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ABSTRACT

Compositional generalization – the ability to understand and generate novel com-
binations of learned concepts – enables models to extend their capabilities beyond
limited experiences. While humans perform this task naturally, we still lack a clear
understanding of what theoretical properties enable this crucial capability and how
to incorporate them into machine learning models. We propose that compositional
generalization fundamentally requires decomposing high-level concepts into ba-
sic, low-level concepts that can be recombined across similar contexts, similar to
how humans draw analogies between concepts. For example, someone who has
never seen a peacock eating rice can envision this scene by relating it to their previ-
ous observations of a chicken eating rice. In this work, we formalize these intuitive
processes using principles of causal modularity and minimal changes. We intro-
duce a hierarchical data-generating process that naturally encodes different levels
of concepts and their interaction mechanisms. Theoretically, we demonstrate that
this approach enables compositional generalization supporting complex relations
between composed concepts, advancing beyond prior work that assumes simpler
interactions like additive effects. Furthermore, we show that the true latent hierar-
chical model can be recovered from data under weaker conditions than previously
required. By applying insights from our theoretical framework, we achieve sig-
nificant improvements on benchmark datasets, verifying our theory.

1 INTRODUCTION

Compositional generalization is a hallmark of human intelligence, enabling us to navigate a vast
array of novel situations despite limited direct experience. This capability is particularly evident in
visual recognition – someone who has never seen a peacock eating rice can readily visualize such a
scene based on separate exposures to peacocks and rice. This ability clearly depends on favorable
structures in the underlying data distribution. If peacocks consume rice in a manner entirely unlike
other observed feeding behaviors, one cannot expect to accurately visualize this unfamiliar scene.
In light of this, we aim to address the following fundamental question:

What data structures enable compositional generalization, and how can we characterize them?

Answering this question is essential for deliberately incorporating this valuable capability into ma-
chine learning models, which typically perform poorly when confronted with data outside their train-
ing distribution (Koh et al., 2021; Recht et al., 2019; Taori et al., 2020). Despite substantial empiri-
cal advances (Ramesh et al., 2022; Du & Kaelbling, 2024; Liu et al., 2022; Zhang et al., 2024c; Hu
et al., 2024; Huang et al., 2023; Bar-Tal et al., 2023; Yang et al., 2024b), theoretical understanding
remains limited and often relies on restrictive assumptions about concept interactions. For instance,
Brady et al. (2023) and Wiedemer et al. (2024a) assume concepts affect separate pixel regions with-
out interaction, while Lachapelle et al. (2023) proposes additive concept influences in pixel space,
later extended by Brady et al. (2024) to include second-order polynomial terms. Importantly, these
contributions generally overlook the hierarchical nature of concepts and their relationships in latent
space, limiting their ability to capture the richness of real-world image distributions.

In this work, we draw inspiration from humans’ cognitive process of drawing analogies, which
achieves compositional generalization by comparing and relating observed concepts. In particu-
lar, this mechanism entails two steps: 1) dissembling complex, high-level concepts into low-level

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Compositional generalization. The hierarchi-
cal process generalizes to an unseen concept “peacock eat-
ing rice” by composing low-level modules “peacock” and
“chicken eating rice”. The interaction “beak & rice” (de-
noted as “peck”) transfers from “chicken eating rice” to
“peacock eating rice”, akin to human making analogies.

Figure 2: Compositional general-
ization. The training support Ωsupp

only contains “peacock” and “rice”
separately. Compositional general-
ization aims to generate “peacock
eating rice” in the out-of-support re-
gion Ωcomp \ Ωsupp.

ones, and 2) recombining these low-level concepts to represent interactions in novel scenarios. As
illustrated in Figure 1, even without having seen a peacock eating rice, one can relate this scene to
observations of a chicken eating rice by recognizing shared low-level features—both peacocks and
chickens have beaks, wings, and other common attributes. This process effectively transforms in-
teractions between high-level concepts (peacock-rice) into interactions between more fundamental
low-level concepts (beak-rice). Since these elementary interactions appear across many observed
scenarios, they can be transferred to accurately visualize novel combinations of high-level concepts.

We formulate these intuitions in the language of causality, specifically, a latent hierarchical model
that encodes causal modularity and the minimal-change principle. Causal modularity enables the
transfer of modular low-level interactions (e.g., “beak & rice”). Meanwhile, the minimal-change
principle explains that some high-level concepts share many low-level features while being dis-
tinct in a few, making knowledge transfer possible. Unlike prior work (Wiedemer et al., 2024a;
Lachapelle et al., 2023; Brady et al., 2024; 2023), our framework accommodates complex interac-
tions among high-level concepts and their intricate relations in the latent space.

We establish identification conditions that allow latent hierarchical models to be recovered from
observed data, e.g., text-image pairs ubiquitous in image generation tasks. Unlike previous work
on identifying latent hierarchical models (Huang et al., 2022; Choi et al., 2011; Anandkumar et al.,
2013; Pearl, 1994; Dong et al., 2024), our theory does not require linearity or discrete latent vari-
ables, making it capable of modeling more complex data distributions. While recent work (Kong
et al., 2023) also addresses nonlinear hierarchical models and identifies concepts in groups, our
approach leverages interactions among latent variables to identify individual latent concepts and
the graphical structure. Building on this theoretical foundation, we demonstrate how the abstract
concepts of hierarchical levels and modularity can be practically realized by interpreting diffusion
timesteps as hierarchical levels and by enforcing an explicit sparsity regularizer on concept attention
maps. Our empirical results validate that integrating these theoretically-motivated design choices
leads to significant improvements in compositional generation.

Please refer to Appendix A for a more detailed discussion on related work.

2 COMPOSITIONAL GENERALIZATION AND HIERARCHICAL MODELS

In this section, we formally define compositional generalization and introduce the latent hierarchical
data-generating process, which lies at the core of our framework. We denote the dimensionality of a
multidimensional variable with n(·), the integer set {i}ni=1 with [n], and all parents of v with Pa(v).

