Chen Liu. Fast-dim: Towards fast diffusion morphs. IEEE Security &
Privacy, 2024b.

Zander W. Blasingame and Chen Liu. Greedy-dim: Greedy algorithms for unreasonably effective
face morphs. In 2024 IEEE International Joint Conference on Biometrics (IJCB), pp. 1-11, 2024c.
doi: 10.1109/1JCB62174.2024.10744517.

Zander W. Blasingame and Chen Liu. Leveraging diffusion for strong and high quality face morphing
attacks. IEEE Transactions on Biometrics, Behavior, and Identity Science, 6(1):118-131, 2024d.

Zander W. Blasingame and Chen Liu. Greed is good: A unifying perspective on guided generation.
In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025. URL
https://openreview.net/forum?id=sl4pdQgolb.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22563-22575, 2023.

Paul Bourgade. Stochastic analysis, 2010. URL https://cims.nyu.edu/~bourgade/
SA2010/StochasticAnalysis.pdf?utm_source=chatgpt.com.

Kevin Burrage and Pamela M Burrage. Order conditions of stochastic runge—kutta methods by
b-series. SIAM Journal on Numerical Analysis, 38(5):1626—-1646, 2000.

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016. Third Edition.

Girolamo Cardano. Artis Magne, Sive de Regulis Algebraicis, Lib. unus. 1545.

Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to find
them. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
6070-6079, 2020.

Koen Claessen and Michal H Patka. Splittable pseudorandom number generators using cryptographic
hashing. ACM SIGPLAN Notices, 48(12):47-58, 2013.

John MC Clark and RJ Cameron. The maximum rate of convergence of discrete approximations
for stochastic differential equations. In Stochastic Differential Systems Filtering and Control:
Proceedings of the IFIP-WG 7/1 Working Conference Vilnius, Lithuania, USSR, Aug. 28-Sept. 2,
1978, pp. 162—-171. Springer, 2005.

M Crouzeix and FJ Lisbona. The convergence of variable-stepsize, variable-formula, multistep
methods. SIAM journal on numerical analysis, 21(3):512-534, 1984.

Kristian Debrabant, Anne Kvarng, and Nicky Cordua Mattsson. Runge—kutta lawson schemes for
stochastic differential equations. BIT Numerical Mathematics, 61(2):381-409, 2021.

Lisa DeBruine and Benedict Jones. Face Research Lab London Set, 5 2017. URL
https://figshare.com/articles/dataset/Face_Research_Lab_London_
Set/5047666.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation, 2015. URL https://arxiv.org/abs/1410.8516.

DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal distributions.
Journal of multivariate analysis, 12(3):450-455, 1982.

Lester E Dubins and Gideon Schwarz. On continuous martingales. Proceedings of the National
Academy of Sciences, 53(5):913-916, 1965.

Kang Feng. On difference schemes and symplectic geometry. In Proceedings of the 5th international
symposium on differential geometry and differential equations, 1984.

11

https://openreview.net/forum?id=s14pdQgoLb
https://cims.nyu.edu/~bourgade/SA2010/StochasticAnalysis.pdf?utm_source=chatgpt.com
https://cims.nyu.edu/~bourgade/SA2010/StochasticAnalysis.pdf?utm_source=chatgpt.com
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666
https://arxiv.org/abs/1410.8516

Under review as a conference paper at ICLR 2026

James Foster, Terry Lyons, and Harald Oberhauser. An optimal polynomial approximation of
brownian motion. SIAM Journal on Numerical Analysis, 58(3):1393—-1421, 2020.

James M Foster. Numerical approximations for stochastic differential equations. Ph.d. thesis,
University of Oxford, 2020. URL https://ora.ox.ac.uk/objects/uuid:775fc3£5~
501c-425f-8b43-fc5a7b2e4310.

James M Foster, Goncalo Dos Reis, and Calum Strange. High order splitting methods for sdes
satisfying a commutativity condition. SIAM Journal on Numerical Analysis, 62(1):500-532, 2024.

Peter K Friz and Martin Hairer. A course on rough paths. Springer, 2020.

Jessica G Gaines and Terry J Lyons. Variable step size control in the numerical solution of stochastic
differential equations. SIAM Journal on Applied Mathematics, 57(5):1455-1484, 1997.

Martin Gonzalez, Nelson Fernandez Pinto, Thuy Tran, Hatem Hajri, Nader Masmoudi, et al. Seeds:
Exponential sde solvers for fast high-quality sampling from diffusion models. Advances in Neural
Information Processing Systems, 36, 2024.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/26cd8ecadceld4efdbcc8a8725cbdlf8-Paper.pdf.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Marlis Hochbruck, Jan Leibold, and Alexander Ostermann. On the convergence of lawson methods
for semilinear stiff problems. Numerische Mathematik, 145(3):553-580, 2020.

Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9307-9315, 2024.

Andraz Jelin¢i¢, James Foster, and Patrick Kidger. Single-seed generation of brownian paths and
integrals for adaptive and high order sde solvers. arXiv preprint arXiv:2405.06464, 2024.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas. Gotta
go fast with score-based generative models. In The Symbiosis of Deep Learning and Differential
Equations, 2021. URL https://openreview.net/forum?id=gEoVDSASC2h.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=Hk99zCeAb.

Patrick Kidger. On Neural Differential Equations. Ph.d. thesis, Oxford University, 2022. Available at
https://arxiv.org/abs/2202.02435.

Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients
for neural sdes. Advances in Neural Information Processing Systems, 34:18747-18761, 2021.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696-21707, 2021.

12

https://ora.ox.ac.uk/objects/uuid:775fc3f5-501c-425f-8b43-fc5a7b2e4310
https://ora.ox.ac.uk/objects/uuid:775fc3f5-501c-425f-8b43-fc5a7b2e4310
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://openreview.net/forum?id=gEoVDSASC2h
https://openreview.net/forum?id=Hk99zCeAb
https://arxiv.org/abs/2202.02435

Under review as a conference paper at ICLR 2026

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=G5RwHpBUVO.

Peter E Kloeden and Eckhard Platen. Stratonovich and itd stochastic taylor expansions. Mathematis-
che Nachrichten, 151(1):33-50, 1991.

Peter E. Kloeden and Eckhard Platen. Stochastic Differential Equations, pp. 103—160. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1992. ISBN 978-3-662-12616-5. doi: 10.1007/978-3-662-
12616-5_4. URL https://doi.org/10.1007/978-3-662-12616-5_4.

Kei Kobayashi. Stochastic calculus for a time-changed semimartingale and the associated stochastic
differential equations. Journal of Theoretical Probability, 24(3):789-820, 2011.

Yoshio Komori, David Cohen, and Kevin Burrage. Weak second order explicit exponential runge—
kutta methods for stochastic differential equations. SIAM Journal on Scientific Computing, 39(6):
A2857-A2878, 2017.

Tuomas Kynkiddnniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Tuomas Kynkéidnniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of im-
agenet classes in fréchet inception distance. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=40XTQ6m_ws8.

J Douglas Lawson. Generalized runge-kutta processes for stable systems with large lipschitz constants.
SIAM Journal on Numerical Analysis, 4(3):372-380, 1967.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888—-12900. PMLR, 2022.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108
of Proceedings of Machine Learning Research, pp. 3870-3882. PMLR, 26-28 Aug 2020. URL
https://proceedings.mlr.press/v108/1i201i.html.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 5404-5411, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

George Lowther. Time-changed brownian motion, 2010. URL https://almostsuremath.
com/2010/04/20/time-changed-brownian-motion/.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022b. URL https://openreview.net/forum?id=2uAaGwlP_V.

13

https://openreview.net/forum?id=G5RwHpBUv0
https://openreview.net/forum?id=G5RwHpBUv0
https://doi.org/10.1007/978-3-662-12616-5_4
https://openreview.net/forum?id=4oXTQ6m_ws8
https://proceedings.mlr.press/v108/li20i.html
https://almostsuremath.com/2010/04/20/time-changed-brownian-motion/
https://almostsuremath.com/2010/04/20/time-changed-brownian-motion/
https://openreview.net/forum?id=2uAaGwlP_V

Under review as a conference paper at ICLR 2026

Terry J Lyons. Differential equations driven by rough signals. Revista Matemdtica Iberoamericana,
14(2):215-310, 1998.

Dimitra Maoutsa, Sebastian Reich, and Manfred Opper. Interacting particle solutions of fokker—
planck equations through gradient-log—density estimation. Entropy, 22(8):802, 2020.

Takashi Matsubara, Yuto Miyatake, and Takaharu Yaguchi. Symplectic adjoint method
for exact gradient of neural ode with minimal memory. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 20772-20784. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf.

Sam McCallum and James Foster. Efficient, accurate and stable gradients for neural odes. arXiv
preprint arXiv:2410.11648, 2024.

Jan Mrongowius and Andreas RoBler. On the approximation and simulation of iterated stochastic
integrals and the corresponding 1évy areas in terms of a multidimensional brownian motion.
Stochastic Analysis and Applications, 40(3):397-425, 2022.

Ulrich Mutze. An asynchronous leapfrog method ii. arXiv preprint arXiv:1311.6602, 2013.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In Infernational conference on machine
learning, pp. 7176-7185. PMLR, 2020.

Shen Nie, Hanzhong Allan Guo, Cheng Lu, Yuhao Zhou, Chenyu Zheng, and Chongxuan Li. The
blessing of randomness: SDE beats ODE in general diffusion-based image editing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=DesYwmUGOO0.

Bernt @ksendal. Stochastic Differential Equations: An Introduction with Applications. Universitext.
Springer Berlin Heidelberg, Berlin, Germany, jul 2003. ISBN 9783662036204. doi: 10.1007/978-
3-642-14394-6.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin ElI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Jiachun Pan, Hanshu Yan, Jun Hao Liew, Jiashi Feng, and Vincent YF Tan. Towards accurate guided
diffusion sampling through symplectic adjoint method. arXiv preprint arXiv:2312.12030, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8748-8763. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/radford2la.html.

Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293. Springer
Science & Business Media, 2013.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Andreas RoBler. Runge—kutta methods for the strong approximation of solutions of stochastic
differential equations. SIAM Journal on Numerical Analysis, 48(3):922-952, 2010.

Andreas RoBler. A class of stochastic runge-kutta methods for stochastic differential equations
converging with order 1 in LP-norm. arXiv preprint arXiv:2506.22657, 2025.

W Riiemelin. Numerical treatment of stochastic differential equations. SIAM Journal on Numerical
Analysis, 19(3):604-613, 1982.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf
https://openreview.net/forum?id=DesYwmUG00
https://openreview.net/forum?id=DesYwmUG00
https://proceedings.mlr.press/v139/radford21a.html

Under review as a conference paper at ICLR 2026

Ronald D Ruth. A canonical integration technique. IEEE Trans. Nucl. Sci., 30(CERN-LEP-TH-83-
14):2669-2671, 1983.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. Advances in neural information processing systems, 31,
2018.

John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. Parallel random numbers: as
easy as 1, 2, 3. In Proceedings of 2011 international conference for high performance computing,
networking, storage and analysis, pp. 1-12, 2011.

L. F. Shampine. Stability of the leapfrog/midpoint method. Applied Mathematics and Computation,
208(1):293-298, 2009.

Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alan Aspuru-Guzik,
Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-kac correc-
tors in diffusion: Annealing, guidance, and product of experts. In Forty-second International
Conference on Machine Learning, 2025a. URL https://openreview.net/forum?id=
VhcOKrcgWu.

Marta Skreta, Lazar Atanackovic, Joey Bose, Alexander Tong, and Kirill Neklyudov. The superposi-
tion of diffusion models using the it6 density estimator. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https://openreview.net/forum?id=
2058Mbgkd?2.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37, ICML’ 15, pp. 2256-2265.
JMLR.org, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=StlgiarCHLP.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b. URL ht tps://openreview.net/forum?
1id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 32211-32252. PMLR, 23-29 Jul 2023.
URL https://proceedings.mlr.press/v202/song23a.html.

George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
generative model evaluation metrics and their unfair treatment of diffusion models. In Advances in
Neural Information Processing Systems, volume 36, 2023.

David E Stewart. Numerical analysis: A graduate course, volume 258. Springer, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818-2826, 2016.

René J. De Vogelaere. Methods of integration which preserve the contact transformation property of
the hamilton equations. Report NO. 4, University of Notre Dame, 1956.

Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled transfor-
mations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 22532-22541, 2023.

15

https://openreview.net/forum?id=Vhc0KrcqWu
https://openreview.net/forum?id=Vhc0KrcqWu
https://openreview.net/forum?id=2o58Mbqkd2
https://openreview.net/forum?id=2o58Mbqkd2
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.mlr.press/v202/song23a.html

Under review as a conference paper at ICLR 2026

Fangyikang Wang, Hubery Yin, Yue-Jiang Dong, Huminhao Zhu, Chao Zhang, Hanbin Zhao, Hui
Qian, and Chen Li. BELM: Bidirectional explicit linear multi-step sampler for exact inversion
in diffusion models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=ccQ4fmwLDb.

Chen Henry Wu and Fernando De la Torre. A latent space of stochastic diffusion models for zero-shot
image editing and guidance. In ICCV, 2023.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems, pp.
15903-15935, 2023.

Guoqiang Zhang, J. P. Lewis, and W. Bastiaan Kleijn. Exact diffusion inversion via bidirectional
integration approximation. In Computer Vision — ECCV 2024: 18th European Conference, Milan,
Italy, September 29—October 4, 2024, Proceedings, Part LVII, pp. 19-36, Berlin, Heidelberg,
2024. Springer-Verlag. ISBN 978-3-031-72997-3. doi: 10.1007/978-3-031-72998-0_2. URL
https://doi.org/10.1007/978-3-031-72998-0_2.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Loek7hfb46P.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gDDIM: Generalized denoising diffusion implicit
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1hKE9gjvz-.

Juntang Zhuang, Nicha C Dvornek, sekhar tatikonda, and James s Duncan. MALI: A memory
efficient and reverse accurate integrator for neural ODEs. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=blfSjHeFM_e.

16

https://openreview.net/forum?id=ccQ4fmwLDb
https://doi.org/10.1007/978-3-031-72998-0_2
https://openreview.net/forum?id=Loek7hfb46P
https://openreview.net/forum?id=Loek7hfb46P
https://openreview.net/forum?id=1hKE9qjvz-
https://openreview.net/forum?id=blfSjHeFM_e

Under review as a conference paper at ICLR 2026

APPENDICES

A

Q

Related works .
A.l Reversible solvers .
Asynchronous leapfrog method * Reversible Heun method * McCallum-Foster method
A.2 A note on stability .
A.3 Exact inversion of diffusion models .
EDICT sampler « BDIA sampler « BELM sampler ¢ CycleDiffusion * Summary
A.4 SDE solvers for diffusion models
Comparison with SEEDS
Stochastic Runge-Kutta methods
B.1 Foster-Reis-Strange SRK Scheme
B.2 Independence of the Brownian and Lévy increments .
B.3 ShARK .
Derivation of Rex .
C.I Rex(ODE) .
Proof of Proposition 3.1 * Data prediction * Noise prediction
C.2 Rex(SDE) .

