
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REX: REVERSIBLE SOLVERS FOR DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have quickly become the state-of-the-art for numerous gener-
ation tasks across many different applications. Encoding samples from the data
distribution back into the model’s underlying prior distribution, often called the in-
version of diffusion models, is an important task that arises from many downstream
applications. Prior approaches for solving this task, however, are often simple
heuristic solvers that come with several drawbacks in practice. In this work, we
propose a new family of solvers for diffusion models by exploiting the connection
between this task and the broader study of algebraically reversible solvers for
differential equations. In particular, we construct a family of reversible solvers
using an application of Lawson methods to construct exponential Runge-Kutta
methods for the diffusion models; we call this family of reversible exponential
solvers Rex. In addition to a rigorous theoretical analysis of the proposed solvers,
we also demonstrate the utility of the methods through a variety of empirical
illustrations.

1 INTRODUCTION

Diffusion models have quickly become the state-of-the-art in generation tasks across many varied
modalities from images (Rombach et al., 2022) and video (Blattmann et al., 2023) to protein gen-
eration (Skreta et al., 2025b) and biometrics (Blasingame & Liu, 2024d). The sampling process of
diffusion models is done through numerically solving an Itô stochastic differential equation (SDE)
or related ordinary differential equation (ODE) which describes the evolution of a sample drawn
for some prior noise distribution to the data distribution. Inversion of the sampling procedure, i.e.,
constructing a bijective map from the data distribution back to the prior distribution, is invaluable for
many downstream applications.

While the true (stochastic) flow maps of diffusion models do provide such a bijection, in practice we
need to solve such models numerically, thereby incurring truncation errors breaking the bijection.
Thus to obtain the exact inversion of a diffusion model we are looking for a scheme which is
algebraically reversible. I.e., we would like a numerical scheme which enables us to move between
the data and prior distribution without any reconstruction errors. Recently, several works have
explored solving this problem for the probability flow ODE, namely, EDICT (Wallace et al., 2023),
BDIA (Zhang et al., 2024), and BELM (Wang et al., 2024).

However, designing such inversion methods is very tricky, as such solvers are plagued by issues of
low order of convergence, lack of stability, amongst other undesirable properties; moreover, it is
even more difficult to construct such schemes for SDEs. To the best of our knowledge there does not
currently exist a scheme for exact inversion for diffusion SDEs without storing the entire trajectory of
the Brownian motion in memory à la Wu & la Torre (2023) which is trivially reversible, but not the
type of reversibility we are interested with.

To address these issues we propose Rex, a family of reversible solvers for diffusion models which can

1. Work for both the probability flow ODE and reverse-time SDE with both data and noise
prediction parameterizations,

2. Obtain an arbitrarily high order of convergence (in the ODE case), and

3. Exactly invert a diffusion SDE without storing the entire realization Brownian motion in
memory.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021a;b) have quickly become one of the most popular paradigms for constructing generative models.
Consider the following Itô stochastic differential equation (SDE) defined on time interval [0, T]:

dXt = f(t)Xt dt+ g(t) dWt, (1)
where f, g ∈ C∞([0, T])1 form the drift and diffusion coefficients of the SDE and where {Wt}t∈[0,T]

is the standard Brownian motion on the time interval. The coefficients f, g are chosen such that the
SDE maps clean samples from the data distribution X0 ∼ q(X) at time 0 to an isotropic Gaussian
at time T . More specifically, for a noise schedule αt, σt ∈ C∞([0, T];R≥0) consisting of a strictly
monotonically decreasing function αt and strictly monotonically increasing function σt, the drift and
diffusion coefficients are found to be

f(t) =
α̇t

αt
, g2(t) = σ̇2

t − 2
α̇t

αt
σ2
t , (2)

where with abuse of notation σ̇2
t denotes the time derivative of the function σ2

t (Lu et al., 2022b;
Kingma et al., 2021)—this ensures that Xt ∼ N (αtX0, σ

2
t I). However, we wish to map from noise

back to data, as such we employ the result of Anderson (1982) to construct the reverse-time diffusion
SDE of Equation (1), which is found to be

dXt = [f(t)Xt − g2(t)∇x log pt(Xt)] dt+ g(t) dW t, (3)

where dt is a negative timestep, {W t}t∈[0,T] is the standard Brownian motion in reverse-time,
and pt(x) := p(t,x) is the marginal density function. Then, if we can learn the score function
(t,x) 7→ ∇x log pt(x) (Song et al., 2021b)—or some other equivalent reparameterization, e.g., noise
prediction (Song et al., 2021a; Ho et al., 2020) or data prediction (Kingma et al., 2021)—we can then
draw samples from our data distribution q(X) by first sampling some XT ∼ p(X) from the Gaussian
prior and then employing a numerical SDE solver, e.g., Euler-Maruyama, to solve Equation (3) in
reverse-time. Notably, through careful massaging of the Fokker-Planck-Kolomogorov equation for
the marginal density, one can construct an ODE which is equivalent in distribution to Equation (3)
(Song et al., 2021b; Maoutsa et al., 2020), yielding the highly popular probability flow ODE

dxt

dt
= f(t)xt −

g2(t)

2
∇x log pt(xt). (4)

Reversible solvers for neural differential equations. Recently, researchers studying neural
differential equations have begun to propose several algebraically reversible solvers as an alternative
to both traditional discretize-then-optimize and optimize-then-discretize (the continuous adjoint
equations) (Kidger, 2022, Chapters 5.1 & 5.2) which are used to perform backpropagation through
the neural differential quation. Consider some prototypical neural ODE of the form ẋt = uθ(t,xt)
with vector field uθ ∈ Cr(R×Rd;Rd) which satisfies the usual regularity conditions. Then consider
a single-step numerical scheme of the form xn+1 = xn +Φh(tn,xn,uθ). Every numerical scheme
Φ is reversible in the sense that we can rewrite the forward step as an implicit scheme of the form
xn = xn+1 −Φh(tn,xn,uθ); however, this requires fixed point iteration2 and is both approximate
and computationally expensive. This type of reversibility is known as analytic reversibility within
the neural differential equations community (Kidger, 2022, Section 5.3.2.1). What we would prefer,
however, is a form of reversibility that can be expressed in closed-form.

Beyond symplectic solvers (Vogelaere, 1956) which are trivially reversible3, several algebraically
reversible solvers have been proposed in light of the large popularity of neural ODEs. Namely, the
following methods have been proposed: the asynchronous leapfrog method (Mutze, 2013; Zhuang
et al., 2021), reversible Heun method (Kidger et al., 2021), and McCallum-Foster method (McCallum
& Foster, 2024). The last of these is of particular interest to us, as it is the only algebraically
reversible ODE solver to have a non-trivially region of stability and arbitrarily high convergence
order. As McCallum & Foster (2024) simply refer to their method as reversible X where X is the
underlying single-step solver, we opt to refer to their method as the McCallum-Foster method which
we summarize below in Definition 2.1.

1We let Cr(X;Y) denote the class of r-th differentiable functions from X to Y . If Y is omitted then Y = R.
2If the step size h is small enough.
3Due to symplectic integrators being developed for solving Hamiltonian systems, they are intrinsically

reversible by construction (Greydanus et al., 2019).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

xn + + xn+1

Ψh Ψ−h

x̂n x̂n+1−

× ζ
wn ×wn+1

× 1
wn ×wn+1

× 1−ζ
wn

(a) Forward step

xn − − xn+1

Ψh Ψ−h

x̂n x̂n+1+

×wn

ζ
× 1

wn+1

×wn
× 1

wn+1

×(1− ζ)

(b) Backward step

Figure 1: The computation graph of the Rex solver. Here Ψh denotes an exponentially weighted
Runge-Kutta scheme (cf . Section 3.1) or exponential stochastic Runge-Kutta scheme (cf . Section 3.2),
ζ ∈ (0, 1) is a coupling parameter, and {wn}Nn=1 denotes the set of weighting variables derived
from the exponential schemes. The particular values of wn are discussed in Proposition 3.3. The
visualization of the computation graph is inspired by McCallum & Foster (2024, Figure 2).

Definition 2.1 (McCallum-Foster method). Initialize x̂0 = x0 and let ζ ∈ (0, 1]. Consider a step
size of h, then a forward step of the McCallum-Foster method is defined as

xn+1 = ζxn + (1− ζ)x̂n +Φh(tn, x̂n),

x̂n+1 = x̂n −Φ−h(tn+1,xn+1),
(5)

and the backward step is given as

x̂n = x̂n+1 +Φ−h(tn+1,xn+1),

xn = ζ−1xn+1 + (1− ζ−1)x̂n − ζ−1Φh(tn, x̂n).
(6)

3 REX

In this section we introduce the Rex family of reversible solvers for diffusion models. Whilst one
could straightforwardly apply a pre-existing reversible solver like asynchronous leapfrog, reversible
Heun, or the McCallum-Foster method directly to the probability flow ODE in Equation (4), there
are several reasons to consider an alternative approach. Stepping back from reversible solvers for a
moment, we consider the broader literature of constructing numerical schemes for diffusion models.
It is well known that we can exploit the structure of the drift and diffusion coefficients, i.e., f(t)
and g(t), to remove the discretization error from the linear term and transform the stiff ODE into a
non-stiff form (Lu et al., 2022b; Zhang & Chen, 2023); a similar idea also holds for the reverse-time-
diffusion SDE (see Lu et al., 2022a; Gonzalez et al., 2024; Blasingame & Liu, 2024a). Moreover,
recall that the definitions of the drift and diffusion coefficients contain the time derivatives of the
noise schedule (αt, σt), this structure enables us to greatly simplify the ODE/SDE and express a
number of terms in closed-form again reducing approximation errors.

In Figure 1 we present an overview of the Rex computational graph. N.B., the graph for both the
ODE and SDE formulations are identical with the only difference being the weighting terms {wn}
and the underlying numerical scheme Ψh. The rest of this section is organized as follows: first we
discuss applying the exponential integrators to the probability flow ODEs (see Section 3.1), then the
reverse-time SDEs (see Section 3.2), and lastly we present the general Rex scheme (see Section 3.3).

3.1 PROBABILITY-FLOW ODE

Before constructing Rex we must first discuss the construction of Ψh from Φh and how to derive the
reparameterized ODE, i.e., step 1 in Figure 2. In this section we review how to reparameterize the
ODE in Equation (4) into this more convenient form.

Generalized nomenclature for data and noise prediction models. As alluded to earlier, there exist
two popular reparameterizations of the score function which are used widely in practice, namely the
noise prediction (Ho et al., 2020) and data prediction (Kingma et al., 2021) formulations. Following
the conventions of Lipman et al. (2024) we write noise prediction model as xT |t(x) = E[XT |Xt =

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

dxt

dt = β̇T

βt
xt +

σtα̇t−σ̇tαt

βt
fθ(t,xt)

dyσ

dς = βTfθ

(
ς, βς

βT
yς

)

xn+1 = wn+1

wn
xn +Ψh(tn,xn) yn+1 = yn +Φh(tn,yn)

Exponential integrators &
change-of-variables

Lawson method

Figure 2: Overview of the construction of Ψ for the probability flow ODE from an underlying
Runge-Kutta scheme Φ for the reparameterized ODE in Equation (8). The parameters βt and ςt are
chosen to suit the data or noise prediction parameterizations (cf . Section 3.1). The graph holds for
the SDE case mutatis mutandis.

x] and write data prediction model as x0|t(x) = E[X0|Xt = x]. In this work we consider both
a trained noise and data prediction model which we will denote generally by the neural network
fθ(t,x). Additionally, we place the usual regularity constraints (cf . Lu et al., 2022b, Appendix B.1)
on the model to ensure the existence and uniqueness of the ODE/SDE solutions. It is well known
(Blasingame & Liu, 2025, Equation (19)) that the ODE in Equation (4) can be rewritten as

dxt

dt
=

β̇t

βt
xt +

σtα̇t − σ̇tαt

βt
fθ(t,xt), (7)

where βt = −αt for noise prediction with and βt = σt for target prediction. This choice of β and fθ

thus depends on the particulars of the noise or data reparameterization.
Remark 3.1. Without loss of generality any of the results for the probability flow ODE apply to any
arbitrary flow model which models an affine probability path (Lipman et al., 2024) with the correct
conversions to the flow matching conventions.4

It is well observed that the structure of the ODE in Equation (7) can be greatly simplified via
exponential integrators (Lu et al., 2022b; Zhang & Chen, 2023; Blasingame & Liu, 2024a). We
make use of this insight to rewrite the ODE in a form which eliminates the discretization error in the
f(t)xt linear term along with a time reparameterization which will simplify the construction of the
reversible solver. To achieve the time reparameterization we introduce a new variable ςt defined as
the signal-to-noise ratio (SNR) αt/σt for the data prediction formulation and defined as the inverse
SNR σt/αt for the noise prediction formulation. Using this time change we find Proposition 3.1, in
Section C.1.1 we provide the full derivation of this result.
Proposition 3.1 (Reparameterization of the probability flow ODE). The probability flow ODE in
Equation (7) can be rewritten in ςt as

dyς

dς
= βTfθ

(
ς,

βς

βς
yς

)
, (8)

where yt =
βT

βt
xt.

The remaining step to constructing Rex is to perform a similar process but for an underlying explicit
Runge-Kutta scheme by making use of Lawson methods (a particular class of exponential integrators)
(Lawson, 1967; Hochbruck et al., 2020). However, since both the ODE and SDE version of Rex share
the same computational graph, we will delay this presentation until we have discussed the SDE case.

3.2 REVERSE-TIME DIFFUSION SDE

Unlike with the ODE scenario the forms of the data and noise prediction formulations differ more
significantly. As such we opt to focus only on the data prediction formulation which slightly less
complicated and leave the details on the noise prediction formulation to Appendix C.2. It is well
known (Lu et al., 2022a) that the reverse-time diffusion SDE in Equation (3) can be rewritten in terms
of the data prediction model as

dXt =

[(
f(t) +

g2(t)

σ2
t

)
Xt −

αtg
2(t)

σ2
t

xθ
0|t(Xt)

]
dt+ g(t) dW t. (9)

4I.e., sampling in forward-time such that X1 ∼ q(X) and X0 ∼ p(X).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Remarkably, following a similar derivation to the one above for the probability flow ODE yields a
time-changed SDE with a very similar form to the one above, sans the Brownian motion term and
different weighting terms. We present this result in Proposition 3.2 with the full proof in Section C.2.2.
Proposition 3.2 (Time reparameterization of the reverse-time diffusion SDE). The reverse-time SDE
in Equation (9) can be rewritten in terms of the data prediction model as

dYϱ =
σT

γT
xθ
0|ϱ

(
γTσϱ

σT γϱ
Yϱ

)
dϱ+

σT

γT
dWϱ, (10)

where Yt =
σ2
Tαt

σ2
tαT

Xt and ϱt :=
α2

t

σ2
t

.

Stochastic Runge-Kutta. Before constructing a reversible solver for the reverse-time SDE in
Equation (10), we will zoom out to contextualize the discussion within the study of neural SDEs
and to introduce stochastic Runge-Kutta (SRK) methods. Constructing a numerical scheme for
SDEs is greatly more complicated than ODEs due to the complexities of stochastic processes
and in particular stochastic integrals. Unlike numerical schemes for ODEs which are usually
built upon truncated Taylor expansions, SDEs require constructing truncated Itô or Stratonovich-
Taylor expansions (Kloeden & Platen, 1991) which results in numerous iterated stochastic integrals.
Approximating these iterated integrals, or equivalently Lévy areas, of Brownian motion is quite
difficult (Clark & Cameron, 2005; Mrongowius & Rößler, 2022); however, SDEs with certain
constraints on the diffusion term may use specialized solvers to further achieve a strong order of
convergence with simple approximations of these iterated stochastic integrals. As such there are
several ways to express SRK methods depending on the choice of approximating these iterated
integrals. We choose to follow the work of Foster et al. (2024) which makes usage of the space-time
Lévy area in constructing such methods. The space-time Lévy area (see Foster et al., 2020, Definition
3.5; cf . Rößler, 2010) is defined below in Definition 3.2.
Definition 3.2 (Space-time Lévy area). The rescaled space-time Lévy area of a Brownian motion
{Wt} on the interval [s, t] corresponds to the signed area of the associated bridge process

Hs,t :=
1

h

∫ t

s

(
Ws,u − u− s

h
Ws,t

)
du, (11)

where h := t− s and Ws,u = Wu −Ws for u ∈ [s, t].

In particular, for additive-noise SDEs which our SDE in Equation (10) is, the Itô and Stratonovich
integrals coincide and the numerical scheme is significantly simpler, for more details we refer to
Appendix B.

3.3 THE REX SOLVER

Equipped with both Proposition 3.1 and Proposition 3.2 we are now ready to construct Rex. The key
idea is to construct a reversible scheme from an explicit (S)RK scheme (we provide more detail in
Appendix B) for the reparameterized differential equation using the McCallum-Foster method and
then apply Lawson methods to bring the scheme back to the original state variable, cf . Figure 2.

We present the full scheme for the Rex solver below in Proposition 3.3 with the full derivation found
in Appendix C.
Proposition 3.3 (Rex). Without loss of generality let Φ denote an explicit SRK scheme for the SDE
in Equation (10) with extended Butcher tableau aij , bi, ci, a

W
i , aHi , bW , bH . Fix an ω ∈ Ω and let

W be the Brownian motion over time variable ς . Then the reversible solver constructed from Φ in
terms of the underlying state variable Xt is given by the forward step

Xn+1 =
wn+1

wn

(
ζXn + (1− ζ)X̂n

)
+ wn+1Ψh(ςn, X̂n,Wn(ω)),

X̂n+1 =
wn+1

wn
X̂n − wn+1Ψ−h(ςn+1,Xn+1,Wn(ω)),

(12)

and backward step

X̂n =
wn

wn+1
X̂n+1 + wnΨ−h(ςn+1,Xn+1,Wn(ω)),

Xn =
wn

wn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − wnζ

−1Ψh(ςn, X̂n,Wn(ω)),
(13)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with step size h := ςn+1 − ςn and where Ψ denotes the following scheme

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Ψh(ςn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω),

(14)

where fθ denotes the data prediction model, wn = σn

γn
and ςt = ϱt. The ODE case is recovered

for an explicit RK scheme Φ for the ODE in Equation (70) with wn = σn and ςt = γt For noise
prediction models we have fθ denoting the noise prediction model with wn = αn and ςt =

σn

αn
.

We still have yet to address how to construct an algebraically reversible scheme for a stochastic
process, but merely stated it above in Proposition 3.3, we will now, however, justify our design
decisions above. The key idea is to use the same realization of the Brownian motion in both the
forward pass or backward pass. This has been explored in prior works studying the continuous
adjoint equations for neural SDEs (Li et al., 2020; Kidger et al., 2021) and essentially amounts to
fixing the realization of the Brownian motion along with clever strategies for reconstructing the same
realization. Formally, let (Ω,F ,P) be the probability space and let Wt : Ω → Rdw be the standard
Brownian motion on [0, T]. Then for each reversible solve we fix an ω ∈ Ω. This can be justified if
we view the SDE from a roughs path perspective, i.e., the Itô-Lyons map (Lyons, 1998) provides a
deterministic continuous map from the initial condition of the SDE and realization of the Brownian
motion to the solution trajectory, see Appendix F for a more detailed explanation.

Numerical simulation of the Brownian motion. The naïve way to fix the realization of the
Brownian motion for both the forward pass is to simply store the entire realization of the Brownian
motion in system memory, i.e., record {Wn(ω)}Nn=1 à la Wu & la Torre (2023).5 However, recent
work by Li et al. (2020); Kidger et al. (2021); Jelinčič et al. (2024) have proposed much more elegant
solutions which enable one to recalculate any realization of the Brownian motion from a single seed
given access to a splittable pseudo-random number generator (PRNG) (Salmon et al., 2011). N.B.,
we discuss the more nuanced technical details of such approaches in Appendix G, for now it suffices
to say we adopt a more elegant solution to reconstructing the Brownian motion in the backward step.

4 THEORETICAL RESULTS

4.1 CONVERGENCE ORDER AND STABILITY

A nice property of the McCallum-Foster is that the the convergence order of the underlying explicit
RK scheme Φ is inherited by the resulting reversible scheme McCallum & Foster (2024, Theorem
2.1). However, does this property hold true for Rex? Fortunately, it does indeed hold true which we
show in Theorem 4.1 with the proof provided in Appendix D.2.
Theorem 4.1 (Rex is a k-th order solver). Let Φ be a k-th order explicit Runge-Kutta scheme for
the reparameterized probability flow ODE in Equation (70) with variance preserving noise schedule
(αt, σt). Then Rex constructed from Φ is a k-th order solver, i.e., given the reversible solution
{xn, x̂n}Nn=1 and true solution xtn we have

∥xn − xtn∥ ≤ Chk, (15)

for constants C, hmax > 0 and for step sizes h ∈ [0, hmax].

We can show a similar result for the underlying scheme Ψ constructed from an explicit SRK Φ with
the full proof provided in Appendix D.3.
Theorem 4.2 (Convergence order for stochastic Ψ). Let Φ be a SRK scheme with strong order of
convergence ξ > 0 for the reparameterized reverse-time diffusion SDE in Equation (10) with variance
preserving noise schedule (αt, σt) and αT > 0. Then Ψ constructed from Φ has strong order of
convergence ξ.

5This clearly prohibits the use of adaptive step-size solvers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) DDIM (b) EDICT (c) BDIA (d) O-BELM (e) Rex (RK4)

Figure 3: Qualitative comparison of unconditional sampling with different reversible solvers with a
pre-trained DDPM model on CelebA-HQ (256× 256) with the non-reversible DDIM as a baseline.
Each method used 10 discretization steps.

Stability. One drawback of reversible solvers is their rather unimpressive stability, in fact until the
work of McCallum & Foster (2024) there were no reversible methods which had a non-trivial region
of stability. We discuss this more in detail Appendix A.2 along with illustrating the poor stability
characteristics of BDIA and O-BELM (see Corollaries A.4.1 and A.3.2). However, since Rex is built
upon the McCallum-Foster method the ODE solver has some stability.6

4.2 RELATION TO EXISTING SOLVERS

Next we show that several variants of Rex are actually the reversible versions of several well-known
solvers in the literature for diffusion models, e.g., the DPM-Solvers (Lu et al., 2022b). We state this
result below in Theorem 4.3 with the full details and proofs in Appendix E.