Compositional generalization. Let x denote the observed variables x ∈ Rdx of interest (e.g., nat-
ural images). Let d ∈ {0, 1, . . . }n(d) be discrete variables that control high-level concepts present
in the paired data x (e.g., “peacock”). Then, text-to-image generation entails learning the condition
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distribution p(x|d), where we specify the discrete concepts d through text to generate the corre-
sponding image x. However, the training data distribution often lacks data containing certain com-
binations of concepts, even when each concept appears separately. In Figure 2, d1 and d2 indicate
the presence of “peacock” and “rice” when they take value 1. Although we may observe “peacock”
and “rice” in separate images (i.e., the training distribution contains images with d = [0, 1] and
d = [1, 0]), their composition d = [1, 1] required to produce “peacock eating rice” may be absent
from the training support Ωsupp. Since we can only train the model p̂(x|d) to match the true dis-
tribution p(x|d) over the support {[0, 0], [0, 1], [1, 0]}, the model p̂(x|d) might produce arbitrary
results for the out-of-support input d = [1, 1]. In this context, compositional generalization refers
to when our model p̂(x|d), which agrees with the true model p(x|d) on the support Ωsupp, agrees
on a strictly larger space Ωsupp ⊂ Ωcomp. We call a set of concepts d composable if it lies within
the compositional space d ∈ Ωcomp. An important example of Ωcomp is the Cartesian product
space ΩCP := [Ωsupp]1× · · ·× [Ωsupp]n(d) (Lachapelle et al., 2023; Wiedemer et al., 2024b) where
[Ωsupp]i := {di : d ∈ Ωsupp} denotes the marginal support of dimension i. In this case, the model
should correctly compose concepts that appear separately in the training.

Challenges and motivations. Recent work in causal representation learning has increasingly fo-
cused on establishing provable conditions for compositional generalization. To address the extrap-
olation challenge, prior work (Lachapelle et al., 2023; Wiedemer et al., 2024b;a) proposes additive
generating functions, where the joint influence of multiple latent concepts zi can be expressed as
the sum of their individual influences x :=

∑
i gi(zi). While this semi-parametric approach offers

certain compositional properties, it fails to adequately model complex interactions among concepts,
as it limits all concept interactions to mere addition of their individual pixel values. More recently,
Brady et al. (2024) leverage interaction asymmetry properties to partially overcome this limitation.
However, their approach still characterizes concept interactions using a restrictive parametric form
(polynomials), which may not capture the full range of complex interactions in real-world data.
Thus, it remains a significant challenge to identify natural properties in the data-generating process
that can support general concept interactions.

Causal modularity and minimal changes. Humans understand and envision concept compositions
through comparison and analogy, cognitive processes that align with causal principles of causal
modularity and minimal changes.

Causal modularity refers to how high-level concepts decompose into transferable low-level modules.
The concept “peacock” breaks down into components (i.e., low-level concepts) like “beak”, “wings”,
and “colorful tail,” while “chicken” decomposes into “beak”, “wings,” and “cockscomb” (Figure 1).
These components function as modular building blocks that can be recombined across contexts.
The interaction patterns between these components are also transferable—the mechanism by which
a “beak” interacts with “rice” forms a reusable module applicable across different bird species. This
architecture enables efficient representation of complex concepts for humans.

The minimal-change principle complements modularity by emphasizing that high-level concepts
largely share low-level concepts, with only minimal distinguishing features. When comparing “pea-
cock” and “chicken”, both activate many identical low-level concepts (e.g., “beaks”, “wings”), dif-
fering primarily in specific attributes (“colorful tail” vs. “cockscomb”). This overlap facilitates
comparison and analogy between related concepts. We intuitively recognize peacocks and chickens
as more similar to each other than to fish precisely because they share more low-level concepts.

Together, these properties empower humans to envision novel concept combinations never directly
experienced. Consider “peacock eating rice” as a novel combination (Figure 1). We can readily
imagine this because: (1) modularity allows decomposition of “peacock” into components including
a “beak” and enables transfer of the interaction module “beak & rice” observed in “chicken eating
rice”, and (2) minimal changes enables recognition that despite differences in appearance (e.g.,
“colorful tails”), peacock beaks share properties with chicken beaks that interact with rice similarly.

This framework explains our ability for compositional generalization – we decompose high-level
concepts into transferable low-level modules and leverage the shared features for analogical reason-
ing, while accounting for minimal distinguishing features that preserve conceptual uniqueness.

Hierarchical data-generating processes. To encode these key properties, we formulate a hierar-
chical data-generating process to explicitly model concepts at distinct hierarchical levels and their
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interactions. Let latent variables be z := [z1, · · · , zL], where L denotes the total number of hi-
erarchical levels and zl ∈ Rn(zl) represents concept variables on the hierarchical level l ∈ [L].

d1 d2

z1,1 z1,2

z2,1 z2,2 z2,3 z2,4

z3,1 z3,2 z3,3 z3,4 z3,5 z3,6

x

Text

High-level concepts:
chicken, peacock...

Low-level concepts:
beak, tail, feet...

Composed concepts:
“beak & rice”...

Image

Figure 3: A hierarchical data-generating
process. We denote the textual description
as d, continuous latent concepts as z, and the
image as x, where text-image pairs p(d,x)
are observable.

We denote the hierarchical graphical model as G :=
(V, E) where V := d ∪ z ∪ x denotes the variable
set and E denotes the edge set. 1 We present the
data-generating process in equation 1 and Figure 3.

z1,i ∼ p(z1,i|di), v := gv(Pa(v), ϵv), (1)

where v ∈ V \ (z1 ∪ d) represents all non-root vari-
ables and ϵv denotes its independent exogenous in-
formation. The discrete variable d (i.e., textual de-
scriptions) directly specifies high-level concepts z1
(e.g., their presence or specific categories). For in-
stance, d1 = 0 may indicate the absence of “pea-
cock”, while d1,1 = 1 and d1,1 = 2 might signify
two varieties of “peacocks”. We assume that the
conditional distribution p(z1,i|di = 0) is degenerate
(i.e., a constant z1,i) to indicate its absence and has
identical supp(p(z1,i|di)) when di takes on different
nonzero values to represent different varieties of the same concept z1,i. We denote model parameters
as θ :=

(
p(z1,d), {gv}v∈V\(z1,d)

)
. For exposition, we refer to x, d as zL+1, z0 respectively.

3 COMPOSITION CONDITIONS AND IDENTIFIABILITY

We first demonstrate how compositional generalization can arise from the hierarchical data-
generating process present in natural data (Section 3.1). Then, we show that one can learn such
data-generating processes from image-text data p(x,d) under proper assumptions (Section 3.2).

3.1 COMPOSITIONAL GENERALIZATION CONDITIONS

Remarks on the problem. Although the variables {zl}l∈[0,L+1] form a Markov chain over zl,
the first module p(z1|d) could give rise to distinct supports supp(z1|d) across various values of
d (i.e., missing concepts). In Figure 2, the training support Ωsupp lacks the combination “peacock
eating rice” d = [1, 1], which affects supp(z1) and propagates downstream through supp(zl) for l ∈
[L+1]. As children of z1, variables z2 only take on values from a more restricted set. Consequently,
the matching between two models θ and θ̂ is only partially supported due to the incompleteness of
Ωsupp. In Theorem 3.1, we characterize the extent to which the matching on the incomplete support
Ωsupp can generalize, thanks to the hierarchical model equation 1.
Theorem 3.1 (Composition Generalization). We assume the data-generating process equation 1.
The discrete concept combination d is composable (i.e., d ∈ Ωcomp) if for each continuous latent
variable z ∈ z, its parents’ distribution support supp(Pa(z)|d) is contained by supp(Pa(z)|d̃) for
some combination d̃ ∈ Ωsupp on the support, i.e., supp(Pa(z)|d) ⊆ supp(Pa(z)|d̃).