Time-changed Brownian motion * Proof of Proposition 3.2 ¢ Proof of reparameterized
SDE for noise prediction models * Derivation of Rex (SDE)

C.3 Proof of Proposition 3.3 .
Convergence order proofs
D.1 Assumptions
D.2 Proof of Theorem 4.1 .
D.3 Proof of Theorem 4.2 .
Relation to other solvers for diffusion models.
E.1 Rex as reversible ODE solvers
Euler » Second-order methods * Third-order methods
E.2 Rex as reversible SDE solvers
Euler-Maruyama
E.3 Rex as reversible SEEDS-1
A brief note on the theory of rough paths .
Numerical simulation of Brownian motion
Implementation details
H.1 Closed form expressions of the noise schedule
Linear noise schedule * Scaled linear schedule
H.2 Some other inverse functions.
H.3 Brownian motion .
Experimental details .
1.1 Unconditional image generation

Diffusion model * Metrics * Hyperparameters

17

20
20

22
23

26

27
28
29
29
29
29

34

41
42
42
42
43
44
45

49

51
52
52
53
53

56
57
57
57

Under review as a conference paper at ICLR 2026

12 Conditional image generation
Diffusion model » Metrics * Hyperparameters
L3 Interpolation
1.4 Hardware
L5 Repositories
Code.
Visualization of inversion and the latent space
Additional results .
L.1 Unconditional image generation

L.2 Conditional image generation

OVERVIEW OF THEORETICAL RESULTS

3.1
3.2
33
4.1
4.2
4.3
43.1
Al
A2
A3
A3l
A32
A4
A4l
3.1
C.1
C2
C3
C4
3.2
C.7

C.38
C9
33
4.1

Proposition (Reparameterization of the probability flow ODE)
Proposition (Time reparameterization of the reverse-time diffusion SDE)
Proposition (Rex) e
Theorem (Rex is a k-th ordersolver)
Theorem (Convergence order for stochastic W)
Theorem (Rex subsumes previous solvers)
Corollary (Rex is reversible version of previous solvers)
Theorem (Convergence order of the McCallum-Foster method)
Theorem (Region of stability for the McCallum-Foster method)
Proposition (BDIA is the leapfrog/midpoint method)
Corollary (BDIA is a first-order method)
Corollary (BDIA is nowhere linearly stable)
Theorem (O-BELM is the leapfrog/midpoint method)
Corollary (O-BELM is nowhere linearly stable)
Proposition (Reparameterization of the probability flow ODE)
Lemma (Rex (ODE) for data prediction models)
Lemma (Rex (ODE) for noise prediction models)
Theorem (Dambis-Dubins-Schwarz representation theorem)
Theorem (Multi-dimensional Dambis-Dubins-Schwarz representation theorem)
Proposition (Time reparameterization of the reverse-time diffusion SDE)

Proposition (Time reparameterization of the reverse-time diffusion SDE for noise
predictionmodels)

Lemma (Rex (SDE) for data prediction models)
Lemma (Rex (SDE) for noise prediction models)
Proposition (Rex) e

Theorem (Rex is a k-thordersolver)

59

60
60
60
60
64
65
65
65

~N 9 O O e B

38
39
40
42
42

Under review as a conference paper at ICLR 2026

4.2
4.3
43.1
E.1
E.1.1
E.2
E2.1

E3
E.4
E.5
E.6
E.6.1
E.7
E7.1

E.8
E.8.1
H.1
H.1.1
H.1.2
H.2
H.2.1
H.22

Theorem (Convergence order for stochastic W)
Theorem (Rex subsumes previous solvers)
Corollary (Rex is reversible version of previous solvers)
Proposition (Rex (Euler) is reversible DPM-Solver++1)
Corollary (Rex (Euler) is reversible deterministic DDIM for data prediction models)
Proposition (Rex (Euler) is reversible DPM-Solver-1)

Corollary (Rex (Euler) is reversible deterministic DDIM for noise prediction mod-
els) . . e e e

Proposition (Rex (generic second-order) is reversible DPM-Solver++(2S)) . . .
Proposition (Rex (generic second-order) is reversible DPM-Solver-2))
Proposition (Rex (Euler-Midpoint) is DPM-Solver-12)
Proposition (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver++1)
Corollary (Rex (Euler-Maruyama) is reversible stochastic DDIM)
Proposition (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver-1)

Corollary (Rex (Euler-Maruyama) is reversible stochastic DDIM for noise predic-
tionmodels) e e e

Proposition (Rex is reversible SEEDS-1)
Corollary (Rex (Euler-Maruyama) is reversible gDDIM)
Proposition (Inverse function of ~; for linear noise schedule)
Corollary (Inverse function of y; for linear noise schedule)
Corollary (Inverse function of o for linear noise schedule)
Proposition (Inverse function of ~, for scaled linear noise schedule)
Corollary (Inverse function of x; for scaled linear noise schedule)

Corollary (Inverse function of p; for scaled linear noise schedule)

19

43
44
45
45
46
46

47
47
48
48
49
50
50

51
51
51
54
54
54
55
56
56

Under review as a conference paper at ICLR 2026

A RELATED WORKS

In this section we provide a detailed comparison with relevant related works. We begin in Ap-
pendix A.1 by providing an overview of algebraically reversible solvers. Then in Appendix A.2
we introduce the stability of an ODE solver, a helpful tool in comparing reversible solvers. Using
this tool along with examining the convergence order we compare a variety of reversible solvers for
diffusion models in Appendix A.3. Lastly, in Appendix A.4 we explore related work on constructing
SDE solvers for diffusion models.

A.1 REVERSIBLE SOLVERS

The earliest work on reversible solvers can be traced back to the pioneering work on symplectic
integrators by Vogelaere (1956); Ruth (1983); Feng (1984). Due to symplectic integrators being
developed for solving Hamiltonian systems they are intrinsically reversible by construction (Grey-
danus et al., 2019). More recently, Matsubara et al. (2021) explored the use of symplectic solvers
for solving the continuous adjoint equations. Likewise, work by Pan et al. (2023) extended this idea,
making use of symplectic solvers for solving the continous adjoint equations for diffusion models.
However, in this section we will focus on non-symplectic reversible solvers.

Throughout this section we consider solving the following d-dimensional IVP:

dx

0 = £t (1)), (7)

z(0) = xo,
over the time interval [0, 7] with numerical solution {x,, }Y_,.

A.1.1 ASYNCHRONOUS LEAPFROG METHOD

To the best of our knowledge the asynchronous leapfrog definition was the first algebraically reversible
non-symplectic solver, initially proposed by Mutze (2013) and popularized in a modern deep learning
context by Zhuang et al. (2021). The asynchronous leapfrog method is a modification of the leapfrog
method which converts it from a multi-step to single-step method. The method keeps track of a
second state, {v,,} which is supposed to be sufficiently close to the value of the vector field. We
define the method below in Definition A.1.

Definition A.1 (Asynchronous leapfrog method). Initialize vog = f(0, xp). Consider a step size of h
and let £,, = t,, + h/2, then a forward step of the asynchronous leapfrog method is defined as

. 1
T, = T, + iv"h’

Vpi1 = 2f (bn, &) — v, (18)
Tnt1 = Tp + f(fna Zn)h,
and the backward step is given as
. 1
Tn = Tnt1 — 5Vns1h,
(19)

Ly = Tpy1 — f({m ﬁjn)ha
v, = 2f(fn,:in) — Uil

Remark A.2. The method is a second-order solver (Zhuang et al., 2021, Theorem 3.1).

A.1.2 REVERSIBLE HEUN METHOD

Later work by Kidger et al. (2021) proposed the reversible Heun method, a general purpose reversible
solver which is symmetric and is an algebraically reversible SDE solver in addition to being a
reversible ODE solver. This solver keeps track of an auxiliary state variable &,, and an extra copy
of previous evaluations of the drift and diffusion coefficients. We present this method below in
Definition A.3.

20

Under review as a conference paper at ICLR 2026

Definition A.3 (Reversible Heun method for ODEs). Initialize &y = xo. Consider a step size of h,
then a forward step of the reversible Heun method is defined as

Tnt1 = 2Ty — Ty + f(tn, Tn)h,

1 R . (20)
Tnt1 = Tp +) (F(tnt1: @ns1) + f(tn, Tn)) D
and the backward step is given as
:f:n = 21:71-&-1 - in-&-l - f(tn-l-hin-‘rl)ha
1)

1 . .
Tp = Tpt1 — 92 (f(tns1, ®ngr) + f(tm wn)) h.

Remark A.4. This method is a second-order solver (Kidger, 2022, Theorem 5.18).

Recall that simulating SDEs in reverse-time is much trickier than simulating ODE:s in reverse-time.
This observation is even more true of algebraically reversible methods for SDEs. To the best of our
knowledge, the only general reversible solver for SDE:s is the reversible Heun method. The main
idea of the SDE formulation of the reversible Heun method is to extend the Euler-Heun method’ like
how Heun’s method was extended to the reversible Heun solver for ODEs. We define the method in
Kidger et al. (2021, Algorithm 1) below in Definition A.5.

Definition A.5 (Reversible Heun method for SDEs). Initialize £y = x(. Consider a step size of i

and let W), .= W, . — W, , then a forward step of the reversible Heun method is defined as

:i}n—&-l = an - in + H(tna :ﬁn)h + U(tna :ﬁn)Wha
1 . .
Tt = o+ 5 (B(Ens1, Bogr) + pltn, 20)) b (22)

1 . .
+ 5 (O'(tn+1, mn+1) + U(tru mn)) W

and the backward step is given as

in - 2wn+1 - in-i-l - [.L(tn+1,@n+1)h - G(tnvén)Wha

1) .
Lp = LTn+tl1 — 5 (B(tns1, Bns1) + p(tn, &n)) b (23)
1 . .
~3 (0(tnt1, Zny1) + 0 (tn, Tp)) Wh.

Remark A.6. This method requires some tractable solution for recalculating the Brownian motion
from a splittable PRNG.

A.1.3 McCALLUM-FOSTER METHOD

Recent work by McCallum & Foster (2024) created a general method for constructing n-th order
solvers from preexisting explicit single-step solvers while also addressing the stability issues that
earlier methods suffered from. As McCallum & Foster (2024) simply refer to their method as
reversible X where X is the underlying single-step solver we opt to refer to their method as the
McCallum-Foster method. We restate the definition below.

Definition 2.1 (McCallum-Foster method). Initialize &9 = xo and let ¢ € (0, 1]. Consider a step
size of h, then a forward step of the McCallum-Foster method is defined as

Tnt1 = <wn + (1 - C)i'n + (I’h(tn7(%n)7

N . &)
LTpt+1 = Tp — th(thrlvwnqu)a
and the backward step is given as
i:n — in-i-l + ¢—h(tn+17 $n+1)7
(6

Ln = C_lwnJrl + (1 - C_l)i'n - C_lq)h(tmi'n)-

Remark A.7. N.B., the ¢ and (! terms in the forward and backward steps determine the stability of
the system.

"This converges with strong order % in the Stratonovich sense (Riiemelin, 1982).

21

Under review as a conference paper at ICLR 2026

Interestingly, McCallum & Foster (2024, Theorem 2.1) showed that this reversible method inherits
the convergence order of single-step solver ®;, enabling the construction of an arbitrarily high-order
reversible solver. We restate this result below in Theorem A.1.

Theorem A.1 (Convergence order of the McCallum-Foster method). Consider the ODE in Equa-
tion (17) over [0, T] with fixed time horizon T > 0. Let T = Nh where N > 0 is the number of
discretization steps and h > 0 is the step size. Let ® be a k-th order ODE solver such that it satisfies
the Lipschitz condition
@5 (-, a) — ®,(-,b)|| < Linl[la — b, 24)
forall a,b € R¢ and N € [—hmaz, Pmaz] for some hpq, > 0. Consider the reversible solution
{Zn, & }niny admitted by Equation (5). Then there exists constants hyq, > 0, C' > 0, such that,
Sor h € (0, hinazl,
|z, — x(t,)| < Ch*. (25)

A.2 A NOTE ON STABILITY

Historically, the stability properties of reversible solvers has been one of their weakest attributes
(Kidger, 2022), limiting their use in practical applications. We formally introduce the notation of
stability following Kidger (2022, Definition C.39), which we rewrite below in Definition A.8.

Definition A.8 (Region of stability). Fix some numerical differential equation solver and let
{z)*"},en be the solution admitted by the numerical scheme solving the linear (or Dahlquist)
test equation
dx
z(0) = o, T Ax(t), (26)
where A € C, h > 0 is the step size, and o € R? is a non-zero initial condition. The region of
stability is defined as

{hX\ € C: {x)"},cn is uniformly bounded over t,, }. 27
Le., there exists a constant C' depending on A and & but independent of ¢,, such that ||z} || < C.

With the linear test equation Equation (26) the ODE converges asymptotically when $()\) < 0,
and thus we are interested in numerical schemes which are bounded when the underlying analytical
solution converges. Ideally, a numerical scheme would converge for all A\ with R(A\) < 0.° Thus,
the larger the region of stability the larger the step size we can take, wherein the numerical scheme
still converges.

Remark A.9. Regrettably, the reversible Heun, leapfrog, and asynchronous leapfrog methods have
poor stability properties. Specifically, the region of stability for all the methods is the complex
interval [—i, 7], see Kidger (2022, Theorem 5.20) for reversible Heun, Shampine (2009, Section 2)
for leapfrog, and Zhuang et al. (2021, Appendix A.4) for asynchronous leapfrog.

In other words, all previous reversible solvers are nowhere linearly stable for any step size h.'? The
instability in both asynchronous leapfrog and reversible Heun can be attributed to a step of general
form 2A — B, i.e., we can write the source of instability as

2f (tn, &n) — vn, (asynchronous leapfrog)
2T, 11 — Tt (reversible Heun)

Thus the instability in these reversible schemes is caused by a decoupling between v,, and f(t,,, €,)
(asynchronous leapfrog); and «,, and &,, (reversible Heun). The strategy of McCallum & Foster
(2024) is to couple x,, and &,, together with the coupling parameter . Using this strategy, they
showed that it was possible to construct a reversible solver with a non-trivial region of convergence.
Let ®;,(t,, ®,) = R(h\)x, and let R(h\) denote the transfer function used in analysis of Runge-
Kutta methods with step size h (see Stewart, 2022). We restate McCallum & Foster (2024, Theorem
2.3) below.

¥The ODE converges to 0 when () < 0.
%A region of stability which satisfies is known as a region of absolute stability.
1%L inearly stability refers to stability for linear test equations with R(N) < 0.

22

Under review as a conference paper at ICLR 2026

Theorem A.2 (Region of stability for the McCallum-Foster method). Let ® be given by an explicit
Runge-Kutta solver. Then the reversible numerical solution {x,, &, }nen given by Equation (5) is
linearly stable iff

Tl <1+, (28)

where

I'=1+C—(1—=C)R(—h\) — R(=hA)R(hN). (29)

Remark A.10. The McCallum-Foster method when constructed from explicit Runge-Kutta methods
have a non-trivial region of stability. Note, however, that this region of stability is smaller than the
original region of stability from the original Runga-Kutta method.

A.3 EXACT INVERSION OF DIFFUSION MODELS

Independent of the work on reversible solvers for neural ODEs several researchers have developed
reversible methods for solving the probability flow ODE—often in the literature on diffusion models
this is called the exact inversion of diffusion models.

A.3.1 EDICT SAMPLER

The first work to explore this topic of exact inversion with diffusion models was that of Wallace et al.
(2023), who inspired by coupling layers in normalizing flows (Dinh et al., 2015) proposed a reversible
solver which they refer to as exact diffusion inversion via coupled transformations (EDICT). Like
all reversible solvers this method keeps track of an extra state, denoted by {y,, } nen, With yo = xo.

Letting a,, = % and b, = 0,11 — ag“ o, this numerical scheme can be described as
n n
inter __ 4 b 0 ()
wn = ApTp an|tn yn 1)
inter __ 4 inter
Yn = GnYn + bﬂwT|tn (mn)a

_ inter 1— inter (30)
Tn4+1 = fwn + (f)yn
Ynt1 = €2y + (1 =)Ty,

11

where £ € (0,1) is a mixing parameter.'' This method can be inverted to obtain a closed form

expression for backward step:

inter __ yn+1 - (1 B §)$n+1

Y = : ,
e - Boza = (008"
Y — bty () Gh
Yn = - ,
- T — bnmg"\tn (yn)
an

Notably, the EDICT solver was developed in the context of discrete-time diffusion models and the
connection to reversible solvers for ODEs was not considered in the original work. N.B., to the best
of our knowledge our work is the first to draw the connection between the work on reversible ODE
solvers and exact inversion with diffusion models. Unfortunately, this method suffers from poor
convergence issues (see Remark A.11) and generally has poor performance when used to perform
sampling with diffusion models, thereby limiting its utility in practice (Zhang et al., 2024; Wang
etal., 2024).

Remark A.11. Later work by Wang et al. (2024, Proposition 6) showed that EDICT is actually a
zero-order method, i.e., the local truncation error is O(h), making it generally unsuitable in practice.

"In practice, when used for image editing the authors found that the parameter ¢ controlled how closely the
EDICT sampler aligned with the original sample, with lower values corresponding to higher agreement with the
original sample.

23

Under review as a conference paper at ICLR 2026

A.3.2 BDIA SAMPLER

Later work by Zhang et al. (2024) proposed a reversible solver for the probability flow ODE which
they call bidirectional integration approximation (BDIA). The core idea is to use both single-step
methods ®,, ;, , and ®,, ., ., to induce reversibility.'> Then using these two approximations—
both of which are computed from a discretization centered around x,,—the process is update via a
multistep process with a forward step of'>

Tpi1 =Tp—1— P, o, (Tn) + Pr, g, (T0). (32)
The backwards step can easily be expressed as
Tpn-1=Tpi1+ Pt b,y () + (I)tn,tn+1 (xn)- (33)

In practice, BDIA uses the DDIM solver (i.e., Euler) for @, but in theory one could use a higher-order
method—this was not explored in Zhang et al. (2024).

Proposition A.3 (BDIA is the leapfrog/midpoint method). The BDIA method described in Equa-
tion (32) is the leapfrog/midpoint method when ®,(t, ¢) = huf(x), i.e., the Euler step.

Proof. This can be shown rather straightforwardly by substitution, i.e.,
Tyt = Tyt + 2hul (zn,). (34)
O
Corollary A.3.1 (BDIA is a first-order method). BDIA is first-order method, i.e., the local truncation
error is O(h?).
Remark A.12. This result was also observed in Wang et al. (2024, Proposition 6).

Corollary A.3.2 (BDIA is nowhere linearly stable). BDIA is nowhere linearly stable, i.e., the region
of stability is the complex interval [—1, 1].