Theorem 4.3 (Rex subsumes previous solvers). The underlying scheme used Ψ in Rex given by

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Xn+1 =
wn+1

wn
Xn + wn+1

h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω)

 ,

(16)
subsumes the following solvers for diffusion models

1. DDIM (Song et al., 2021a),

2. DPM-Solver-1, DPM-Solver-2, DPM-Solver-12 (Lu et al., 2022b),

3. DPM-Solver++1, DPM-Solver++(2S), SDE-DPM-Solver-1, SDE-DPM-Solver++1 (Lu
et al., 2022a),

4. SEEDS-1 (Gonzalez et al., 2024), and

5. gDDIM (Zhang et al., 2023).

Corollary 4.3.1 (Rex is reversible version of previous solvers). Rex is the reversible revision of the
well-known solvers for diffusion models in Theorem 4.3.

5 EMPIRICAL RESULTS

5.1 IMAGE GENERATION

Unconditional image generation. Following prior works (Wang et al., 2024; Wallace et al., 2023)
we begin by exploring the ability of Rex to function as a traditionaly solver for diffusion models.
To evaluate this we drew 10,240 samples using a DDPM model (Ho et al., 2020) pretrained on the

6I.e., in the sense of the linear test equation, see Appendix A.2 for more details.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison of different reversible solvers for unconditional image generation
with a pre-trained DDPM model on CelebA-HQ (256 × 256) with the non-reversible DDIM as a
baseline. † denotes γ = 0.5 and ‡ denotes γ = 1.0 for BDIA hyperparameter.

Steps Solver FD (↓) FD∞ (↓) Precision (↑) Recall (↑) Density (↑) Coverage (↑)

10

EDICT 1042.89 1034.82 0.49 0.10 0.19 0.11
BDIA† 900.95 894.23 0.61 0.10 0.28 0.14
BDIA‡ 1284.48 1274.46 0.41 0.00 0.14 0.05
O-BELM 605.52 596.47 0.78 0.18 0.56 0.34
Rex (RK4) 633.90 617.11 0.81 0.22 0.64 0.36
Rex (Midpoint) 607.20 597.04 0.78 0.21 0.60 0.37
Rex (Euler-Maruyama) 610.16 598.56 0.79 0.10 0.61 0.37

DDIM 727.75 716.41 0.75 0.14 0.49 0.27

20

EDICT 752.68 743.89 0.68 0.15 0.36 0.21
BDIA† 611.47 601.37 0.76 0.19 0.50 0.30
BDIA‡ 982.30 968.62 0.54 0.10 0.22 0.10
O-BELM 489.94 477.82 0.82 0.23 0.71 0.43
Rex (RK4) 547.24 533.30 0.82 0.27 0.71 0.43
Rex (Midpoint) 539.96 527.85 0.81 0.26 0.66 0.41
Rex (Euler-Maruyama) 460.42 447.01 0.86 0.21 0.91 0.51

DDIM 570.11 555.26 0.79 0.20 0.62 0.38

50

EDICT 551.13 534.73 0.78 0.24 0.60 0.37
BDIA† 500.79 489.24 0.82 0.27 0.70 0.44
BDIA‡ 798.47 790.17 0.71 0.12 0.39 0.18
O-BELM 476.29 463.07 0.84 0.29 0.77 0.45
Rex (RK4) 511.17 498.94 0.80 0.27 0.69 0.44
Rex (Midpoint) 505.67 494.94 0.81 0.29 0.70 0.44
Rex (Euler-Maruyama) 391.93 381.01 0.87 0.28 0.98 0.56

DDIM 490.88 479.87 0.80 0.26 0.67 0.45

CelebA-HQ (Karras et al., 2018) dataset with the various solvers each using the same fixed seed.
Following Stein et al. (2023), we report the Fréchet distance (FD) with DINOv2 (Oquab et al., 2023)
feature extractor along with FD∞ (Chong & Forsyth, 2020). We also report the precision and recall
metrics (Kynkäänniemi et al., 2019); along with density and coverage metrics (Naeem et al., 2020)
which serve as a proxy for fidelity and sample diversity respectively. We provide more details on
these metrics in Section I.1.2. In Table 1 we compare pre-existing methods for exact inversion with
diffusion models against Rex, along with including the non-reversible DDIM solver as a baseline. We
observe that the Rex family of reversible solvers performs exceedingly well, surpassing the baseline
non-reversible DDIM scheme, handily beating EDICT and BDIA, and often outperforming O-BELM.
We observe that our reversible SDE scheme consistently performs quite well outside of the very few
step-size regime (a well known limitation of SDE schemes). N.B., that unlike the results reported
for the other reversible solvers we did not search for the optimal hyperparameters for Rex for the
sampling task. In Figure 3 we present a visual qualitative comparison of the different solvers using
the same initial noise. We provide additional experimental details in Appendix I.1.

Table 2: Quantitative comparison of different reversible solvers in terms of average CLIP score,
Image Reward, and PickScore. for conditional text-to-image generation with Stable Diffusion v1.5
(512× 512) with the non-reversible DDIM as a baseline.

CLIP score (↑) Image Reward (↑) PickScore (↑)

Solver / Steps 10 20 50 10 20 50 10 20 50

EDICT 27.97 31.04 31.17 -1.219 -0.134 -0.055 19.52 20.84 21.05
BDIA γ = 0.96 31.11 31.52 31.54 -0.111 0.067 0.087 20.52 21.01 21.19
BDIA γ = 0.5 31.57 31.48 31.48 -0.006 0.055 0.066 20.98 21.16 21.21
O-BELM 31.47 31.43 31.51 0.051 0.105 0.160 20.88 21.00 21.16
Rex (Midpoint) 31.62 31.64 31.60 0.119 0.179 0.198 21.28 21.38 21.41
Rex (RK4) 31.69 31.60 31.57 0.156 0.187 0.195 21.35 21.40 21.41
Rex (Euler-Maruyama) 31.68 31.56 31.33 0.222 0.239 0.264 21.50 21.66 21.70
Rex (ShARK) 31.55 31.56 31.39 0.239 0.249 0.263 21.51 21.66 21.72

DDIM 31.78 31.76 31.24 0.033 0.136 0.247 21.06 21.29 21.04

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) DDIM (b) EDICT (c) BDIA (d) O-BELM (e) Rex (RK4)

Figure 4: Qualitative comparison of text-to-image conditional sampling with different reversible
solvers with Stable Diffusion v1.5 (512 × 512) and 10 discretization steps. Prompts from top to
bottom are: “White plate with fried fish and lemons sitting on top of it.”, “A lady enjoying a meal of
some sort.”, and “A young boy riding skis with ski poles.”.

Conditional image generation. To further evaluate Rex we drew text-conditioned samples using
Stable Diffusion v1.5 (Rombach et al., 2022) with a set of 1000 randomly selected captions from
COCO (Lin et al., 2014) with the various solvers each using the same fixed seed. We report
performance in terms of the CLIP Score (Hessel et al., 2021); in terms of the state-of-the-art text-to-
image scoring function PickScore (Kirstain et al., 2023); and in terms of the state-of-the-art Image
Reward metric (Xu et al., 2023) which assigns a score that reflects human preferences, namely,
aesthetic quality and prompt adherence. The later metric was recently become a popular metric
for evaluating the performance of diffusion models (Skreta et al., 2025a). In Table 2 we compare
pre-existing methods for exact inversion with diffusion models against Rex, along with including the
non-reversible DDIM solver as a baseline. We observe that Rex does very well compared to other
reversible solvers, and in particular the stochastic variants of Rex perform extremely well. In Figure 4
we present a visual qualitative comparison of the different solvers using the same initial noise. We
provide additional experimental details in Appendix I.2.

5.2 IMAGE INTERPOLATION

We explore interpolating between the inversions of two images, a difficult problem as the inverted
space is often non-Gaussian (Blasingame & Liu, 2024b). We illustrate an example of this in Figure 5
exploring interpolation with an unconditional DDPM model. We notice the that stochastic Rex has
much better interpolations properties than both ODE inversions corroborating with Nie et al. (2024).
Both ODE variants seem to fail quite noticeably, unable to smoothly interpolate between the two
samples. N.B., we noticed that the inverted samples with ShARK had variance much closer to one,
whereas the other inverted samples had much larger variance, likely contributing to the distortions,
we discuss this more in Appendix K.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 5: Unconditional interpolation between two real images from FRLL (DeBruine & Jones, 2017)
with a DDPM model trained on CelebA-HQ. Top row is BELM, middle is Rex (Euler), and bottom is
Rex (ShARK). 50 steps used for each method.

6 CONCLUSION

We propose Rex a family of algebraically reversible solvers for diffusion models which can obtain
arbitrarily a high order of convergence (for the ODE case). Moreover, we propose (to the best of
our knowledge) the first method for exact inversion for diffusion SDEs without storing the entire
trajectory of the Brownian motion. Our empirical illustrations show that not only does Rex have nice
theoretical properties but it also functions as a capable numerical scheme for sampling with diffusion
models. The proposed method can be incorporated into preexisting applications wherein preserving
the bijections of flow maps is important, leading to many exciting possible applications.

ETHICS STATEMENT

We recognize that Rex as numerical scheme for sampling with diffusion models could potentially be
misused used for malicious applications particularly when used in editing pipelines.

REPRODUCIBILITY STATEMENT

To aid with reproducibility we include detailed derivations of Rex in Appendix C along with additional
proofs in Appendix D. We draw connections between Rex and other solver for diffusion models in
Appendix E. We include through implementation details in Appendix H and experimental details
in Appendix I; in particular, we mention all code repositories and datasets we used in Appendix I.5.
Moreover, we provide code illustrations of the core components of Rex in Appendix J.

REFERENCES

Iyabo Ann Adamu. Numerical approximation of SDEs & the stochastic Swift-Hohenberg equa-
tion. Ph.d. thesis, Heriot-Watt University, 2011. URL https://www.ros.hw.ac.uk/
bitstream/handle/10399/2460/AdamuIA_0711_macs.pdf.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Zander W. Blasingame and Chen Liu. Adjointdeis: Efficient gradients for diffusion models. In
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 2449–2483. Curran Associates,
Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf.

10

https://www.ros.hw.ac.uk/bitstream/handle/10399/2460/AdamuIA_0711_macs.pdf
https://www.ros.hw.ac.uk/bitstream/handle/10399/2460/AdamuIA_0711_macs.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/04badd3b048315c8c3a0ca17eff723d7-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zander W. Blasingame and Chen Liu. Fast-dim: Towards fast diffusion morphs. IEEE Security &
Privacy, 2024b.

Zander W. Blasingame and Chen Liu. Greedy-dim: Greedy algorithms for unreasonably effective
face morphs. In 2024 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–11, 2024c.
doi: 10.1109/IJCB62174.2024.10744517.

Zander W. Blasingame and Chen Liu. Leveraging diffusion for strong and high quality face morphing
attacks. IEEE Transactions on Biometrics, Behavior, and Identity Science, 6(1):118–131, 2024d.

Zander W. Blasingame and Chen Liu. Greed is good: A unifying perspective on guided generation.
In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025. URL
https://openreview.net/forum?id=s14pdQgoLb.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22563–22575, 2023.

Paul Bourgade. Stochastic analysis, 2010. URL https://cims.nyu.edu/~bourgade/
SA2010/StochasticAnalysis.pdf?utm_source=chatgpt.com.

Kevin Burrage and Pamela M Burrage. Order conditions of stochastic runge–kutta methods by
b-series. SIAM Journal on Numerical Analysis, 38(5):1626–1646, 2000.

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016. Third Edition.

Girolamo Cardano. Artis Magnæ, Sive de Regulis Algebraicis, Lib. unus. 1545.

Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to find
them. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
6070–6079, 2020.

Koen Claessen and Michał H Pałka. Splittable pseudorandom number generators using cryptographic
hashing. ACM SIGPLAN Notices, 48(12):47–58, 2013.

John MC Clark and RJ Cameron. The maximum rate of convergence of discrete approximations
for stochastic differential equations. In Stochastic Differential Systems Filtering and Control:
Proceedings of the IFIP-WG 7/1 Working Conference Vilnius, Lithuania, USSR, Aug. 28–Sept. 2,
1978, pp. 162–171. Springer, 2005.

M Crouzeix and FJ Lisbona. The convergence of variable-stepsize, variable-formula, multistep
methods. SIAM journal on numerical analysis, 21(3):512–534, 1984.

Kristian Debrabant, Anne Kværnø, and Nicky Cordua Mattsson. Runge–kutta lawson schemes for
stochastic differential equations. BIT Numerical Mathematics, 61(2):381–409, 2021.

Lisa DeBruine and Benedict Jones. Face Research Lab London Set, 5 2017. URL
https://figshare.com/articles/dataset/Face_Research_Lab_London_
Set/5047666.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation, 2015. URL https://arxiv.org/abs/1410.8516.

DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal distributions.
Journal of multivariate analysis, 12(3):450–455, 1982.

Lester E Dubins and Gideon Schwarz. On continuous martingales. Proceedings of the National
Academy of Sciences, 53(5):913–916, 1965.

Kang Feng. On difference schemes and symplectic geometry. In Proceedings of the 5th international
symposium on differential geometry and differential equations, 1984.

11

https://openreview.net/forum?id=s14pdQgoLb
https://cims.nyu.edu/~bourgade/SA2010/StochasticAnalysis.pdf?utm_source=chatgpt.com
https://cims.nyu.edu/~bourgade/SA2010/StochasticAnalysis.pdf?utm_source=chatgpt.com
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666
https://arxiv.org/abs/1410.8516

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

James Foster, Terry Lyons, and Harald Oberhauser. An optimal polynomial approximation of
brownian motion. SIAM Journal on Numerical Analysis, 58(3):1393–1421, 2020.

James M Foster. Numerical approximations for stochastic differential equations. Ph.d. thesis,
University of Oxford, 2020. URL https://ora.ox.ac.uk/objects/uuid:775fc3f5-
501c-425f-8b43-fc5a7b2e4310.

James M Foster, Goncalo Dos Reis, and Calum Strange. High order splitting methods for sdes
satisfying a commutativity condition. SIAM Journal on Numerical Analysis, 62(1):500–532, 2024.

Peter K Friz and Martin Hairer. A course on rough paths. Springer, 2020.

Jessica G Gaines and Terry J Lyons. Variable step size control in the numerical solution of stochastic
differential equations. SIAM Journal on Applied Mathematics, 57(5):1455–1484, 1997.

Martin Gonzalez, Nelson Fernandez Pinto, Thuy Tran, Hatem Hajri, Nader Masmoudi, et al. Seeds:
Exponential sde solvers for fast high-quality sampling from diffusion models. Advances in Neural
Information Processing Systems, 36, 2024.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Marlis Hochbruck, Jan Leibold, and Alexander Ostermann. On the convergence of lawson methods
for semilinear stiff problems. Numerische Mathematik, 145(3):553–580, 2020.

Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9307–9315, 2024.

Andraž Jelinčič, James Foster, and Patrick Kidger. Single-seed generation of brownian paths and
integrals for adaptive and high order sde solvers. arXiv preprint arXiv:2405.06464, 2024.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas. Gotta
go fast with score-based generative models. In The Symbiosis of Deep Learning and Differential
Equations, 2021. URL https://openreview.net/forum?id=gEoVDSASC2h.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=Hk99zCeAb.

Patrick Kidger. On Neural Differential Equations. Ph.d. thesis, Oxford University, 2022. Available at
https://arxiv.org/abs/2202.02435.

Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients
for neural sdes. Advances in Neural Information Processing Systems, 34:18747–18761, 2021.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

12

https://ora.ox.ac.uk/objects/uuid:775fc3f5-501c-425f-8b43-fc5a7b2e4310
https://ora.ox.ac.uk/objects/uuid:775fc3f5-501c-425f-8b43-fc5a7b2e4310
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://openreview.net/forum?id=gEoVDSASC2h
https://openreview.net/forum?id=Hk99zCeAb
https://arxiv.org/abs/2202.02435

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=G5RwHpBUv0.

Peter E Kloeden and Eckhard Platen. Stratonovich and itô stochastic taylor expansions. Mathematis-
che Nachrichten, 151(1):33–50, 1991.

Peter E. Kloeden and Eckhard Platen. Stochastic Differential Equations, pp. 103–160. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1992. ISBN 978-3-662-12616-5. doi: 10.1007/978-3-662-
12616-5_4. URL https://doi.org/10.1007/978-3-662-12616-5_4.

Kei Kobayashi. Stochastic calculus for a time-changed semimartingale and the associated stochastic
differential equations. Journal of Theoretical Probability, 24(3):789–820, 2011.

Yoshio Komori, David Cohen, and Kevin Burrage. Weak second order explicit exponential runge–
kutta methods for stochastic differential equations. SIAM Journal on Scientific Computing, 39(6):
A2857–A2878, 2017.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of im-
agenet classes in fréchet inception distance. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=4oXTQ6m_ws8.

J Douglas Lawson. Generalized runge-kutta processes for stable systems with large lipschitz constants.
SIAM Journal on Numerical Analysis, 4(3):372–380, 1967.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108
of Proceedings of Machine Learning Research, pp. 3870–3882. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/li20i.html.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 5404–5411, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

George Lowther. Time-changed brownian motion, 2010. URL https://almostsuremath.
com/2010/04/20/time-changed-brownian-motion/.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022b. URL https://openreview.net/forum?id=2uAaGwlP_V.

13

https://openreview.net/forum?id=G5RwHpBUv0
https://openreview.net/forum?id=G5RwHpBUv0
https://doi.org/10.1007/978-3-662-12616-5_4
https://openreview.net/forum?id=4oXTQ6m_ws8
https://proceedings.mlr.press/v108/li20i.html
https://almostsuremath.com/2010/04/20/time-changed-brownian-motion/
https://almostsuremath.com/2010/04/20/time-changed-brownian-motion/
https://openreview.net/forum?id=2uAaGwlP_V

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Terry J Lyons. Differential equations driven by rough signals. Revista Matemática Iberoamericana,
14(2):215–310, 1998.

Dimitra Maoutsa, Sebastian Reich, and Manfred Opper. Interacting particle solutions of fokker–
planck equations through gradient–log–density estimation. Entropy, 22(8):802, 2020.

Takashi Matsubara, Yuto Miyatake, and Takaharu Yaguchi. Symplectic adjoint method
for exact gradient of neural ode with minimal memory. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 20772–20784. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf.

Sam McCallum and James Foster. Efficient, accurate and stable gradients for neural odes. arXiv
preprint arXiv:2410.11648, 2024.

Jan Mrongowius and Andreas Rößler. On the approximation and simulation of iterated stochastic
integrals and the corresponding lévy areas in terms of a multidimensional brownian motion.
Stochastic Analysis and Applications, 40(3):397–425, 2022.

Ulrich Mutze. An asynchronous leapfrog method ii. arXiv preprint arXiv:1311.6602, 2013.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International conference on machine
learning, pp. 7176–7185. PMLR, 2020.

Shen Nie, Hanzhong Allan Guo, Cheng Lu, Yuhao Zhou, Chenyu Zheng, and Chongxuan Li. The
blessing of randomness: SDE beats ODE in general diffusion-based image editing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=DesYwmUG00.

Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applications. Universitext.
Springer Berlin Heidelberg, Berlin, Germany, jul 2003. ISBN 9783662036204. doi: 10.1007/978-
3-642-14394-6.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Jiachun Pan, Hanshu Yan, Jun Hao Liew, Jiashi Feng, and Vincent YF Tan. Towards accurate guided
diffusion sampling through symplectic adjoint method. arXiv preprint arXiv:2312.12030, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/radford21a.html.

Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293. Springer
Science & Business Media, 2013.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Andreas Rößler. Runge–kutta methods for the strong approximation of solutions of stochastic
differential equations. SIAM Journal on Numerical Analysis, 48(3):922–952, 2010.

Andreas Rößler. A class of stochastic runge-kutta methods for stochastic differential equations
converging with order 1 in Lp-norm. arXiv preprint arXiv:2506.22657, 2025.

W Rüemelin. Numerical treatment of stochastic differential equations. SIAM Journal on Numerical
Analysis, 19(3):604–613, 1982.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/adf8d7f8c53c8688e63a02bfb3055497-Paper.pdf
https://openreview.net/forum?id=DesYwmUG00
https://openreview.net/forum?id=DesYwmUG00
https://proceedings.mlr.press/v139/radford21a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ronald D Ruth. A canonical integration technique. IEEE Trans. Nucl. Sci., 30(CERN-LEP-TH-83-
14):2669–2671, 1983.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. Advances in neural information processing systems, 31,
2018.

John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. Parallel random numbers: as
easy as 1, 2, 3. In Proceedings of 2011 international conference for high performance computing,
networking, storage and analysis, pp. 1–12, 2011.

L. F. Shampine. Stability of the leapfrog/midpoint method. Applied Mathematics and Computation,
208(1):293–298, 2009.

Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alan Aspuru-Guzik,
Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-kac correc-
tors in diffusion: Annealing, guidance, and product of experts. In Forty-second International
Conference on Machine Learning, 2025a. URL https://openreview.net/forum?id=
Vhc0KrcqWu.

Marta Skreta, Lazar Atanackovic, Joey Bose, Alexander Tong, and Kirill Neklyudov. The superposi-
tion of diffusion models using the itô density estimator. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https://openreview.net/forum?id=
2o58Mbqkd2.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37, ICML’15, pp. 2256–2265.
JMLR.org, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=St1giarCHLP.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 32211–32252. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/song23a.html.

George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
generative model evaluation metrics and their unfair treatment of diffusion models. In Advances in
Neural Information Processing Systems, volume 36, 2023.

David E Stewart. Numerical analysis: A graduate course, volume 258. Springer, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

René J. De Vogelaere. Methods of integration which preserve the contact transformation property of
the hamilton equations. Report NO. 4, University of Notre Dame, 1956.

Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled transfor-
mations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22532–22541, 2023.