Hierarchical structures benefit compositional generalization. The key insight is that d̃ ∈ Ωsupp

can be chosen specifically for each latent variable z ∈ z.

Intuitively, if generating a composition d ∈ Ωcomp (e.g., “peacock eating rice”) entails two variables
z1 (e.g., “beak & rice”) and z2 (e.g., “colorful tail”), we only require the two concepts z1 and z2
to appear separately in some supported discrete concepts d̃1, d̃2 ∈ Ωsupp. For instance, d̃1 and
d̃2 could be “chicken eating rice” and “peacock”. This is a direct application of causal modularity
where we independently transfer and utilize the modules of z1 and z2 to create the novel combina-
tion d ∈ Ωcomp. Thanks to the hierarchical structure, each observed variable x (i.e., pixels) receives
influences from multiple top-level concepts in z1 through a composition of nonparametric transfor-
mations along the hierarchical process, capable of capturing complex interactions of these concepts.
This is because the hierarchical model allows for transferring low-level modules shared across dis-
tinct high-level concept combinations. For instance, we can utilize the low-level module of “beak

1We view multidimensional variables as sets when appropriate (e.g., x as {xi}i∈[d(x)]).
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& rice” learned from the high-level concept “chicken eating rice” to render “peacock eating rice”.
Since these transferable low-level modules are learned from data, they are flexible enough to en-
code the natural interaction as needed. In contrast, prior work Wiedemer et al. (2024a); Lachapelle
et al. (2023); Brady et al. (2024) only permits each x to embody minimal concept interactions (i.e.,
parametric functions like additions), resulting in a trade-off between compositionality and repre-
sentative power. In addition, the minimal change principle indicates that high-level concepts could
share many low-level modules and differ only in a small set of concepts. In Figure 1, “chicken” and
“peacock” share “beak” and “wings” and differ in a few concepts like “colorful tail”. Consequently,
only a small fraction of modules need to transfer, making the composition more plausible.

Composability and sparsity. Theorem 3.1 highlights the crucial role of the graphical model’s
sparsity for compositional generalization: a sparse model features smaller parental sets Pa(z) which
impose fewer constraints for the module transfer. This makes it more likely to find a d̃ ∈ Ωsupp on
the support that includes its parents’ support supp(Pa(z)|d) for each variable z. Thus, hierarchical
models with sparser graphs offer stronger compositional capability. This insight naturally suggests
sparse regularization during model learning, which we implement in Section 4.

3.2 CAUSAL MODEL IDENTIFICATION

In Section 3.1, we have discussed the compositional properties of hierarchical data-generating pro-
cesses, where we assume access to the true latent variables z and ϵ. Here, we establish learning
guarantees for recovering the true variables and the hierarchical graph structure (up to certain equiv-
alent classes) from the observed image-text distribution p(x,d).

We first define identifiability, which formalizes the equivalent class to which our learned represen-
tation recovers the true representation.

Definition 3.2 (Component-wise Identifiability). Let z ∈ Z and ẑ ∈ Z be variables under two
model specifications θ and θ̂ respectively. We say that z and ẑ are identified component-wise if
there exists a permutation π such that for each i ∈ [n(z)], ẑi = hi(zπ(i)) where hi is invertible.

Here, θ represents the true model and θ̂ represents the learned version. Under the component-wise
identifiability, our learned representation ẑi captures complete information about a single variable
zπ(i) and no information from other variables zj with j ̸= π(i). This notion of identifiability is
broadly adopted in the nonlinear independence component analysis literature (ICA) (Hyvarinen &
Morioka, 2016; Hyvarinen et al., 2019).

In the following, we introduce and interpret conditions of the data-generating process that lead to
component-wise identifiability over all the latent variables z.

Remarks on the problem and our contribution. Identifying the latent hierarchical models has
long been a challenging task. Much previous research has focused on hierarchical models with dis-
crete variables (Pearl, 1988; Zhang, 2004; Choi et al., 2011; Gu & Dunson, 2023; Kong et al., 2024)
or assumes linear relations among variables (Xie et al., 2022; Huang et al., 2022; Dong et al., 2024;
Anandkumar et al., 2013). Unfortunately, both linearity and discreteness could be too restrictive
to model complex real-world distributions of interest in this work (e.g., high-dimensional image
distributions). Closely related to our setting is prior work Kong et al. (2023) that admits nonlin-
ear relations among the latent variables. They utilize conditional independence and sparse graphical
conditions to provide identifiability guarantees for subspaces of latent variables, where latent dimen-
sions can be entangled within certain groups. While informative in many use cases, such subspace
identifiability fails to reflect the granular graphical structure among individual concepts across lev-
els. For instance, multiple concepts at the same level (e.g., “eyes” and “nose”) may be mixed into
a single subspace, compromising the transferability of these individual concepts and limiting com-
positionality. In contrast, we utilize the auxiliary information (e.g., the discrete concepts d) and
assume that latent variables influence each other in a non-trivial manner, which we formalize in
Condition 3.3-iv. These conditions allow us to achieve component-wise identification (as opposed
to the subspace identification (Kong et al., 2023)) and fully identify the graphical structure, which is
instrumental for compositional generalization.

Condition 3.3 (Identification Conditions).

i [Invertibility]: There exists a smooth and invertible map gl : (zl, ϵl) 7→ x for l ∈ [0, L].
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ii [Smooth Density]: The probability density function p(zl+1|zl) is smooth.

iii [Conditional Independence]: Components in zl+1 are independent given zl: p(zl+1|zl) =∏
n p(zl+1,n|zl).

iv [Sufficient Variability]: For each value of zl+1, there exist 2n(zl+1) + 1 values of zl, i.e., z(n)l

with n = 0, 1, . . . , 2n(zl+1)+1, such that the 2n(zl+1) vectors w(zl+1, z
(n)
l )−w(zl+1, z

(0)
l )

are linearly independent, where vector w(zl+1, zl) is defined as follows:

w(zl+1, zl) =
(∂ log p (zl+1|zl)

∂zl+1,1
, . . . ,

∂ log p (zl+1|zl)
∂zl+1,n(zl+1)

,
∂2 log p (zl+1|zl)

(∂zl+1,1)2
, . . . ,

∂2 log p (zl+1|zl)
∂(zl+1,n(zl+1))

2

)
.