Proof. This follows straightforwardly from Proposition A.3 and Shampine (2009, Section 2). [

Zhang et al. (2024) introduce a hyperparameter y € [0, 1] which is used below

'i)tn,tn—l (:l:n) = (1 - 7)(:371*1 - mn) + ’Y(I)tn,tn—l (wn)v (35)

to modify the BDIA update rule in Equation (32). Thus, « can be viewed as a parameter which
interpolates between the midpoint and Euler schemes. For image editing applications the authors
found this parameter to control how closely the BDIA sampler aligned with the original image, with
lower values corresponding to higher agreement with the original image (making it similar to the &
parameter from BDIA).

A.3.3 BELM SAMPLER

Recently, Wang et al. (2024) proposed a linear multi-step reversible solver for the probability flow
ODE called the bidirectional explicit linear multi-step (BELM) sampler. First, they reparameterize
the probability flow ODE as

d®(t) = B, (T(t)) o, (36)

where T(t) == x(t)/ay, T(t) = o1/, and TG (E(t)) = a7, (x(t))."* The BELM sampler
makes use of the variable-stepsize-variable-formula (VSVF) linear multi-step methods (Crouzeix

12N.B., in the original paper, Zhang et al. (2024) use quite different notation for explaining their idea; however,
we find our presentation to be simpler for the reader as it more easily enables comparison to other methods.

3In some sense, this is reminiscent of the idea from the more general McCallum-Foster method; however,
this approach results in a multi-step method unlike the single-step method of McCallum & Foster (2024).

“N.B., this is a popular parameterization of diffusion models and affine conditional flows. This can be done
mutatis mutandis for target prediction models retrieving (Blasingame & Liu, 2025, Proposition D.2).

24

Under review as a conference paper at ICLR 2026

& Lisbona, 1984) to construct the numerical solver. The k-step VSVF linear multi-step method for
solving the reparameterized probability flow ODE in Equation (36) is given by

k
En—i—l - Z an,mfn-&-l—m (37)
m=1
k—1
+ Z bn,mhn+lfmig“‘5n+17m (En+17m)- (38)
m=1

where a,, , # 0," and b,, ,,, are coefficients chosen using dynamic multi-step formule to find the
coefficients (Crouzeix & Lisbona, 1984); and h,, are step sizes chosen beforehand. This scheme can
be reversed via the backward step

k—1

_ 1 Z Qnym_
Tnt+1—k — LTp+1 — Tn+1—-m (39)

An k m—1 Qn, k

k—1 b

n,m —9 —
- E hn+17m$T‘5n+l_m(wn+17m)~ (40)
m=1 v

Remark A.13. The BELM samplers require k — 1 extra to be stored in memory in order to be
reversible. In contrast, McCallum & Foster (2024) only requires storing one extra states, irregardless
of the desired convergence order. Additionally, poor stability is a concern with such linear multi-step
methods (see Kidger, 2022, Remark 5.24).

Remark A.14. Interestingly, the earlier EDICT and BDIA methods can be viewed as instances of
the BELM method (Wang et al., 2024, Appendicies A.7 and A.8).

By solving the multi-step formula to minimize the local truncation error Wang et al. (2024) propose
an instance of the BELM solver which they refer to as O-BELM defined as'®

_ h2 h2 4+ h%_ ho(hp + hpa1) _
Ty = 5Bt + — T — (+1)m0|5n($n)- (41)
hn—l hn—l h”+1

Notably, the O-BELM sampler can also be viewed as instance of the leapfrog/midpoint method.

Theorem A.4 (O-BELM is the leapfrog/midpoint method). Fix a step size hy,, = h for all n, then
O-BELM is the leapfrog/midpoint method.

Proof. This follows from substitution of h,, = h. O

Corollary A.4.1 (O-BELM is nowhere linearly stable). Fix a step size h,, = h, then O-BELM is
nowhere linearly stable, i.e., the region of stability is the complex interval [—i, i].

A.3.4 CYCLEDIFFUSION

To our knowledge, the only other work to propose exact inversion with the SDE formulation of
the diffusion models is the work of Wu & la Torre (2023). However, there a several noticeable
distinctions, the largest being that they store the entire solution trajectory in memory. Given a
particular realization of the Wiener process that admits x; ~ N (a;xq | a?I), then given x; and
noise €5 ~ N (0, I) we can calculate

@, = %w + 201 (" — Vdogis(@s) + 01/ — Le,. 42)

Wu & la Torre (2023) propose to invert this by first calculating, for two samples x; and x, the noise
€. This can be calculated by rearranging the previous equation to find

Ty — ot s + 20, (e" — 1)ep(xs, 2, 8)

oveh —1
With this the sequence {e;, } Y, of added noises can be calculated which can be used to reconstruct

the original input from the initial realization of the Wiener process. However, unlike our approach,
this process requires storing the entire realization in memory.

(43)

€5 =

5This is to ensure that the method is reversible.
IN.B., the original equation in Wang et al. (2024, Equation (18)) had a sign difference for the coefficient of
b;,1; however, this is due to differences in convention in handling integration in reverse-time.

25

Under review as a conference paper at ICLR 2026

Table 3: Comparison of different (non-symplectic) reversible ODE solvers. We note that some of
the solvers were developed particularly for the probability flow ODE (an affine conditional flow)
whilst others work for general ODE:s. In the first column we denote the number of extra states the
numerical scheme needs to keep in memory to ensure algebraic reversibility. For BELM £ denotes
the number of steps and for McCallum-Foster £ denotes the convergence order of the underlying
single-step solver. For the column labeled region of linear stability we mean there exists some subset
of C which is the region of stability and the set is not a null set. The proof of convergence for BELM
is only provided for the special case (called O-BELM in Wang et al. (2024)) with k = 2.

Number of Local Region of Proof of
Solver extra states truncation error linear stability convergence
Probability flow ODEs
EDICT 1 O(h) X X
BDIA 1 O(h?) X X
BELM k—1 O(h*+1) X ~
Rex 1 O(RF+1) v v
General ODEs
Asynchronous leapfrog 1 O(h?) X v
Reversible Heun 1 O(h3) X v
McCallum-Foster 1 O(RF+1) v v

A.3.5 SUMMARY

We present a summary of related works on either exact inversion or reversible solvers below in
Table 3. N.B., we omit CycleDiffusion because it is more orthogonal to the general concept of a
reversible solver and is only reversible in the trivial sense.

A.4 SDE SOLVERS FOR DIFFUSION MODELS

Next we discuss related works on SDE solvers for the reverse-time diffusion SDE in Equation (3).
Now there are numerous stochastic Runge-Kutta (SRK) methods in the literature all tailor to specific
types of SDEs, which we can distinguish by the their strong order of convergence (see Definition D.1)
and strong order conditions. For example the classic Euler-Maruyama scheme (Kloeden & Platen,
1992) has strong order of convergence of 0.5 and was straightforwardlly applied to the reverse-time
diffusion SDE in Jolicoeur-Martineau et al. (2021) as a baseline. Song et al. (2021b) proposed an
ancestral sampling scheme for a discretization of the forward-time diffusion SDE in Equation (1) with
additional Langevin dynamics; likewise, the DDIM solver from Song et al. (2021a) can be viewed
a sort of Euler-Maruyama scheme. Other classic SDE schemes like SRA1/SRA2/SRA3 schemes
(RoBler, 2010) all have strong order of convergence 1.5 for additive noise SDEs and were tested for
diffusion models in Jolicoeur-Martineau et al. (2021).

More recently, researchers have explored exponential solvers for SDEs, e.g., the exponential Euler-
Maruyama method (Komori et al., 2017) and the stochastic Runge-Kutta Lawson (SRKL) schemes
(Debrabant et al., 2021). From an initial inspection the SRKL schemes of Debrabant et al. (2021,
Algorithm 1) is somewhat similar to our method for constructing ¥; however, upon closer inspection
they are some key fundamental differences.!” The largest of these is how the underlying SRK schemes
are represented. In particular the SRKL schemes choose to follow the conventions of Burrage &
Burrage (2000) (for Stratonovich SDEs) in constructing the underlying SRK schemes; whereas we
follow the SRK schemes outlined by Foster et al. (2024) (¢f. Appendix B). These differences stem
from how one chooses to handle the the iterated stochastic integrals from the Stratonovich-Taylor (or
Itd-Taylor) expansions.

N.B., in general Debrabant et al. (2021) consider full stochastic Lawson schemes where the integrating
factor is a stochastic process given by the matrix exponential applied to linear terms in the drift and diffusion
coefficients; conversely, the drift stochastic Lawson schemes are more similar to what we study.

26

Under review as a conference paper at ICLR 2026

A.4.1 COMPARISON WITH SEEDS

Mostly directly relevant to our work on constructing a stochastic ¥ is the SEEDS family of solvers
proposed by Gonzalez et al. (2024). Similar to us, they also approach using exponential methods to
simplify the expression of diffusion models Gonzalez et al. (2024, Appendix B.1). There are two key
distinctions, namely, 1) that they use the stochastic exponential time differencing (SETD) method
(Adamu, 2011), whereas, we construct stochastic Lawson schemes;'® and 2) that they use a different
technique for modeling the iterated stochastic integrals for high-order solvers. In particular, SEEDS
introduces a decomposition for the iterated stochastic integrals produced by the It6-Taylor expansions
of Equation (3) such that the decomposition preserves the Markov property, i.e., the random variables
used to construct model the Brownian increments from iterated integrals are independent on non-
overlapping intervals and dependent on overlapping intervals (see Gonzalez et al., 2024, Proposition
4.3). By making use of the SRK schemes of Foster et al. (2024) developed from using the space-time
Lévy area to construct high-order splitting methods we have an alternative method for ensuring this
property. This results in our solver based on ShARK (see Appendix B.3, ¢f. Theorem 4.2) having a
strong order of convergence of 1.5; whereas, SEEDS-3 only achieves a weak order of convergence of
1.

This brings us to another large difference, the SEEDS solvers focus on the weak approximation to
Equation (3); whereas, as we are concerned with the strong approximation to Equation (3). The
difference between these two is that the weak convergence is considered with the precisions of the
moments; whereas, strong convergence is concerned with the precision of the path. Moreover, by
definition a strong order of convergence implies a weak order of convergence, the converse is not true.
In particular, for our application of developing reversible schemes this strong order of convergence is
particularly important as we care about the path. Thus the technique SEEDS uses to replace iterated
It6 integrals with other random variables with equivalent moment conditions is wholely unsuitable
for our purposes as we desire a strong approximation.

B STOCHASTIC RUNGE-KUTTA METHODS

Recall that the general Butcher tableau for a s-stage explicit RK scheme (Stewart, 2022, Section
6.1.4) for a generic ODE is written as

C1
C2 | 21
C3 | a31 a32
Sa (44)
b
Cs | As1 Qg2 (Gg(s—1)
b1 b2 bs—l bs
E.g., the famous 4-th order Runge-Kutta (RK4) method is given by
0
111
2|2
1 1
1o 4 (45)
110 0 1
11 1 1
6 3 3 6

However, for SDEs this is much trickier due to the presense of iterated stochastic integrals in the
[t6-Taylor or Stratonovich-Taylor expansions (Kloeden & Platen, 1992). Consider a d-dimensional
Stratonovich SDE driven by d,,,-dimensional Brownian motion { Wt}te[O,T] defined as

dXt = [Lg(t,Xt) dt -+ O'Q(t,Xt) 9 th, (46)

8N.B., for certain scenarios these two different viewpoints converge, particularly, in the deterministic case.
See our discussion on the family of DPM-Solvers which also use (S)ETD in Appendix E.

27

Under review as a conference paper at ICLR 2026

where g € C2(R x R4 R?) and g € C3(R x RY; R¥*4w) satisfy the usual regularity conditions
for Stratonovich SDEs (@ksendal, 2003, Theorem 5.2.1) and where od W; denotes integration in the
Stratonovich sense.

RoBler (2025) write one such class of an s-stage explicit SRK methods (¢f. Burrage & Burrage, 2000;
RoBler, 2010) for Equation (46) as

0 0
X +hza’1] IJ‘G ()7Z]())7
i—1 doy
7" = X, +hZ% Ho (tn +C(O) Z(O))+ Z“g I 1)no0(tn +C(1) z"),
Jj=1 j=11=1
s dy
X1 =Xn +hzb0)“9t + Z +ZZ(b(k),n+bz<2)> "e(tn+0§'l)7Zi(k))7
=1 i=1 k=1
47
fork=1,...,d, and where
tnt1
Tom = / AW} =W Wk, (48)
n+1
Tikyn / / odW! o dW}, (49)

let I denote the iterated integrals for the It case mutatis mutandis. This scheme is described the by
the extended Butcher tableau (RoBler, 2025)

¢ | ¢
RONONINe) . (50)
p0) | p(1) | p(2)

These iterated integrals I(; 1y ,, are very tricky to work with and can raise up many practical concerns.
As alluded to earlier (cf. Section A.4.1) it is common to use a weak approximation of such integrals
via a random variables with corresponding moments. This results in two drawbacks: 1) the resulting
SDE scheme only converges in the weak sense and 2) the solution yielding by the scheme is not a
Markov chain in general. SEEDS overcomes the second issue by using a special decomposition to
preserve the Markov property, see the ablations in Gonzalez et al. (2024) for more details on this
topic in practice.

B.1 FOSTER-REIS-STRANGE SRK SCHEME

Conversely, Foster et al. (2024) propose another SRK scheme based on higher-order splitting methods
for Stratonovich SDEs. For the Stratonovich SDE in Equation (46) Foster et al. (2024) write an
s-stage SRK as

wo = po(tn + cih, Z;),
aé =oy(t, + c;h, Z;),

1—1 i—1 i—
Zi=X,+h Zaiju; +W, Zaf}/ag + H, Zaﬁag, , (51)
j=1 j=1 =

S S S
X=X () <, (z i) o, (z o)

i=1 i=1 j
where h = t,,11 — t, is the step size and W, .= W, _; ., and H, = H; ; ., are the Brownian
and space-time Lévy increments (cf. Deﬁmtlon 3.2) respectively; and where a;;, aiv}/ , ag € Rs*s,

b;, bV bH € R*, and ¢; € R* for the coefficients for an extended Butcher tableau (Foster et al., 2024)

1y Yy Y
which is given as

(52)

a | a
[[o7 [

Under review as a conference paper at ICLR 2026

E.g., we can write the famous Euler-Maruyama scheme as

0(0]0
1

(53)

B.2 INDEPENDENCE OF THE BROWNIAN AND LEVY INCREMENTS

Remarkably, in Foster et al. (2020, Theorem 2.2) present a polynomial Karhunen-Logve theorem for
the Brownian bridge (cf. Definition G.1)—picture an stochastic analogue to the Fourier series of a
function on a bounded interval—which leads to a most useful remark (Foster et al., 2020, Remark
3.6) which we restate below.

Remark B.1. We have that H,; ~ N (0, %h) is independent of W, ; when d = 1, likewise, since
the coordinate processes of a Brownian motion are independent, one can write W, , ~ (0, hI) and

H,; ~ N (0, 5hI) are independent.

Thus we have found another remedy to the problem of independent increments, whilst still being able
to obtain a strong approximation of the SDE.

B.3 SHARK

Recently, Foster et al. (2024) developed shifted additive-noise Runge-Kutta (ShARK) for additive
noise SDEs which is based on Foster et al. (2024, Equation (6.1)). This scheme has converges
strongly with order 1.5 for additive-noise SDEs and makes two evaluations of the drift and diffusion
per step.

ShARK is described via the following extended Butcher tableau

0 01

5| 5 501

6 6 6 : (54)
04 06|10
—0.6 0.6

The second row for the b variable describes the coefficients used for adaptive-step size
solvers to approximate the error at each step. The Butcher tableau for this scheme
can be found here: https://github.com/patrick-kidger/diffrax/blob/main/
diffrax/_solver/shark.py.

C DERIVATION OF REX
We derive the Rex scheme presented in Proposition 3.3 in the main paper.

C.1 RExX (ODE)

In this section we derive the Rex scheme for the probability flow ODE. We present derivations for
both the data prediction and noise prediction formulations.

C.1.1 PROOF OF PROPOSITION 3.1

We restate Proposition 3.1 below.

Proposition 3.1 (Reparameterization of the probability flow ODE). The probability flow ODE in
Equation (7) can be rewritten in g; as

d
dl: = Brfo <<, gzyg) , (8

where Yy, = BT

29

https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py
https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py

Under review as a conference paper at ICLR 2026

Proof. Recall that from Equation (7) we have that the ODE is given by

dxy Bt o1l — Ot
—_— == ——folt . 55
q ﬁtmt+ 3, Jo(t,) (55)
We can use the technique of exponential integrators to rewrite the ODE as
d t _ Bu t _ Bu v — O
= [efr B | = elr R T T gy), (56)
dt Be
recalling that we integrate from initial time 7" in reverse-time. Then the exponential terms simplify to
et =G au _ Po. (57)
Br
We introduce a change-of-variables y; = g—;wt to rewrite the ODE as
dy: Br otdy — Gray (Br >
—=——"fo | t,— . (58)
di Bt Br 7 Bt yr
N———
Next we define))
) 016y — O
S = sen(fr) =5 (59)

C
which we will now justify. Now recall that (; is either —a; or o; depending on the whether fy
denotes the data or noise prediction model. Moreover we know that ¢ is a strictly monotonically
decreasing in ¢ and that o; is a strictly monotonically increasing in . We will now prove that there
exists and inverse function for ¢; such that ¢.(s;) = t for both cases.