15

https://openreview.net/forum?id=Vhc0KrcqWu
https://openreview.net/forum?id=Vhc0KrcqWu
https://openreview.net/forum?id=2o58Mbqkd2
https://openreview.net/forum?id=2o58Mbqkd2
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.mlr.press/v202/song23a.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Fangyikang Wang, Hubery Yin, Yue-Jiang Dong, Huminhao Zhu, Chao Zhang, Hanbin Zhao, Hui
Qian, and Chen Li. BELM: Bidirectional explicit linear multi-step sampler for exact inversion
in diffusion models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=ccQ4fmwLDb.

Chen Henry Wu and Fernando De la Torre. A latent space of stochastic diffusion models for zero-shot
image editing and guidance. In ICCV, 2023.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems, pp.
15903–15935, 2023.

Guoqiang Zhang, J. P. Lewis, and W. Bastiaan Kleijn. Exact diffusion inversion via bidirectional
integration approximation. In Computer Vision – ECCV 2024: 18th European Conference, Milan,
Italy, September 29–October 4, 2024, Proceedings, Part LVII, pp. 19–36, Berlin, Heidelberg,
2024. Springer-Verlag. ISBN 978-3-031-72997-3. doi: 10.1007/978-3-031-72998-0_2. URL
https://doi.org/10.1007/978-3-031-72998-0_2.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Loek7hfb46P.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gDDIM: Generalized denoising diffusion implicit
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1hKE9qjvz-.

Juntang Zhuang, Nicha C Dvornek, sekhar tatikonda, and James s Duncan. MALI: A memory
efficient and reverse accurate integrator for neural ODEs. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=blfSjHeFM_e.

16

https://openreview.net/forum?id=ccQ4fmwLDb
https://doi.org/10.1007/978-3-031-72998-0_2
https://openreview.net/forum?id=Loek7hfb46P
https://openreview.net/forum?id=Loek7hfb46P
https://openreview.net/forum?id=1hKE9qjvz-
https://openreview.net/forum?id=blfSjHeFM_e

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDICES

A Related works . 20

A.1 Reversible solvers . 20

Asynchronous leapfrog method • Reversible Heun method • McCallum-Foster method

A.2 A note on stability . 22

A.3 Exact inversion of diffusion models 23

EDICT sampler • BDIA sampler • BELM sampler • CycleDiffusion • Summary

A.4 SDE solvers for diffusion models 26

Comparison with SEEDS

B Stochastic Runge-Kutta methods 27

B.1 Foster-Reis-Strange SRK Scheme 28

B.2 Independence of the Brownian and Lévy increments 29

B.3 ShARK . 29

C Derivation of Rex . 29

C.1 Rex (ODE) . 29

Proof of Proposition 3.1 • Data prediction • Noise prediction

C.2 Rex (SDE) . 34

Time-changed Brownian motion • Proof of Proposition 3.2 • Proof of reparameterized
SDE for noise prediction models • Derivation of Rex (SDE)

C.3 Proof of Proposition 3.3 41

D Convergence order proofs 42

D.1 Assumptions . 42

D.2 Proof of Theorem 4.1 42

D.3 Proof of Theorem 4.2 43

E Relation to other solvers for diffusion models 44

E.1 Rex as reversible ODE solvers 45

Euler • Second-order methods • Third-order methods

E.2 Rex as reversible SDE solvers 49

Euler-Maruyama

E.3 Rex as reversible SEEDS-1 51

F A brief note on the theory of rough paths 52

G Numerical simulation of Brownian motion 52

H Implementation details . 53

H.1 Closed form expressions of the noise schedule 53

Linear noise schedule • Scaled linear schedule

H.2 Some other inverse functions 56

H.3 Brownian motion . 57

I Experimental details . 57

I.1 Unconditional image generation 57

Diffusion model • Metrics • Hyperparameters

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

I.2 Conditional image generation 59

Diffusion model • Metrics • Hyperparameters

I.3 Interpolation . 60

I.4 Hardware . 60

I.5 Repositories . 60

J Code. 60

K Visualization of inversion and the latent space 64

L Additional results . 65

L.1 Unconditional image generation 65

L.2 Conditional image generation 65

OVERVIEW OF THEORETICAL RESULTS

3.1 Proposition (Reparameterization of the probability flow ODE) 4

3.2 Proposition (Time reparameterization of the reverse-time diffusion SDE) 5

3.3 Proposition (Rex) . 5

4.1 Theorem (Rex is a k-th order solver) . 6

4.2 Theorem (Convergence order for stochastic Ψ) 6

4.3 Theorem (Rex subsumes previous solvers) . 7

4.3.1 Corollary (Rex is reversible version of previous solvers) 7

A.1 Theorem (Convergence order of the McCallum-Foster method) 22

A.2 Theorem (Region of stability for the McCallum-Foster method) 23

A.3 Proposition (BDIA is the leapfrog/midpoint method) 24

A.3.1 Corollary (BDIA is a first-order method) . 24

A.3.2 Corollary (BDIA is nowhere linearly stable) 24

A.4 Theorem (O-BELM is the leapfrog/midpoint method) 25

A.4.1 Corollary (O-BELM is nowhere linearly stable) 25

3.1 Proposition (Reparameterization of the probability flow ODE) 29

C.1 Lemma (Rex (ODE) for data prediction models) 31

C.2 Lemma (Rex (ODE) for noise prediction models) 32

C.3 Theorem (Dambis-Dubins-Schwarz representation theorem) 34

C.4 Theorem (Multi-dimensional Dambis-Dubins-Schwarz representation theorem) 34

3.2 Proposition (Time reparameterization of the reverse-time diffusion SDE) 37

C.7 Proposition (Time reparameterization of the reverse-time diffusion SDE for noise
prediction models) . 38

C.8 Lemma (Rex (SDE) for data prediction models) 39

C.9 Lemma (Rex (SDE) for noise prediction models) 40

3.3 Proposition (Rex) . 42

4.1 Theorem (Rex is a k-th order solver) . 42

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

4.2 Theorem (Convergence order for stochastic Ψ) 43

4.3 Theorem (Rex subsumes previous solvers) . 44

4.3.1 Corollary (Rex is reversible version of previous solvers) 45

E.1 Proposition (Rex (Euler) is reversible DPM-Solver++1) 45

E.1.1 Corollary (Rex (Euler) is reversible deterministic DDIM for data prediction models) 46

E.2 Proposition (Rex (Euler) is reversible DPM-Solver-1) 46

E.2.1 Corollary (Rex (Euler) is reversible deterministic DDIM for noise prediction mod-
els) . 47

E.3 Proposition (Rex (generic second-order) is reversible DPM-Solver++(2S)) . . . 47

E.4 Proposition (Rex (generic second-order) is reversible DPM-Solver-2)) 48

E.5 Proposition (Rex (Euler-Midpoint) is DPM-Solver-12) 48

E.6 Proposition (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver++1) 49

E.6.1 Corollary (Rex (Euler-Maruyama) is reversible stochastic DDIM) 50

E.7 Proposition (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver-1) 50

E.7.1 Corollary (Rex (Euler-Maruyama) is reversible stochastic DDIM for noise predic-
tion models) . 51

E.8 Proposition (Rex is reversible SEEDS-1) . 51

E.8.1 Corollary (Rex (Euler-Maruyama) is reversible gDDIM) 51

H.1 Proposition (Inverse function of γt for linear noise schedule) 54

H.1.1 Corollary (Inverse function of χt for linear noise schedule) 54

H.1.2 Corollary (Inverse function of ϱt for linear noise schedule) 54

H.2 Proposition (Inverse function of γt for scaled linear noise schedule) 55

H.2.1 Corollary (Inverse function of χt for scaled linear noise schedule) 56

H.2.2 Corollary (Inverse function of ϱt for scaled linear noise schedule) 56

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A RELATED WORKS

In this section we provide a detailed comparison with relevant related works. We begin in Ap-
pendix A.1 by providing an overview of algebraically reversible solvers. Then in Appendix A.2
we introduce the stability of an ODE solver, a helpful tool in comparing reversible solvers. Using
this tool along with examining the convergence order we compare a variety of reversible solvers for
diffusion models in Appendix A.3. Lastly, in Appendix A.4 we explore related work on constructing
SDE solvers for diffusion models.

A.1 REVERSIBLE SOLVERS

The earliest work on reversible solvers can be traced back to the pioneering work on symplectic
integrators by Vogelaere (1956); Ruth (1983); Feng (1984). Due to symplectic integrators being
developed for solving Hamiltonian systems they are intrinsically reversible by construction (Grey-
danus et al., 2019). More recently, Matsubara et al. (2021) explored the use of symplectic solvers
for solving the continuous adjoint equations. Likewise, work by Pan et al. (2023) extended this idea,
making use of symplectic solvers for solving the continous adjoint equations for diffusion models.
However, in this section we will focus on non-symplectic reversible solvers.

Throughout this section we consider solving the following d-dimensional IVP:

x(0) = x0,
dx

dt
(t) = f(t,x(t)), (17)

over the time interval [0, T] with numerical solution {xn}Nn=0.

A.1.1 ASYNCHRONOUS LEAPFROG METHOD

To the best of our knowledge the asynchronous leapfrog definition was the first algebraically reversible
non-symplectic solver, initially proposed by Mutze (2013) and popularized in a modern deep learning
context by Zhuang et al. (2021). The asynchronous leapfrog method is a modification of the leapfrog
method which converts it from a multi-step to single-step method. The method keeps track of a
second state, {vn} which is supposed to be sufficiently close to the value of the vector field. We
define the method below in Definition A.1.

Definition A.1 (Asynchronous leapfrog method). Initialize v0 = f(0,x0). Consider a step size of h
and let t̂n = tn + h/2, then a forward step of the asynchronous leapfrog method is defined as

x̂n = xn +
1

2
vnh,

vn+1 = 2f(t̂n, x̂n)− vn,

xn+1 = xn + f(t̂n, x̂n)h,

(18)

and the backward step is given as

x̂n = xn+1 −
1

2
vn+1h,

xn = xn+1 − f(t̂n, x̂n)h,

vn = 2f(t̂n, x̂n)− vn+1.

(19)

Remark A.2. The method is a second-order solver (Zhuang et al., 2021, Theorem 3.1).

A.1.2 REVERSIBLE HEUN METHOD

Later work by Kidger et al. (2021) proposed the reversible Heun method, a general purpose reversible
solver which is symmetric and is an algebraically reversible SDE solver in addition to being a
reversible ODE solver. This solver keeps track of an auxiliary state variable x̂n and an extra copy
of previous evaluations of the drift and diffusion coefficients. We present this method below in
Definition A.3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Definition A.3 (Reversible Heun method for ODEs). Initialize x̂0 = x0. Consider a step size of h,
then a forward step of the reversible Heun method is defined as

x̂n+1 = 2xn − x̂n + f(tn, x̂n)h,

xn+1 = xn +
1

2
(f(tn+1, x̂n+1) + f(tn, x̂n))h.

(20)

and the backward step is given as

x̂n = 2xn+1 − x̂n+1 − f(tn+1, x̂n+1)h,

xn = xn+1 −
1

2
(f(tn+1, x̂n+1) + f(tn, x̂n))h.

(21)

Remark A.4. This method is a second-order solver (Kidger, 2022, Theorem 5.18).

Recall that simulating SDEs in reverse-time is much trickier than simulating ODEs in reverse-time.
This observation is even more true of algebraically reversible methods for SDEs. To the best of our
knowledge, the only general reversible solver for SDEs is the reversible Heun method. The main
idea of the SDE formulation of the reversible Heun method is to extend the Euler-Heun method7 like
how Heun’s method was extended to the reversible Heun solver for ODEs. We define the method in
Kidger et al. (2021, Algorithm 1) below in Definition A.5.
Definition A.5 (Reversible Heun method for SDEs). Initialize x̂0 = x0. Consider a step size of h
and let Wh := Wtn+1 −Wtn , then a forward step of the reversible Heun method is defined as

x̂n+1 = 2xn − x̂n + µ(tn, x̂n)h+ σ(tn, x̂n)Wh,

xn+1 = xn +
1

2
(µ(tn+1, x̂n+1) + µ(tn, x̂n))h

+
1

2
(σ(tn+1, x̂n+1) + σ(tn, x̂n))Wh.

(22)

and the backward step is given as

x̂n = 2xn+1 − x̂n+1 − µ(tn+1, x̂n+1)h− σ(tn, x̂n)Wh,

xn = xn+1 −
1

2
(µ(tn+1, x̂n+1) + µ(tn, x̂n))h

− 1

2
(σ(tn+1, x̂n+1) + σ(tn, x̂n))Wh.

(23)

Remark A.6. This method requires some tractable solution for recalculating the Brownian motion
from a splittable PRNG.

A.1.3 MCCALLUM-FOSTER METHOD

Recent work by McCallum & Foster (2024) created a general method for constructing n-th order
solvers from preexisting explicit single-step solvers while also addressing the stability issues that
earlier methods suffered from. As McCallum & Foster (2024) simply refer to their method as
reversible X where X is the underlying single-step solver we opt to refer to their method as the
McCallum-Foster method. We restate the definition below.
Definition 2.1 (McCallum-Foster method). Initialize x̂0 = x0 and let ζ ∈ (0, 1]. Consider a step
size of h, then a forward step of the McCallum-Foster method is defined as

xn+1 = ζxn + (1− ζ)x̂n +Φh(tn, x̂n),

x̂n+1 = x̂n −Φ−h(tn+1,xn+1),
(5)

and the backward step is given as

x̂n = x̂n+1 +Φ−h(tn+1,xn+1),

xn = ζ−1xn+1 + (1− ζ−1)x̂n − ζ−1Φh(tn, x̂n).
(6)

Remark A.7. N.B., the ζ and ζ−1 terms in the forward and backward steps determine the stability of
the system.

7This converges with strong order 1
2

in the Stratonovich sense (Rüemelin, 1982).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Interestingly, McCallum & Foster (2024, Theorem 2.1) showed that this reversible method inherits
the convergence order of single-step solver Φh enabling the construction of an arbitrarily high-order
reversible solver. We restate this result below in Theorem A.1.
Theorem A.1 (Convergence order of the McCallum-Foster method). Consider the ODE in Equa-
tion (17) over [0, T] with fixed time horizon T > 0. Let T = Nh where N > 0 is the number of
discretization steps and h > 0 is the step size. Let Φ be a k-th order ODE solver such that it satisfies
the Lipschitz condition

∥Φη(·,a)−Φη(·, b)∥ ≤ L|η|∥a− b∥, (24)
for all a, b ∈ Rd and η ∈ [−hmax, hmax] for some hmax > 0. Consider the reversible solution
{xn, x̂n}ninN admitted by Equation (5). Then there exists constants hmax > 0, C > 0, such that,
for h ∈ (0, hmax],

∥xn − x(tn)∥ ≤ Chk. (25)

A.2 A NOTE ON STABILITY

Historically, the stability properties of reversible solvers has been one of their weakest attributes
(Kidger, 2022), limiting their use in practical applications. We formally introduce the notation of
stability following Kidger (2022, Definition C.39), which we rewrite below in Definition A.8.
Definition A.8 (Region of stability). Fix some numerical differential equation solver and let
{xλ,h

n }n∈N be the solution admitted by the numerical scheme solving the linear (or Dahlquist)
test equation

x(0) = x0,
dx

dt
= λx(t), (26)

where λ ∈ C, h > 0 is the step size, and x0 ∈ Rd is a non-zero initial condition. The region of
stability is defined as

{hλ ∈ C : {xλ,h
n }n∈N is uniformly bounded over tn}. (27)

I.e., there exists a constant C depending on λ and h but independent of tn such that ∥xλ,h
n ∥ < C.

With the linear test equation Equation (26) the ODE converges asymptotically when ℜ(λ) ≤ 0,8
and thus we are interested in numerical schemes which are bounded when the underlying analytical
solution converges. Ideally, a numerical scheme would converge for all hλ with ℜ(λ) < 0.9 Thus,
the larger the region of stability the larger the step size we can take, wherein the numerical scheme
still converges.
Remark A.9. Regrettably, the reversible Heun, leapfrog, and asynchronous leapfrog methods have
poor stability properties. Specifically, the region of stability for all the methods is the complex
interval [−i, i], see Kidger (2022, Theorem 5.20) for reversible Heun, Shampine (2009, Section 2)
for leapfrog, and Zhuang et al. (2021, Appendix A.4) for asynchronous leapfrog.

In other words, all previous reversible solvers are nowhere linearly stable for any step size h.10 The
instability in both asynchronous leapfrog and reversible Heun can be attributed to a step of general
form 2A−B, i.e., we can write the source of instability as

2f(t̂n, x̂n)− vn, (asynchronous leapfrog)
2xn+1 − x̂n+1. (reversible Heun)

Thus the instability in these reversible schemes is caused by a decoupling between vn and f(tn,xn)
(asynchronous leapfrog); and xn and x̂n (reversible Heun). The strategy of McCallum & Foster
(2024) is to couple xn and x̂n together with the coupling parameter ζ. Using this strategy, they
showed that it was possible to construct a reversible solver with a non-trivial region of convergence.
Let Φh(tn,xn) = R(hλ)xn and let R(hλ) denote the transfer function used in analysis of Runge-
Kutta methods with step size h (see Stewart, 2022). We restate McCallum & Foster (2024, Theorem
2.3) below.

8The ODE converges to 0 when ℜ(λ) < 0.
9A region of stability which satisfies is known as a region of absolute stability.

10Linearly stability refers to stability for linear test equations with ℜ(λ) < 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Theorem A.2 (Region of stability for the McCallum-Foster method). Let Φ be given by an explicit
Runge-Kutta solver. Then the reversible numerical solution {xn, x̂n}n∈N given by Equation (5) is
linearly stable iff

|Γ| < 1 + ζ, (28)

where
Γ = 1 + ζ − (1− ζ)R(−hλ)−R(−hλ)R(hλ). (29)

Remark A.10. The McCallum-Foster method when constructed from explicit Runge-Kutta methods
have a non-trivial region of stability. Note, however, that this region of stability is smaller than the
original region of stability from the original Runga-Kutta method.

A.3 EXACT INVERSION OF DIFFUSION MODELS

Independent of the work on reversible solvers for neural ODEs several researchers have developed
reversible methods for solving the probability flow ODE—often in the literature on diffusion models
this is called the exact inversion of diffusion models.

A.3.1 EDICT SAMPLER

The first work to explore this topic of exact inversion with diffusion models was that of Wallace et al.
(2023), who inspired by coupling layers in normalizing flows (Dinh et al., 2015) proposed a reversible
solver which they refer to as exact diffusion inversion via coupled transformations (EDICT). Like
all reversible solvers this method keeps track of an extra state, denoted by {yn}n∈N, with y0 = x0.
Letting an = αn+1

αn
and bn = σn+1 − αn+1

αn
σn, this numerical scheme can be described as

xinter
n = anxn + bnx

θ
T |tn(yn),

yinter
n = anyn + bnx

θ
T |tn(x

inter
n),

xn+1 = ξxinter
n + (1− ξ)yinter

n

yn+1 = ξxinter
n + (1− ξ)xn+1,

(30)

where ξ ∈ (0, 1) is a mixing parameter.11 This method can be inverted to obtain a closed form
expression for backward step:

yinter
n =

yn+1 − (1− ξ)xn+1

ξ
,

xinter
n =

yn+1 − (1− ξ)yinter
n

ξ
,

yn =
yinter
n − bnx

θ
T |tn(x

inter
n)

an
,

xn =
xinter
n − bnx

θ
T |tn(yn)

an
.

(31)

Notably, the EDICT solver was developed in the context of discrete-time diffusion models and the
connection to reversible solvers for ODEs was not considered in the original work. N.B., to the best
of our knowledge our work is the first to draw the connection between the work on reversible ODE
solvers and exact inversion with diffusion models. Unfortunately, this method suffers from poor
convergence issues (see Remark A.11) and generally has poor performance when used to perform
sampling with diffusion models, thereby limiting its utility in practice (Zhang et al., 2024; Wang
et al., 2024).

Remark A.11. Later work by Wang et al. (2024, Proposition 6) showed that EDICT is actually a
zero-order method, i.e., the local truncation error is O(h), making it generally unsuitable in practice.

11In practice, when used for image editing the authors found that the parameter ξ controlled how closely the
EDICT sampler aligned with the original sample, with lower values corresponding to higher agreement with the
original sample.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.3.2 BDIA SAMPLER

Later work by Zhang et al. (2024) proposed a reversible solver for the probability flow ODE which
they call bidirectional integration approximation (BDIA). The core idea is to use both single-step
methods Φtn,tn−1

and Φtn,tn+1
to induce reversibility.12 Then using these two approximations—

both of which are computed from a discretization centered around xn—the process is update via a
multistep process with a forward step of13

xn+1 = xn−1 −Φtn,tn−1(xn) +Φtn,tn+1(xn). (32)

The backwards step can easily be expressed as

xn−1 = xn+1 +Φtn,tn−1
(xn) +Φtn,tn+1

(xn). (33)

In practice, BDIA uses the DDIM solver (i.e., Euler) for Φ, but in theory one could use a higher-order
method—this was not explored in Zhang et al. (2024).

Proposition A.3 (BDIA is the leapfrog/midpoint method). The BDIA method described in Equa-
tion (32) is the leapfrog/midpoint method when Φh(t,x) = huθ

t (x), i.e., the Euler step.

Proof. This can be shown rather straightforwardly by substitution, i.e.,

xn+1 = xn−1 + 2huθ
tn(xn). (34)

Corollary A.3.1 (BDIA is a first-order method). BDIA is first-order method, i.e., the local truncation
error is O(h2).

Remark A.12. This result was also observed in Wang et al. (2024, Proposition 6).

Corollary A.3.2 (BDIA is nowhere linearly stable). BDIA is nowhere linearly stable, i.e., the region
of stability is the complex interval [−i, i].

Proof. This follows straightforwardly from Proposition A.3 and Shampine (2009, Section 2).