Discussion and interpretation. Condition 3.3-i guarantees that the observed variables x fully pre-
serve the information in z, which is necessary since our goal is to recover z from x. Intuitively,
the information accumulates from top to bottom in the hierarchical model and ultimately mani-
fests as the observed variable x. This is plausible for many applications where x (e.g., images)
can be very high-dimensional and information-rich. This condition is commonly employed in ICA
literature (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020b;a; von
Kügelgen et al., 2021; Kong et al., 2023). Condition 3.3-ii,iii are also standard in the ICA literature.
In particular, Condition 3.3-ii is a mild regularity condition on the conditional distributions, allow-
ing us to measure distribution variations with density function derivatives. Condition 3.3-iii assumes
that the statistical dependence among latent variables on the same level originates from higher-level
variables. For instance, the dependence between a dog’s “eye” and “nose” features stems from
a higher-level concept like “breed”. Condition 3.3-iv formalizes the intuition of “sufficient varia-
tion” among the latent variables. In particular, the distributions of distinct low-level concepts zl+1,i,
zl+1,j vary differently in response to their parent variables in zl. For example, low-level concepts
like “eye” and “nose” exhibit different patterns of change when the concept “face” varies, which
enables humans to recognize them as separate concepts. This condition is adopted and discussed
extensively in prior work (Hyvarinen et al., 2019; Khemakhem et al., 2020a; Kong et al., 2022).

Theorem 3.4 (Causal Module Identification). We assume the data-generating process equation 1.
Under Condition 3.3, we attain component-wise identifiability of zl and the graphical structures G
up to the index permutation at each level l.

Proof sketch. The crux is leveraging the influences from the high-level to the low-level latent
variables in the hierarchical model. Specifically, we utilize the textual description d as the initial
source of variation to identify the adjacent concepts z1. With z1 identified, we can then use these
variables to identify its children concepts z2. This process repeats through each level until we
have fully identified all latent variables component-wise with permutation indeterminacy within
each level. Classic causal discovery algorithms (e.g., PC algorithm (Spirtes et al., 2000)) can then
process these identified latent variables to determine the graphical structure.

Implications. Theorem 3.4 guarantees that we can recover the hierarchical data-generating process
from the observed distribution p(d,x). With Theorem 3.1, we demonstrated that if the data generat-
ing process of the text-image distribution p(x, z) satisfies certain favorable properties (e.g., sufficient
variability in Condition 3.3-iv), it is theoretically possible to recover this latent process from data.
This recovery gives rise to compositional generalization capabilities as shown in Theorem 3.1.

4 INTEGRATING HIERARCHICAL STRUCTURES INTO DIFFUSION MODELS

In this section, we integrate key insights from Section 3 into existing diffusion models (Rombach
et al., 2022) to enhance compositionality.

Hierarchical levels and diffusion steps. We conceptualize a diffusion model as a family of mod-
els {ft}Tt=1, where each ft restores xt+1 from its noisier version xt by optimizing the variational
evidence lower bound objective (Sohl-Dickstein et al., 2015; Ho et al., 2020):

Ld :=

T−1∑
t=1

KL
(
q(xt|xt+1,x0) ∥ pft+1

(xt|xt+1,y)
)
− log pf1(x0|x1,y), (2)
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Figure 4: HierDiff. We first generate low-level text descriptions {y(m)
0 }Mm=1 from the original

global description y and obtain their embeddings u and {u(m)
0 }Mm=1. We average the M low-level

cross-attention outputs {A(m)
0 }Mm=1 and interpolate it with the global cross-attention-map AT−1

according to a step-dependent function s(t). The resultant At smoothly transitions from AT−1

to A0 in the generating process. We impose non-overlapping constraints to minimize unnecessary
interactions among low-level concepts.

where q(xt|xt+1,x0) denotes the reverse diffusion process, KL stands for KL divergence, and y
refers to conditioning information (e.g., text). As interpreted in prior work (Kong et al., 2024), ft+1

extracts representation zS(t+1) from the noisy data xt+1, and then employs zS(t+1) and additional
information y to recover xt. Here, zS(t) denotes latent variables with indices in a t-dependent set
S(t). Higher noise levels (large t) corrupt low-level concepts in xt, so the representation zS(t) only
retains high-level concepts. Therefore, a higher noise level (a larger t) corresponds monotonically
to a higher concept level S(t). In Figure 3, if noise level t just suffices to obscure low-level concepts
z2 (e.g., “beak”), then zS(t) corresponds to high-level concepts z1 (e.g., “peacock”).

Hierarchical concept injection with sparsity control. Conventional approaches condition all gen-
eration steps with a global text prompt y (Rombach et al., 2022). However, our hierarchical-level
interpretation suggests that only the information gap between zS(t+1) and zS(t) is needed at step
t. Applying a global, invariant conditioning y can limit the model’s capacity, since it is compelled
to disentangle and extract the desired information at each step. Moreover, this approach overlooks
the naturally sparse structures in the hierarchical model, which may create unnecessary concept in-
teractions and compromise composability as discussed in Section 3. Based on these insights, we
formulate two key goals to improve existing methods:

1. Goal 1: Inject step-specific information yt;
2. Goal 2: Encourage sparse interactions among concepts.

For Goal 1, we produce detailed textual descriptions y0 := {y(m)
0 }Mm=1 for M low-level concepts

from the original high-level textual description y. This can be accomplished via a language model,
as shown in prior work Feng et al. (2024); Lian et al. (2023); Wu et al. (2023); Yang et al. (2024b)
(see more in Appendix C.2). We treat these low-level descriptions as the information to be injected
at the final step from x1 to x0 and the high-level description y as information at the initial step from
xT to xT−1. For the intermediate steps 0 < t < T − 1, we interpolate the cross-attention outputs
between the global text y and xt, denoted as AT−1 := XAttn(xt,y), and cross-attention outputs
between low-level descriptions {y(m)

0 }Mm=1 and xt, denoted as A(m)
0 := XAttn(xt,y

(m)
0 ):

At := (1− s(t)) ·AT−1 +
s(t)

M
·

M∑
m=1

A
(m)
0 , (3)

where s(t) is a monotonically decreasing function with s(0) = 1 and s(T − 1) = 0. We apply this
modified cross-attention At at step t for conditioning. In this manner, we control the granularity of
the injected information to match the diffusion step (i.e., high-level concepts at large steps).