Case 3; = —ay. We can write k; as
Ky = ava (60)
oG
(1) d (o
=ar—|(—), 61
ar o (at) (61)
where (i) holds by the quotient role. Clearly, we have that
d Ot
= —| — 62
St dt <Oét> 9 ()
ag
=", (63)
Qy

It follows from (v, o) that ¢; is strictly monotonically increasing in ¢ and thus we can construct its
inverse.

Case 3; = 0;. We can write k; as
Oty — 00y

Kt =0p——%5—, (64)
o
(@) d [(oy
SR il 65
ar dt (O't > 9 ()
where (i) holds by the quotient role. Clearly, we have that
d Qg
= — | — 66
St dt (oy) 9 ()
o
o=, (67)
Ot

It follows from (o, o) that ¢; is strictly monotonically decreasing in ¢ and thus we can construct its
inverse.

Thus we can rewrite the ODE via a time-change to find

dy (Br)
- S, o I 68
& Bofo B Ys (68)
with the usual abuse-of-notation y¢ ‘= y;_(¢), B = Byi_(o)> &c. [

30

Under review as a conference paper at ICLR 2026

Remark C.1. When in the noise prediction formulation with Proposition 3.1 we recover the following
reparameterization of Equation (7)

dz, 0 Oy
a = OéTwT‘X (WZX) (69)

where ar > 0, z; = %mt and y; = g—i, which has been observed by numerous prior works (see
Song et al., 2021a, Equation (14); Pan et al., 2023, Equation (11); Wang et al., 2024, Equation (6)).
Remark C.2. When in the data prediction formulation, Proposition 3.1 recovers Blasingame & Liu
(2025, Proposition D.2) which states that Equation (7) can be written as

dy, 0 o
—L = —L 70
4 oL o Yy |, (70)

where y; = ‘:T—fwt and v, = %

C.1.2 DATA PREDICTION

‘We present this derivation in the form of Lemma C.1 below.

Lemma C.1 (Rex (ODE) for data prediction models). Let ® be an explicit Runge-Kutta solver for
the ODE in Equation (70) with Butcher tableau a;;, b;, c;. The reversible solver for ® in terms of the
original state x; is given by the forward step

On+1 X .
Lnt1 = ;i (Czn + (1 = O2n) + 0nt1¥n (Y0, n),
o, o
A n A~
Tpt1 = o Ty — Un+1‘p7h(7n+17 mn+1)7
n
and backward step
N On .
Ty = = Tpi1 + Un‘I’—h(’)/n—&-la mn—i—l)v
On+1 (72)
g _ 1\ & _ N
T, = —— 1a7n+1 +(1-C¢ l)wn —on(1‘I’h(7mwn)v
On+1
with step size h ‘= yp,11 — Y, and where W denotes the following scheme
1 i—1
~ 0 ~
2= + hZI W3 0|y, +cyh (Trnte;hZj);
= (73)

S
W (Yo, ®n) = h Z biwg\'y,,,+c,;h(0'yn+cqzh2i)a
i=1

Proof. Recall that the forward step of the McCallum-Foster method for Equation (70) given ® is
given as

Ynt+1 = CYn + (1 - C)@n + q)h(%u 'gn)v
Ynil = Yn — i’—h('}/n+17 yn+1)7
with step size b = y,+1 — 7. We use the definition of y; = ‘;—fxt to rewrite the forward pass as

(74)

Op ~ On oT .
Ln4+1 = + (Cxn + (1 =)&) + ilq)h (77“ UTa}n>)

o ar
. On+1 . On+1 ar
Tpt1=—&Tpn— ——Pop (Yur1, —Tny1 | -
Onp ar On+1
Mutatis mutandis we find the backward step in x; to be given as
A~ (XN On orT
Ty = p Tnt1+ ?Q—h (’Yn-',-ly 053n+1>)
1 T 1
n-+ n—+ (76)
On .1 1\~ On .1 oT .
Ly = ¢ Tpg1 + (1 —-¢)wn ——C " ®u | Y, —Zn |,
On+1 or Op

31

Under review as a conference paper at ICLR 2026

Next we simplify the explicit RK scheme ®(+,,, y,,) for the time-changed probability flow ODE in
Equation (70). Recall that the RK scheme can be written as

i—1
g .
'Yn+cjh
zi=yYyn+h E AijOTELOy, +c;h (U zj |,
T

7 (77)
(o n Cih
(ﬁh(’Yna yn) = hz biaT:BOthrcih (’sz) .

X or
=1
Next, we replace y; back with x; which yields

1 = o
Yntcih
zi=or | —x, + h § aijwo\’YnJerh (zj ;
On ar

=1 (78)

S
aor Oy, +cih
78 (%u - wn) =orh E biToy,, +-cih <Zz> .

n i=1 or
To further simplify let o7 2; = 2z; and define Wy, (v,) = o7 P (10, T xy).

Thus we can write the following reversible scheme with forward step

a ~ N
Lnt1 = 27“ (Cxn + (1 =)&) + Tns1h(Vn, Tn),
) Onr1 (79)
Tpt1 = o Ty — Un+1‘1’7h(7n+1a wn+1)7

and the backward step

o On .
Ty, = o Lp+1 + Un‘Il—h('yn—&-la $n+1)7

;:1 -1 “1vs —1 . (80)
Ly = ¢ mn+1+(1_C)mn —on(‘I’h(Wnywn%

On+1
with the numerical scheme
.1 = .
Zi= WY ay®y, e n (O ten i),
= 81)

S
U (vn, @n) = h Z bi“’gmﬂm(%nwihﬁi)-
i=1

C.1.3 NOISE PREDICTION

We present this derivation in the form of Lemma C.2 below.

Lemma C.2 (Rex (ODE) for noise prediction models). Let ® be an explicit Runge-Kutta solver for
the ODE in Equation (69) with Butcher tableau a;j, b;, c;. The reversible solver for ® in terms of the
original state x; is given by the forward step

[0 N ~
Ln+1 = ;7“ (Czn + (1 = On) + ans1¥r(Xns Tn),
n
(32)
A o N
Lp41 = 2+1 Ty — Oén+1‘Il—h(Xn+1a m7L+1)7
n
and backward step
A Qn
Ty, = i Tn+1 + an‘IJ—h(Xn-&-la wn+1)7
Qp 41 (83)
« _ 1\ 4 _ .
Ly = = ¢ 1wn+1+(1_< l)wn_anC 1‘I’h(Xn7mn)a
Qp41

32

Under review as a conference paper at ICLR 2026

with step size h ‘= Xn4+1 — Xn and where ¥ denotes the following scheme

i—1

. 1 0 .
Zi = ?m" +h Z aijmT|X,l+Cjh(aX7z+thzj)a
n T
. = (84)
6 ~
W1, (Xn, Tn) = h Z bixT\xn+c,,h(0‘Xn+c7:hzi),

i=1

Proof. Recall that the forward step of the McCallum-Foster method for Equation (69) given @ is
given as
Znt1 = (2 + (1 - C)ﬁn + 'I)h(Xnv ﬁn)a
Znt1 = Zn — Popn(Xn+1s Znt1)s
with step size h = xp4+1 — Xn. We use the definition of z; = %wt to rewrite the forward pass as

(85)

(e779 . Oy ar
Tn41 + (Cwn + (]- - C)wn) + Oé+1 (I)h (Xna aTmn>)

« T
N (077 N Qp41 ar
Lpt1 = Ty — (I’—h (Xn+1; wn+1) .
(07 aT [e77EE}
Mutatis mutandis we find the backward step in x4 to be given as
~ Qp Qp, ar
Ty = o Tpt1 + af‘l’—h (Xn+1; awn+1))
1 T 1
n n (87)
[0 7 | 1\ A Qn 1 ar
LTp = C Tpi1 + (1 - C)wn - 7< P, Xny —&n |,
Qp41 ar Qp,

Next we simplify the explicit RK scheme ®(x,,, z,,) for the time-changed probability flow ODE in
Equation (70). Recall that the RK scheme can be written as

i—1
« .
Xn+c.7h
zZi=z,+h g AijQTEO|y, +cjh (azj ,
' T

7 (88)
P _ . Qxntcih
h(anzn) - hzbzaTwOb(nJrcih Zi |-

i=1 ar
Next, we replace z; back with x; which yields

1 ! e
Xn+cjh
zi=ar | —z,+h § Qi 0|y +cjh (Zj s
Qp ar

=1 (89)

s
ar Qxntcih
78 (Xn; a$71> = OlTthimOb(n—&-cih (Z’L> .

n i=1 or
To further simplify let ar2; = z; and define Wy, (xn, Tn) = ar®(Xn, Lxy,).

Thus we can write the following reversible scheme with forward step

Qo N .

T =~ (G + (1= Oon) + g1 Wn (X, &),

) st . (90)

Tpit1 = a Tpn — anJrl‘Ilfh(anLla wn+1)7

n
and the backward step
N Qp
Ty = o Tpi1 + an‘Il—h(Xn+1a wn—i—l)v
gzl -1 —1\ 4 -1 . D
Tn = C Tyl + (1 - C)wn - an(‘I’h(Xna :l‘:n),
Qp41

33

Under review as a conference paper at ICLR 2026

with the numerical scheme
i—1

1
_ 0 ~
Zi = 07% +h E aiij|xn+cjh(@xn+c_jhzj),
n i—1
! (92)
S

U (Xn, @n) = h Z biweT\Xn+cih(axn+Cih2i)-

i=1

C.2 REX (SDE)

In this section we derive the Rex scheme for the reverse-time diffusion SDE along with several helper
derivations. We begin by deriving the reparameterization of Equation (9) in Section C.2.2 and then
performing an analogous derivation for the noise prediction scenario in Section C.2.3.

C.2.1 TIME-CHANGED BROWNIAN MOTION

Before detailing this proof we first review some necessary preliminary results about continuous local
martingales and Brownian motion. In particular we will show that we can simplify the stochastic
integrals in Equation (9) and the corresponding reparameterization with noise prediction models.

Dambis-Dubins-Schwarz representation theorem. We restate the Dambis-Dubins-Schwarz rep-
resentation theorem (Dubins & Schwarz, 1965) which shows that continuous local martingales can
be represented as time-changed Brownian motions.

Theorem C.3 (Dambis-Dubins-Schwarz representation theorem). Let M be a continuous local
martingale adapted to a filtration {F;};>¢ beginning at 0 (i.e., My = 0) such that (M), = o0
almost surely. Define the random variables {T;},>0 by

r=inf {s >0:(M)s >t} =sup {s>0: (M) =t}. (93)

Then for any given t the random variable T, is an almost surely finite stopping time, and the process'®

B, = M., is a Brownian motion w.r.t. the filtration {G; }+>0 = {F7, }+>0. Moreover,

M, = By, (94)

A multi-dimensional version of the Dambis-Dubins-Schwarz representation theorem. In our
work we are interested in a d-dimensional local martingale M = (M, ... M?). As such we discuss
a multi-dimensional extension of Theorem C.3 which requires that the d-dimensional continuous
local martingale if the quadratic (covariation) matrix (M)’ = <M ¢ MY > , 1s proportional to the
identity matrix. We adapt the following theorem from Lowther (2010, Theorem 2) and Bourgade
(2010, Theorem 4.13) (c¢f. Revuz & Yor, 2013).

Theorem C.4 (Multi-dimensional Dambis-Dubins-Schwarz representation theorem). Let M =
(M*, ..., M%) be a collection of continuous local martingales with My = 0 such that for any
1 <1<d,(M)% = oo almost surely. Suppose, furthermore, that (M*, M7}, = §,; A;, where &
denotes the Kronecker delta, for some process A and all 1 < i,j < dandt > 0. Then there is a
d-dimensional Brownian motion B w.rt. a filtration {G; }+>o such that for eacht > 0, w — Ay (w) is
a G-stopping time and

M; = By,. 95)

Enlargement of the probability space. Recall that in Theorems C.3 and C.4 we stated that
quadratic variation of the continuous local martingale needed to tend towards infinity as ¢ — oo.
What when (M) has a nonzero probability of being finite? It can be shown that Theorems C.3
and C.4 holds under an enlargement of the probability space (not the filtration). Consider both
our original probability space (2, F, P) and another probability space (Q', 7', P’) along with a
measurable surjection f : ' —) preserving probabilities such that P(A) = P'(f~1(A)) for all
A € F,ie., f.P'is apushforward measure. Thus any process on the original probability space

Defined up to a null set.

34

Under review as a conference paper at ICLR 2026

can be lifted to (', F', P') and likewise the filtration is also lifted to 7} = {f~1(A) : A € F;}.
Therefore, it is possible to enlarge the probability space so that Brownian motion is defined. E.g.,
if (Q”,F",P") is probability space on which there is a Brownian motion defined, we can take
Q=0xQ", Fl=F®F' and P = P ® P" for the enlargement, and f :" Q — Q is just the
projection onto €.

We now present a lemma for rewriting the stochastic differential in Equation (9) using the Dambis-
Dubins-Schwarz representation theorem. Recall that in Equation (9) we denote the reverse-time
d-dimensional Brownian motion as W, i.e., by Lévy’s characterization we have W = 0 and

Wt—WSN—N(O7(t—s)I):N(O,(t—s)I), (96)
for 0 <t < s < T. With this in mind we present Lemma C.5 below.

Lemma C.5. The stochastic differential |/ — % AW can be rewritten as a time-changed Brownian

do, —
V=22 AW, = dw,, 97)
dt
Proof. To simplify the stochastic integral term we first define a continuous local martingale M, via

the stochastic integral
t
do —
M, = —— dW,. 98
t /T V@ ¢ (98)

We choose time 7" as our starting point for the martingale rather than 0 and then integrate in reverse-
time. However, due to the negative sign within the square root term it is more convenient to work
with W, i.e., the standard d-dimensional Brownian motion defined in forward time. Recall that the
standard d-dimensional Brownian motion in reverse-time with starting point 7" is defined as

W, =Wr - W, 99)

which is distributed like W; in time T — t. Define the function f(t, W;) = W . Then by Itd’s
lemma we have

motion of the form

where oy = V7.

d d
Af(t, W) = 0y f(t, Wh) dt + > O F(t, W3) AW} + Y O, 0, (£, Wy) d (W', W) |
i=1 i,j=1
(100)
which simplifies to o
df(t, W,) = dW, = —dW,. (101)

Thus we can rewrite Equation (98) as

t
T

Next we establish a few properties of this martingale. First, M = 0 by construction. Second, since
the integral consists of scalar noise we have that (A/*, M7); = 0 for all ¢ # j. Thus, the quadratic
variation of (M) for each i is found to be

g t do 2
M) = A, = — ~Sr) g 103
= ai=- [({f-) o (103
t
dor
:/idn (104)
TdT
062 062
:Qt_QT:%_%- (105)
oy Op

Now we have a deterministic mapping from the original time to our new time via A;. Now in general
for any valid choice of («:,0:) we don’t necessarily have that (M)* = oo almost surely and as
such we may need to enlarge the underlying probability space. Our constructed martingale can be

35

Under review as a conference paper at ICLR 2026

expressed as time-changed Brownian motion, see Theorem C.4, such that M, = W, were W, is
the standard d-dimensional Brownian motion with time variable .

Now we can rewrite Equation (102) in differential form as

dM; = dWa,. (106)

Because Brownian motion is time-shift invariant we can then write
dM; = dW,,. (107)
O

Remark C.3. Lemma C.5 can similarly be found via @ksendal (2003, Theorem 8.5.7) and Kobayashi
(2011, Lemma 2.3); however, do to the oddness of the reverse-time integration we found it easier to
tackle the problem via the Dambis-Dubins-Schwarz theorem.

Remark C.4. Under the common scenario where oy = 0 then we have that (M)% = oo almost
surely.

Lemma C.6. Let ar > 0. Then the stochastic differential / G% (x?) AW can be rewritten as a
time-changed Brownian motion of the form

d __ __
7 (X)W = dW e, (108)

where x; = %

Proof. To simplify the stochastic integral term we first define a continuous local martingale M, via

the stochastic integral
t
d J—
M, = / 1/ X (x?) dW . (109)
T

We choose time 7" as our starting point for the martingale rather than 0 and then integrate in reverse-
time, hence the negative sign. Next we establish a few properties of this martingale. First, M7 = 0
by construction. Second, since the integral consists of scalar noise we have that (M¢, M7), = 0 for
all i # j. Thus, the quadratic variation of (M) for each i is found to be

5 ¢ d 2
== [(o) an (10

T
t d)
- [& d 111
/TdT(xt) T (1)
0'2 0'2
=x?—x%=a—%—é. (112)

Now we have a deterministic mapping from the original time to our new time via A;. Now in general
for any valid choice of («ay, o) we don’t necessarily have that (M)% = oo almost surely and as
such we may need to enlarge the underlying probability space. Our constructed martingale can be
expressed as time-changed Brownian motion, see Theorem C.4, such that M; = W 4, were W, 2 is

the standard d-dimensional Brownian motion with time variable y? in reverse-time.