Zhang et al. (2024) introduce a hyperparameter γ ∈ [0, 1] which is used below

Φ̂tn,tn−1(xn) = (1− γ)(xn−1 − xn) + γΦtn,tn−1(xn), (35)

to modify the BDIA update rule in Equation (32). Thus, γ can be viewed as a parameter which
interpolates between the midpoint and Euler schemes. For image editing applications the authors
found this parameter to control how closely the BDIA sampler aligned with the original image, with
lower values corresponding to higher agreement with the original image (making it similar to the ξ
parameter from BDIA).

A.3.3 BELM SAMPLER

Recently, Wang et al. (2024) proposed a linear multi-step reversible solver for the probability flow
ODE called the bidirectional explicit linear multi-step (BELM) sampler. First, they reparameterize
the probability flow ODE as

dx(t) = xθ
T |σt

(x(t)) dσt, (36)

where x(t) := x(t)/αt, σ(t) := σt/αt, and xθ
T |σt

(x(t)) = xθ
T |t(x(t)).

14 The BELM sampler
makes use of the variable-stepsize-variable-formula (VSVF) linear multi-step methods (Crouzeix

12N.B., in the original paper, Zhang et al. (2024) use quite different notation for explaining their idea; however,
we find our presentation to be simpler for the reader as it more easily enables comparison to other methods.

13In some sense, this is reminiscent of the idea from the more general McCallum-Foster method; however,
this approach results in a multi-step method unlike the single-step method of McCallum & Foster (2024).

14N.B., this is a popular parameterization of diffusion models and affine conditional flows. This can be done
mutatis mutandis for target prediction models retrieving (Blasingame & Liu, 2025, Proposition D.2).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

& Lisbona, 1984) to construct the numerical solver. The k-step VSVF linear multi-step method for
solving the reparameterized probability flow ODE in Equation (36) is given by

xn+1 =

k∑
m=1

an,mxn+1−m (37)

+

k−1∑
m=1

bn,mhn+1−mxθ
T |σn+1−m

(xn+1−m). (38)

where an,m ̸= 0,15 and bn,m are coefficients chosen using dynamic multi-step formulæ to find the
coefficients (Crouzeix & Lisbona, 1984); and hn are step sizes chosen beforehand. This scheme can
be reversed via the backward step

xn+1−k =
1

an,k
xn+1 −

k−1∑
m=1

an,m
an,k

xn+1−m (39)

−
k−1∑
m=1

bn,m
an,k

hn+1−mxθ
T |σn+1−m

(xn+1−m). (40)

Remark A.13. The BELM samplers require k − 1 extra to be stored in memory in order to be
reversible. In contrast, McCallum & Foster (2024) only requires storing one extra states, irregardless
of the desired convergence order. Additionally, poor stability is a concern with such linear multi-step
methods (see Kidger, 2022, Remark 5.24).
Remark A.14. Interestingly, the earlier EDICT and BDIA methods can be viewed as instances of
the BELM method (Wang et al., 2024, Appendicies A.7 and A.8).

By solving the multi-step formulæ to minimize the local truncation error Wang et al. (2024) propose
an instance of the BELM solver which they refer to as O-BELM defined as16

xn+1 =
h2
n

h2
n−1

xn−1 +
h2
n−1 + h2

n

h2
n−1

xn − hn(hn + hn+1)

hn+1
x0|σn

(xn). (41)

Notably, the O-BELM sampler can also be viewed as instance of the leapfrog/midpoint method.
Theorem A.4 (O-BELM is the leapfrog/midpoint method). Fix a step size hn = h for all n, then
O-BELM is the leapfrog/midpoint method.

Proof. This follows from substitution of hn = h.

Corollary A.4.1 (O-BELM is nowhere linearly stable). Fix a step size hn = h, then O-BELM is
nowhere linearly stable, i.e., the region of stability is the complex interval [−i, i].

A.3.4 CYCLEDIFFUSION

To our knowledge, the only other work to propose exact inversion with the SDE formulation of
the diffusion models is the work of Wu & la Torre (2023). However, there a several noticeable
distinctions, the largest being that they store the entire solution trajectory in memory. Given a
particular realization of the Wiener process that admits xt ∼ N (αtx0 | σ2

t I), then given xs and
noise ϵs ∼ N (0, I) we can calculate

xt =
αt

αs
xs + 2σt(e

h − 1)x̂T |s(xs) + σt

√
e2h − 1ϵs. (42)

Wu & la Torre (2023) propose to invert this by first calculating, for two samples xt and xs, the noise
ϵs. This can be calculated by rearranging the previous equation to find

ϵs =
xt − αt

αs
xs + 2σt(e

h − 1)ϵθ(xs, z, s)

σt

√
e2h − 1

(43)

With this the sequence {ϵti}Ni=1 of added noises can be calculated which can be used to reconstruct
the original input from the initial realization of the Wiener process. However, unlike our approach,
this process requires storing the entire realization in memory.

15This is to ensure that the method is reversible.
16N.B., the original equation in Wang et al. (2024, Equation (18)) had a sign difference for the coefficient of

bi,1; however, this is due to differences in convention in handling integration in reverse-time.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 3: Comparison of different (non-symplectic) reversible ODE solvers. We note that some of
the solvers were developed particularly for the probability flow ODE (an affine conditional flow)
whilst others work for general ODEs. In the first column we denote the number of extra states the
numerical scheme needs to keep in memory to ensure algebraic reversibility. For BELM k denotes
the number of steps and for McCallum-Foster k denotes the convergence order of the underlying
single-step solver. For the column labeled region of linear stability we mean there exists some subset
of C which is the region of stability and the set is not a null set. The proof of convergence for BELM
is only provided for the special case (called O-BELM in Wang et al. (2024)) with k = 2.

Number of Local Region of Proof of
Solver extra states truncation error linear stability convergence
Probability flow ODEs
EDICT 1 O(h) ✗ ✗
BDIA 1 O(h2) ✗ ✗
BELM k − 1 O(hk+1) ✗ ∼
Rex 1 O(hk+1) ✓ ✓

General ODEs
Asynchronous leapfrog 1 O(h3) ✗ ✓
Reversible Heun 1 O(h3) ✗ ✓
McCallum-Foster 1 O(hk+1) ✓ ✓

A.3.5 SUMMARY

We present a summary of related works on either exact inversion or reversible solvers below in
Table 3. N.B., we omit CycleDiffusion because it is more orthogonal to the general concept of a
reversible solver and is only reversible in the trivial sense.

A.4 SDE SOLVERS FOR DIFFUSION MODELS

Next we discuss related works on SDE solvers for the reverse-time diffusion SDE in Equation (3).
Now there are numerous stochastic Runge-Kutta (SRK) methods in the literature all tailor to specific
types of SDEs, which we can distinguish by the their strong order of convergence (see Definition D.1)
and strong order conditions. For example the classic Euler-Maruyama scheme (Kloeden & Platen,
1992) has strong order of convergence of 0.5 and was straightforwardlly applied to the reverse-time
diffusion SDE in Jolicoeur-Martineau et al. (2021) as a baseline. Song et al. (2021b) proposed an
ancestral sampling scheme for a discretization of the forward-time diffusion SDE in Equation (1) with
additional Langevin dynamics; likewise, the DDIM solver from Song et al. (2021a) can be viewed
a sort of Euler-Maruyama scheme. Other classic SDE schemes like SRA1/SRA2/SRA3 schemes
(Rößler, 2010) all have strong order of convergence 1.5 for additive noise SDEs and were tested for
diffusion models in Jolicoeur-Martineau et al. (2021).

More recently, researchers have explored exponential solvers for SDEs, e.g., the exponential Euler-
Maruyama method (Komori et al., 2017) and the stochastic Runge-Kutta Lawson (SRKL) schemes
(Debrabant et al., 2021). From an initial inspection the SRKL schemes of Debrabant et al. (2021,
Algorithm 1) is somewhat similar to our method for constructing Ψ; however, upon closer inspection
they are some key fundamental differences.17 The largest of these is how the underlying SRK schemes
are represented. In particular the SRKL schemes choose to follow the conventions of Burrage &
Burrage (2000) (for Stratonovich SDEs) in constructing the underlying SRK schemes; whereas we
follow the SRK schemes outlined by Foster et al. (2024) (cf . Appendix B). These differences stem
from how one chooses to handle the the iterated stochastic integrals from the Stratonovich-Taylor (or
Itô-Taylor) expansions.

17N.B., in general Debrabant et al. (2021) consider full stochastic Lawson schemes where the integrating
factor is a stochastic process given by the matrix exponential applied to linear terms in the drift and diffusion
coefficients; conversely, the drift stochastic Lawson schemes are more similar to what we study.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.4.1 COMPARISON WITH SEEDS

Mostly directly relevant to our work on constructing a stochastic Ψ is the SEEDS family of solvers
proposed by Gonzalez et al. (2024). Similar to us, they also approach using exponential methods to
simplify the expression of diffusion models Gonzalez et al. (2024, Appendix B.1). There are two key
distinctions, namely, 1) that they use the stochastic exponential time differencing (SETD) method
(Adamu, 2011), whereas, we construct stochastic Lawson schemes;18 and 2) that they use a different
technique for modeling the iterated stochastic integrals for high-order solvers. In particular, SEEDS
introduces a decomposition for the iterated stochastic integrals produced by the Itô-Taylor expansions
of Equation (3) such that the decomposition preserves the Markov property, i.e., the random variables
used to construct model the Brownian increments from iterated integrals are independent on non-
overlapping intervals and dependent on overlapping intervals (see Gonzalez et al., 2024, Proposition
4.3). By making use of the SRK schemes of Foster et al. (2024) developed from using the space-time
Lévy area to construct high-order splitting methods we have an alternative method for ensuring this
property. This results in our solver based on ShARK (see Appendix B.3, cf . Theorem 4.2) having a
strong order of convergence of 1.5; whereas, SEEDS-3 only achieves a weak order of convergence of
1.

This brings us to another large difference, the SEEDS solvers focus on the weak approximation to
Equation (3); whereas, as we are concerned with the strong approximation to Equation (3). The
difference between these two is that the weak convergence is considered with the precisions of the
moments; whereas, strong convergence is concerned with the precision of the path. Moreover, by
definition a strong order of convergence implies a weak order of convergence, the converse is not true.
In particular, for our application of developing reversible schemes this strong order of convergence is
particularly important as we care about the path. Thus the technique SEEDS uses to replace iterated
Itô integrals with other random variables with equivalent moment conditions is wholely unsuitable
for our purposes as we desire a strong approximation.

B STOCHASTIC RUNGE-KUTTA METHODS

Recall that the general Butcher tableau for a s-stage explicit RK scheme (Stewart, 2022, Section
6.1.4) for a generic ODE is written as

c1
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 · · · as(s−1)

b1 b2 · · · bs−1 bs

=
c a

b
. (44)

E.g., the famous 4-th order Runge-Kutta (RK4) method is given by

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

. (45)

However, for SDEs this is much trickier due to the presense of iterated stochastic integrals in the
Itô-Taylor or Stratonovich-Taylor expansions (Kloeden & Platen, 1992). Consider a d-dimensional
Stratonovich SDE driven by dw-dimensional Brownian motion {Wt}t∈[0,T] defined as

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt, (46)

18N.B., for certain scenarios these two different viewpoints converge, particularly, in the deterministic case.
See our discussion on the family of DPM-Solvers which also use (S)ETD in Appendix E.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where µθ ∈ C2(R× Rd;Rd) and σθ ∈ C3(R× Rd;Rd×dw) satisfy the usual regularity conditions
for Stratonovich SDEs (Øksendal, 2003, Theorem 5.2.1) and where ◦dWt denotes integration in the
Stratonovich sense.

Rößler (2025) write one such class of an s-stage explicit SRK methods (cf . Burrage & Burrage, 2000;
Rößler, 2010) for Equation (46) as

Z
(0)
i = Xn + h

i−1∑
j=1

a
(0)
ij µθ(tn + c

(0)
j ,Z

(0)
j),

Z
(k)
i = Xn + h

i−1∑
j=1

a
(1)
ij µθ(tn + c

(0)
j ,Z

(0)
j) +

i−1∑
j=1

dw∑
l=1

a
(2)
ij I(l,k),nσθ(tn + c

(1)
j ,Z

(l)
i),

Xn+1 = Xn + h

s∑
i=1

b
(0)
i µθ(tn + c

(0)
i ,Z

(0)
j) +

s∑
i=1

dw∑
k=1

(
b
(1)
i I(k),n + b

(2)
i

)
σθ(tn + c

(1)
j ,Z

(k)
i),

(47)
for k = 1, . . . , dw and where

I(k),n =

∫ tn+1

tn

◦dW k
u = W k

tn+1
−W k

tn , (48)

I(l,k),n =

∫ tn+1

tn

∫ u

tn

◦dW l
v ◦ dW k

u , (49)

let Î denote the iterated integrals for the Itô case mutatis mutandis. This scheme is described the by
the extended Butcher tableau (Rößler, 2025)

c(0) a(0)

c(1) a(1) a(2)

b(0) b(1) b(2)
. (50)

These iterated integrals I(l,k),n are very tricky to work with and can raise up many practical concerns.
As alluded to earlier (cf . Section A.4.1) it is common to use a weak approximation of such integrals
via a random variables with corresponding moments. This results in two drawbacks: 1) the resulting
SDE scheme only converges in the weak sense and 2) the solution yielding by the scheme is not a
Markov chain in general. SEEDS overcomes the second issue by using a special decomposition to
preserve the Markov property, see the ablations in Gonzalez et al. (2024) for more details on this
topic in practice.

B.1 FOSTER-REIS-STRANGE SRK SCHEME

Conversely, Foster et al. (2024) propose another SRK scheme based on higher-order splitting methods
for Stratonovich SDEs. For the Stratonovich SDE in Equation (46) Foster et al. (2024) write an
s-stage SRK as

µi
θ = µθ(tn + cih,Zi),

σi
θ = σθ(tn + cih,Zi),

Zi = Xn + h

i−1∑
j=1

aijµ
j
θ

+Wn

i−1∑
j=1

aWij σ
j
θ

+Hn

i−1∑
j=1

aHijσ
j
θ

 ,

Xn+1 = Xn + h

(
s∑

i=1

biµ
i
θ

)
+Wn

(
s∑

i=1

bWi σi
θ

)
+Hn

(
s∑

i=1

bHi σi
θ

)
,

(51)

where h = tn+1 − tn is the step size and Wn := Wtn,tn+1
and Hn := Htn,tn+1

are the Brownian
and space-time Lévy increments (cf . Definition 3.2) respectively; and where aij , a

W
ij , a

H
ij ∈ Rs×s,

bi, b
W
i , bHi ∈ Rs, and ci ∈ Rs for the coefficients for an extended Butcher tableau (Foster et al., 2024)

which is given as
c a aW aH

b bW bH
. (52)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.g., we can write the famous Euler-Maruyama scheme as

0 0 0 0

1 1 0
. (53)

B.2 INDEPENDENCE OF THE BROWNIAN AND LÉVY INCREMENTS

Remarkably, in Foster et al. (2020, Theorem 2.2) present a polynomial Karhunen-Loève theorem for
the Brownian bridge (cf . Definition G.1)—picture an stochastic analogue to the Fourier series of a
function on a bounded interval—which leads to a most useful remark (Foster et al., 2020, Remark
3.6) which we restate below.
Remark B.1. We have that Hs,t ∼ N (0, 1

12h) is independent of Ws,t when d = 1, likewise, since
the coordinate processes of a Brownian motion are independent, one can write Ws,t ∼ (0, hI) and
Hs,t ∼ N (0, 1

12hI) are independent.

Thus we have found another remedy to the problem of independent increments, whilst still being able
to obtain a strong approximation of the SDE.

B.3 SHARK

Recently, Foster et al. (2024) developed shifted additive-noise Runge-Kutta (ShARK) for additive
noise SDEs which is based on Foster et al. (2024, Equation (6.1)). This scheme has converges
strongly with order 1.5 for additive-noise SDEs and makes two evaluations of the drift and diffusion
per step.

ShARK is described via the following extended Butcher tableau

0 0 1

5
6

5
6

5
6 1

0.4 0.6 1 0

−0.6 0.6

. (54)

The second row for the b variable describes the coefficients used for adaptive-step size
solvers to approximate the error at each step. The Butcher tableau for this scheme
can be found here: https://github.com/patrick-kidger/diffrax/blob/main/
diffrax/_solver/shark.py.

C DERIVATION OF REX

We derive the Rex scheme presented in Proposition 3.3 in the main paper.

C.1 REX (ODE)

In this section we derive the Rex scheme for the probability flow ODE. We present derivations for
both the data prediction and noise prediction formulations.

C.1.1 PROOF OF PROPOSITION 3.1

We restate Proposition 3.1 below.
Proposition 3.1 (Reparameterization of the probability flow ODE). The probability flow ODE in
Equation (7) can be rewritten in ςt as

dyς

dς
= βTfθ

(
ς,

βς

βς
yς

)
, (8)

where yt =
βT

βt
xt.

29

https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py
https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Proof. Recall that from Equation (7) we have that the ODE is given by

dxt

dt
=

β̇t

βt
xt +

σtα̇t − σ̇tαt

βt
fθ(t,xt). (55)

We can use the technique of exponential integrators to rewrite the ODE as
d

dt

[
e
∫ t
T
− β̇u

βu
duxt

]
= e

∫ t
T
− β̇u

βu
duσtα̇t − σ̇tαt

βt
fθ(t,xt), (56)

recalling that we integrate from initial time T in reverse-time. Then the exponential terms simplify to

e
∫ t
T
− β̇u

βu
du =

β0

βT
. (57)

We introduce a change-of-variables yt =
β0

βT
xt to rewrite the ODE as

dyt

dt
=

βT

βt

σtα̇t − σ̇tαt

βt︸ ︷︷ ︸
=κt

fθ

(
t,
βT

βt
yt

)
. (58)

Next we define
ς̇t = sgn(βT)

σtα̇t − σα̇t

β2
t

, (59)

which we will now justify. Now recall that βt is either −αt or σt depending on the whether fθ

denotes the data or noise prediction model. Moreover we know that αt is a strictly monotonically
decreasing in t and that σt is a strictly monotonically increasing in t. We will now prove that there
exists and inverse function for ςt such that tς(ςt) = t for both cases.

Case βt = −αt. We can write κt as

κt = αT
σ̇tαt − σtα̇t

α2
t

, (60)

(i)
= αT

d

dt

(
σt

αt

)
, (61)

where (i) holds by the quotient role. Clearly, we have that

ς̇t =
d

dt

(
σt

αt

)
, (62)

ςt =
σt

αt
, (63)

It follows from (αt, σt) that ςt is strictly monotonically increasing in t and thus we can construct its
inverse.

Case βt = σt. We can write κt as

κt = σT
σtα̇t − σ̇tαt

σ2
t

, (64)

(i)
= σT

d

dt

(
αt

σt

)
, (65)

where (i) holds by the quotient role. Clearly, we have that

ς̇t =
d

dt

(
αt

σt

)
, (66)

ςt =
αt

σt
, (67)

It follows from (αt, σt) that ςt is strictly monotonically decreasing in t and thus we can construct its
inverse.

Thus we can rewrite the ODE via a time-change to find
dyς

dς
= β0fθ

(
ς,

βT

βς
yς

)
, (68)

with the usual abuse-of-notation yς := ytς(ς), βς := βtς(ς), &c.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Remark C.1. When in the noise prediction formulation with Proposition 3.1 we recover the following
reparameterization of Equation (7)

dzχ
dχ

= αTx
θ
T |χ

(
αχ

αT
zχ

)
, (69)

where αT > 0, zt = αT

αT
xt and χt =

σt

αt
, which has been observed by numerous prior works (see

Song et al., 2021a, Equation (14); Pan et al., 2023, Equation (11); Wang et al., 2024, Equation (6)).
Remark C.2. When in the data prediction formulation, Proposition 3.1 recovers Blasingame & Liu
(2025, Proposition D.2) which states that Equation (7) can be written as

dyγ

dγ
= σTx

θ
0|γ

(
σγ

σT
yγ

)
, (70)

where yt =
σT

σt
xt and γt =

αt

σt
.

C.1.2 DATA PREDICTION

We present this derivation in the form of Lemma C.1 below.
Lemma C.1 (Rex (ODE) for data prediction models). Let Φ be an explicit Runge-Kutta solver for
the ODE in Equation (70) with Butcher tableau aij , bi, ci. The reversible solver for Φ in terms of the
original state xt is given by the forward step

xn+1 =
σn+1

σn
(ζxn + (1− ζ)x̂n) + σn+1Ψh(γn, x̂n),

x̂n+1 =
σn+1

σn
x̂n − σn+1Ψ−h(γn+1,xn+1),

(71)

and backward step

x̂n =
σn

σn+1
x̂n+1 + σnΨ−h(γn+1,xn+1),

xn =
σn

σn+1
ζ−1xn+1 + (1− ζ−1)x̂n − σnζ

−1Ψh(γn, x̂n),
(72)

with step size h := γn+1 − γn and where Ψ denotes the following scheme

ẑi =
1

σn
xn + h

i−1∑
j=1

aijx
θ
0|γn+cjh

(σγn+cjhẑj),

Ψh(γn,xn) = h

s∑
i=1

bix
θ
0|γn+cih

(σγn+cihẑi),

(73)

Proof. Recall that the forward step of the McCallum-Foster method for Equation (70) given Φ is
given as

yn+1 = ζyn + (1− ζ)ŷn +Φh(γn, ŷn),

ŷn+1 = ŷn −Φ−h(γn+1,yn+1),
(74)

with step size h = γn+1 − γn. We use the definition of yt =
σT

σt
xt to rewrite the forward pass as

xn+1 =
σn+1

σn
(ζxn + (1− ζ)x̂n) +

σn+1

σT
Φh

(
γn,

σT

σn
x̂n

)
,

x̂n+1 =
σn+1

σn
x̂n − σn+1

σT
Φ−h

(
γn+1,

σT

σn+1
xn+1

)
.