For Goal 2, we impose sparse regularization Ln on the overlaps among cross-attention maps
{H(m)

0 }Mm=1 from low-level descriptions {y(m)
0 }Mm=1 to minimize unnecessary spatial interactions

among the M low-level concepts:

Ln :=
∑

m,n∈[M ]:m ̸=n

D
(
H

(m)
0 ,H

(n)
0

)
, (4)
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SD 1.5 ELLA HierDiff SD 1.5 ELLA HierDiff
A sleek, black rectangular
keyboard lies comfortably on the
luxurious beige carpet of a quiet
home office, bathed in the gentle
sunlight of early afternoon. …

… in the autumn park, where a
pair of worn brown boots stands
firm upon a bed of fallen orange
leaves. Attached to these boots are
two vibrant blue balloons, …

Adjacent to the cow, there is a
robust tree with a canopy of red
leaves and branches laden with
yellow fruit. The brushstrokes
suggest a gentle breeze …

… the iconic Sydney Opera House
with its distinctive white sail-like
structures, positioned beside the
towering Eiffel Tower, its iron
lattice work silhouetted …

A pyramid-shaped tablet made of a
smooth, matte grey stone stands in
the foreground, … Nearby, a
crescent-shaped swing hangs from
a sturdy tree branch, …

In a spacious loft with exposed
brick walls, … high-top
sneakers, … , contrast sharply with
the ornate, metallic vintage coffee
machine standing next to them.

PromptsPrompts

Figure 5: Text-to-image generation results. We highlight distinguishing tokens.

Table 1: Evaluation results on DPG-Bench (Hu et al., 2024). All baseline results are obtained
from Hu et al. (2024).

Model Average Global Entity Attribute Relation Other
SD v2 Rombach et al. (2022) 68.09 77.67 78.13 74.91 80.72 80.66
PixArt-α Chen et al. (2023) 71.11 74.97 79.32 78.60 82.57 76.96
Playground v2 Li et al. (2023a) 74.54 83.61 79.91 82.67 80.62 81.22
SD v1.5 Rombach et al. (2022) 63.18 74.63 74.23 75.39 73.49 67.81
ELLA Hu et al. (2024) 74.91 84.03 84.61 83.48 84.03 80.79
HierDiff 79.56 87.81 86.37 86.86 87.76 84.41

where the DICE loss (Sudre et al., 2017; Yeung et al., 2023) D(H1,H1) :=
2·tr(H1H2)

∥H1∥1+∥H2∥1
measures

the spatial overlap between attention maps H1 and H2. Under this regularization, concepts overlap
sparsely with each other at each level, promoting sparse connectivity and thus composability.

The overall training objective becomes:

L := Ld + λ · Ln, (5)

where λ controls the regularization Ln. We refer to our method as HierDiff (Figure 4).

Theory & practice. Our theoretical conditions and implementation are related as follows: 1) Hi-
erarchical processes (Eq. 1 & Cond. 3.3-iii): The iterative diffusion chain naturally respects this
hierarchical structure. 2) Sparse connectivity (Thm. 3.1): We enforce this key condition by mini-
mizing attention overlap, an effective and practical surrogate as validated in our ablations. 3) Level-
dependent transformations (Eq. 1): Time-indexed diffusion models provide the required flexible,
level-dependent transformations. 4) Invertibility (Cond. 3.3-i): The model’s reconstruction objec-
tive inherently promotes invertibility. While other conditions (Condition 3.3-ii,iv) are assumptions
on the data distribution itself. Although directly verifying the latent graph structure on real-world
data is presently challenging, our work provides a clear mapping from abstract theoretical principles
to concrete implementation choices. The strong empirical performance of HierDiff, as we will show
in Section 5, validates the utility of our framework. Thus, this foundational understanding serves as
a roadmap for future progress in compositional generalization.

5 EXPERIMENTS

Setup. We fine-tune HierDiff from Stable Diffusion v1.5 Rombach et al. (2022). Following Hu
et al. (2024), we replace the CLIP text encoder with FLAN-T5-xl (Raffel et al., 2020) for enhanced
text understanding capabilities, which we freeze during training. For training, we use the public
LayoutSAM dataset Zhang et al. (2024a), which contains both the high-level text y and correspond-
ing low-level, local descriptions y

(m)
0 . At test time, given text y, we apply QWEN-v2.5 Yang

et al. (2024a) to generate low-level local text descriptions similar to the training dataset (details in
App. C.2). We adopt the interpolation function s(t) = cos

(
π·t

2(T−1)

)
, the number of local concepts

M = 3, and weight λ = 1e−4 throughout our experiments. We adopt DPG-Bench (Hu et al., 2024),
which introduces five metrics, namely, Global, Entity, Attributes, Relation, and Other. The dataset
comprises 1, 065 text prompts, each involving multiple objects/concepts with various relations.
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w/o TD w/o SR HierDiff

A ripe, golden pineapple sits 

centered on a light wooden 

table, with a single green-

bottled beer to its left and a 

pair of identical bottles to its 

right. The beers have droplets 

of condensation on their 

surfaces, indicating they are 

chilled. The pineapple's spiky 

green leaves contrast with the 

smooth, cylindrical shape of 

the beer bottles.

Prompts

Generated
Image

Attention
Map 1

Attention
Map 2

Figure 6: Ablation studies.

Table 2: Ablation studies on the DPG-Bench
Hu et al. (2024). TD and SR stand for time depen-
dence and sparsity regularization, respectively.

Metrics -w/o TD -w/o SR HierDiff
Global 88.84 84.30 ↓ 87.81
Entity 85.73 ↓ 85.52 ↓ 86.37
Attribute 85.46 ↓ 87.14 86.86
Relation 84.83 ↓ 87.03 ↓ 87.76
Other 85.16 83.48 ↓ 84.41

Comparison with baselines. In Table 1, HierDiff outperforms baseline methods across all evalua-
tion metrics, demonstrating its superior capability in handling complex prompts involving multiple
concepts and relationships. Figure 5 visualizes the results (more in Appendix C.3). For the first
prompt, only HierDiff successfully captures the “keyboard” concept and correctly renders its at-
tributes (e.g., “black”, “sleek”), while baselines completely overlook this concept.

Ablation studies. We conduct ablation studies by sequentially removing the sparsity regularization
Ln and then the time dependence (i.e., using only the global text y). Table 2 shows that both com-
ponents contribute positively to the overall performance. Notably, the time dependence significantly
aids the model to understand complex relations among concepts (“Relation” from 84.83 to 83.03),
demonstrating the benefits of hierarchical structure to organize multiple concepts. The sparsity reg-
ularization allows for precise control of individual concepts, universally improving all metrics. Fig-
ure 6 visually demonstrates these findings. Without sparsity constraints, the model’s attention map
lumps the two bottles together. Comparing the attention maps from two local prompts, we observe
that the sparsity constraint reduces the overlapping areas, enabling the model to control concepts
separately. Without the time dependence, the model fails to capture the relation between concepts,
resulting in a confused mixture of “pineapple” and “beer”. See more examples in Appendix C.4.