Now we can rewrite Equation (98) in differential form as

AM; = dW 4,. (113)

Because Brownian motion is time-shift invariant we can then write
dM; = dWﬁ. (114)
O

Remark C.5. The constraint of a7 > 0 is important to ensure that x 7 is finite which is necessary
due
fo = WX% — WX?' (115)

In practice this is satisfied with a number of noise schedules of diffusion models (c¢f. Appendix H.1).

36

Under review as a conference paper at ICLR 2026

C.2.2 PROOF OF PROPOSITION 3.2

In this section we provide the proof for Proposition 3.2 along with associated derivations. We restate
Proposition 3.2 below.

Proposition 3.2 (Time reparameterization of the reverse-time diffusion SDE). The reverse-time SDE
in Equation (9) can be rewritten in terms of the data prediction model as

dy, = 74l (W’QYQ) do+ 2L aw,, (10)
yr 0T YT

where Y, = 25t Xt and oy =

‘Q
ol o

Proof. We rewrite Equation (3) in terms of the data prediction model, using the identity

1
Velogpi(x) = ——x + m0|t(x), (116)
Ut o}
to find
(¢ o g?(t —
dX; = (f(t) + 90(2)> X+ (— tiz()> xot(Xy) | dt +g(t) dWy, (117)
i t
=a(t) =b(t)
where
Gy 2 2d10g Ve
=5 g S0t = —202 5k (118)
Next we find the integrating factor =; = exp — fT) du,
T 2
dlog ay
Etexp</ Ogo‘+g(f)du>, (119)
+ du oz
T dlog v, dlog~y,
= exp / -2 du |, (120)
¢ du du
T
dlog ay, dloga, dlogo,
= — =2 — d 121
P (/t du { du du vl a1z
T 2
— exp (/ dlogo, dlogay du) , (122)
¢ du du
= exp (log 02 —logo? — (logar — log at)) , (123)
2
OOt
=1, (124)
ooty

We can write the integrating factor in terms of ; as

g, = XN (125)
ayT
Moreover we can further simplify b(t) as
2
- t
bit) =~ 1) (126)
Oy
dlog v
=2 127
Qi dt (127)

37

Under review as a conference paper at ICLR 2026

Thus we can rewrite the SDE in Equation (117) as

dl dl —
a {W%Xt} —poroe, dIoBh, | (x,) di+ UT%\/W aw, (128)
YT Oy YT Ot dt YT Ot dt
j dl dl —
dy, W oZL 2, CO8 L (Wyt) dt+ 720 [202 S8 aW,, (129
YT O dt YT Ot dt
dn2 dlogv?
ay, = L g, (WC”Y;) dt + ”T\/W AW, (130)
yr dt oTVe oly dt
d 2 d 2
ay, = L, (Wth) dt+ 7Ly [-EE W, (131
yr dt oV T dt
ay, @ T g (VT%YQ> do+ 7T aw,, (132)
YT 0T YT
where (i) holds by the change-of-variables Y; = %Zi X and (ii) holds by Lemma C.5.]

C.2.3 PROOF OF REPARAMETERIZED SDE FOR NOISE PREDICTION MODELS
Proposition C.7 (Time reparameterization of the reverse-time diffusion SDE for noise prediction

models). The reverse-time SDE in Equation (3) can be rewritten in terms of the noise prediction
model as

dY, = 2aT:c,?P|X (S;Yx) dx + ar AW e, (133)

S . Ot
where Y; = e X and x; = -

Proof. We rewrite Equation (3) in terms of the noise prediction model to find

2 t __
X, = [f(t)Xt + ga()w%t(Xt)} dt + g(t) dWy, (134)
t
where
_% 2 _ 2 %2__ QdIngyt
ft) = " g°(t) = o; Qoztat = —20; T (135)

Next we find the integrating factor to be exp — f; f(u) du = Z—f Moreover, we can further simplify

g2(1) o
2(t dl
g _ o, dloen (136)
g¢ dt
= 90,2t (137)
Yt
9Tt MTt 0y (138)
Tt (o
- O (139)
it (o
_ o1 b gy — o (140)
(673 [
— QM’ (141)
Qg
(142)

38

Under review as a conference paper at ICLR 2026

Let x; == ai % Thus we can rewrite the SDE in Equation (134) as

2
ar ar g°(t) o 2d10g% o
d|—X;| = X;)dt+ —1/—20 dw 143
|:Oét t:| o fg T|t(t) + dt ty ()
,dl
ay, @ er9 (Q)mm (ath> dt + 2T | 952298 gy, (144)
o O ar o de
T¢ — dl —
dY; = 20, M7 A0 g0 (O‘th) dt + 27 | 2525080 gy, (145)
o ar on dt
i dl
av; @ 20 y,a, (‘”Yt) at + ar zat 087t aw,, (146)
“\ar dt
dY; = 2ar @, ((j’fYt) dt + ary/x? AW, (147)
T
(i) 0 Oy 74
dY, QOleT‘X a—YX dx +ar dW 2, (148)
T
(149)
where (i) holds by the change-of-variables Y; = ‘z—th, (ii) holds by
of dlogy; _ a7 d(=2log)
9%t = — 150
af dt a? dt ’ (150)
2 2
o; dlog x;
=t 151
T (151)
2 2
Ot Xt
=&, (152)
of X7
=Xi» (153)
and (iii) holds by Lemma C.5 mutatis mutandis for y;. O

C.2.4 DERIVATION OF REX (SDE)

We present derivations for both the data prediction and noise prediction formulations.

Data prediction. We present this derivation in the form of Lemma C.8 below.

Lemma C.8 (Rex (SDE) for data prediction models). Let ® be an explicit stochastic Runge-Kutta
solver for the additive noise SDE in Equation (10), we construct the following reversible scheme for
diffusion models

On n % On X W
Xn+1 = L’Y(an + (1= Q)Xn) + Ty (00, X, o (W),
Yn+10n Tn+1

(154)
~ g ag
Xn+1 n+1rynX - il ‘Il—h(Q7z+1aXn+17WQ(w))a
Yn+10n Tn+1
and the backward step is given as
O OnYn O On
X, =Tt x4 —W_p(0n+1, Xnt1, Wp(w)),
YnOn+1 Tn (155)
OnYn+1 . - O On . %
X, = 20X+ (1= CTH X, — 2Ty, (0, X, W (w)),
"Yno—n—o—l 771
with step size h ‘= p,11 — 0y, and where W denotes the following scheme
i—1
N o cih A
Z; = ’}/nX,L—FhZ |:CI,7/]$COIQ”+CJ (WZJ>:| _|_a¥VWn+a,fIHn,
Yontcih
=t (156)
v (QnaXmW = hz {b L0|g,+cih (onteih Z,)] + bWWn + bHHn.
Yon+cjh

39

Under review as a conference paper at ICLR 2026

Proof. We write the SRK scheme for the time-changed reverse-time SDE in Equation (10) to construct
the following SRK scheme

VYT O gn+cjh orT , W H
Z; = Y+h§ [a —x (JZ)}—%a-W—i-a-H ,
ij r Olon+cjh TTVonteih J 'YT(i n i n)

i=1 (157)

YTO0gn+cih or w H
Y,.1=Y,+h [— X, teih (Ziﬂ—kb W, +b"H,),
+1 = Z 0|on+ v 7T()

with step size h = p,,+1 — 0n. Next, we replace Y; back with X; which yields

i—1
a Tn YT O 0n+cjh
2= (1, S o (202505
7 o o n ; ijL0]on+c; UT"YQW,—&-th J

~

+ J—T(a}/VWn + aiHHn),
T

UT%+1X = 0T Vn
n+l —

YT On+1 YT On

Xn

VT 0gn+cih oT o w H
+—h§ [—x o (ZZ-)]—&-b W,+b"H,).
Olenteih OTYon+cih ’YT()

:\Ilhr(gﬂJXTL!WQ)
(158)

To further simplify let %Z = Z,;, then we construct the reversible scheme with forward pass:

On n > On %
X1 = 250 X+ (1= O)Xon) + 2250 (00, X, Wo(w)),

TYn+10n Tn+1
. Oni1Vn < On+1 (159)
Xnt1 = X, — ‘I’—h(gn—&-laXn-i-l,WQ(w))’

Yn+10n Yn+1

and backward pass

OnYn
X, =2 R TG (01, X1, Wo(w)),

,YTLO-TL—Q-I Tn
o OnYn+l .1 I On .1 N (160)
Xpt1=—C Xon+(1-)X — — (T (0n, X, W,y(w)),

YnOn+1 Yn

with step size h = 9,41 — 0n

i—1
~ ag cih &
Z;, = %X + hz [a”wo|gn+c] (szﬂ +afVWn + afIHn,

"an+c]'h
=t (161)
Uy, (00, X, W,(w)) = hZ {b L)y tesh (”Q*”ZJ)] +o"YW, + v H,,.
Yon+cih
O

Noise prediction. We present this derivation in the form of Lemma C.9 below.

Lemma C.9 (Rex (SDE) for noise prediction models). Let ® be an explicit stochastic Runge-Kutta
solver for the additive noise SDE in Equation (133), we construct the following reversible scheme for
diffusion models

(7% O %
X1 = (X + (1= 0X0) + 1% h(xns X, Wz (w)),
A o (162)

AUp41
Xn+1 = TXn - an+1‘I]—}L(X'n+1a Xn+17 sz (w))a
n

and the backward step is given as

Oy -
X, = o Xn +Oén‘I’fh(Xn+17Xn+17WX2(w))’
n+1 (163)

« _ _ ~ _ A
= o :_ 1< 1Xn+1 + (1 _C 1)Xn - O‘ng 1\II}L(X7L7XTL7 WXQ(UJ)):

40

Under review as a conference paper at ICLR 2026

with step size h ‘= Xn4+1 — Xn and where ¥ denotes the following scheme

1—1

N 1 A

Zi= —X,+ 1Y 2052y, o (onnsenZs)] +alV W+ ol H,,
=1

Qn

. (164)
‘Ilh(Xna Xn, WX(W)) = hz |:2bimg“\xn+cq,h (Oéxn+cihZAj)] —+ bWWn + bHHn
j=1
Proof. We write the SRK scheme for the time-changed reverse-time SDE in Equation (133) to
construct the following SRK scheme
i—1 o
Zi=Y,+h)_ [2aijaTa;T|Xn+cjh (X;’lzjﬂ + ar(aVW, +a’H,),
— T
=t (165)

S
Oyt
Yo=Y 40> [ZbiaT:cTX"Jrcih (xa;szﬂ VW, LT H,),

i=1
with step size h = xp4+1 — Xn. Next, we replace Y; back with X; which yields

i—1

1 (6% n h
Zi = QT 7Xn + hz |:2aijCETXn+th (X+CJZJ>:|
(679 j=1 aT
+ aT(afVWn + aiHHn)7
ntly . =Tx, (166)
ar Qnp

+arh) |:2biOéTIl?T|Xn+cih (O‘X&?”inﬂ +ar ("W, +b"H,).
i=1

=T (Xn, Xn,Wy)
To further simplify let cvr Z; = Z;, then we construct the reversible scheme with forward pass:

oy, N N
Xn+1 = +1 (CXn + (1 - C)Xn) + an+1‘I’h(Xn7Xna Wx(w))a

5 0311 % aon
X1 = == Xn = a1 Won (ot Xorr, Wy (W),
and backward pass
IS (67 %
Xn = a X+ an¥_p(Xn+1, Xnt1, Wy(w)),
) g;rl (168)

Xn+1 - Cian—i-l + (1 - Cil)Xn - Oéncil‘l’h(Xm Xﬂa Wx(w))v

anJrl

with step size b == Xn4+1 — Xn

1—1
Z; = ﬁXn + hz |:2aiij|Xn+th (axn+cjh2j)] +al’W, +aH,,

n

= (169)
@1 (s X Wi @) = B Y [201x v (Qsean 25)| + 0% W+ 0 H,.
j=1
NB W, =Wy ~ W, O

C.3 PROOF OF PROPOSITION 3.3

We now can construct Rex.

41

Under review as a conference paper at ICLR 2026

Proposition 3.3 (Rex). Without loss of generality let ® denote an explicit SRK scheme for the SDE
in Equation (10) with extended Butcher tableau a;;, b;, c;, alV afl bW bH. Fix anw € Q and let
W be the Brownian motion over time variable . Then the reversible solver constructed from ® in
terms of the underlying state variable X is given by the forward step
Wn+1 ~ N
X1 = w (CXn + (1 - C)Xn> + wn+1\IIIL(§7L7 X, Wn(w))a
n
~ Wn+1

Xn+1 - w Xn - wn+1‘I’—h(§n+1a Xn—i—la Wn(w))v

(12)

and backward step
N w. ~
X, = w nl Xoy1 + wn‘IJ—h(gn-i-la X1, Wn(w))a
n+
W,

X, = - X + (1= CH X, — wn 0 (6, X, Wi (w)),
n+1

13)

with step size h ‘= G, 11 — <, and where ¥ denotes the following scheme

i—1
Z; = wLX" + hz [aijfg (gn +¢jh, wgn_kcthAj)] + a}/VWn(w) + af{Hn(w),
! = (14)
\Ilh(gnv Xna Wg(w)) = h Z |:bif0 (gn + Ciha w§n+c,iiLZAj):| + bWWn(w) + bHHn(w)a
j=1

where fe denotes the data prediction model, w, = % and ¢; = p4. The ODE case is recovered

for an explicit RK scheme ® for the ODE in Equation (70) with w,, = o, and 5, = -y, For noise

prediction models we have ¥ denoting the noise prediction model with w, = o, and ¢; = o,

Proof. This follows by Lemmas C.1, C.2, C.8 and C.9 mutatis mutandis. O

D CONVERGENCE ORDER PROOFS

D.1 ASSUMPTIONS

Beyond the general regularity conditions imposed on the learned diffusion model itself (see Lu
et al., 2022b; Blasingame & Liu, 2024a; 2025) we also assert that in the noise prediction setting that
ar > 0. In practice most commonly used diffusion noise schedules like the linear or scaled linear
schedule satisfy this, (see Appendix H.1; ¢f. Lin et al., 2024).

D.2 PROOF OF THEOREM 4.1

Theorem 4.1 (Rex is a k-th order solver). Let ® be a k-th order explicit Runge-Kutta scheme for
the reparameterized probability flow ODE in Equation (70) with variance preserving noise schedule
(a4, 0¢). Then Rex constructed from ® is a k-th order solver, i.e., given the reversible solution
{@n, 2, }N_, and true solution z,, we have

|, —x, || < ChF, (15)

for constants C, hyyq. > 0 and for step sizes h € [0, hpnaa-

Proof. © We will prove this for both the data prediction and noise prediction formulations.
Data prediction. By Theorem A.1 we have that reversible ® is a k-th order solver, and thus

lyn =y, || < CBE. (170)
We use the change of variables from Equation (70) to find

ar or
Ln — T,
On On

< Ch*, (171)

42

Under review as a conference paper at ICLR 2026

which simplifies to
T — @0, || < Z-CHE. (172)
or
Now by definition for variance preserving type diffusion SDEs we have that ; < 1 for all £. Thus
we can write
s — e, || < CLb", (173)
c

where C; = oo
Noise prediction. By Theorem A.1 we have that reversible ® is a k-th order solver, and thus
lyn — ye, || < ChF. (174)

We use the change of variables from Equation (69) to find

T — &T% < Ch*, (175)

ay, oy
which simplifies to

| — @0, | < ZCR. (176)

ar
Now by definition we have a; < 1 for all ¢ and we assume that ap > 0. Thus we can write
|l — @0, || < Cih", (177)

where C; = %]

D.3 PROOF OF THEOREM 4.2

Definition D.1 (Strong order of convergence). Suppose an SDE solver admits a numerical solution
X, and we have a true solution X, . If

sup E||X, — X, ||* < Ch?®, (178)

0<n<N
where C' > 0 is a constant and A is the step size, then the SDE solver strongly converges with order
o.

Theorem 4.2 (Convergence order for stochastic ¥). Let ® be a SRK scheme with strong order of
convergence £ > (for the reparameterized reverse-time diffusion SDE in Equation (10) with variance
preserving noise schedule (o, 0r) and ap > 0. Then W constructed from ® has strong order of
convergence £.

Proof. We will prove this for both the data prediction and noise prediction formulations.

Data prediction. By definition we have ® has strong order of convergence £ and thus,

sup E|Y, - Y ||> < Ch%, (179)

0<n<N

2
where h = Z"—J: — Z—i We use the change of variables from Equation (10) to find

2 2
sup E|| %y, Ty, | < on¥, (180)
0<n<N opar opar
which simplifies to
n/
sup E| X, — X, [> < VL op, (181)
0<n<N 0T/ CQn

Since by definition of ¢, is a monotonically decreasing function, o,, is a monotonically increasing
function, o > 0, and o7 < 1 we can write

sup E[X, — X;, ||*> < Oh*, (182)
0<n<N

43

Under review as a conference paper at ICLR 2026

as

InVaT 4. (183)
OT+/COp

Noise prediction. By definition we have ® has strong order of convergence ¢ and thus,

sup E|Y, - Y, |? < Ch*, (184)
0<n<N
where h = g”—:i — 7=, We use the change of variables from Equation (133) to find
e e 2
sup E|[—2X, — =X, || <Ch%, (185)
0<n<N ||OQT ar
which simplifies to
sup E|[X, — X, |2 < YL op2%, (186)
0<n<N VvV On

Since by definition of «,, is a monotonically decreasing function strictly less than 1 and a7 > 0 we

can write
sup E[X, — X, ||> < Ch*. (187)
0<n<N

O

E RELATION TO OTHER SOLVERS FOR DIFFUSION MODELS

While this paper primarily focused on Rex and the family of reversible solvers created by it, we wish
to discuss the relation between the underlying scheme W constructed from our method and other
existing solvers for diffusion models.