(75)

Mutatis mutandis we find the backward step in xt to be given as

x̂n =
σn

σn+1
x̂n+1 +

σn

σT
Φ−h

(
γn+1,

σT

σn+1
xn+1

)
,

xn =
σn

σn+1
ζ−1xn+1 + (1− ζ−1)x̂n − σn

σT
ζ−1Φh

(
γn,

σT

σn
x̂n

)
,

(76)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Next we simplify the explicit RK scheme Φ(γn,yn) for the time-changed probability flow ODE in
Equation (70). Recall that the RK scheme can be written as

zi = yn + h

i−1∑
j=1

aijσTx0|γn+cjh

(
σγn+cjh

σT
zj

)
,

Φh(γn,yn) = h

s∑
i=1

biσTx0|γn+cih

(
σγn+cih

σT
zi

)
.

(77)

Next, we replace yt back with xt which yields

zi = σT

 1

σn
xn + h

i−1∑
j=1

aijx0|γn+cjh

(
σγn+cjh

σT
zj

) ,

Φh

(
γn,

σT

σn
xn

)
= σTh

s∑
i=1

bix0|γn+cih

(
σγn+cih

σT
zi

)
.

(78)

To further simplify let σT ẑi = zi and define Ψh(γn,xn) := σTΦ(γn,
σT

σn
xn).

Thus we can write the following reversible scheme with forward step

xn+1 =
σn+1

σn
(ζxn + (1− ζ)x̂n) + σn+1Ψh(γn, x̂n),

x̂n+1 =
σn+1

σn
x̂n − σn+1Ψ−h(γn+1,xn+1),

(79)

and the backward step

x̂n =
σn

σn+1
x̂n+1 + σnΨ−h(γn+1,xn+1),

xn =
σn

σn+1
ζ−1xn+1 + (1− ζ−1)x̂n − σnζ

−1Ψh(γn, x̂n),
(80)

with the numerical scheme

ẑi =
1

σn
xn + h

i−1∑
j=1

aijx
θ
0|γn+cjh

(σγn+cjhẑj),

Ψh(γn,xn) = h

s∑
i=1

bix
θ
0|γn+cih

(σγn+cihẑi).

(81)

C.1.3 NOISE PREDICTION

We present this derivation in the form of Lemma C.2 below.

Lemma C.2 (Rex (ODE) for noise prediction models). Let Φ be an explicit Runge-Kutta solver for
the ODE in Equation (69) with Butcher tableau aij , bi, ci. The reversible solver for Φ in terms of the
original state xt is given by the forward step

xn+1 =
αn+1

αn
(ζxn + (1− ζ)x̂n) + αn+1Ψh(χn, x̂n),

x̂n+1 =
αn+1

αn
x̂n − αn+1Ψ−h(χn+1,xn+1),

(82)

and backward step

x̂n =
αn

αn+1
x̂n+1 + αnΨ−h(χn+1,xn+1),

xn =
αn

αn+1
ζ−1xn+1 + (1− ζ−1)x̂n − αnζ

−1Ψh(χn, x̂n),
(83)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

with step size h := χn+1 − χn and where Ψ denotes the following scheme

ẑi =
1

αn
xn + h

i−1∑
j=1

aijx
θ
T |χn+cjh

(αχn+cjhẑj),

Ψh(χn,xn) = h

s∑
i=1

bix
θ
T |χn+cih

(αχn+cihẑi),

(84)

Proof. Recall that the forward step of the McCallum-Foster method for Equation (69) given Φ is
given as

zn+1 = ζzn + (1− ζ)ẑn +Φh(χn, ẑn),

ẑn+1 = ẑn −Φ−h(χn+1, zn+1),
(85)

with step size h = χn+1 − χn. We use the definition of zt = αT

αt
xt to rewrite the forward pass as

xn+1 =
αn+1

αn
(ζxn + (1− ζ)x̂n) +

αn+1

αT
Φh

(
χn,

αT

αn
x̂n

)
,

x̂n+1 =
αn+1

αn
x̂n − αn+1

αT
Φ−h

(
χn+1,

αT

αn+1
xn+1

)
.

(86)

Mutatis mutandis we find the backward step in xt to be given as

x̂n =
αn

αn+1
x̂n+1 +

αn

αT
Φ−h

(
χn+1,

αT

αn+1
xn+1

)
,

xn =
αn

αn+1
ζ−1xn+1 + (1− ζ−1)x̂n − αn

αT
ζ−1Φh

(
χn,

αT

αn
x̂n

)
,

(87)

Next we simplify the explicit RK scheme Φ(χn, zn) for the time-changed probability flow ODE in
Equation (70). Recall that the RK scheme can be written as

zi = zn + h

i−1∑
j=1

aijαTx0|χn+cjh

(
αχn+cjh

αT
zj

)
,

Φh(χn, zn) = h

s∑
i=1

biαTx0|χn+cih

(
αχn+cih

αT
zi

)
.

(88)

Next, we replace zt back with xt which yields

zi = αT

 1

αn
xn + h

i−1∑
j=1

aijx0|χn+cjh

(
αχn+cjh

αT
zj

) ,

Φh

(
χn,

αT

αn
xn

)
= αTh

s∑
i=1

bix0|χn+cih

(
αχn+cih

αT
zi

)
.

(89)

To further simplify let αT ẑi = zi and define Ψh(χn,xn) := αTΦ(χn,
αT

αn
xn).

Thus we can write the following reversible scheme with forward step

xn+1 =
αn+1

αn
(ζxn + (1− ζ)x̂n) + αn+1Ψh(χn, x̂n),

x̂n+1 =
αn+1

αn
x̂n − αn+1Ψ−h(χn+1,xn+1),

(90)

and the backward step

x̂n =
αn

αn+1
x̂n+1 + αnΨ−h(χn+1,xn+1),

xn =
αn

αn+1
ζ−1xn+1 + (1− ζ−1)x̂n − αnζ

−1Ψh(χn, x̂n),
(91)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

with the numerical scheme

ẑi =
1

αn
xn + h

i−1∑
j=1

aijx
θ
T |χn+cjh

(αχn+cjhẑj),

Ψh(χn,xn) = h

s∑
i=1

bix
θ
T |χn+cih

(αχn+cihẑi).

(92)

C.2 REX (SDE)

In this section we derive the Rex scheme for the reverse-time diffusion SDE along with several helper
derivations. We begin by deriving the reparameterization of Equation (9) in Section C.2.2 and then
performing an analogous derivation for the noise prediction scenario in Section C.2.3.

C.2.1 TIME-CHANGED BROWNIAN MOTION

Before detailing this proof we first review some necessary preliminary results about continuous local
martingales and Brownian motion. In particular we will show that we can simplify the stochastic
integrals in Equation (9) and the corresponding reparameterization with noise prediction models.

Dambis-Dubins-Schwarz representation theorem. We restate the Dambis-Dubins-Schwarz rep-
resentation theorem (Dubins & Schwarz, 1965) which shows that continuous local martingales can
be represented as time-changed Brownian motions.
Theorem C.3 (Dambis-Dubins-Schwarz representation theorem). Let M be a continuous local
martingale adapted to a filtration {Ft}t≥0 beginning at 0 (i.e., M0 = 0) such that ⟨M⟩∞ = ∞
almost surely. Define the random variables {τt}t≥0 by

τt = inf {s ≥ 0 : ⟨M⟩s > t} = sup {s ≥ 0 : ⟨M⟩s = t}. (93)

Then for any given t the random variable τt is an almost surely finite stopping time, and the process19

Bt = Mτt is a Brownian motion w.r.t. the filtration {Gt}t≥0 = {Fτt}t≥0. Moreover,

Mt = B⟨M⟩t . (94)

A multi-dimensional version of the Dambis-Dubins-Schwarz representation theorem. In our
work we are interested in a d-dimensional local martingale M := (M1, . . .Md). As such we discuss
a multi-dimensional extension of Theorem C.3 which requires that the d-dimensional continuous
local martingale if the quadratic (covariation) matrix ⟨M⟩ijt =

〈
M i,M j

〉
t

is proportional to the
identity matrix. We adapt the following theorem from Lowther (2010, Theorem 2) and Bourgade
(2010, Theorem 4.13) (cf . Revuz & Yor, 2013).
Theorem C.4 (Multi-dimensional Dambis-Dubins-Schwarz representation theorem). Let M =
(M1, . . . ,Md) be a collection of continuous local martingales with M0 = 0 such that for any
1 ≤ 1 ≤ d, ⟨M⟩ii∞ = ∞ almost surely. Suppose, furthermore, that ⟨M i,M j⟩t = δijAt, where δ
denotes the Kronecker delta, for some process A and all 1 ≤ i, j ≤ d and t ≥ 0. Then there is a
d-dimensional Brownian motion B w.r.t. a filtration {Gt}t≥0 such that for each t ≥ 0, ω 7→ At(ω) is
a G-stopping time and

Mt = BAt
. (95)

Enlargement of the probability space. Recall that in Theorems C.3 and C.4 we stated that
quadratic variation of the continuous local martingale needed to tend towards infinity as t → ∞.
What when ⟨M⟩∞ has a nonzero probability of being finite? It can be shown that Theorems C.3
and C.4 holds under an enlargement of the probability space (not the filtration). Consider both
our original probability space (Ω,F , P) and another probability space (Ω′,F ′, P ′) along with a
measurable surjection f : Ω′ → Ω preserving probabilities such that P (A) = P ′(f−1(A)) for all
A ∈ F , i.e., f∗P ′ is a pushforward measure. Thus any process on the original probability space

19Defined up to a null set.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

can be lifted to (Ω′,F ′, P ′) and likewise the filtration is also lifted to F ′
t = {f−1(A) : A ∈ Ft}.

Therefore, it is possible to enlarge the probability space so that Brownian motion is defined. E.g.,
if (Ω′′,F ′′, P ′′) is probability space on which there is a Brownian motion defined, we can take
Ω′ = Ω × Ω′′, F ′ = F ⊗ F ′′, and P ′ = P ⊗ P ′′ for the enlargement, and f :′ Ω → Ω is just the
projection onto Ω.

We now present a lemma for rewriting the stochastic differential in Equation (9) using the Dambis-
Dubins-Schwarz representation theorem. Recall that in Equation (9) we denote the reverse-time
d-dimensional Brownian motion as W t, i.e., by Lévy’s characterization we have W T = 0 and

W t −W s ∼ −N (0, (t− s)I) = N (0, (t− s)I), (96)

for 0 ≤ t < s ≤ T . With this in mind we present Lemma C.5 below.

Lemma C.5. The stochastic differential
√
−dϱt

dt dW t can be rewritten as a time-changed Brownian
motion of the form √

−dϱt
dt

dW t = dWϱ, (97)

where ϱt = γ2
t .

Proof. To simplify the stochastic integral term we first define a continuous local martingale Mt via
the stochastic integral

Mt :=

∫ t

T

√
−dϱ

dt
dW t. (98)

We choose time T as our starting point for the martingale rather than 0 and then integrate in reverse-
time. However, due to the negative sign within the square root term it is more convenient to work
with Wt, i.e., the standard d-dimensional Brownian motion defined in forward time. Recall that the
standard d-dimensional Brownian motion in reverse-time with starting point T is defined as

W t = WT −Wt (99)

which is distributed like Wt in time T − t. Define the function f(t,Wt) = W t. Then by Itô’s
lemma we have

df(t,Wt) = ∂tf(t,Wt) dt+

d∑
i=1

∂xi
f(t,Wt) dW

i
t +

d∑
i,j=1

∂xi,xj
f(t,Wt) d

〈
W i,W j

〉
t
,

(100)
which simplifies to

df(t,Wt) = dW t = −dWt. (101)
Thus we can rewrite Equation (98) as

Mt = −
∫ t

T

√
−dϱ

dt
dWt. (102)

Next we establish a few properties of this martingale. First, MT = 0 by construction. Second, since
the integral consists of scalar noise we have that ⟨M i,M j⟩t = 0 for all i ̸= j. Thus, the quadratic
variation of ⟨Mt⟩ii for each i is found to be

⟨M⟩iit = At = −
∫ t

T

(√
−dϱτ

dτ

)2

dτ, (103)

=

∫ t

T

dϱτ
dτ

dτ, (104)

= ϱt − ϱT =
α2
t

σ2
t

− α2
T

σ2
T

. (105)

Now we have a deterministic mapping from the original time to our new time via At. Now in general
for any valid choice of (αt, σt) we don’t necessarily have that ⟨M⟩ii∞ = ∞ almost surely and as
such we may need to enlarge the underlying probability space. Our constructed martingale can be

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

expressed as time-changed Brownian motion, see Theorem C.4, such that Mt = WAt
were Wϱ is

the standard d-dimensional Brownian motion with time variable ϱ.

Now we can rewrite Equation (102) in differential form as

dMt = dWAt . (106)

Because Brownian motion is time-shift invariant we can then write

dMt = dWϱt
. (107)

Remark C.3. Lemma C.5 can similarly be found via Øksendal (2003, Theorem 8.5.7) and Kobayashi
(2011, Lemma 2.3); however, do to the oddness of the reverse-time integration we found it easier to
tackle the problem via the Dambis-Dubins-Schwarz theorem.
Remark C.4. Under the common scenario where σ0 = 0 then we have that ⟨M⟩ii∞ = ∞ almost
surely.

Lemma C.6. Let αT > 0. Then the stochastic differential
√

d
dt (χ

2
t) dW t can be rewritten as a

time-changed Brownian motion of the form√
d

dt
(χ2

t) dW t = dW χ2 , (108)

where χt =
σt

αt
.

Proof. To simplify the stochastic integral term we first define a continuous local martingale Mt via
the stochastic integral

Mt :=

∫ t

T

√
d

dt
(χ2

t) dW t. (109)

We choose time T as our starting point for the martingale rather than 0 and then integrate in reverse-
time, hence the negative sign. Next we establish a few properties of this martingale. First, MT = 0
by construction. Second, since the integral consists of scalar noise we have that ⟨M i,M j⟩t = 0 for
all i ̸= j. Thus, the quadratic variation of ⟨Mt⟩ii for each i is found to be

⟨M⟩iit = At =

∫ t

T

(√
d

dτ
(χ2

τ)

)2

dτ, (110)

=

∫ t

T

d

dτ

(
χ2
t

)
dτ, (111)

= χ2
t − χ2

T =
σ2
t

α2
t

− σ2
T

α2
T

. (112)

Now we have a deterministic mapping from the original time to our new time via At. Now in general
for any valid choice of (αt, σt) we don’t necessarily have that ⟨M⟩ii∞ = ∞ almost surely and as
such we may need to enlarge the underlying probability space. Our constructed martingale can be
expressed as time-changed Brownian motion, see Theorem C.4, such that Mt = WAt

were W χ2 is
the standard d-dimensional Brownian motion with time variable χ2 in reverse-time.

Now we can rewrite Equation (98) in differential form as

dMt = dWAt
. (113)

Because Brownian motion is time-shift invariant we can then write

dMt = dW χ2
t
. (114)

Remark C.5. The constraint of αT > 0 is important to ensure that χT is finite which is necessary
due

W χ2
t
= Wχ2

T
−Wχ2

t
. (115)

In practice this is satisfied with a number of noise schedules of diffusion models (cf . Appendix H.1).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

C.2.2 PROOF OF PROPOSITION 3.2

In this section we provide the proof for Proposition 3.2 along with associated derivations. We restate
Proposition 3.2 below.

Proposition 3.2 (Time reparameterization of the reverse-time diffusion SDE). The reverse-time SDE
in Equation (9) can be rewritten in terms of the data prediction model as

dYϱ =
σT

γT
xθ
0|ϱ

(
γTσϱ

σT γϱ
Yϱ

)
dϱ+

σT

γT
dWϱ, (10)

where Yt =
σ2
Tαt

σ2
tαT

Xt and ϱt :=
α2

t

σ2
t

.

Proof. We rewrite Equation (3) in terms of the data prediction model, using the identity

∇x log pt(x) = − 1

σ2
t

x+
αt

σ2
t

x0|t(x), (116)

to find

dXt =


(
f(t) +

g2(t)

σ2
t

)
︸ ︷︷ ︸

=a(t)

Xt +

(
−αtg

2(t)

σ2
t

)
︸ ︷︷ ︸

=b(t)

x0|t(Xt)

 dt+ g(t) dW t, (117)

where

f(t) =
α̇t

αt
, g2(t) = σ̇2

t − 2
α̇t

αt
σ2
t = −2σ2

t

d log γt
dt

. (118)

Next we find the integrating factor Ξt = exp−
∫ t

T
a(u) du,

Ξt = exp

(∫ T

t

d logαu

du
+

g2(u)

σ2
u

du

)
, (119)

= exp

(∫ T

t

d logαu

du
− 2

d log γu
du

du

)
, (120)

= exp

(∫ T

t

d logαu

du
− 2

[
d logαu

du
− d log σu

du

]
du

)
, (121)

= exp

(∫ T

t

d log σ2
u

du
− d logαu

du
du

)
, (122)

= exp
(
log σ2

T − log σ2
t − (logαT − logαt)

)
, (123)

=
σ2
Tαt

σ2
tαT

. (124)

We can write the integrating factor in terms of γt as

Ξt =
σT γt
σtγT

. (125)

Moreover we can further simplify b(t) as

b(t) =
−αtg

2(t)

σ2
t

, (126)

= 2αt
d log γt

dt
. (127)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Thus we can rewrite the SDE in Equation (117) as

d

[
σT

γT

γt
σt

Xt

]
= 2

σT

γT

αt

σt
γt
d log γt

dt
x0|t(Xt) dt+

σT

γT

γt
σt

√
−2σ2

t

d log γt
dt

dW t, (128)

dYt
(i)
= 2

σT

γT

αt

σt
γt
d log γt

dt
x0|t

(
γTσt

σT γt
Yt

)
dt+

σT

γT

γt
σt

√
−2σ2

t

d log γt
dt

dW t, (129)

dYt =
σT

γT

dγ2
t

dt
x0|t

(
γTσt

σT γt
Yt

)
dt+

σT

γT

√
−γ2

t

d log γ2
t

dt
dW t, (130)

dYt =
σT

γT

dγ2
t

dt
x0|t

(
γTσt

σT γt
Yt

)
dt+

σT

γT

√
−dγ2

t

dt
dW t, (131)

dYϱ
(ii)
=

σT

γT
x0|ϱ

(
γTσϱ

σT γϱ
Yϱ

)
dϱ+

σT

γT
dWϱ, (132)

where (i) holds by the change-of-variables Yt =
σT γt

γTσt
Xt and (ii) holds by Lemma C.5.

C.2.3 PROOF OF REPARAMETERIZED SDE FOR NOISE PREDICTION MODELS

Proposition C.7 (Time reparameterization of the reverse-time diffusion SDE for noise prediction
models). The reverse-time SDE in Equation (3) can be rewritten in terms of the noise prediction
model as

dYχ = 2αTx
θ
T |χ

(
αχ

αT
Yχ

)
dχ+ αT dW χ2 , (133)

where Yt =
αt

αT
Xt and χt :=

σt

αt
.

Proof. We rewrite Equation (3) in terms of the noise prediction model to find

dXt =

[
f(t)Xt +

g2(t)

σt
xθ
T |t(Xt)

]
dt+ g(t) dW t, (134)

where

f(t) =
α̇t

αt
, g2(t) = σ̇2

t − 2
α̇t

αt
σ2
t = −2σ2

t

d log γt
dt

. (135)

Next we find the integrating factor to be exp−
∫ t

T
f(u) du = αT

αt
. Moreover, we can further simplify

g2(t)
σt

as

g2(t)

σt
= −2σt

d log γt
dt

, (136)

= −2σt
γ̇t
γt
, (137)

= −2
σt

γt

α̇tσt − αtσ̇t

σ2
t

, (138)

= −2
σ2
t

αt

α̇tσt − αtσ̇t

σ2
t

, (139)

= 2
σ2
t

αt

αtσ̇t − α̇tσt

σ2
t

, (140)

= 2
αtσ̇t − α̇tσt

αt
, (141)

(142)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Let χt :=
σt

αt
= 1

γt
. Thus we can rewrite the SDE in Equation (134) as

d

[
αT

αt
Xt

]
=

αT

αt

g2(t)

σ2
t

xθ
T |t(Xt) dt+

αT

αt

√
−2σ2

t

d log γt
dt

dW t, (143)

dYt
(i)
=

αT

αt

g2(t)

σ2
t

xθ
T |t

(
αt

αT
Yt

)
dt+

αT

αt

√
−2σ2

t

d log γt
dt

dW t, (144)

dYt = 2αT
αtσ̇t − α̇tσt

α2
t

xθ
T |t

(
αt

αT
Yt

)
dt+

αT

αt

√
−2σ2

t

d log γt
dt

dW t, (145)

dYt
(ii)
= 2αT χ̇tx

θ
T |t

(
αt

αT
Yt

)
dt+ αT

√
−2

σ2
t

α2
t

d log γt
dt

dW t, (146)

dYt = 2αT χ̇tx
θ
T |t

(
αt

αT
Yt

)
dt+ αT

√
χ̇2
t dW t, (147)

dYχ
(iii)
= 2αTx

θ
T |χ

(
αχ

αT
Yχ

)
dχ+ αT dW χ2 , (148)

(149)

where (i) holds by the change-of-variables Yt =
αT

αt
Xt, (ii) holds by

−2
σ2
t

α2
t

d log γt
dt

=
σ2
t

α2
t

d(−2 log γt)

dt
, (150)

=
σ2
t

α2
t

d logχ2
t

dt
, (151)

=
σ2
t

α2
t

χ̇2
t

χ2
t

, (152)

= χ̇2
t , (153)

and (iii) holds by Lemma C.5 mutatis mutandis for χt.

C.2.4 DERIVATION OF REX (SDE)

We present derivations for both the data prediction and noise prediction formulations.

Data prediction. We present this derivation in the form of Lemma C.8 below.
Lemma C.8 (Rex (SDE) for data prediction models). Let Φ be an explicit stochastic Runge-Kutta
solver for the additive noise SDE in Equation (10), we construct the following reversible scheme for
diffusion models

Xn+1 =
σn+1γn
γn+1σn

(ζXn + (1− ζ)X̂n) +
σn+1

γn+1
Ψh(ϱn, X̂n,Wϱ(ω)),

X̂n+1 =
σn+1γn
γn+1σn

X̂n − σn+1

γn+1
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

(154)

and the backward step is given as

X̂n =
σnγn+1

γnσn+1
X̂n +

σn

γn
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

Xn =
σnγn+1

γnσn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − σn

γn
ζ−1Ψh(ϱn, X̂n,Wϱ(ω)),

(155)

with step size h := ϱn+1 − ϱn and where Ψ denotes the following scheme

Ẑi =
γn
σn

Xn + h

i−1∑
j=1

[
aijx0|ϱn+cjh

(
σϱn+cjh

γϱn+cjh
Ẑj

)]
+ aWi Wn + aHi Hn,

Ψh(ϱn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bix0|ϱn+cih

(
σϱn+cih

γϱn+cjh
Ẑj

)]
+ bWWn + bHHn.