Figure 7: Local cross-attention maps over steps.

Table 3: Comparison with SOTA T2I models.

Method DPG ↑
DALLE 3 (OpenAI, 2023) 83.5
SD3-medium (Esser et al., 2024) 84.1
FLUX-dev (B. F. Labs, 2024) 84.0
FLUX-schnell (B. F. Labs, 2024) 84.8
SANA-1.0 (Xie et al., 2024) 83.6
SANA-1.5 (Xie et al., 2025) 84.7
HierDiff-DiT 84.9

Scalability. To validate the scalability of our approach, we extend the implementations from the U-
Net architecture to diffusion transformers with 4.8B parameters. As shown in Table 3, after scaling,
we can achieve comparable performance with billion-scale models. Details in Appendix C.1.

Visualization of composition. Figure 7 visualizes the cross-attention maps from two low-level text
descriptions (“chicken” and “rice”) across the diffusion steps with our model. We can observe that
under the two local-level text descriptions gradually shift from dispersed global attentions to more
focused local attentions, and the intersection remains minimal. This verifies that our method can in-
deed facilitate composition by proper decomposition and re-composition with minimal interference.

6 CONCLUSION AND LIMITATIONS

In this work, we connect compositional generalization with humans’ cognitive process of drawing
analogies. We formalize this process via a hierarchical latent model that embodies causal modu-
larity and minimal-change principles. Our framework accommodates complex concept interactions
without restrictive assumptions. These theory insights lead to HierDiff, a T2I model that possesses
competitive composition capabilities. Limitations. Condition 3.3-iii assumes no direct causal influ-
ences among variables on each hierarchical level, which may restrict the representative power. One
may mitigate this with additional hierarchical levels to convert within-level to cross-level influences,
or alternatively, consider more involved conditions in recent work (Zhang et al., 2024b).
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Wieland Brendel. Provably learning object-centric representations. In International Conference
on Machine Learning, pp. 3038–3062. PMLR, 2023.
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Appendix

The use of large language models (LLMs). We employ LLMs to locate typos and polish certain
text in the paper. LLMs play no part in the idealization.

A RELATED WORK

Compositional generalization. Compositional generalization has garnered significant attention
from the generative model community, especially for text-to-image generation. One avenue explores
fine-tuning text-to-image models by incorporating feedback from image understanding systems as a
form of reward (Huang et al., 2024; Xu et al., 2024; Sun et al., 2023; Fang et al., 2023). However,
this strategy may be limited by the text comprehension capabilities of models like CLIP. Another
approach involves adjusting the models’ cross-attention mechanisms to align with the spatial and se-
mantic details specified in the prompts (Liu et al., 2022; Bar-Tal et al., 2023; Li et al., 2023b; Rassin
et al., 2024; Chefer et al., 2023; Feng et al., 2023a; Chen et al., 2024; Xie et al., 2023; Kim et al.,
2023). This approach relies on the interpretability of the foundational models and often results in
only broad, suboptimal control over the generated images. By leveraging the planning and reasoning
strengths of language models, researchers have also broken down complex prompts into multiple re-
gional descriptions, providing more precise conditions to guide the image generation process (Cho
et al., 2023; Feng et al., 2023b; Wang et al., 2024; Yang et al., 2024b; Lian et al., 2023; Feng et al.,
2024). This decomposition aids in creating images that more accurately reflect the detailed compo-
nents of the prompts. These methods operate at the inference time and do not fundamentally learn
disentangled concepts. Recent work (Hu et al., 2024; Wu et al., 2023) utilizes diffusion timesteps
to modify the text embedding for refined generation control. Nevertheless, Hu et al. (2024) do not
consider the spatial relations among concepts and fully rely on the pre-trained diffusion model’s
capacity. Wu et al. (2023) introduce additional inference-time optimization overhead and depend
on the CLIP score as the optimization objective, which limits the generation quality with CLIP’s
capacity. Guided by our theoretical insights, our work imposes proper constraints and modifications
on the cross-entropy to learn disentangled concepts and their relations.

Although empirical studies are abundant in the field (Du & Kaelbling, 2024; Liu et al., 2022; Zhang
et al., 2024c; Hu et al., 2024; Huang et al., 2023; Bar-Tal et al., 2023; Yang et al., 2024b), the-
oretical understanding remains limited and often hinges on restrictive assumptions about concept
interactions. Specifically, Brady et al. (2023); Wiedemer et al. (2024a) consider concepts that affect
disjoint pixel regions, effectively eliminating interaction between them. Lachapelle et al. (2023)
models the influences of concepts on the pixel space as purely additive, an approach that Brady et al.
(2024) extends to include second-order polynomial terms. Additionally, Wiedemer et al. (2024b)
assumes direct access to the function governing concept interactions. These theoretical works also
tend to overlook the varying levels of abstraction among concepts and their relationships within
the latent space. In contrast, thanks to the hierarchical structure, our theory admits compositions
of transformations across hierarchical levels, allowing for complex interaction among concepts at
different hierarchical levels.

Latent hierarchical model identification. Modeling complex real-world data requires capturing
hierarchical structures among latent variables. Prior work has explored identification conditions for
such hierarchies with continuous latent variables influencing each other linearly (Xie et al., 2022;
Huang et al., 2022; Dong et al., 2024; Anandkumar et al., 2013). Other studies focus on fully discrete
cases, limiting their applicability to continuous data like images (Pearl, 1988; Zhang, 2004; Choi
et al., 2011; Gu & Dunson, 2023). Moreover, latent tree models connect variables through a single
undirected path (Pearl, 1988; Zhang, 2004; Choi et al., 2011), which may oversimplify complex
relationships. Closely related to ours, Kong et al. (2023) address nonlinear, continuous latent hierar-
chical models. However, their framework cannot identify latent variables component-wise, leaving
room for concept entanglement. In contrast, we provide component-wise identifiability for latent
variables and the graphical structures, along with transparent conditions for the data-generating pro-
cess.
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B PROOFS FOR THEORETICAL RESULTS

B.1 PROOF FOR THEOREM 3.1

Theorem 3.1 (Composition Generalization). We assume the data-generating process equation 1.
The discrete concept combination d is composable (i.e., d ∈ Ωcomp) if for each continuous latent
variable z ∈ z, its parents’ distribution support supp(Pa(z)|d) is contained by supp(Pa(z)|d̃) for
some combination d̃ ∈ Ωsupp on the support, i.e., supp(Pa(z)|d) ⊆ supp(Pa(z)|d̃).