Exponential integrators &
change-of-variables

3 gLl —0Ora y dyos S
G = Frwe o+ TG fy (1, @) > A =Prfo <§’ éiTy“)
1
1
A 4 lv
Lawson method
Lpt1 = w£:1 Ty, + ‘I’h(tny wn) < Yn+1 = Yn + q)h(tnvyn)

Figure 6: Overview of the construction of W for the probability flow ODE from an underlying RK
scheme @ for the reparameterized ODE. This graph holds for the SDE case mutatis mutandis.

Surprisingly, we discover that using Lawson methods outlined in Figure 6 (¢f. Figure 2 from the main
paper) is a surprisingly generalized methodology for construing numerical schemes for diffusion
modes, and that it subsumes previous works. This means that several of the reversible schemes we
presented here are reversible variants of well known schemes in the literature in diffusion models.

Theorem 4.3 (Rex subsumes previous solvers). The underlying scheme used W in Rex given by

i1
1 N
Z; = w—Xn + hZ {aijfe (gn + cjh,wg,,L+cthj>} + aV W, (w) + o H, (w),

j=1

Xn+1 - w17)+1 Xn + Wn 41 hz |:bzf0 (Cn + Cih, ’lUgn+c7;hZAj>:| + bWWn((JJ) + bHHn(UJ) 5
n j=1

(16)
subsumes the following solvers for diffusion models

1. DDIM (Song et al., 2021a),
2. DPM-Solver-1, DPM-Solver-2, DPM-Solver-12 (Lu et al., 2022b),

44

Under review as a conference paper at ICLR 2026

3. DPM-Solver++1, DPM-Solver++(2S), SDE-DPM-Solver-1, SDE-DPM-Solver++1 (Lu
etal., 2022a),

4. SEEDS-1 (Gonzalez et al., 2024), and
5. gDDIM (Zhang et al., 2023).

Proof. We prove the connection to each solver in the list within a set of separate propositions
for easier readability. The statement holds true via Propositions E.1 to E.8 and Corollaries E.1.1
to E.6.1. O

Corollary 4.3.1 (Rex is reversible version of previous solvers). Rex is the reversible revision of the
well-known solvers for diffusion models in Theorem 4.3.

Remark E.1. The SDE solvers constructed from Foster-Reis-Strange SRK schemes are wholly
unique (with the exception of the trivial Euler-Maruyama scheme) and have no existing counterpart
in the literature in diffusion models. Thus Rex (ShARK) is not only a novel reversible solver, but a
novel solver for diffusion models in general.

E.1 REX AS REVERSIBLE ODE SOLVERS

Here we discuss Rex as reversible versions for well-known numerical schemes for diffusion models.
Recall that the general Butcher tableau for a s-stage explicit RK scheme (Stewart, 2022, Section
6.1.4) is written as

C1
C2 | a21
C3 | a31 (32
=2 (188)
b
Cs | As1 Qg2 "' Q(s—1)s
b1 b2 b3,1 bs
Embedded methods for adaptive step sizing are of the form
¢
C2 | G21
€3 | az1 as2
) (189)
Cs | Gs1 Qs2 " O(s—1)s
bi by o beo1 bs
L T S T

where the lower-order step is given by the coefficients b;.

E.1.1 EULER

In this section we explore the numerical schemes produced by choosing the Euler scheme for ®. The

Butcher tableau for the Euler method is
0
L‘T. (190)

Proposition E.1 (Rex (Euler) is reversible DPM-Solver++1). The underlying scheme of Rex (Euler)
for the data prediction parameterization of diffusion models in Equation (70) is the DPM-Solver++1
from Lu et al. (2022a).

Proof. Apply in the Butcher tableau for the Euler scheme to ¥ constructed from Equation (69) to
find

On+1 9
Tpt+1 = Tmn + O-n-ﬁ—lhmohn (mn)7 (191)

n

45

Under review as a conference paper at ICLR 2026

with h = 7,41 — 7. We can rewrite the step size as

[e7% Qo
Ont1h = 0ni1 (U i - O_) , (192)
n n
_ (anﬂ — o ”"“) | (193)
= (amo‘"“ — ""“>, (194)
an+1 anJrl On
= —Qp41 O‘n Tnil - 1)) (195)
Qnt1 On
= —nt1 < > : (196)
'Yn-&-l
= —ant1 (el ETAT 1) (197)
=~ (O8I TIOB I 1) (198)
N S (199)
ot e 1) (200)

where (i) holds by the letting A\; = log ; following the notation of Lu et al. (2022b;a) and (ii) holds
by letting hy = A, +1 — A,. Plugging this back into Equation (191) yields

On _
Tp+1 = O'+1 n — Op41 (6 ha 1) $8|tn (wn)7 (201)
which is the DPM-Solver++1 from Lu et al. (2022a). O]

Corollary E.1.1 (Rex (Euler) is reversible deterministic DDIM for data prediction models). The
underlying scheme of Rex (Euler) for the data prediction parameterization of diffusion models in
Equation (70) is the deterministic DDIM solver from Song et al. (2021a).

Proof. This holds because DPM-Solver++1 is DDIM see Lu et al. (2022a, Equation (21)) with
n=0. O

Proposition E.2 (Rex (Euler) is reversible DPM-Solver-1). The underlying scheme of Rex (Euler)
for the data prediction parameterization of diffusion models in Equation (69) is the DPM-Solver-1
from Lu et al. (2022b, Equation (3.7)).

Proof. Apply in the Butcher tableau for the Euler scheme to ¥ from Rex (see Proposition 3.3) to find

Qp41

Ty = T+ an1haly, (@), (202)

n

46

Under review as a conference paper at ICLR 2026

with h = xn4+1 — Xn. We can rewrite step size as

On On
ani1h = any <a j: - a>) (203)
= (0’77,—',—1 — On a;+1>) (204)
On+1 On+1 Qn
— o [t) (206)
On+1 Qn
- (S 71)
= —0Onp+1 (elog X:(‘:l - 1)) (208)
S (elogxn—logxnﬂ _ 1) , (209)
(Q — (efAn“’)\nﬁ»l _ 1) , (210)
W g (e — 1), @11)

where (i) holds by the letting A; = logy; = — log x; following the notation of Lu et al. (2022b;a)
and (ii) holds by letting Ay = A, +1 — Ay,. Plugging this back into Equation (191) yields

an
Loyt = a“wn — ng (e = 1) 2y, (z0), (212)
n
which is the DPM-Solver-1 from Lu et al. (2022b). O

Corollary E.2.1 (Rex (Euler) is reversible deterministic DDIM for noise prediction models). The
underlying scheme of Rex (Euler) for the noise prediction parameterization of diffusion models in
Equation (69) is the deterministic DDIM solver from Song et al. (2021a).

Proof. This holds because DPM-Solver-1 is DDIM see Lu et al. (2022b, Equation (4.1)). L]

E.1.2 SECOND-ORDER METHODS

In this section we explore the numerical schemes produced by choosing the explicit midpoint method
for ®. We can write a generic second-order method as

0

n ; (213)
T
2n 2n

for 7 # 0 (Butcher, 2016). The choice of = % yields the explicit midpoint, n = % gives Ralston’s
second-order method, and = 1 gives Heun’s second-order method.

Proposition E.3 (Rex (generic second-order) is reversible DPM-Solver++(2S)). The underlying
scheme of Rex (generic second-order) for the data prediction parameterization of diffusion models in
Equation (70) is the DPM-Solver++(2S) from Lu et al. (2022a, Algorithm 1).

Proof. The DPM-Solver++(2S) (Lu et al., 2022a, Algorithm 1) is defined as

g _
L, — ap (e raha 1) wgltn (xn),

u =
On
D=(1--)af - 214
= — % mo‘t" (wn) + Rmo‘tp(u), ()
Lp+1 = %mn — Qn41 (eihk - 1) Da

47

Under review as a conference paper at ICLR 2026

for some intermediate timestep ¢, > t, > t,41 and with) = ,\/\:% Notice that r) describes

the location of the midpoint time in the A-domain as a ratio, i.e., we could say
)\p = A, +7ahy, (215)

where r, € (0,1) denotes the interpolation point between the initial timestep A,, and terminal
timestep A,,+1. Thus we fix 7 = r) as the step size ratio of the intermediate point.

Now we return to the underlying scheme of Rex applied to the generic second-order scheme, see
Equation (213), Apply in the Butcher tableau for generic second-order scheme to W constructed from
Equation (69) to find

1
z=—x,+ nhwgm (xn),
On

o 1 1 (216)
n+1
Tl = On Tn + Tn+ih ((1 N 277> wg\'yn (@n) + %mglvn+nh(‘7pz)> ;
with h = v, 4+1 — v, and 0, = 0, 4nn With v, = 7, + nh. We can write
o
Opz = é:;;n + opnhay (Tn). (217)
Plugging this back into Equation (216) yields
g 0
opz = éazn + opnhay,.,. (zn),
On+1 1 1 21
Ln+1 = o Ty + ont1h <(1 - 27’) wgl%(w”) + %wg%ﬁnh(apz))’ 218
=D
which is the DPM-Solver++1 from Lu et al. (2022a). Now recall from Proposition E.1 that
Ont1h = —api1 (e = 1)), (219)
it follows that
opnh = —ay (e — 1), (220)

due to A\, — A\, = ryhy and nh = A, — A,,. Thus by letting 0,z = u and D = D we recover the
DPM-Solver++(2S) solver. O]

Proposition E.4 (Rex (generic second-order) is reversible DPM-Solver-2)). The underlying scheme
of Rex (generic second-order) for the noise prediction parameterization of diffusion models in
Equation (69) is the DPM-Solver-2 from Lu et al. (2022b, Algorithm 4 cf. Algorithm 1).

Proof. This follows as straightforward derivation from Proposition E.2 and Proposition E.3. O

Proposition E.5 (Rex (Euler-Midpoint) is DPM-Solver-12). The underlying scheme of Rex (Euler-
Midpoint) for the noise prediction parameterization of diffusion models in Equation (69) is the
DPM-Solver-12 from Lu et al. (2022D).

Proof. The explicit midpoint method with embedded Euler method for adaptive step sizing is given
by the Butcher tableau

o= O

]. 0

O ol

From Proposition E.2 and Proposition E.4 we have shown that Rex (Euler) and Rex (Midpoint)
correspond to DPM-Solver-1 and DPM-Solver-2 respectively. Thus the Butcher tableau above
outlines DPM-Solver-12. O

48

Under review as a conference paper at ICLR 2026

E.1.3 THIRD-ORDER METHODS

For third-order solvers like DPM-Solver-3 (Lu et al., 2022b, Algorithm 5) our constructed scheme
differs from solvers derived using ETD methods due to the presence of ¢y terms where

1 5k
Pr(t) = / (170 dg, (222)
O .

this also reasoning extends to the DPM-Solver-4 from Gonzalez et al. (2024, Algorithm 7).

E.2 REX AS REVERSIBLE SDE SOLVERS

In this section we discuss the connections between Rex and preexisting SDE solvers for diffusion
models.

E.2.1 EULER-MARUYAMA

The extended Butcher tableau for the Euler-Maruyama scheme is given by

0/{0j0|0
. (223)
11110

Proposition E.6 (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver++1). The underlying
scheme of Rex (Euler-Maruyama) for the data prediction parameterization of diffusion models in
Equation (10) is the SDE-DPM-Solver++1 from Lu et al. (2022a, Equation (18)).

Proof. Apply in the Butcher tableau for the Euler-Maruyama scheme to W constructed from Equa-
tion (133) to find

2 2 2
o i« o o
Tpt1 = ZH ", + 1t hwg‘gn (x,) + LW, (224)
05Qn41 Q41 On41
with h = g,,4+1 — 0,,. We can rewrite the step size as
2 2 2 2
g, 41 g, 41 (6% +1 (6%
a" h=-2=2 <Z —;‘), (225)
n+1 Qn+1 \Opn41 On
2 .2
a? o
Qp41 Op
2 ;2
S (1 S ";”) : (227)
Apt1 Onp
- On
=apy (11— ; (228)
On+1
- _In
= apyr (1= 700 (229)
= Qpg1 (1 _ 6210g7n—210g’7n+1) , (230)
D iy (1= ePn2Ani), (231)
D (1-e72m), (232)

where (i) holds by the letting A; = log ~y; following the notation of Lu et al. (2022b;a) and (ii) holds
by letting hy = A, +1 — Ap,. Now recall that

2
Int1% _ Ontl —hy (233)

O—%an—&-l On

Plugging these back into Equation (224) yields

2
: g
a;tl ey o (1—e72M) afyy (20) + W, (234)

n an

Tpt+1 =

49

Under review as a conference paper at ICLR 2026

Now recall that the Brownian increment W,, .= W, ., — W, has variance h. Thus via the It6

n+1
isometry we can write
W, ~ Vhe, (235)
with € ~ N(0, I). Then we have
2 2 2 2
o o a
ntl /p — Intl ;+1 _ 0%1, (236)
QApt1 Ont1 \ Opyq On
2 4
— 2 _ an O-TL+1 237
\/Un+1 aghLl O_TQL) ()
2 52
=0opy14/1— 3" n—QH) (238)
an-‘rl Un
= Tniry 1 - Q"il, (239)
n

= oy V1 — e~2h, (240)

Thus we have re-derived the noise term of the SDE-DPM-Solver++1, and putting everything together
we have obtained the SDE-DPM-Solver++1 from Lu et al. (2022a) which is

o
Tpi1 = —TLe Mg+, (1- 672}”) wg|tn () +0ni1V1—e e (241)

n

Thus we have shown that the SDE-DPM-Solver++1 is the same as the underlying scheme of Rex
(Euler-Maruyama). L]

Corollary E.6.1 (Rex (Euler-Maruyama) is reversible stochastic DDIM). The underlying scheme of
Rex (Euler-Maruyama) for the data prediction parameterization of diffusion models in Equation (10)
is the stochastic DDIM solver from Song et al. (2021a) withn = o4/ 1 — e 2,

Proof. This holds because SDE-DPM-Solver-1 is DDIM see Lu et al. (2022a, Section 6.1). O

Proposition E.7 (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver-1). The underlying scheme
of Rex (Euler-Maruyama) for the noise prediction parameterization of diffusion models in Equa-
tion (133) is the SDE-DPM-Solver-1 from Lu et al. (2022a, Equation (17)).

Proof. Apply in the Butcher tableau for the Euler scheme to W from Rex (see Proposition 3.3) to find

Qp+1

Tpy1 = Ty, + 200 1 Wy, () + Q1 W, (242)

n

with h = xn4+1 — Xn. Recall from Proposition E.2 that we can rewrite the step size

Qni1h = —0ony1 (€™ —1). (243)
Now recall that the Brownian increment W,, := WxiH - Wx% has variance x2 — x2 +1.20 Thus

via the Itd isometry we can write
W ~ /X2 — X246 (244)

.. —2 . . .
20This is because Wx is defined in reverse-time.

50

Under review as a conference paper at ICLR 2026

with € ~ N(0, I). Then we have

/ 2 0% _ Tnn
n n
On41 XEL — Xn+1 = On+1 Oéig - a2 (245)
n n+1
2.2
Unan+1 2
=/ Rt (246)
n

o202
= Ont1y| 0 — 1, (247)
n+1an
2
= Tai1y] A - 1, (248)
Xn—i—l
log Xn
=0 \e X —1, (249)
= anm/ eloBXh OB X0 —], (250)
= opp1V e 2108 mF2logyni —] 251)
= 01V €2losAnpi—2log A _ 1 (252)

= o1V e — 1. (253)

Plugging Equations (243) and (253) back into Equation (242) yields

Tpi1 = a;“wn — 2011 (" = 1) @Gy (Tn) + ons1V P — 1, (254)

n

which is the SDE-DPM-Solver-1 from Lu et al. (2022a). O]

Corollary E.7.1 (Rex (Euler-Maruyama) is reversible stochastic DDIM for noise prediction models).
The underlying scheme of Rex (Euler-Maruyama) for the noise prediction parameterization of
diffusion models in Equation (133) is the stochastic DDIM solver from Song et al. (2021a) with

n=o/e 2 — 1.