(156)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Proof. We write the SRK scheme for the time-changed reverse-time SDE in Equation (10) to construct
the following SRK scheme

Zi = Yn + h

i−1∑
j=1

[
aij

σT

γT
x0|ϱn+cjh

(
γTσϱn+cjh

σT γϱn+cjh
Zj

)]
+

σT

γT
(aWi Wn + aHi Hn),

Yn+1 = Yn + h

s∑
i=1

[
bi
σT

γT
x0|ϱn+cih

(
γTσϱn+cih

σT γϱn+cih
Zi

)]
+

σT

γT
(bWWn + bHHn),

(157)

with step size h = ϱn+1 − ϱn. Next, we replace Yt back with Xt which yields

Zi =
σT

γT

γn
σn

Xn + h

i−1∑
j=1

[
aijx0|ϱn+cjh

(
γTσϱn+cjh

σT γϱn+cjh
Zj

)]
+

σT

γT
(aWi Wn + aHi Hn),

σT γn+1

γTσn+1
Xn+1 =

σT γn
γTσn

Xn

+
σT

γT
h

s∑
i=1

[
bi
σT

γT
x0|ϱn+cih

(
γTσϱn+cih

σT γϱn+cih
Zi

)]
+

σT

γT
(bWWn + bHHn)︸ ︷︷ ︸

=Ψh(ϱn,Xn,Wϱ)

.

(158)
To further simplify let σT

γT
Ẑi = Zi, then we construct the reversible scheme with forward pass:

Xn+1 =
σn+1γn
γn+1σn

(ζXn + (1− ζ)X̂n) +
σn+1

γn+1
Ψh(ϱn, X̂n,Wϱ(ω)),

X̂n+1 =
σn+1γn
γn+1σn

X̂n − σn+1

γn+1
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

(159)

and backward pass

X̂n =
σnγn+1

γnσn+1
X̂n +

σn

γn
Ψ−h(ϱn+1,Xn+1,Wϱ(ω)),

X̂n+1 =
σnγn+1

γnσn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − σn

γn
ζ−1Ψh(ϱn, X̂n,Wϱ(ω)),

(160)

with step size h := ϱn+1 − ϱn

Ẑi =
γn
σn

Xn + h

i−1∑
j=1

[
aijx0|ϱn+cjh

(
σϱn+cjh

γϱn+cjh
Ẑj

)]
+ aWi Wn + aHi Hn,

Ψh(ϱn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bix0|ϱn+cih

(
σϱn+cih

γϱn+cjh
Ẑj

)]
+ bWWn + bHHn.

(161)

Noise prediction. We present this derivation in the form of Lemma C.9 below.
Lemma C.9 (Rex (SDE) for noise prediction models). Let Φ be an explicit stochastic Runge-Kutta
solver for the additive noise SDE in Equation (133), we construct the following reversible scheme for
diffusion models

Xn+1 =
αn+1

αn
(ζXn + (1− ζ)X̂n) + αn+1Ψh(χn, X̂n,Wχ2(ω)),

X̂n+1 =
αn+1

αn
X̂n − αn+1Ψ−h(χn+1,Xn+1,Wχ2(ω)),

(162)

and the backward step is given as

X̂n =
αn

αn+1
X̂n + αnΨ−h(χn+1,Xn+1,Wχ2(ω)),

Xn =
αn

αn + 1
ζ−1Xn+1 + (1− ζ−1)X̂n − αnζ

−1Ψh(χn, X̂n,Wχ2(ω)),
(163)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

with step size h := χn+1 − χn and where Ψ denotes the following scheme

Ẑi =
1

αn
Xn + h

i−1∑
j=1

[
2aijx

θ
T |χn+cjh

(
αχn+cjhẐj

)]
+ aWi Wn + aHi Hn,

Ψh(χn,Xn,Wχ(ω)) = h

s∑
j=1

[
2bix

θ
T |χn+cih

(
αχn+cihẐj

)]
+ bWWn + bHHn.

(164)

Proof. We write the SRK scheme for the time-changed reverse-time SDE in Equation (133) to
construct the following SRK scheme

Zi = Yn + h

i−1∑
j=1

[
2aijαTxT |χn+cjh

(
αχn+cjh

αT
Zj

)]
+ αT (a

W
i Wn + aHi Hn),

Yn+1 = Yn + h

s∑
i=1

[
2biαTxT |χn+cih

(
αχn+cih

αT
Zi

)]
+ αT (b

WWn + bHHn),

(165)

with step size h = χn+1 − χn. Next, we replace Yt back with Xt which yields

Zi = αT

 1

αn
Xn + h

i−1∑
j=1

[
2aijxT |χn+cjh

(
αχn+cjh

αT
Zj

)]
+ αT (a

W
i Wn + aHi Hn),

αn+1

αT
Xn+1 =

αT

αn
Xn

+ αT h

s∑
i=1

[
2biαTxT |χn+cih

(
αχn+cih

αT
Zi

)]
+ αT (b

WWn + bHHn)︸ ︷︷ ︸
=Ψh(χn,Xn,Wχ)

.

(166)

To further simplify let αT Ẑi = Zi, then we construct the reversible scheme with forward pass:

Xn+1 =
αn+1

αn
(ζXn + (1− ζ)X̂n) + αn+1Ψh(χn, X̂n,Wχ(ω)),

X̂n+1 =
αn+1

αn
X̂n − αn+1Ψ−h(χn+1,Xn+1,Wχ(ω)),

(167)

and backward pass

X̂n =
αn

αn+1
X̂n + αnΨ−h(χn+1,Xn+1,Wχ(ω)),

X̂n+1 =
αn

αn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − αnζ

−1Ψh(χn, X̂n,Wχ(ω)),
(168)

with step size h := χn+1 − χn

Ẑi =
γn
σn

Xn + h

i−1∑
j=1

[
2aijxT |χn+cjh

(
αχn+cjhẐj

)]
+ aWi Wn + aHi Hn,

Ψh(χn,Xn,Wχ(ω)) = h

s∑
j=1

[
2bixT |χn+cih

(
αχn+cihẐj

)]
+ bWWn + bHHn.

(169)

N.B., Wn = W χ2
n+1

−W χ2
n

.

C.3 PROOF OF PROPOSITION 3.3

We now can construct Rex.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Proposition 3.3 (Rex). Without loss of generality let Φ denote an explicit SRK scheme for the SDE
in Equation (10) with extended Butcher tableau aij , bi, ci, a

W
i , aHi , bW , bH . Fix an ω ∈ Ω and let

W be the Brownian motion over time variable ς . Then the reversible solver constructed from Φ in
terms of the underlying state variable Xt is given by the forward step

Xn+1 =
wn+1

wn

(
ζXn + (1− ζ)X̂n

)
+ wn+1Ψh(ςn, X̂n,Wn(ω)),

X̂n+1 =
wn+1

wn
X̂n − wn+1Ψ−h(ςn+1,Xn+1,Wn(ω)),

(12)

and backward step

X̂n =
wn

wn+1
X̂n+1 + wnΨ−h(ςn+1,Xn+1,Wn(ω)),

Xn =
wn

wn+1
ζ−1Xn+1 + (1− ζ−1)X̂n − wnζ

−1Ψh(ςn, X̂n,Wn(ω)),
(13)

with step size h := ςn+1 − ςn and where Ψ denotes the following scheme

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Ψh(ςn,Xn,Wϱ(ω)) = h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω),

(14)

where fθ denotes the data prediction model, wn = σn

γn
and ςt = ϱt. The ODE case is recovered

for an explicit RK scheme Φ for the ODE in Equation (70) with wn = σn and ςt = γt For noise
prediction models we have fθ denoting the noise prediction model with wn = αn and ςt =

σn

αn
.

Proof. This follows by Lemmas C.1, C.2, C.8 and C.9 mutatis mutandis.

D CONVERGENCE ORDER PROOFS

D.1 ASSUMPTIONS

Beyond the general regularity conditions imposed on the learned diffusion model itself (see Lu
et al., 2022b; Blasingame & Liu, 2024a; 2025) we also assert that in the noise prediction setting that
αT > 0. In practice most commonly used diffusion noise schedules like the linear or scaled linear
schedule satisfy this, (see Appendix H.1; cf . Lin et al., 2024).

D.2 PROOF OF THEOREM 4.1

Theorem 4.1 (Rex is a k-th order solver). Let Φ be a k-th order explicit Runge-Kutta scheme for
the reparameterized probability flow ODE in Equation (70) with variance preserving noise schedule
(αt, σt). Then Rex constructed from Φ is a k-th order solver, i.e., given the reversible solution
{xn, x̂n}Nn=1 and true solution xtn we have

∥xn − xtn∥ ≤ Chk, (15)

for constants C, hmax > 0 and for step sizes h ∈ [0, hmax].

Proof. ‘ We will prove this for both the data prediction and noise prediction formulations.

Data prediction. By Theorem A.1 we have that reversible Φ is a k-th order solver, and thus

∥yn − ytn∥ ≤ Chk. (170)

We use the change of variables from Equation (70) to find∥∥∥∥σT

σn
xn − σT

σn
xtn

∥∥∥∥ ≤ Chk, (171)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

which simplifies to
∥xn − xtn∥ ≤ σn

σT
Chk. (172)

Now by definition for variance preserving type diffusion SDEs we have that σt ≤ 1 for all t. Thus
we can write

∥xn − xtn∥ ≤ C1h
k, (173)

where C1 = C
σT

.

Noise prediction. By Theorem A.1 we have that reversible Φ is a k-th order solver, and thus

∥yn − ytn∥ ≤ Chk. (174)

We use the change of variables from Equation (69) to find∥∥∥∥αT

αn
xn − αT

αn
xtn

∥∥∥∥ ≤ Chk, (175)

which simplifies to
∥xn − xtn∥ ≤ αn

αT
Chk. (176)

Now by definition we have αt ≤ 1 for all t and we assume that αT > 0. Thus we can write

∥xn − xtn∥ ≤ C1h
k, (177)

where C1 = C
σT

.

D.3 PROOF OF THEOREM 4.2

Definition D.1 (Strong order of convergence). Suppose an SDE solver admits a numerical solution
Xn and we have a true solution Xtn . If

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤ Ch2α, (178)

where C > 0 is a constant and h is the step size, then the SDE solver strongly converges with order
α.

Theorem 4.2 (Convergence order for stochastic Ψ). Let Φ be a SRK scheme with strong order of
convergence ξ > 0 for the reparameterized reverse-time diffusion SDE in Equation (10) with variance
preserving noise schedule (αt, σt) and αT > 0. Then Ψ constructed from Φ has strong order of
convergence ξ.

Proof. We will prove this for both the data prediction and noise prediction formulations.

Data prediction. By definition we have Φ has strong order of convergence ξ and thus,

sup
0≤n≤N

E∥Yn − Ytn∥2 ≤ Ch2ξ, (179)

where h =
σ2
n+1

αn+1
− σ2

n

αn
. We use the change of variables from Equation (10) to find

sup
0≤n≤N

E
∥∥∥∥σ2

Tαn

σ2
nαT

Xn − σ2
Tαn

σ2
nαT

Xtn

∥∥∥∥2 ≤ Ch2ξ, (180)

which simplifies to

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤
σn

√
αT

σT
√
αn

Ch2ξ. (181)

Since by definition of αn is a monotonically decreasing function, σn is a monotonically increasing
function, αT > 0, and σT ≤ 1 we can write

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤ Ch2ξ, (182)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

as
σn

√
αT

σT
√
αn

≤ 1. (183)

Noise prediction. By definition we have Φ has strong order of convergence ξ and thus,

sup
0≤n≤N

E∥Yn − Ytn∥2 ≤ Ch2ξ, (184)

where h = σn+1

αn+1
− σn

αn
. We use the change of variables from Equation (133) to find

sup
0≤n≤N

E
∥∥∥∥αn

αT
Xn − αn

αT
Xtn

∥∥∥∥2 ≤ Ch2ξ, (185)

which simplifies to

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤
√
αT√
αn

Ch2ξ. (186)

Since by definition of αn is a monotonically decreasing function strictly less than 1 and αT > 0 we
can write

sup
0≤n≤N

E∥Xn −Xtn∥2 ≤ Ch2ξ. (187)

E RELATION TO OTHER SOLVERS FOR DIFFUSION MODELS

While this paper primarily focused on Rex and the family of reversible solvers created by it, we wish
to discuss the relation between the underlying scheme Ψ constructed from our method and other
existing solvers for diffusion models.

dxt

dt = β̇T

βt
xt +

σtα̇t−σ̇tαt

βt
fθ(t,xt)

dyσ

dς = βTfθ

(
ς, βς

βT
yς

)

xn+1 = wn+1

wn
xn +Ψh(tn,xn) yn+1 = yn +Φh(tn,yn)

Exponential integrators &
change-of-variables

Lawson method

Figure 6: Overview of the construction of Ψ for the probability flow ODE from an underlying RK
scheme Φ for the reparameterized ODE. This graph holds for the SDE case mutatis mutandis.

Surprisingly, we discover that using Lawson methods outlined in Figure 6 (cf . Figure 2 from the main
paper) is a surprisingly generalized methodology for construing numerical schemes for diffusion
modes, and that it subsumes previous works. This means that several of the reversible schemes we
presented here are reversible variants of well known schemes in the literature in diffusion models.
Theorem 4.3 (Rex subsumes previous solvers). The underlying scheme used Ψ in Rex given by

Ẑi =
1

wn
Xn + h

i−1∑
j=1

[
aijf

θ
(
ςn + cjh,wςn+cjhẐj

)]
+ aWi Wn(ω) + aHi Hn(ω),

Xn+1 =
wn+1

wn
Xn + wn+1

h

s∑
j=1

[
bif

θ
(
ςn + cih,wςn+cihẐj

)]
+ bWWn(ω) + bHHn(ω)

 ,

(16)
subsumes the following solvers for diffusion models

1. DDIM (Song et al., 2021a),

2. DPM-Solver-1, DPM-Solver-2, DPM-Solver-12 (Lu et al., 2022b),

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

3. DPM-Solver++1, DPM-Solver++(2S), SDE-DPM-Solver-1, SDE-DPM-Solver++1 (Lu
et al., 2022a),

4. SEEDS-1 (Gonzalez et al., 2024), and

5. gDDIM (Zhang et al., 2023).

Proof. We prove the connection to each solver in the list within a set of separate propositions
for easier readability. The statement holds true via Propositions E.1 to E.8 and Corollaries E.1.1
to E.6.1.

Corollary 4.3.1 (Rex is reversible version of previous solvers). Rex is the reversible revision of the
well-known solvers for diffusion models in Theorem 4.3.

Remark E.1. The SDE solvers constructed from Foster-Reis-Strange SRK schemes are wholly
unique (with the exception of the trivial Euler-Maruyama scheme) and have no existing counterpart
in the literature in diffusion models. Thus Rex (ShARK) is not only a novel reversible solver, but a
novel solver for diffusion models in general.

E.1 REX AS REVERSIBLE ODE SOLVERS

Here we discuss Rex as reversible versions for well-known numerical schemes for diffusion models.
Recall that the general Butcher tableau for a s-stage explicit RK scheme (Stewart, 2022, Section
6.1.4) is written as

c1
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 · · · a(s−1)s

b1 b2 · · · bs−1 bs

=
c a

b
. (188)

Embedded methods for adaptive step sizing are of the form

c1
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 · · · a(s−1)s

b1 b2 · · · bs−1 bs
b∗1 b∗2 · · · b∗s−1 b∗s

, (189)

where the lower-order step is given by the coefficients b∗i .

E.1.1 EULER

In this section we explore the numerical schemes produced by choosing the Euler scheme for Φ. The
Butcher tableau for the Euler method is

0 0

1
. (190)

Proposition E.1 (Rex (Euler) is reversible DPM-Solver++1). The underlying scheme of Rex (Euler)
for the data prediction parameterization of diffusion models in Equation (70) is the DPM-Solver++1
from Lu et al. (2022a).

Proof. Apply in the Butcher tableau for the Euler scheme to Ψ constructed from Equation (69) to
find

xn+1 =
σn+1

σn
xn + σn+1hx

θ
0|γn

(xn), (191)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

with h = γn+1 − γn. We can rewrite the step size as

σn+1h = σn+1

(
αn+1

σn+1
− αn

σn

)
, (192)

=

(
αn+1 − αn

σn+1

σn

)
, (193)

=

(
αn+1

αn+1

αn+1
− αn

αn+1

σn+1

σn

)
, (194)

= −αn+1

(
αn

αn+1

σn+1

σn
− 1

)
, (195)

= −αn+1

(
γn

γn+1
− 1

)
, (196)

= −αn+1

(
e
log γn

γn+1 − 1
)
, (197)

= −αn+1

(
elog γn−log γn+1 − 1

)
, (198)

(i)
= −αn+1

(
eλn−λn+1 − 1

)
, (199)

(ii)
= −αn+1

(
e−hλ − 1

)
, (200)

where (i) holds by the letting λt = log γt following the notation of Lu et al. (2022b;a) and (ii) holds
by letting hλ = λn+1 − λn. Plugging this back into Equation (191) yields

xn+1 =
σn+1

σn
xn − αn+1

(
e−hλ − 1

)
xθ
0|tn(xn), (201)

which is the DPM-Solver++1 from Lu et al. (2022a).

Corollary E.1.1 (Rex (Euler) is reversible deterministic DDIM for data prediction models). The
underlying scheme of Rex (Euler) for the data prediction parameterization of diffusion models in
Equation (70) is the deterministic DDIM solver from Song et al. (2021a).

Proof. This holds because DPM-Solver++1 is DDIM see Lu et al. (2022a, Equation (21)) with
η = 0.

Proposition E.2 (Rex (Euler) is reversible DPM-Solver-1). The underlying scheme of Rex (Euler)
for the data prediction parameterization of diffusion models in Equation (69) is the DPM-Solver-1
from Lu et al. (2022b, Equation (3.7)).

Proof. Apply in the Butcher tableau for the Euler scheme to Ψ from Rex (see Proposition 3.3) to find

xn+1 =
αn+1

αn
xn + αn+1hx

θ
T |χn

(xn), (202)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

with h = χn+1 − χn. We can rewrite step size as

αn+1h = αn+1

(
σn+1

αn+1
− σn

αn

)
, (203)

=

(
σn+1 − σn

αn+1

αn

)
, (204)

=

(
σn+1

σn+1

σn+1
− σn

σn+1

αn+1

αn

)
, (205)

= −σn+1

(
σn

σn+1

αn+1

αn
− 1

)
, (206)

= −σn+1

(
χn

χn+1
− 1

)
, (207)

= −σn+1

(
e
log χn

χn+1 − 1
)
, (208)

= −σn+1

(
elogχn−logχn+1 − 1

)
, (209)

(i)
= −σn+1

(
e−λn+λn+1 − 1

)
, (210)

(ii)
= −σn+1

(
ehλ − 1

)
, (211)

where (i) holds by the letting λt = log γt = − logχt following the notation of Lu et al. (2022b;a)
and (ii) holds by letting hλ = λn+1 − λn. Plugging this back into Equation (191) yields

xn+1 =
αn+1

αn
xn − σn+1

(
ehλ − 1

)
xθ
T |tn(xn), (212)

which is the DPM-Solver-1 from Lu et al. (2022b).

Corollary E.2.1 (Rex (Euler) is reversible deterministic DDIM for noise prediction models). The
underlying scheme of Rex (Euler) for the noise prediction parameterization of diffusion models in
Equation (69) is the deterministic DDIM solver from Song et al. (2021a).

Proof. This holds because DPM-Solver-1 is DDIM see Lu et al. (2022b, Equation (4.1)).

E.1.2 SECOND-ORDER METHODS

In this section we explore the numerical schemes produced by choosing the explicit midpoint method
for Φ. We can write a generic second-order method as

0

η η

1− 1
2η

1
2η

, (213)

for η ̸= 0 (Butcher, 2016). The choice of η = 1
2 yields the explicit midpoint, η = 2

3 gives Ralston’s
second-order method, and η = 1 gives Heun’s second-order method.

Proposition E.3 (Rex (generic second-order) is reversible DPM-Solver++(2S)). The underlying
scheme of Rex (generic second-order) for the data prediction parameterization of diffusion models in
Equation (70) is the DPM-Solver++(2S) from Lu et al. (2022a, Algorithm 1).

Proof. The DPM-Solver++(2S) (Lu et al., 2022a, Algorithm 1) is defined as

u =
σp

σn
xn − αp

(
e−rλhλ − 1

)
xθ
0|tn(xn),

D =

(
1− 1

2rλ

)
xθ
0|tn(xn) +

1

2rλ
xθ
0|tp(u),

xn+1 =
σn+1

σn
xn − αn+1

(
e−hλ − 1

)
D,

(214)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

for some intermediate timestep tn > tp > tn+1 and with rλ =
λp−λn

λn+1−λn
. Notice that rλ describes

the location of the midpoint time in the λ-domain as a ratio, i.e., we could say

λp = λn + rλhλ, (215)

where rλ ∈ (0, 1) denotes the interpolation point between the initial timestep λn and terminal
timestep λn+1. Thus we fix η = rλ as the step size ratio of the intermediate point.