Proof. By definition, the concept combination d is composable (i.e., d ∈ Ωcomp) when the two
alternative model specifications θ and θ̂ agree on this specific d, i.e., ĝz = gz for any z ∈ z over
its inputs’ support Sz(d) := supp(Pa(z)|d)× supp(ϵz). We note that each exogenous variable ϵz
is independent of Pa(z) and its distribution remains invariant to the discrete variable d. We denote
this relation as θ|d = θ̂|d.

To derive this relation, we first show that under the assumption of the hierarchical data-generating
process equation 1, the specific model θ :=

(
p(z1,d), {gv}v∈V\(z1,d)

)
’s behavior on the discrete

concept space Ωcomp is fully determined by its behavior on the support Ωsupp. That is, if two
specifications θ and θ̂ follow the hierarchical model assumption equation 1 and their behavior match
over the support Ωsupp, this agreement would extend to Ωcomp: ∀d̃ ∈ Ωsupp,θ|d̃ = θ̂|d̃ =⇒ ∀d ∈
Ωcomp,θ|d = θ̂|d.

To this end, we assess the elementary generating function z := gz(Pa(z), ϵz) for every z ∈ z
present in the hierarchical model. Although latent variables {zl}l∈[L+1] form a Markov chain, the
first module p(z1|d) may yield distinct supports supp(z1|d) across various values of d (e.g., d = 0

for absence of the concept). Consequently, the matching of two models θ and θ̂ is only partially
supported and depends on the specific value of d. We characterize a potentially larger composable
space Ωcomp given their matching over the training support Ωsupp. Under the theorem condition, we
have supp(Pa(z)|d) at the specific d is fully contained by supp(Pa(z)|d̃(d)) at some d̃(d) ∈ Ωsupp

dependent on d, i.e.,

supp(Pa(z)|d) ⊆ supp(Pa(z)|d̃(d)). (6)

As the two models gz and ĝz match over the discrete support Ωsupp, this equality relation in equa-
tion 6 implies that this equality extends to d̃(d):

gz = ĝz,∀(Pa(z), ϵz) ∈ Sz(d̃(d)). (7)

As the relation in equation 7 holds true for all modules of θ and θ̂, the equality extends to the entire
hierarchical model, i.e., θ|d = θ̂d for d ∈ Ωcomp, which concludes our proof.

B.2 PROOF FOR THEOREM 3.4

Condition 3.3 (Identification Conditions).

i [Invertibility]: There exists a smooth and invertible map gl : (zl, ϵl) 7→ x for l ∈ [0, L].

ii [Smooth Density]: The probability density function p(zl+1|zl) is smooth.

iii [Conditional Independence]: Components in zl+1 are independent given zl: p(zl+1|zl) =∏
n p(zl+1,n|zl).

iv [Sufficient Variability]: For each value of zl+1, there exist 2n(zl+1) + 1 values of zl, i.e., z(n)l

with n = 0, 1, . . . , 2n(zl+1)+1, such that the 2n(zl+1) vectors w(zl+1, z
(n)
l )−w(zl+1, z

(0)
l )

are linearly independent, where vector w(zl+1, zl) is defined as follows:

w(zl+1, zl) =
(∂ log p (zl+1|zl)

∂zl+1,1
, . . . ,

∂ log p (zl+1|zl)
∂zl+1,n(zl+1)

,
∂2 log p (zl+1|zl)

(∂zl+1,1)2
, . . . ,

∂2 log p (zl+1|zl)
∂(zl+1,n(zl+1))

2

)
.
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Theorem B.1 (Causal Module Identification). We assume the data-generating process equation 1.
Under Condition 3.3, we attain component-wise identifiability of zl and the graphical structures G
up to the index permutation at each level l.

Proof. We introduce Lemma B.1 from Kong et al. (2022), which identifies a trivial hierarchical
model with only one latent level, i.e., L = 1.

Lemma B.1 (Single-level Identification (Kong et al., 2022)). We assume the following data-
generating process equation 1:

z ∼ p(z|u), ϵ ∼ p(ϵ), x := g(z, ϵ), (8)

where ϵ refers to the exogenous variable independent of z and g stands for the generating function.
Under Condition 3.3 with L = 1 and z0 = u, we attain component-wise identifiability of z1.

In the general hierarchical case, we view the observed discrete variable d as the top-level variable u
in equation 8 as the starting point. Lemma B.1 implies the component-wise identifiability of z1. We
then iteratively apply Lemma B.1 to identify level zl+1 sequentially from top to bottom equation 1
by viewing the previously identified level zl as the conditioning variable u in equation 8. This
reasoning gives the component-wise identifiability results for the entire hierarchical model.

Since all the latent variables {zi}n(z)i=1 , we can view them as the observed variables. The identifi-
ability of the graphical structure G follows from classic causal discovery methods (i.e., PC algo-
rithm (Spirtes et al., 2000)).

C ADDITIONAL DETAILS FOR EXPERIMENTS

C.1 SETUP DETAILS

We train the model with a batch size of 800 and a learning rate of 5e − 5. To inject multiple text
conditions, we replicate the key and value linear layers in cross-attention, inspired by IP-Adapter
Ye et al. (2023). During testing, we prompt QWEN2.5 (Yang et al., 2024a) with the instruction
“given a prompt X, segment it into three non-overlap descriptions (i.e., any two descriptions are not
describing the same object), rewrite each subcaption to avoid interactions across each subcaption.”
For the experiments in Table 3, we employ the LayoutSAM dataset (Zhang et al., 2024a) and finetune
SANA-1.5 (Xie et al., 2025) with a batch size of 576 for 20000 steps at a learning rate of 5e − 5.
We choose λ from {0.1, 1}.

C.2 LANGUAGE MODEL USAGE

We follow established practices Feng et al. (2024); Lian et al. (2023); Wu et al. (2023); Yang
et al. (2024b) to instruct QWENv2.5 (Yang et al., 2024a) with a fixed instruction. For example,
QWENv2.5 rewrites “a peacock is eating ice cream while...” into “A peacock is in the act of eat-
ing”, ..., “a serving of ice cream is being visibly diminished”. In our evaluation, we’ve found that
QWEN2.5 performs decently for most examples, and more advanced models (Gemini 2.5 Flash,
Claude 4) are superior on rare, challenging examples involving dense interactions of multiple con-
cepts (e.g., detailed description of multiple mutually overlapping clothing items on a person). To
quantify the performance of QWEN2.5, we instruct Claude 4 to evaluate the presence of high-level
concepts in captions processed by QWEN2.5 and observe a 96% success rate over 100 DPG eval-
uation prompts. We believe that the advancement of language models could further improve the
performance.