Proof. This follows from a straightforwardly from Corollary E.6.1 and Lu et al. (2022b, Equation
(4.1)). O

E.3 REX AS REVERSIBLE SEEDS-1

Proposition E.8 (Rex is reversible SEEDS-1). The choice of Euler or Euler-Maruyama for the
underlying scheme of Rex with either the noise prediction parameterization of diffusion models in
Equations (69) and (133) or data prediction in Equations (10) and (69) yields the four variants of
SEEDS-1 outlined in Gonzalez et al. (2024, Equations (28-31)).

Proof. This follows straightforwardly from Propositions E.1, E.2, E.6 and E.7 by definition of
SEEDS-1. O

Corollary E.8.1 (Rex (Euler-Maruyama) is reversible gDDIM). The underlying scheme of Rex
(Euler-Maruyama) for the data prediction parameterization of diffusion models in Equation (10) is
the gDDIM solver in Zhang et al. (2023, Theorem 1) for £ = 1.

Proof. This follows as an immediate consequence of Proposition E.8 since by Gonzalez et al. (2024,
Proposition 4.5) gDDIM is SEEDS-1. O

As mentioned earlier in Section A.4.1 high-order variants of SEEDS use a Markov-preserving noise
decomposition to approximate the iterated stochastic integrals. However, we follow Foster et al.
(2024) and use the space-time Lévy area resulting in numerical schemes that are quite different
beyond the first-order case, albeit that Rex exhibits better convergence properties.

51

Under review as a conference paper at ICLR 2026

F A BRIEF NOTE ON THE THEORY OF ROUGH PATHS

To perform reversibility it is useful to consider the pathwise interpretation of SDEs (Lyons, 1998), as
such we introduce a few notations from rough path theory. Let { W} be a d,,-dimensional Brownian
motion and let W be enhanced by

t
Ws,t = / Ws,r ® odW,., (255)

where ® is the tensor product. Then, the pair W := (W, W) is the Stratonovich enhanced Brownian
rough path.>' Thus consider the d,-dimensional rough differential equation RDE of the form:

AX, = pt, X,) dt + o(t, X;) AW, Xo = . (256)

where g : [0, 7] x R% — R4 is Lipschitz continuous in its second argument and o € C; 3(10,T) x
R%; £L(R%w R%)) (Friz & Hairer, 2020, Theorem 9.1).>> Fix an w € (2, then almost surely W (w)
admits a unique solution to the RDE (X (w), o (t, X¢(w))) and X; = X;(w) is a strong solution to
the Stratonovich SDE*? started at X = x¢. To elucidate, consider the commutative diagram below

WL (W, W) 5 X, (257)

where W is a map which merely lifts Brownian motion into a rough path (could be It6 or Stratonovich),
the second map, .S, is known as the /16-Lyons map (Lyons, 1998); this map is purely deterministic
and is also a continuous map w.r.t. to initial condition and driving signal. Thus for a fixed realization
of the Brownian motion we have a pathwise interpretation of the Stratonovich SDE.

G NUMERICAL SIMULATION OF BROWNIAN MOTION

Earlier we mentioned that for reversible methods we need to be able to compute both the same
realization of the Brownian motion. Now sampling Brownian motion is quite simple—recall Lévy’s
characterization of Brownian motion (@ksendal, 2003, Theorem 8.6.1)—and can be sampled by
drawing independent Gaussian increments during the numerical solve of an SDE. A common choice
for an adaptive solver is to use Lévy’s Brownian bridge formula (Revuz & Yor, 2013).

Definition G.1 (Lévy’s Brownian bridge). Given the standard d,,-dimensional Brownian motion
{W; :t > 0} and for any 0 < s < ¢ < u, the Brownian bridge is defined as

Wt|Ws,Wu~N<WS+ t_S(Wu—WS),(u_t)(t_S)I), (258)
u—S u—S

and this quantity is conditionally independent of W, for v < s or v > wu.

Sampling the Brownian motion in reverse-time, however, is more complicated as it is only adapted
to the natural filtration defined in forward time. The naive approach to sampling Brownian motion,
called the Brownian path, is to simply store the entire realization of the Brownian motion from the
forward pass in memory and use Equation (258) when necessary (for adaptive step size methods).
This results in a query time of O(1), but with a memory cost of O(nd,,), where n is the number of
samples.

Virtual Brownian Tree. Seminal work on neural SDEs by Li et al. (2020) introduced the Virtual
Brownian Tree which extends the concept of Brownian trees introduced by Gaines & Lyons (1997).
The Brownian tree recursively applies Equation (258) to sample the Brownian motion at any midpoint,
constructing a tree structure; however, storing such a tree would be memory intensive. By making

21See, Friz & Hairer (2020, Chapter 3) for more details.
ZHere L(V, W) denotes the set of continuous maps from V' to W, a Banach space.
PIf X and 9 X are adapted and (X, W), exists, then almost surely

T T
/ Xth:/ X odW,.
0 0

52

Under review as a conference paper at ICLR 2026

use of splittable pseudo-random number generators PRNGs (Salmon et al., 2011; Claessen & Patka,
2013) which can deterministically generate two random seeds given an existing seed. Then making
use of a splittable PRNG one can evaluate the Brownian motion at any point by recursively applying
the Brownian tree constructing to rebuild the tree until the recursive midpoint time ¢,. is suitable close
to the desired timestep ¢, i.e., |t — t,.| < e for some fixed error threshold € > 0. This requires constant
O(1) memory but takes O(log(1/¢)) time and is only approximate.

Brownian Interval. Closely related work by Kidger et al. (2021) introduces the Brownian Interval
which offers exact sampling with O(1) query times. The primary difference between this method and
Virtual Brownian Trees is that this method focuses on intervals rather than particular sample points.
To elucidate, let W, ; = W, — W, denote an interval of Brownian motion. Then the formula for
Lévy’s Brownian bridge (258) can be rewritten in terms of Brownian intervals as

Woi|[Weu ~ N (t w,,, L=y I). (259)
u—s u—s

Then, the method constructs a tree with stump being the global interval [0, T'] and a random seed for a
splittable PRNG. New leaf nodes are constructed when queries over intervals are made; this provides
the advantage of the tree being query-dependent unlike the Virtual Brownian Tree which has a fixed
dyadic structure. Further computational improvements are made to improve implementation with the
details being found in Kidger (2022, Section 5.5.3). Beyond the numerical efficiency in computing
intervals over points is that we regularly need use intervals in numeric schemes and not single sample
points. Often, solvers which approximate higher-order integrals (e.g., stochastic Runge-Kutta) require
samples of the Lévy area’* which would require the Brownian interval to construct.”

Updated Virtual Brownian Tree. Recent work by Jelincic et al. (2024) improves upon the Virtual
Brownian Tree (Li et al., 2020) by using an interpolation strategy between query points.”® This
enables the updated algorithm to exactly match the distribution of Brownian motion and Lévy areas
at all query times as long as each query time is at least € apart.

H IMPLEMENTATION DETAILS

H.1 CLOSED FORM EXPRESSIONS OF THE NOISE SCHEDULE

In practice, popular libraries like the dif fusers library define the noise schedule for diffusion
models as a discrete schedule {3, {le following Ho et al. (2020); Song et al. (2021a) as an
arithemetic sequence of the form

Bo n—1
==+ ———(B1— o), 260
with hyperparameters 3y, 51 € R>. Song et al. (2021b) defines the continuous-time schedule as
Bt = Bo +t(B1 — Bo), (261)

for all ¢ € [0,1] in the limit of N — co. Thus one can write the forward-time diffusion (variance
preserving) SDE as

1
X, =~ X, dt + VB AW, (262)

Thus we can express the noise schedule (ay, o) as

ap = exp (—1/6,5 dt> ,
2 (263)
O = 4/ 1-— Ckz.

*I.e., for a d,,-dimensional Brownian motion over [s, t] the Lévy area is

oL = / Wi AW — / Wi AW,

ZThe interested reader can find more details in James Foster’s thesis (Foster, 2020).
*This algorithm is a part of the popular Di £ £ rax library.

53

https://huggingface.co/docs/diffusers/index
https://github.com/patrick-kidger/diffrax

Under review as a conference paper at ICLR 2026

N.B., often the hyperparmeters in libraries like dif fusers are expressed as Bo = B o and 51 &

N
often with NV = 1000.

H.1.1 LINEAR NOISE SCHEDULE

For the linear noise schedule in Equation (261) used by DDPMs (Ho et al., 2020), the schedule

(g, 0¢) is written as
ap = exp 751_50 f@t
! 4 2

or=4/1—a2,

for t € [0, 1] with hyperparameters /3y and ;.

(264)

Proposition H.1 (Inverse function of ~; for linear noise schedule). For the linear noise schedule used
by DDPMs (Ho et al., 2020) the inverse function of vy; denoted t., can be expressed in closed form as

—Bo+ /B2 +2(B1 — Bo) log(v2 + 1)_

t = (265)
'Y(,Y) /81 _ /60
Proof. Let oy be denoted by a; = e where
_ B1—bo 50 Bo
= — —t. 266
ag 4 D) (266)
Then by definition of v, we can write
et
= 267
Mt N (267)

and with a little more algebra we find

at

VI—ea =S (268)

Tt
e2at
1— 2 = 5 (269)
Vi
e — 1=, (270)
e 2 =72 4 1, (271)
—2a; = log(v; 2 +1). (272)
Then by substituting in the definition of a; and letting v denote the variable produced by ~y; we have
b 60 22 4 Bot — log(y 2 +1) = 0. (273)
We then use the quadratic formula to find the roots of the polynomial of ¢ to find
_ —Bot /B2 +2(B1— Bo)log(v 2 + 1)
t= . (274)
B1 = Bo
Since t € [0, 1] we only take the positive root and thus
~ —Bo+ /B2 +2(B1 — Bo)log(v 2 +1)
t= . (275)
B1 = Bo
O

Corollary H.1.1 (Inverse function of ; for linear noise schedule). It follows by a straightforward
substitution from Proposition H.1 that t, can be written as

_ 2 1
b(x) = Pt VB + 2161 BoﬁO) og(x*> +1)

Corollary H.1.2 (Inverse function of o, for linear noise schedule). It follows by a straightforward
substitution from Proposition H.1 that t, can be written as

_ —Bo+ /B3 +2(B1 — Bo)log(o~ T + 1)
fel0) = B — o |

(276)

277)

54

https://huggingface.co/docs/diffusers/index

Under review as a conference paper at ICLR 2026

H.1.2 SCALED LINEAR SCHEDULE

The scaled linear schedule is used widely by latent diffusion models (LDMs) (Rombach et al., 2022)
and takes the discrete form of

2
m—(x%+;j(¢EJ@». 278)

Thus following a similar approach to Song et al. (2021b) we write the scaled linear schedule as a
function of ¢,

Br = (B1 — 27/ B1Bo + Bo)t® + 2t(r/B1Bo — Bo) + Bo- (279)

Then using Equation (263) we find the noise schedule (o, o) to be defined as

(_ﬁ1—2\/5150+50 s VP1Po — Bo g_ﬁo)
oy = exp t t t),

6 2 2
or =+1/1—a2.

Next we will derive the inverse function for ~;

(280)

Proposition H.2 (Inverse function of ; for scaled linear noise schedule). For the scaled linear noise
schedule commonly used by LDMs (Rombach et al., 2022) the inverse function of vy, denoted t, can
be expressed in closed form as

y) = Bo — VBiBo — V/2(VB1Bo — Bo)® — 3BoA(VB1Bo — Bo) — 3A2log(y~2 + 1)

ty(7) N , (281)
where
A =1 =2/ B1Bo + Bo- (282)
Proof. Let o, be denoted by a; = e where
—92 _
4 = _Bi=2vBiBotBos VPio—fo Po, (283)
6 2 2
Then by definition of v, we can write
_ e (284)
Ve /71 — oZas 9
and with a little more algebra we find
V1= e =5 (285)
Tt
eZat
1— 2% = 5 (286)
Vi
e — 1=, (287)
e =% 4], (288)
—2a; = log(y; 2 + 1). (289)

Then by substituting in the definition of a; and letting -y denote the variable produced by ~; we have

B1 —2/B1Bo + 50t3
3

+ (v/B1Bo — Bo)t? + Bot — log(y 2 + 1) = 0. (290)

We then use the cubic formula (Cardano, 1545) to find the roots of the polynomial of £. The only real
root is given by

_ Bo =B - Y/2(v/B1Bo — Bo)? — 3B0A(vB1Bo — Bo) — 3A%log(v2 + 1)

£ () & . @91
where

A = B — 2/ 180 + Bo. (292)

]

55

Under review as a conference paper at ICLR 2026

Corollary H.2.1 (Inverse function of ; for scaled linear noise schedule). It follows by a straightfor-
ward substitution from Proposition H.2 that t,, can be written as

_ Bo—VB1Po — {’/2(\/51/50 — B0)% — 3B0A(P1Bo — Po) — 3A%log(x? + 1)
t(Xx) = A , (293)

where
A = B1 —2/B1Bo + Bo. (294)

Corollary H.2.2 (Inverse function of g; for scaled linear noise schedule). It follows by a straightfor-
ward substitution from Proposition H.2 that t, can be written as

~ Bo—v/B1Bo — ¥2(v/BiBo — Bo)® — 3BoA(VBiBo — Bo) — 3A%log(o ! + 1)

A = B1 —2v/B18o + Bo. (296)

H.2 SOME OTHER INVERSE FUNCTIONS

Gamma to sigma. Additionally, we need to be able to extract the weighting terms from the time
integration variable. For the ODE case we need the function o () which describes the map v — o.
By the definition of v we have

N=2 (297)
o
i) V1 —o?

S i (298)

o
oy =+V1-02, (299)
0272 =1- 02, (300)
o2 =1-02, (301)
V=g -1, (302)
V41=0"2 (303)

1

2= 304
= ri (304)

1
o, (7) = —F— (305)

VAT

where (i) hold by 02 = 1 — a? for VP type diffusion SDEs.

Rho to sigma over gamma. Likewise, for the SDE case we need the function which maps o — %
Recall that (note we drop the subscript ¢ for the derivation)

(0%
0=, (306)
g
thus we have
. 2
(i) «
5 307
0= T a2 (307)
(1-a*)o=0a? (308)
a?-1=p71 (309)
a?=p 141, (310)
1
L — (311)
ot +1

56

Under review as a conference paper at ICLR 2026

where (i) hold by 02 = 1 — a? for VP type diffusion SDEs. Then we can write

2
9 _ 077 (312)
v«
2
-7 e (313)
o «
2
- %a, (314)
=0 'a, (315)
1
. — (316)

pVp 1

Chi to alpha. Lastly, for the noise prediction models we need the map x — « denoted o, (x). By
definition of x we have

x=2, (317)
8]
N V1 —a?
x2¥ - (318)
0]
(i1) 1
o S — (319)
x(X) X2 1

where (i) hold by 0 = 1 — a? for VP type diffusion SDEs and (ii) holds by the derivation for o.,(7)
mutatis mutandis.

H.3 BROWNIAN MOTION

We used the Brownian interval (Kidger et al., 2021) provided by the t orchsde library. In general
we would recommend the virtual Brownian tree from JelinCiC et al. (2024) over the Brownian interval,
an implementation of this can be found in the di f f rax library. However, as our code base made
extensive used of prior projects developed in pytorch and diffrax is a jax library it made more
sense to use torchsde for this project.

I EXPERIMENTAL DETAILS

We provide additional details for the empirical studies conducted in Section 5. N.B., for all ex-
periments we used fixed random seeds between the different software components to ensure a fair
comparision.

1.1 UNCONDITIONAL IMAGE GENERATION

1.1.1 DIFFUSION MODEL

We make use of a pre-trained DDPM (Ho et al., 2020) model trained on the CelebA-HQ 256 x 256
dataset (Karras et al., 2018). The linear noise schedule from (Ho et al., 2020) is given as

Bo | i—=1 . -
i = — + = (51 — Bo). 320
We convert this into a continuous time representation via the details in Appendix H.1 following Song

et al. (2021b) For this experiment we used BO = 0.0001 and Bl = 0.2. To ensure numerical stability
due to - terms we solve the probability flow ODE in reverse-time on the time interval [e, 1] with
e=0. 0002 This is a common choice to make in practice see Song et al. (2023).

1.1.2 METRICS

We use several metrics to assess the performance in unconditional image generation following Stein
et al. (2023) by using a DINOV?2 feature extractor (Oquab et al., 2023), all of which are calculated

57

https://github.com/google-research/torchsde
https://docs.kidger.site/diffrax/api/brownian/

Under review as a conference paper at ICLR 2026

using the 10k generated samples and 30k real samples from the CelebA-HQ dataset. Throughout this
section we will let {@;}?_, denote an empirical distribution drawn from our generated distribution
Py and let {z;}7", denote an empirical distribution drawn from the data distribution Py, .