Now we return to the underlying scheme of Rex applied to the generic second-order scheme, see
Equation (213), Apply in the Butcher tableau for generic second-order scheme to Ψ constructed from
Equation (69) to find

z =
1

σn
xn + ηhxθ

0|γn
(xn),

xn+1 =
σn+1

σn
xn + σn+1h

((
1− 1

2η

)
xθ
0|γn

(xn) +
1

2η
xθ
0|γn+ηh(σpz)

)
,

(216)

with h = γn+1 − γn and σp = σγn+ηh with γp = γn + ηh. We can write

σpz =
σp

σn
xn + σpηhx

θ
0|γn

(xn). (217)

Plugging this back into Equation (216) yields

σpz =
σp

σn
xn + σpηhx

θ
0|γn

(xn),

xn+1 =
σn+1

σn
xn + σn+1h

((
1− 1

2η

)
xθ
0|γn

(xn) +
1

2η
xθ
0|γn+ηh(σpz)

)
︸ ︷︷ ︸

=D̂

, (218)

which is the DPM-Solver++1 from Lu et al. (2022a). Now recall from Proposition E.1 that

σn+1h = −αn+1

(
e−hλ − 1)

)
, (219)

it follows that
σpηh = −αp

(
e−rλhλ − 1

)
, (220)

due to λp − λn = rλhλ and ηh = λp − λn. Thus by letting σpz = u and D̂ = D we recover the
DPM-Solver++(2S) solver.

Proposition E.4 (Rex (generic second-order) is reversible DPM-Solver-2)). The underlying scheme
of Rex (generic second-order) for the noise prediction parameterization of diffusion models in
Equation (69) is the DPM-Solver-2 from Lu et al. (2022b, Algorithm 4 cf. Algorithm 1).

Proof. This follows as straightforward derivation from Proposition E.2 and Proposition E.3.

Proposition E.5 (Rex (Euler-Midpoint) is DPM-Solver-12). The underlying scheme of Rex (Euler-
Midpoint) for the noise prediction parameterization of diffusion models in Equation (69) is the
DPM-Solver-12 from Lu et al. (2022b).

Proof. The explicit midpoint method with embedded Euler method for adaptive step sizing is given
by the Butcher tableau

0
1
2

1
2

0 1

1 0

. (221)

From Proposition E.2 and Proposition E.4 we have shown that Rex (Euler) and Rex (Midpoint)
correspond to DPM-Solver-1 and DPM-Solver-2 respectively. Thus the Butcher tableau above
outlines DPM-Solver-12.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

E.1.3 THIRD-ORDER METHODS

For third-order solvers like DPM-Solver-3 (Lu et al., 2022b, Algorithm 5) our constructed scheme
differs from solvers derived using ETD methods due to the presence of φ2 terms where

φk+1(t) =

∫ 1

0

e(1−δ)t δ
k

k!
dδ, (222)

this also reasoning extends to the DPM-Solver-4 from Gonzalez et al. (2024, Algorithm 7).

E.2 REX AS REVERSIBLE SDE SOLVERS

In this section we discuss the connections between Rex and preexisting SDE solvers for diffusion
models.

E.2.1 EULER-MARUYAMA

The extended Butcher tableau for the Euler-Maruyama scheme is given by

0 0 0 0

1 1 0
. (223)

Proposition E.6 (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver++1). The underlying
scheme of Rex (Euler-Maruyama) for the data prediction parameterization of diffusion models in
Equation (10) is the SDE-DPM-Solver++1 from Lu et al. (2022a, Equation (18)).

Proof. Apply in the Butcher tableau for the Euler-Maruyama scheme to Ψ constructed from Equa-
tion (133) to find

xn+1 =
σ2
n+1αn

σ2
nαn+1

xn +
σ2
n+1

αn+1
hxθ

0|ϱn
(xn) +

σ2
n+1

αn+1
Wn, (224)

with h = ϱn+1 − ϱn. We can rewrite the step size as

σ2
n+1

αn+1
h =

σ2
n+1

αn+1

(
α2
n+1

σ2
n+1

− α2
n

σ2
n

)
, (225)

=

(
αn+1 −

α2
n

αn+1

σ2
n+1

σ2
n

)
, (226)

= αn+1

(
1− α2

n

α2
n+1

σ2
n+1

σ2
n

)
, (227)

= αn+1

(
1− ϱn

ϱn+1

)
, (228)

= αn+1

(
1− e

2 log γn
γn+1

)
, (229)

= αn+1

(
1− e2 log γn−2 log γn+1

)
, (230)

(i)
= αn+1

(
1− e2λn−2λn+1

)
, (231)

(ii)
= αn+1

(
1− e−2hλ

)
, (232)

where (i) holds by the letting λt = log γt following the notation of Lu et al. (2022b;a) and (ii) holds
by letting hλ = λn+1 − λn. Now recall that

σ2
n+1αn

σ2
nαn+1

=
σn+1

σn
e−hλ . (233)

Plugging these back into Equation (224) yields

xn+1 =
σn+1

σn
e−hλxn + αn+1

(
1− e−2hλ

)
xθ
0|tn(xn) +

σ2
n+1

αn
Wn. (234)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Now recall that the Brownian increment Wn := Wϱn+1
−Wϱn

has variance h. Thus via the Itô
isometry we can write

Wn ∼
√
hϵ, (235)

with ϵ ∼ N (0, I). Then we have

σ2
n+1

αn+1

√
h =

σ2
n+1

αn+1

√
α2
n+1

σ2
n+1

− α2
n

σ2
n

, (236)

=

√
σ2
n+1 −

α2
n

α2
n+1

σ4
n+1

σ2
n

, (237)

= σn+1

√
1− α2

n

α2
n+1

σ2
n+1

σ2
n

, (238)

= σn+1

√
1− ϱn

ϱn+1
, (239)

= σn+1

√
1− e−2hλ . (240)

Thus we have re-derived the noise term of the SDE-DPM-Solver++1, and putting everything together
we have obtained the SDE-DPM-Solver++1 from Lu et al. (2022a) which is

xn+1 =
σn+1

σn
e−hλxn + αn+1

(
1− e−2hλ

)
xθ
0|tn(xn) + σn+1

√
1− e−2hλϵ. (241)

Thus we have shown that the SDE-DPM-Solver++1 is the same as the underlying scheme of Rex
(Euler-Maruyama).

Corollary E.6.1 (Rex (Euler-Maruyama) is reversible stochastic DDIM). The underlying scheme of
Rex (Euler-Maruyama) for the data prediction parameterization of diffusion models in Equation (10)
is the stochastic DDIM solver from Song et al. (2021a) with η = σt

√
1− e−2hλ .

Proof. This holds because SDE-DPM-Solver-1 is DDIM see Lu et al. (2022a, Section 6.1).

Proposition E.7 (Rex (Euler-Maruyama) is reversible SDE-DPM-Solver-1). The underlying scheme
of Rex (Euler-Maruyama) for the noise prediction parameterization of diffusion models in Equa-
tion (133) is the SDE-DPM-Solver-1 from Lu et al. (2022a, Equation (17)).

Proof. Apply in the Butcher tableau for the Euler scheme to Ψ from Rex (see Proposition 3.3) to find

xn+1 =
αn+1

αn
xn + 2αn+1hx

θ
T |χn

(xn) + αn+1Wn, (242)

with h = χn+1 − χn. Recall from Proposition E.2 that we can rewrite the step size

αn+1h = −σn+1

(
ehλ − 1

)
. (243)

Now recall that the Brownian increment Wn := W χ2
n+1

−W χ2
n

has variance χ2
n − χ2

n+1.20 Thus
via the Itô isometry we can write

Wn ∼
√

χ2
n − χ2

n+1ϵ, (244)

20This is because W
2
χ is defined in reverse-time.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

with ϵ ∼ N (0, I). Then we have

αn+1

√
χ2
n − χ2

n+1 = αn+1

√
σ2
n

α2
n

−
σ2
n+1

α2
n+1

, (245)

=

√
σ2
nα

2
n+1

α2
n

− σ2
n+1, (246)

= σn+1

√
σ2
nα

2
n+1

σ2
n+1α

2
n

− 1, (247)

= σn+1

√
χ2
n

χ2
n+1

− 1, (248)

= σn+1

√
e
log

χ2
n

χ2
n+1 − 1, (249)

= σn+1

√
elogχ2

n−logχ2
n+1 − 1, (250)

= σn+1

√
e−2 log γn+2 log γn+1 − 1, (251)

= σn+1

√
e2 log λn+1−2 log λn − 1, (252)

= σn+1

√
e2hλ − 1. (253)

Plugging Equations (243) and (253) back into Equation (242) yields

xn+1 =
αn+1

αn
xn − 2σn+1

(
ehλ − 1

)
xθ
T |χn

(xn) + σn+1

√
e2hλ − 1ϵ, (254)

which is the SDE-DPM-Solver-1 from Lu et al. (2022a).

Corollary E.7.1 (Rex (Euler-Maruyama) is reversible stochastic DDIM for noise prediction models).
The underlying scheme of Rex (Euler-Maruyama) for the noise prediction parameterization of
diffusion models in Equation (133) is the stochastic DDIM solver from Song et al. (2021a) with
η = σt

√
e−2hλ − 1.

Proof. This follows from a straightforwardly from Corollary E.6.1 and Lu et al. (2022b, Equation
(4.1)).

E.3 REX AS REVERSIBLE SEEDS-1

Proposition E.8 (Rex is reversible SEEDS-1). The choice of Euler or Euler-Maruyama for the
underlying scheme of Rex with either the noise prediction parameterization of diffusion models in
Equations (69) and (133) or data prediction in Equations (10) and (69) yields the four variants of
SEEDS-1 outlined in Gonzalez et al. (2024, Equations (28-31)).

Proof. This follows straightforwardly from Propositions E.1, E.2, E.6 and E.7 by definition of
SEEDS-1.

Corollary E.8.1 (Rex (Euler-Maruyama) is reversible gDDIM). The underlying scheme of Rex
(Euler-Maruyama) for the data prediction parameterization of diffusion models in Equation (10) is
the gDDIM solver in Zhang et al. (2023, Theorem 1) for ℓ = 1.

Proof. This follows as an immediate consequence of Proposition E.8 since by Gonzalez et al. (2024,
Proposition 4.5) gDDIM is SEEDS-1.

As mentioned earlier in Section A.4.1 high-order variants of SEEDS use a Markov-preserving noise
decomposition to approximate the iterated stochastic integrals. However, we follow Foster et al.
(2024) and use the space-time Lévy area resulting in numerical schemes that are quite different
beyond the first-order case, albeit that Rex exhibits better convergence properties.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

F A BRIEF NOTE ON THE THEORY OF ROUGH PATHS

To perform reversibility it is useful to consider the pathwise interpretation of SDEs (Lyons, 1998), as
such we introduce a few notations from rough path theory. Let {Wt} be a dw-dimensional Brownian
motion and let W be enhanced by

Ws,t =

∫ t

s

Ws,r ⊗ ◦dWr, (255)

where ⊗ is the tensor product. Then, the pair W := (W ,W) is the Stratonovich enhanced Brownian
rough path.21 Thus consider the dx-dimensional rough differential equation RDE of the form:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, X0 = x0. (256)

where µ : [0, T]×Rdx → Rdx is Lipschitz continuous in its second argument and σ ∈ C1,3
b ([0, T]×

Rdx ;L(Rdw ,Rdx)) (Friz & Hairer, 2020, Theorem 9.1).22 Fix an ω ∈ Ω, then almost surely W(ω)
admits a unique solution to the RDE (Xt(ω),σ(t,Xt(ω))) and Xt = Xt(ω) is a strong solution to
the Stratonovich SDE23 started at X0 = x0. To elucidate, consider the commutative diagram below

W
Ψ7−→ (W ,W)

S7−→ X, (257)

where Ψ is a map which merely lifts Brownian motion into a rough path (could be Itô or Stratonovich),
the second map, S, is known as the Itô-Lyons map (Lyons, 1998); this map is purely deterministic
and is also a continuous map w.r.t. to initial condition and driving signal. Thus for a fixed realization
of the Brownian motion we have a pathwise interpretation of the Stratonovich SDE.

G NUMERICAL SIMULATION OF BROWNIAN MOTION

Earlier we mentioned that for reversible methods we need to be able to compute both the same
realization of the Brownian motion. Now sampling Brownian motion is quite simple—recall Lévy’s
characterization of Brownian motion (Øksendal, 2003, Theorem 8.6.1)—and can be sampled by
drawing independent Gaussian increments during the numerical solve of an SDE. A common choice
for an adaptive solver is to use Lévy’s Brownian bridge formula (Revuz & Yor, 2013).
Definition G.1 (Lévy’s Brownian bridge). Given the standard dw-dimensional Brownian motion
{Wt : t ≥ 0} and for any 0 ≤ s < t < u, the Brownian bridge is defined as

Wt|Ws,Wu ∼ N
(
Ws +

t− s

u− s
(Wu −Ws),

(u− t)(t− s)

u− s
I

)
, (258)

and this quantity is conditionally independent of Wv for v < s or v > u.

Sampling the Brownian motion in reverse-time, however, is more complicated as it is only adapted
to the natural filtration defined in forward time. The naïve approach to sampling Brownian motion,
called the Brownian path, is to simply store the entire realization of the Brownian motion from the
forward pass in memory and use Equation (258) when necessary (for adaptive step size methods).
This results in a query time of O(1), but with a memory cost of O(ndw), where n is the number of
samples.

Virtual Brownian Tree. Seminal work on neural SDEs by Li et al. (2020) introduced the Virtual
Brownian Tree which extends the concept of Brownian trees introduced by Gaines & Lyons (1997).
The Brownian tree recursively applies Equation (258) to sample the Brownian motion at any midpoint,
constructing a tree structure; however, storing such a tree would be memory intensive. By making

21See, Friz & Hairer (2020, Chapter 3) for more details.
22Here L(V,W) denotes the set of continuous maps from V to W , a Banach space.
23If Xt and ∂xXt are adapted and ⟨X,W ⟩t exists, then almost surely∫ T

0

XdWt =

∫ T

0

X ◦ dWt.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

use of splittable pseudo-random number generators PRNGs (Salmon et al., 2011; Claessen & Pałka,
2013) which can deterministically generate two random seeds given an existing seed. Then making
use of a splittable PRNG one can evaluate the Brownian motion at any point by recursively applying
the Brownian tree constructing to rebuild the tree until the recursive midpoint time tr is suitable close
to the desired timestep t, i.e., |t− tr| < ϵ for some fixed error threshold ϵ > 0. This requires constant
O(1) memory but takes O(log(1/ϵ)) time and is only approximate.

Brownian Interval. Closely related work by Kidger et al. (2021) introduces the Brownian Interval
which offers exact sampling with O(1) query times. The primary difference between this method and
Virtual Brownian Trees is that this method focuses on intervals rather than particular sample points.
To elucidate, let Ws,t = Wt −Ws denote an interval of Brownian motion. Then the formula for
Lévy’s Brownian bridge (258) can be rewritten in terms of Brownian intervals as

Ws,t|Ws,u ∼ N
(
t− s

u− s
Ws,u,

(u− t)(s− u)

u− s
I

)
. (259)

Then, the method constructs a tree with stump being the global interval [0, T] and a random seed for a
splittable PRNG. New leaf nodes are constructed when queries over intervals are made; this provides
the advantage of the tree being query-dependent unlike the Virtual Brownian Tree which has a fixed
dyadic structure. Further computational improvements are made to improve implementation with the
details being found in Kidger (2022, Section 5.5.3). Beyond the numerical efficiency in computing
intervals over points is that we regularly need use intervals in numeric schemes and not single sample
points. Often, solvers which approximate higher-order integrals (e.g., stochastic Runge-Kutta) require
samples of the Lévy area24 which would require the Brownian interval to construct.25

Updated Virtual Brownian Tree. Recent work by Jelinčič et al. (2024) improves upon the Virtual
Brownian Tree (Li et al., 2020) by using an interpolation strategy between query points.26 This
enables the updated algorithm to exactly match the distribution of Brownian motion and Lévy areas
at all query times as long as each query time is at least ϵ apart.

H IMPLEMENTATION DETAILS

H.1 CLOSED FORM EXPRESSIONS OF THE NOISE SCHEDULE

In practice, popular libraries like the diffusers library define the noise schedule for diffusion
models as a discrete schedule {βn}Nn=1 following Ho et al. (2020); Song et al. (2021a) as an
arithemetic sequence of the form

βn =
β0

N
+

n− 1

N(N − 1)
(β1 − β0), (260)

with hyperparameters β0, β1 ∈ R≥0. Song et al. (2021b) defines the continuous-time schedule as

βt = β0 + t(β1 − β0), (261)

for all t ∈ [0, 1] in the limit of N → ∞. Thus one can write the forward-time diffusion (variance
preserving) SDE as

dXt = −1

2
βtXt dt+

√
βt dWt. (262)

Thus we can express the noise schedule (αt, σt) as

αt = exp

(
−1

2

∫
βt dt

)
,

σt =
√

1− α2
t .

(263)

24I.e., for a dw-dimensional Brownian motion over [s, t] the Lévy area is

2Li,j
s,t :=

∫ t

s

W i
s,udW

j
u −

∫ t

s

W j
s,udW

i
u.

25The interested reader can find more details in James Foster’s thesis (Foster, 2020).
26This algorithm is a part of the popular Diffrax library.

53

https://huggingface.co/docs/diffusers/index
https://github.com/patrick-kidger/diffrax

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

N.B., often the hyperparmeters in libraries like diffusers are expressed as β̂0 = β0

N and β̂1 = β1

N ,
often with N = 1000.

H.1.1 LINEAR NOISE SCHEDULE

For the linear noise schedule in Equation (261) used by DDPMs (Ho et al., 2020), the schedule
(αt, σt) is written as

αt = exp

(
−β1 − β0

4
t2 − β0

2
t

)
,

σt =
√

1− α2
t ,

(264)

for t ∈ [0, 1] with hyperparameters β0 and β1.
Proposition H.1 (Inverse function of γt for linear noise schedule). For the linear noise schedule used
by DDPMs (Ho et al., 2020) the inverse function of γt denoted tγ can be expressed in closed form as

tγ(γ) =
−β0 +

√
β2
0 + 2(β1 − β0) log(γ−2 + 1)

β1 − β0
. (265)

Proof. Let αt be denoted by αt = eat where

at = −β1 − β0

4
t2 − β0

2
t. (266)

Then by definition of γt we can write

γt =
eat

√
1− e2at

, (267)

and with a little more algebra we find√
1− e2at =

eat

γt
, (268)

1− e2at =
e2at

γ2
t

, (269)

e−2at − 1 = γ−2
t , (270)

e−2at = γ−2
t + 1, (271)

−2at = log(γ−2
t + 1). (272)

Then by substituting in the definition of at and letting γ denote the variable produced by γt we have
β1 − β0

2
t2 + β0t− log(γ−2 + 1) = 0. (273)

We then use the quadratic formula to find the roots of the polynomial of t to find

t =
−β0 ±

√
β2
0 + 2(β1 − β0) log(γ−2 + 1)

β1 − β0
. (274)

Since t ∈ [0, 1] we only take the positive root and thus

t =
−β0 +

√
β2
0 + 2(β1 − β0) log(γ−2 + 1)

β1 − β0
. (275)

Corollary H.1.1 (Inverse function of χt for linear noise schedule). It follows by a straightforward
substitution from Proposition H.1 that tχ can be written as

tχ(χ) =
−β0 +

√
β2
0 + 2(β1 − β0) log(χ2 + 1)

β1 − β0
. (276)

Corollary H.1.2 (Inverse function of ϱt for linear noise schedule). It follows by a straightforward
substitution from Proposition H.1 that tϱ can be written as

tϱ(ϱ) =
−β0 +

√
β2
0 + 2(β1 − β0) log(ϱ−1 + 1)

β1 − β0
. (277)

54

https://huggingface.co/docs/diffusers/index

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

H.1.2 SCALED LINEAR SCHEDULE

The scaled linear schedule is used widely by latent diffusion models (LDMs) (Rombach et al., 2022)
and takes the discrete form of

βn =

(√
β̂0 +

n− 1

N − 1

(√
β̂1 −

√
β̂0

))2

. (278)

Thus following a similar approach to Song et al. (2021b) we write the scaled linear schedule as a
function of t,

βt = (β1 − 2
√

β1β0 + β0)t
2 + 2t(

√
β1β0 − β0) + β0. (279)

Then using Equation (263) we find the noise schedule (αt, σt) to be defined as

αt = exp

(
−β1 − 2

√
β1β0 + β0

6
t3 −

√
β1β0 − β0

2
t2 − β0

2
t

)
,

σt =
√

1− α2
t .

(280)

Next we will derive the inverse function for γt
Proposition H.2 (Inverse function of γt for scaled linear noise schedule). For the scaled linear noise
schedule commonly used by LDMs (Rombach et al., 2022) the inverse function of γt denoted tγ can
be expressed in closed form as

tγ(γ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(γ−2 + 1)

∆
, (281)

where
∆ = β1 − 2

√
β1β0 + β0. (282)

Proof. Let αt be denoted by αt = eat where

at = −β1 − 2
√
β1β0 + β0

6
t3 −

√
β1β0 − β0

2
t2 − β0

2
t. (283)

Then by definition of γt we can write

γt =
eat

√
1− e2at

, (284)

and with a little more algebra we find√
1− e2at =

eat

γt
, (285)

1− e2at =
e2at

γ2
t

, (286)

e−2at − 1 = γ−2
t , (287)

e−2at = γ−2
t + 1, (288)

−2at = log(γ−2
t + 1). (289)

Then by substituting in the definition of at and letting γ denote the variable produced by γt we have

β1 − 2
√
β1β0 + β0

3
t3 + (

√
β1β0 − β0)t

2 + β0t− log(γ−2 + 1) = 0. (290)

We then use the cubic formula (Cardano, 1545) to find the roots of the polynomial of t. The only real
root is given by

tγ(γ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(γ−2 + 1)

∆
, (291)

where
∆ = β1 − 2

√
β1β0 + β0. (292)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Corollary H.2.1 (Inverse function of χt for scaled linear noise schedule). It follows by a straightfor-
ward substitution from Proposition H.2 that tχ can be written as

tχ(χ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(χ2 + 1)

∆
, (293)

where
∆ = β1 − 2

√
β1β0 + β0. (294)

Corollary H.2.2 (Inverse function of ϱt for scaled linear noise schedule). It follows by a straightfor-
ward substitution from Proposition H.2 that tϱ can be written as

tϱ(ϱ) =
β0 −

√
β1β0 − 3

√
2(
√
β1β0 − β0)3 − 3β0∆(

√
β1β0 − β0)− 3∆2 log(ϱ−1 + 1)

∆
, (295)

where
∆ = β1 − 2

√
β1β0 + β0. (296)

H.2 SOME OTHER INVERSE FUNCTIONS

Gamma to sigma. Additionally, we need to be able to extract the weighting terms from the time
integration variable. For the ODE case we need the function σγ(γ) which describes the map γ 7→ σ.
By the definition of γ we have

γ =
α

σ
, (297)

γ
(i)
=

√
1− σ2

σ
, (298)

σγ =
√

1− σ2, (299)

σ2γ2 = 1− σ2, (300)

σ2γ2 = 1− σ2, (301)

γ2 = σ−2 − 1, (302)

γ2 + 1 = σ−2, (303)

σ2 =
1

γ2 + 1
(304)

σγ(γ) =
1√

γ2 + 1
, (305)

where (i) hold by σ2 = 1− α2 for VP type diffusion SDEs.

Rho to sigma over gamma. Likewise, for the SDE case we need the function which maps ϱ 7→ σ
γ .

Recall that (note we drop the subscript t for the derivation)

ϱ =
α2

σ2
, (306)

thus we have

ϱ
(i)
=

α2

1− α2
, (307)

(1− α2)ϱ = α2, (308)

α−2 − 1 = ϱ−1, (309)

α−2 = ϱ−1 + 1, (310)

α =
1√

ϱ−1 + 1
, (311)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

where (i) hold by σ2 = 1− α2 for VP type diffusion SDEs. Then we can write

σ

γ
=

σ2

α
, (312)

=
σ2

α

α

α
, (313)

=
σ2

α2
α, (314)

= ϱ−1α, (315)

=
1

ρ
√
ρ−1 + 1

. (316)

Chi to alpha. Lastly, for the noise prediction models we need the map χ 7→ α denoted αχ(χ). By
definition of χ we have

χ =
σ

α
, (317)

χ
(i)
=

√
1− α2

α
, (318)

αχ(χ)
(ii)
=

1√
χ2 + 1

, (319)

where (i) hold by σ2 = 1− α2 for VP type diffusion SDEs and (ii) holds by the derivation for σγ(γ)
mutatis mutandis.

H.3 BROWNIAN MOTION

We used the Brownian interval (Kidger et al., 2021) provided by the torchsde library. In general
we would recommend the virtual Brownian tree from Jelinčič et al. (2024) over the Brownian interval,
an implementation of this can be found in the diffrax library. However, as our code base made
extensive used of prior projects developed in pytorch and diffrax is a jax library it made more
sense to use torchsde for this project.

I EXPERIMENTAL DETAILS

We provide additional details for the empirical studies conducted in Section 5. N.B., for all ex-
periments we used fixed random seeds between the different software components to ensure a fair
comparision.

I.1 UNCONDITIONAL IMAGE GENERATION

I.1.1 DIFFUSION MODEL

We make use of a pre-trained DDPM (Ho et al., 2020) model trained on the CelebA-HQ 256× 256
dataset (Karras et al., 2018). The linear noise schedule from (Ho et al., 2020) is given as

βi =
β̂0

T
+

i− 1

T (T − 1)
(β̂1 − β̂0). (320)

We convert this into a continuous time representation via the details in Appendix H.1 following Song
et al. (2021b). For this experiment we used β̂0 = 0.0001 and β̂1 = 0.2. To ensure numerical stability
due to 1

σt
terms we solve the probability flow ODE in reverse-time on the time interval [ϵ, 1] with

ϵ = 0.0002. This is a common choice to make in practice see Song et al. (2023).

I.1.2 METRICS

We use several metrics to assess the performance in unconditional image generation following Stein
et al. (2023) by using a DINOv2 feature extractor (Oquab et al., 2023), all of which are calculated

57

https://github.com/google-research/torchsde
https://docs.kidger.site/diffrax/api/brownian/

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

using the 10k generated samples and 30k real samples from the CelebA-HQ dataset. Throughout this
section we will let {xi}ni=1 denote an empirical distribution drawn from our generated distribution
Pθ and let {x̂i}mi=1 denote an empirical distribution drawn from the data distribution Pdata.

FD. The Fréchet distance (FD) (Dowson & Landau, 1982) is measured using the sample mean and
covariance of the real Pdata and generated Pθ distributions denoted

FD(Pdata∥Pθ) = ∥µdata − µθ∥22 +Tr
(
Σdata +Σθ − 2(ΣdataΣθ)

1
2

)
, (321)

where (µ·,Σ·) denote the sample mean and covariances. This metric corresponds two the 2-
Wasserstein distance between two multivariate Gaussians and is thus a valid metric between the first
two moments. Heusel et al. (2017) popularized the use of this metric within the feature layer of an
Inception-V3 network (Szegedy et al., 2016) to assess the fidelity of unconditional image generation,
this metric is referred to as the Fréchet inception distance or FID. Recent works have challenged the
use of the Inception-V3 network as the feature extractor (Stein et al., 2023; Jayasumana et al., 2024;
Kynkäänniemi et al., 2023) showing that the Inception-V3 network is poorly suited for capturing a
semantic view of images which correlates well to human judgment. In particular, Stein et al. (2023)
shows that using DINOv2 (Oquab et al., 2023) for the feature extractor results in a metric which is
significantly more aligned with human judgment.

FD∞. FD∞ proposed by Chong & Forsyth (2020) is a modification of FD which aims to remove
the inherent bias induced by using a finite number of empirical samples. The samples is determined
by evaluating FD over 15 regular intervals over the number of total samples and fitting a linear trend
to the 15 data points to infer a trend for FD as the number of empirical samples, N → ∞.

Precision, recall, density and coverage. The density metric (Naeem et al., 2020) is used as a
proxy to measure sample fidelity and improves upon the earlier precision metric (Kynkäänniemi
et al., 2019; Sajjadi et al., 2018). The metric is based upon nearest neighbours distance computed in a
representation space and counts how many real-sample neighbourhood balls contain the generated
sample. Likewise to quantify sample diversity we use the coverage metric (Naeem et al., 2020) which
improves upon the earlier recall metric (Kynkäänniemi et al., 2019; Sajjadi et al., 2018). The density
metric is given by

density(Pdata,Pθ) =
1

kn

n∑
i=1

m∑
j=1

1B(x̂j ,δk(x̂j))(xi), (322)

where 1A(·) denotes the indicator function for set A, B(x, r) constructs a Euclidean ball centered at
x with radius r, and δk(x̂j) is the distance to the k-th nearest neighbour in {x̂i}mi=1, excluding itself.
The precision metric is given by

precision(Pdata,Pθ) =
1

n

n∑
i=1

1⋃m
j=1 B(x̂j ,δk(x̂j))(xi). (323)

Similarly, coverage is given by

coverage(Pdata,Pθ) =
1

m

m∑
j=1

max
i=1,...,n

1B(x̂j ,δk(x̂j))(xi). (324)

Likewise, the recall metric is given by

recall(Pdata,Pθ) =
1

m

m∑
j=1

1⋃n
i=1 B(xi,δk(xi))(x̂j). (325)

We used k = 5 and 10k samples throughtout, as standard.

On reporting. When reporting on these metrics like in Table 1 we use bold font to denote the
best performance with a 1% error range. More formally, suppose we have a series of n data points
{xi}ni=1 that is totally ordered by some relation R. We say will denote a query point xi with bold
font if the range-normalized absolute percentage error is less than ϵ > 0, i.e.,

|maxj xj − xi|
maxj xj −mink xk

< ϵ. (326)

In our experiments we report ϵ = 0.01.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

I.1.3 HYPERPARAMETERS

We follow the suggestion of Wallace et al. (2023) and report results with EDICT using the hyper-
parameter p = 0.93. For BDIA, the original paper recommends γ = 1.0 for unconditional image
generation (Zhang et al., 2024, Section 6.1). However, we found γ = 0.5 to yield better performance,
this corroborates with the findings of Wang et al. (2024).

I.2 CONDITIONAL IMAGE GENERATION

I.2.1 DIFFUSION MODEL

We make use of Stable Diffusion v1.5 (Rombach et al., 2022) a pre-trained latent diffusion model
(LDM) model. We also use the scaled linear noise schedule given as

βi =

√ β̂0

T
+

i− 1√
T (T − 1)

(√
β̂1 −

√
β̂0

)2

. (327)

We convert this into a continuous time representation via the details in Appendix H.1 following Song
et al. (2021b). For this experiment we used β̂0 = 0.00085 and β̂1 = 0.012. To ensure numerical
stability due to 1

σt
terms we solve the probability flow ODE in reverse-time on the time interval [ϵ, 1]

with ϵ = 0.0002. This is a common choice to make in practice see Song et al. (2023).

Numerical schemes. We set the last two steps of Rex schemes to be either Euler or Euler-Maruyama
for better stability near time 0.

I.2.2 METRICS

As mentioned in the main paper we use the CLIP Score (Hessel et al., 2021) PickScore (Kirstain
et al., 2023), and Image Reward metrics (Xu et al., 2023) to asses the ability of the text-to-image
conditional generation task. We calculate each by comparing the sampled image and the given text
prompt used to produce the image. We then report the average over the 1000 samples.

CLIP score. The CLIP score measures the cosine similarity between the text and visual embeddings
with pretrained CLIP model (Radford et al., 2021) denoted as

CLIPScore(x, c) = max

{
⟨EI(x), EC(c)⟩
∥EI(x)∥∥EC(c)∥

, 0

}
, (328)

where EI : Rd → V is the image embedder and EC : Rd′ → V is the caption embedder; and where
x is the query image and c is the query caption. Thus this metric aims to measure how well our
generated images align with their prompt. In particular, we use the ViT-L/14 backbone trained by
OpenAI.

PickScore. Similar to CLIP score, PickScore finetunes a CLIP-H model on their proposed Pick-a-
Pic dataset which purportedly aligns better with human preference over CLIP score.

Image Reward. Image Reward (Xu et al., 2023) is the newest of the three metrics and uses BLIP
(Li et al., 2022) over CLIP as the backbone and finetunes the model using reward model training. The
resulting metrics achieves state-of-the-art alignment with human preferences.

On reporting. When reporting on these metrics like in Table 2 we use bold font to denote the best
performance with a 1% error range. In our experiments we report ϵ = 0.01.

I.2.3 HYPERPARAMETERS

We follow the suggestion of Wallace et al. (2023) and report results with EDICT using the hyperpa-
rameter p = 0.93. For BDIA, the original paper recommends γ = 0.5 for text-to-image generation
(Zhang et al., 2024, Section 6.1). We also ran BDIA with γ = 0.96 as suggested by Wang et al.
(2024).

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

I.3 INTERPOLATION

Diffusion model. We make use of a pre-trained DDPM (Ho et al., 2020) model trained on the
CelebA-HQ 256× 256 dataset (Karras et al., 2018). We used linear noise schedule from (Ho et al.,
2020). We convert this into a continuous time representation via the details in Appendix H.1 following
Song et al. (2021b). For this experiment we used β̂0 = 0.0001 and β̂1 = 0.2. For the face pairings
we followed Blasingame & Liu (2024a;c) and used the FRLL (DeBruine & Jones, 2017) dataset.

Notably, we used the noise prediction parameterization rather than data prediction as we found that it
performed better for editing. This is likely due to the singularity of the 1

σt
terms as t → 0. Within this

parameterization we could use the time interval [0, 1] instead of [ϵ, 1] like in previous experiments
with data prediction models.

I.4 HARDWARE

All experiments were run using a single NVIDIA H100 80 GB GPU.

I.5 REPOSITORIES

In our empirical studies we made use of the following resources and repositories:

1. google/ddpm-celebahq-256 (DDPM Model)

2. stable-diffusion-v1-5/stable-diffusion-v1-5 (Stable Diffusion v1.5)

3. zituitui/BELM (Implementation of BELM, EDICT, and BDIA)

4. google-research/torchsde (Brownian Interval)

5. layer6ai-labs/dgm-eval (FD, FD∞, KD, Density, and Coverage metrics)

6. torchmetrics (CLIP score)

7. zai-org/ImageReward (Image Reward)

J CODE

In this section we provide some example code for the core components of the model to help illustrate
the core ideas.

60

https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://github.com/zituitui/BELM
https://github.com/google-research/torchsde
https://github.com/layer6ai-labs/dgm-eval
https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html
https://github.com/zai-org/ImageReward

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Code J.1: Rex forward step

def rex_forward(model_func, scheduler, xt, xt_hat, timesteps, solver='euler', coupling=0.999,
low_order_final_n_steps=0, bm=None, pred_type='data', sched_type='linear'):↪→
"""
Based on McCallum & Foster's reversible ODE solver and adapted for diffusion models.
"""

Choose underlying solver
is_sde = (solver in SDE_SOLVERS)
psi = SOLVER_DICT[solver]

if not is_sde:
_t_to_gamma, _gamma_to_t = _gen_time_funcs(sched_type=sched_type, pred_type=pred_type)
t_to_gamma = _t_to_gamma
gamma_to_t = _gamma_to_t
gamma_to_sigma = _gamma_to_sigma if pred_type == 'data' else _chi_to_alpha

else:
_t_to_rho, _rho_to_t = _gen_time_funcs(sched_type=sched_type, rho=True, pred_type=pred_type)
t_to_gamma = _t_to_rho
gamma_to_t = _rho_to_t
gamma_to_sigma = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

create timesteps in gamma, alt gamma^2 = rho for SDEs
gammas = t_to_gamma(scheduler, timesteps)

Push gamma reparam back to time t and convert noise pred to data pred
if pred_type == 'data':

wrap_model = lambda gamma, x: _convert_noise_to_data(scheduler, model_func,
gamma_to_t(scheduler, gamma), x, sched_type=sched_type)↪→

else:
p = 2 if is_sde else 1
wrap_model = lambda gamma, x: p * model_func(gamma_to_t(scheduler, gamma), x)

xt.to(torch.float32)
xt_hat.to(torch.float32)

for n in tqdm(range(len(gammas)-1)):
gamma_n = gammas[n]
gamma_n1 = gammas[n+1]
h = gamma_n1 - gamma_n

sigma_n = gamma_to_sigma(gamma_n)
sigma_n1 = gamma_to_sigma(gamma_n1)

if n < (len(gammas) - 1 - low_order_final_n_steps):
if not is_sde:

_psi = lambda t, x, h: psi(wrap_model, t, x, h)
else:

_psi = lambda t, x, h: psi(wrap_model, t, x, h, bm, pred_type=pred_type)
else:

if not is_sde:
_psi = lambda t, x, h: euler(wrap_model, t, x, h)

else:
_psi = lambda t, x, h: euler_maruyama(wrap_model, t, x, h, bm, pred_type=pred_type)

xt = (sigma_n1 / sigma_n) * (coupling * xt + (1-coupling) * xt_hat) + sigma_n1 * _psi(gamma_n,
xt_hat, h)↪→

xt_hat = (sigma_n1 / sigma_n) * xt_hat - sigma_n1 * _psi(gamma_n1, xt, -h)

return xt, xt_hat

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Code J.2: Rex backward step

def rex_backward(model_func, scheduler, xt, xt_hat, timesteps, solver='euler', coupling=0.999,
low_order_final_n_steps=0, bm=None, pred_type='data', sched_type='linear'):↪→
"""
Based on McCallum & Foster's reversible ODE solver and adapted for diffusion models.
"""

Choose underlying solver
is_sde = (solver in SDE_SOLVERS)
psi = SOLVER_DICT[solver]

if not is_sde:
_t_to_gamma, _gamma_to_t = _gen_time_funcs(sched_type=sched_type, pred_type=pred_type)
t_to_gamma = _t_to_gamma
gamma_to_t = _gamma_to_t
gamma_to_sigma = _gamma_to_sigma if pred_type == 'data' else _chi_to_alpha

else:
_t_to_rho, _rho_to_t = _gen_time_funcs(sched_type=sched_type, rho=True, pred_type=pred_type)
t_to_gamma = _t_to_rho
gamma_to_t = _rho_to_t
gamma_to_sigma = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

create timesteps in gamma, alt gamma^2 = rho for SDEs
gammas = t_to_gamma(scheduler, timesteps)

Push gamma reparam back to time t and convert noise pred to data pred
if pred_type == 'data':

wrap_model = lambda gamma, x: _convert_noise_to_data(scheduler, model_func,
gamma_to_t(scheduler, gamma), x, sched_type=sched_type)↪→

else:
p = 2 if is_sde else 1
wrap_model = lambda gamma, x: p * model_func(gamma_to_t(scheduler, gamma), x)

xt.to(torch.float32)
xt_hat.to(torch.float32)

coupling_inv = 1. / coupling

for n in tqdm(range(len(gammas) - 2, -1, -1)):
gamma_n = gammas[n]
gamma_n1 = gammas[n+1]
h = gamma_n1 - gamma_n

sigma_n = gamma_to_sigma(gamma_n)
sigma_n1 = gamma_to_sigma(gamma_n1)

if n < (len(gammas) - 1 - low_order_final_n_steps):
if not is_sde:

_psi = lambda t, x, h: psi(wrap_model, t, x, h)
else:

_psi = lambda t, x, h: psi(wrap_model, t, x, h, bm, pred_type=pred_type)
else:

if not is_sde:
_psi = lambda t, x, h: euler(wrap_model, t, x, h)

else:
_psi = lambda t, x, h: euler_maruyama(wrap_model, t, x, h, bm, pred_type=pred_type)

xt_hat = (sigma_n / sigma_n1) * xt_hat + sigma_n * _psi(gamma_n1, xt, -h)
xt = (sigma_n / sigma_n1) * (coupling_inv * xt) + (1 - coupling_inv) * xt_hat - sigma_n *

coupling_inv * _psi(gamma_n, xt_hat, h)↪→

return xt, xt_hat

In Code J.3 we provide an implementation of the ShARK method. The official implementation can be
found at https://github.com/patrick-kidger/diffrax/blob/main/diffrax/
_solver/shark.py.

62

https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py
https://github.com/patrick-kidger/diffrax/blob/main/diffrax/_solver/shark.py

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Code J.3: ShARK

def ShARK(model, time_var, x, h, bm, pred_type='data'):
t_to_w = _rho_to_siggamma if pred_type == 'data' else _chi_to_alpha

x_sg = x / t_to_w(time_var)

if pred_type == 'data':
a, b = time_var, time_var + h

else:
a, b = time_var.pow(2), (time_var + h).pow(2)

if h < 0:
a, b = b, a

h_corr = h if pred_type == 'data' else (time_var + h).pow(2) - time_var.pow(2)

W, U = bm(a, b, return_U=True)
W, U = W.to(x.device), U.to(x.device)

if h < 0:
H = U / (-h_corr) - 0.5 * W
W = -W

else:
H = U / (-h_corr) - 0.5 * W

Z1 = x_sg + H

f1 = model(time_var, t_to_w(time_var) * Z1)

Z2 = x_sg + h * (5/6) * f1 + (5/6) * W + H
f2 = model(time_var + 5/6 * h, t_to_w(time_var + 5/6 * h) * Z2)

return h * (0.4 * f1 + 0.6 * f2) + W

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Figure 7: Inversion followed by sampling with Rex (Euler) 5 steps, ζ = 0.999. Data prediction. Top
row tracks xn, bottom row x̂n.

Figure 8: Inversion followed by sampling with Rex (Euler) 5 steps, ζ = 0.999. Noise prediction. Top
row tracks xn, bottom row x̂n.

K VISUALIZATION OF INVERSION AND THE LATENT SPACE

We conduct a further qualitative study of the latent space produced by inversion and the impact various
design parameters play. First in Figure 7 we show the process of inverting and then reconstructing
a real sample. Notice that while the data prediction formulation worked great in sampling and still
possesses the correct reconstruction, i.e., it is still reversible, the latent space is all messed up. The
variance of (xn, x̂n) tends to about 107, many orders of magnitude too large! We did observe that
raising ζ = 1− 10−9 did help reduce this, but it was still relatively unstable. N.B., these trends hold
in a large number of discretization steps (we tested up to 250); however, for visualization purposes
we chose fewer steps.

Conversely, the noise prediction formulation is much more stable, see Figure 8. The variance of
(xn, x̂n) is on the right order of magnitude this time, however, there are strange artefacting and it is
clear the latent variables are not normally distributed.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

Figure 9: FAILURE CASE! Inversion followed by sampling with Rex (ShARK) 5 steps, ζ = 0.999.
Data prediction. Top row tracks xn, bottom row x̂n.

Figure 10: Inversion followed by sampling with Rex (ShARK) 5 steps, ζ = 0.999. Noise prediction.
Top row tracks xn, bottom row x̂n.

Moving to the SDE case with ShARK in Figure 9, we see that the data prediction formulation is
so unstable in forward-time that we ran into overflow errors and can no longer achieve algebraic
reversibility. However, the noise parameterization with ShARK, see Figure 10, works very well with
the latent variables appearing to be close to normally distributed.

L ADDITIONAL RESULTS

L.1 UNCONDITIONAL IMAGE GENERATION

We present some additional ablations on the underlying solver for Rex in Table 4.

Table 4: Quantitative comparison of different underlying schemes Φ used in Rex in terms of FID (↓)
for unconditional image generation with a pre-trained DDPM model on CelebA-HQ (256× 256).

Solver
Steps Euler Midpoint RK4 Euler-Maruyama ShARK

10 36.65 x 31.00 40.79 59.89
20 24.63 23.36 23.49 27.80 32.18
50 21.45 21.45 21.35 19.77 21.93

L.2 CONDITIONAL IMAGE GENERATION

We present some uncrated samples using Rex with various underlying solvers and discretization
steps.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Figure 11: Uncurated samples created using Rex (RK4) and Stable Diffusion v1.5 (512× 512) and
10 discretization steps.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Figure 12: Uncurated samples created using Rex (RK4) and Stable Diffusion v1.5 (512× 512) and
50 discretization steps.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Figure 13: Uncurated samples created using Rex (ShARK) and Stable Diffusion v1.5 (512× 512)
and 10 discretization steps.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Figure 14: Uncurated samples created using Rex (ShARK) and Stable Diffusion v1.5 (512× 512)
and 50 discretization steps.

69