FD. The Fréchet distance (FD) (Dowson & Landau, 1982) is measured using the sample mean and
covariance of the real P4, and generated Py distributions denoted

FD(IPdata”IPB) = ”Mdata - /~L9||§ + Tr <Edata + 29 - 2(Edata20)%)) (321)

where (u.,>.) denote the sample mean and covariances. This metric corresponds two the 2-
Wasserstein distance between two multivariate Gaussians and is thus a valid metric between the first
two moments. Heusel et al. (2017) popularized the use of this metric within the feature layer of an
Inception-V3 network (Szegedy et al., 2016) to assess the fidelity of unconditional image generation,
this metric is referred to as the Fréchet inception distance or FID. Recent works have challenged the
use of the Inception-V3 network as the feature extractor (Stein et al., 2023; Jayasumana et al., 2024;
Kynkédnniemi et al., 2023) showing that the Inception-V3 network is poorly suited for capturing a
semantic view of images which correlates well to human judgment. In particular, Stein et al. (2023)
shows that using DINOv2 (Oquab et al., 2023) for the feature extractor results in a metric which is
significantly more aligned with human judgment.

FD.. FDg proposed by Chong & Forsyth (2020) is a modification of FD which aims to remove
the inherent bias induced by using a finite number of empirical samples. The samples is determined
by evaluating FD over 15 regular intervals over the number of total samples and fitting a linear trend
to the 15 data points to infer a trend for FD as the number of empirical samples, N — oo.

Precision, recall, density and coverage. The density metric (Naeem et al., 2020) is used as a
proxy to measure sample fidelity and improves upon the earlier precision metric (Kynkéddnniemi
et al., 2019; Sajjadi et al., 2018). The metric is based upon nearest neighbours distance computed in a
representation space and counts how many real-sample neighbourhood balls contain the generated
sample. Likewise to quantify sample diversity we use the coverage metric (Naeem et al., 2020) which
improves upon the earlier recall metric (Kynkidnniemi et al., 2019; Sajjadi et al., 2018). The density

metric is given by
n m

. 1
deMmM=E;;}mmmwm (322)
where 1 4(+) denotes the indicator function for set A, B(x, r) constructs a Euclidean ball centered at
x with radius r, and 6% () is the distance to the k-th nearest neighbour in {&;} ;, excluding itself.
The precision metric is given by

precision(Pyqtq, Pg) = Z Lym., B(a;.6%(2,)) (x;). (323)
Similarly, coverage is given by

1 m
coverage(Paata, Po) = %Z;mhmwwm» (324)

.....

Likewise, the recall metric is given by
recall(Pyatq, Po) = Z 1n | Bas ot (@) (£5)- (325)
We used k = 5 and 10k samples throughtout, as standard.

On reporting. When reporting on these metrics like in Table 1 we use bold font to denote the
best performance with a 1% error range. More formally, suppose we have a series of n data points
{z;}7_, that is totally ordered by some relation R. We say will denote a query point z; with bold
font if the range-normalized absolute percentage error is less than € > 0, i.e.,

| max; x; — x|

<e. (326)

max; r; — ming Ty
In our experiments we report € = 0.01.

58

Under review as a conference paper at ICLR 2026

1.1.3 HYPERPARAMETERS

We follow the suggestion of Wallace et al. (2023) and report results with EDICT using the hyper-
parameter p = 0.93. For BDIA, the original paper recommends v = 1.0 for unconditional image
generation (Zhang et al., 2024, Section 6.1). However, we found v = 0.5 to yield better performance,
this corroborates with the findings of Wang et al. (2024).

1.2 CONDITIONAL IMAGE GENERATION

1.2.1 DIFFUSION MODEL

We make use of Stable Diffusion v1.5 (Rombach et al., 2022) a pre-trained latent diffusion model
(LDM) model. We also use the scaled linear noise schedule given as

2
Y DV e S OV E RN [
= (s 2 (VA= VR)))

We convert this into a continuous time representation via the details in Appendix H.1 following Song
et al. (2021b). For this experiment we used Bo = 0.00085 and 31 = 0.012. To ensure numerical
stability due to Ui terms we solve the probability flow ODE in reverse-time on the time interval [e, 1]
with e = 0.0002. This is a common choice to make in practice see Song et al. (2023).

Numerical schemes. We set the last two steps of Rex schemes to be either Euler or Euler-Maruyama
for better stability near time 0.

1.2.2 METRICS

As mentioned in the main paper we use the CLIP Score (Hessel et al., 2021) PickScore (Kirstain
et al., 2023), and Image Reward metrics (Xu et al., 2023) to asses the ability of the text-to-image
conditional generation task. We calculate each by comparing the sampled image and the given text
prompt used to produce the image. We then report the average over the 1000 samples.

CLIP score. The CLIP score measures the cosine similarity between the text and visual embeddings
with pretrained CLIP model (Radford et al., 2021) denoted as

[(&) Eele)
CLIPScore(x, ¢c) = { 18 @ e ,0} , (328)

where &7 : RY — V is the image embedder and &¢ : RY — V is the caption embedder; and where
x is the query image and c is the query caption. Thus this metric aims to measure how well our
generated images align with their prompt. In particular, we use the ViT-1/14 backbone trained by
OpenAL

PickScore. Similar to CLIP score, PickScore finetunes a CLIP-H model on their proposed Pick-a-
Pic dataset which purportedly aligns better with human preference over CLIP score.

Image Reward. Image Reward (Xu et al., 2023) is the newest of the three metrics and uses BLIP
(Li et al., 2022) over CLIP as the backbone and finetunes the model using reward model training. The
resulting metrics achieves state-of-the-art alignment with human preferences.

On reporting. When reporting on these metrics like in Table 2 we use bold font to denote the best
performance with a 1% error range. In our experiments we report € = 0.01.

1.2.3 HYPERPARAMETERS

We follow the suggestion of Wallace et al. (2023) and report results with EDICT using the hyperpa-
rameter p = 0.93. For BDIA, the original paper recommends v = 0.5 for text-to-image generation
(Zhang et al., 2024, Section 6.1). We also ran BDIA with v = 0.96 as suggested by Wang et al.
(2024).

59

Under review as a conference paper at ICLR 2026

1.3 INTERPOLATION

Diffusion model. We make use of a pre-trained DDPM (Ho et al., 2020) model trained on the
CelebA-HQ 256 x 256 dataset (Karras et al., 2018). We used linear noise schedule from (Ho et al.,
2020). We convert this into a continuous time representation via the details in Appendix H.1 following

Song et al. (2021b). For this experiment we used By = 0.0001 and j3; = 0.2. For the face pairings
we followed Blasingame & Liu (2024a;c) and used the FRLL (DeBruine & Jones, 2017) dataset.

Notably, we used the noise prediction parameterization rather than data prediction as we found that it
performed better for editing. This is likely due to the singularity of the Uit terms as ¢ — 0. Within this

parameterization we could use the time interval [0, 1] instead of [¢, 1] like in previous experiments
with data prediction models.

1.4 HARDWARE

All experiments were run using a single NVIDIA H100 80 GB GPU.

1.5 REPOSITORIES

In our empirical studies we made use of the following resources and repositories:

1. google/ddpm-celebahg-256 (DDPM Model)

2. stable-diffusion-vl-5/stable-diffusion-v1-5 (Stable Diffusion v1.5)
3. zituitui/BELM (Implementation of BELM, EDICT, and BDIA)

4. google-research/torchsde (Brownian Interval)

5. layerbai-labs/dgm-eval (FD, FD,, KD, Density, and Coverage metrics)

6. torchmetrics (CLIP score)

7. zai-org/ImageReward (Image Reward)

J CODE

In this section we provide some example code for the core components of the model to help illustrate
the core ideas.

60

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://github.com/zituitui/BELM
https://github.com/google-research/torchsde
https://github.com/layer6ai-labs/dgm-eval
https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html
https://github.com/zai-org/ImageReward

Under review as a conference paper at ICLR 2026

J.1: Rex forward step

ward (model_func, scheduler, xt, xt_hat, timesteps, solver='euler', coupling=0.999,
< low_order_final_n_steps=0, bm=None, pred_type='data', sched_type='linear'):

usion models.

Ba e ODE solver and adapted for di

ed on M

ver in SDE_SOLVERS)
psi = SOLVER_DICT [solver]

is_sde = (so

if not is_sde:

_t_to_gamma, _gamma_to_t = _gen_time_funcs (sched_type=sched_type, pred_type=pred_type)
t_to_gamma = _t_to_gamma
gamma_to_t = _gamma_to_t
gamma_to_sigma = _gamma_to_sigma if pred_type == 'data' else _chi_to_alpha
else:
_t_to_rho, _rho_to_t = _gen_time_funcs (sched_type=sched_type, rho=True, pred_type=pred_type)
t_to_gamma = _t_to_rho
gamma_to_t = _rho_to_t
gamma_to_sigma = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

gammas = t_to_gamma (scheduler, timesteps

if pred_type = data':

wrap_model = lambda gamma, x: _convert_noise_to_data (scheduler, model_func,
< gamma_to_t (scheduler, gamma), x, sched_type=sched_type)
elsey

p =2 if is_sde else 1
wrap_model = lambda gamma, x: p * model_func(gamma_to_t (scheduler, gamma), x)

xt.to(torch.float32)
xt_hat.to(torch.float32)

for n in tgdm(range (len(gammas)-1)) :
gamma_n = gammas [n]
gamma_nl = gammas [n+1]
h = gamma_nl - gamma_n

sigma_n = gamma_to_sigma (gamma_n)
sigma_nl = gamma_to_sigma (gamma_nl)

if n < (len(gammas) - 1 - low_order_final_n_steps):
if not is_sde:
_psi = lambda t, x, h: psi(wrap_model, t, x, h)

else:
_psi = lambda t, x, h: psi(wrap_model, t, x, h, bm, pred_type=pred_type)
elses
if not is_sde:
_psi = lambda t, x, h: euler(wrap_model, t, x, h)
elaag
_psi = lambda t, x, h: euler_maruyama(wrap_model, t, x, h, bm, pred_type=pred_type)
xt = (sigma_nl / sigma_n) * (coupling x xt + (l-coupling) * xt_hat) + sigma_nl * _psi(gamma_n,
<~ xt_hat, h)
xt_hat = (sigma_nl / sigma_n) * xt_hat - sigma_nl % _psi(gamma_nl, xt, -h)

return xt, xt_hat

61

Under review as a conference paper at ICLR 2026

backward step

def rex_backward(model_func, scheduler,

if pred_type

elsey
p =2 if is_sde else 1

xt.to(torch.float32)
xt_hat.to(torch.float32)

coupling_inv = 1. / coupling

gamma_n = gammas [n]
gamma_nl = gammas[n+1]
h = gamma_nl - gamma_n

if not is_sde:
_psi = lambda t, x, h:
elaze
_psi = lambda t, x, h:
elsee
if not is_sde:
_psi = lambda t, x, h:

return xt, xt_hat

<+ low_order_final_n_steps=0, bm=None, pred_type='data', sched_type='linear'):
Based on McCallum & Foster's reversible ODE solver and adapted for diffusion models.
is_sde = (solver in SDE_SOLVERS)
psi = SOLVER_DICT [solver]
if not is_sde:
_t_to_gamma, _gamma_to_t = _gen_time_funcs (sched_type=sched_type, pred_type=pred_type)
t_to_gamma = _t_to_gamma
gamma_to_t = _gamma_to_t
gamma_to_sigma = _gamma_to_sigma if pred_type == 'data' else _chi_to_alpha
else:
_t_to_rho, _rho_to_t = _gen_time_funcs (sched_type=sched_type, rho=True, pred_type=pred_type)
t_to_gamma = _t_to_rho
gamma_to_t = _rho_to_t
gamma_to_sigma = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

gammas = t_to_gamma (scheduler, timesteps

wrap_model = lambda gamma, x: _convert_noise_to_data (scheduler, model_func,
< gamma_to_t (scheduler, gamma), x, sched_type=sched_type)

wrap_model = lambda gamma, x: p * model_func(gamma_to_t (scheduler, gamma), x)

for n in tgdm(range (len(gammas) - 2, -1, -1)):

sigma_n = gamma_to_sigma (gamma_n)
sigma_nl = gamma_to_sigma (gamma_nl)

if n < (len(gammas) - 1 - low_order_final_n_steps):

elaag
_psi = lambda t, x, h: euler_maruyama(wrap_model, t, x, h, bm, pred_type=pred_type)
xt_hat = (sigma_n / sigma_nl) * xt_hat + sigma_n x _psi(gamma_nl, xt, -h)
xt = (sigma_n / sigma_nl) * (coupling_inv » xt) + (1 - coupling_inv) * xt_hat - sigma_n =

< coupling_inv » _psi(gamma_n, xt_hat, h)

xt, xt_hat, timesteps, solver='euler', coupling=0.999,

psi (wrap_model, t, x, h)

psi(wrap_model, t, x, h, bm, pred_type=pred_type)

euler (wrap_model, t, x, h)

In Code J.3 we provide an implementation of the ShARK method. The official implementation can be
found at https://github.com/patrick-kidger/diffrax/blob/main/diffrax/

_solver/shark.py.

62

https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py
https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py

Under review as a conference paper at ICLR 2026

RK

K(model, time_var, x, h, bm, pred_type='data'):
= _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

Xx_sg = x / t_to_w(time_var)

if pred_type == 'data':

a, b = time_var, time_var + h
else:

a, b = time_var.pow(2), (time_var + h).pow(2)
if h < 0:

a, b =Db, a
h_corr = h if pred_type == 'data' else (time_var + h).pow(2) - time_var.pow(2)

W, U = bm(a, b, return_U=True)
W, U= W.to(x.device), U.to(x.device)

if h < 0:
H=1U/ (-h_corr) - 0.5 « W
W= -Ww

clges
H=1U/ (-h_corr) - 0.5 x W

zl = x.sg + H
fl = model (time_var, t_to_w(time_var) = Z1

Z2 = x_sg + h » (5/6) = f1 + (5/6) * W + H
£f2 = model (time_var + 5/6 x* h, t_to_w(time_var + 5/6 x h) = Z2)

return h * (0.4 = f1 + 0.6 = £f2) + W

63

Under review as a conference paper at ICLR 2026

Figure 7: Inversion followed by sampling with Rex (Euler) 5 steps, ¢ = 0.999. Data prediction. Top
row tracks x,,, bottom row &,,.

Figure 8: Inversion followed by sampling with Rex (Euler) 5 steps, ¢ = 0.999. Noise prediction. Top
row tracks x,,, bottom row &,,.

K VISUALIZATION OF INVERSION AND THE LATENT SPACE

We conduct a further qualitative study of the latent space produced by inversion and the impact various
design parameters play. First in Figure 7 we show the process of inverting and then reconstructing
areal sample. Notice that while the data prediction formulation worked great in sampling and still
possesses the correct reconstruction, i.e., it is still reversible, the latent space is all messed up. The
variance of (z,,, %,) tends to about 107, many orders of magnitude too large! We did observe that
raising ¢ = 1 — 109 did help reduce this, but it was still relatively unstable. N.B., these trends hold
in a large number of discretization steps (we tested up to 250); however, for visualization purposes
we chose fewer steps.

Conversely, the noise prediction formulation is much more stable, see Figure 8. The variance of
(., &y,) is on the right order of magnitude this time, however, there are strange artefacting and it is
clear the latent variables are not normally distributed.

64

Under review as a conference paper at ICLR 2026

Figure 9: FAILURE CASE! Inversion followed by sampling with Rex (ShARK) 5 steps, ¢ = 0.999.
Data prediction. Top row tracks x,,, bottom row &,,.

Figure 10: Inversion followed by sampling with Rex (ShARK) 5 steps, ¢ = 0.999. Noise prediction.
Top row tracks «,,, bottom row &,,.

Moving to the SDE case with ShARK in Figure 9, we see that the data prediction formulation is
so unstable in forward-time that we ran into overflow errors and can no longer achieve algebraic
reversibility. However, the noise parameterization with ShARK, see Figure 10, works very well with
the latent variables appearing to be close to normally distributed.

L ADDITIONAL RESULTS
L.1 UNCONDITIONAL IMAGE GENERATION
We present some additional ablations on the underlying solver for Rex in Table 4.

Table 4: Quantitative comparison of different underlying schemes ® used in Rex in terms of FID ({)
for unconditional image generation with a pre-trained DDPM model on CelebA-HQ (256 x 256).

Solver
Steps Euler Midpoint RK4 Euler-Maruyama ShARK
10 36.65 X 31.00 40.79 59.89
20 24.63 23.36 23.49 27.80 32.18
50 21.45 21.45 21.35 19.77 21.93

L.2 CONDITIONAL IMAGE GENERATION

We present some uncrated samples using Rex with various underlying solvers and discretization
steps.

65

Under review as a conference paper at ICLR 2026

Figure 11: Uncurated samples created using Rex (RK4) and Stable Diffusion v1.5 (512 x 512) and
10 discretization steps.

66

Under review as a conference paper at ICLR 2026

Figure 12: Uncurated samples created using Rex (RK4) and Stable Diffusion v1.5 (512 x 512) and
50 discretization steps.

67

Under review as a conference paper at ICLR 2026

Figure 13: Uncurated samples created using Rex (ShARK) and Stable Diffusion v1.5 (512 x 512)
and 10 discretization steps.

68

Under review as a conference paper at ICLR 2026

(R 1

L))

Figure 14: Uncurated samples created using Rex (ShARK) and Stable Diffusion v1.5 (512 x 512)
and 50 discretization steps.

69