C.3 ADDITIONAL SAMPLES FOR FIGURE 5

Figure 8 and Figure 9 display generated examples from HierDiff and baselines, with full text
prompts.
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C.4 ADDITIONAL SAMPLES FOR FIGURE 6

Figure 10 displays more examples for the ablation experiments in Figure 6.

C.5 MORE EMPIRICAL UNDERSTANDING

While implicit models can be highly expressive, they can struggle with compositional generalization
as many solutions might fit the training data but not generalize beyond. Our work introduces a
theoretically motivated sparsity constraint (Eq. 5) to select more generalizable solutions. Following
your suggestion, we’ve added fine-grained qualitative analysis in Fig. 11. In Fig. 11(a), our model
attends to “cat” (L1) and “sunglasses” (L2) separately, and the baseline attends to all regions and
omits “sunglasses”. Similarly, in Fig. 11(b), our model, with sparse constraints focusing attention
(L1 on “bear” and L2 on “cat”), renders both; the baseline’s simultaneous generation misses “cat”.
The analysis also highlights cases challenging to our model, such as the difficulty in decomposing
words and printing the resultant letters correctly (L1 at 901 covers all letters simultaneously) in
Fig. 11(c). While extreme sparsity can affect performance in dense interaction scenes (e.g., missing
“herb” in Fig. 11(d)), the model’s superior performance over the baseline on examples here and all
benchmarks confirms its robustness for these scenarios.
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Prompt SD1.5 Rombach et al. (2022) ELLA Hu
et al. (2024) Ours

A sleek, black rectangular keyboard lies comfort-
ably on the luxurious beige carpet of a quiet home
office, bathed in the gentle sunlight of early after-
noon. The keys of the keyboard show signs of fre-
quent use, and it’s positioned diagonally across the
plush carpet, which is textured with subtle patterns.
Nearby, a rolling office chair with a high back and
adjustable armrests sits invitingly, hinting at a quick
break taken by its usual occupant.

In the fading light of late afternoon, a scene un-
folds in the autumn park, where a pair of worn
brown boots stands firm upon a bed of fallen orange
leaves. Attached to these boots are two vibrant blue
balloons, gently swaying in the cool breeze. The
balloons cast soft shadows on the ground, nestled
among the trees with their leaves transitioning to
auburn hues. Nearby, a wooden bench sits empty,
inviting passersby to witness the quiet juxtaposition
of the still footwear and the dancing balloons.

A surreal composite image showcasing the iconic
Sydney Opera House with its distinctive white sail-
like structures, positioned improbably beside the
towering Eiffel Tower, its iron lattice work silhou-
etted against the night. The backdrop is a vibrant
blue sky, pulsating with dynamic energy, where
yellow stars burst forth in a dazzling display, and
swirls of deeper blue spiral outward. The scene is
bathed in an ethereal light that highlights the con-
trasting textures of the smooth, shell-like tiles of the
Opera House and the intricate metalwork of the Eif-
fel Tower.

An impressionistic painting depicts a vibrant blue
cow standing serenely in a field of delicate white
flowers. Adjacent to the cow, there is a robust tree
with a canopy of red leaves and branches laden
with yellow fruit. The brushstrokes suggest a gen-
tle breeze moving through the scene, and the cow’s
shadow is cast softly on the green grass beneath it.

a pyramid-shaped tablet made of a smooth, matte
grey stone stands in the foreground, its sharp edges
contrasting with the wild, verdant foliage of the sur-
rounding jungle. nearby, a crescent-shaped swing
hangs from a sturdy tree branch, crafted from a pol-
ished golden wood that glimmers slightly under the
dappled sunlight filtering through the dense canopy
above. the swing’s smooth surface and gentle curve
invite a sense of calm amidst the lush greenery.

In a spacious loft with high ceilings and exposed
brick walls, the morning light filters through large
windows, casting a soft glow on a pair of trendy,
high-top sneakers. These sneakers, made of rugged
leather with bold laces, contrast sharply with the or-
nate, metallic vintage coffee machine standing next
to them. The coffee machine, with its intricate
details and polished finish, reflects the light beau-
tifully, setting a striking juxtaposition against the
practical, street-style footwear on the polished con-
crete floor.

Figure 8: More text-to-image generation results.
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Prompt SD1.5 Rombach et al. (2022) ELLA Hu
et al. (2024) Ours

An elegant pair of glasses with a unique, gold
hexagonal frame laying on a smooth, dark wooden
surface. The thin metal glints in the ambient light,
highlighting the craftsmanship of the frame. The
clear lenses reflect a faint image of the room’s ceil-
ing lights. To the side of the glasses, a leather-bound
book is partially open, its pages untouched.

Two multicolored butterflies with delicate, veined
wings gently balance atop a vibrant, orange tanger-
ine in a bustling garden. The tangerine, with its
glossy, dimpled texture, is situated on a wooden ta-
ble, contrasting with the greenery of the surround-
ing foliage and flowers. The butterflies, appearing
nearly small in comparison, add a touch of grace to
the scene, complementing the natural colors of the
verdant backdrop.

Two sleek blue showerheads, mounted against a
backdrop of white ceramic tiles, release a steady
stream of water. The water cascades down onto OR-
ANGEa vivid, crisp green pearthat is centrally po-
sitioned directly beneath them. The pear’s smooth
and shiny surface gleams as the water droplets
rhythmically bounce off, creating a tranquil, almost
rhythmic sound in the otherwise silent bathroom.

In a modern kitchen, a square, chrome toaster with a
sleek finish sits prominently on the marble counter-
top, its size dwarfing the nearby red vintage rotary
telephone, which is placed quaintly on a wooden
dining table. The telephone’s vibrant red hue con-
trasts with the neutral tones of the kitchen, and its
cord coils gracefully beside it. The polished sur-
faces of both the toaster and the telephone catch the
ambient light, adding a subtle shine to their respec-
tive textures.

Two slender bamboo-colored chopsticks lie diago-
nally atop a smooth, round wooden cutting board
with a rich grain pattern. The chopsticks, tapered to
fine points, create a striking contrast against the cut-
ting board’s more robust and circular form. Around
the board, there are flecks of freshly chopped green
herbs and a small pile of julienned carrots, adding a
touch of color to the scene.

A cozy bathroom features a pristine, white claw-
foot bathtub on a backdrop of pastel green tiles. Ad-
jacent to the tub, a tower of soft, white toilet paper
is neatly stacked, glimmering gently in the diffuse
glow of the afternoon sunlight streaming through a
frosted window. The gentle curvature of the tub con-
trasts with the straight lines of the stack, creating a
harmonious balance of shapes within the intimate
space.

Figure 9: More text-to-image generation results.
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Prompt w/o TD w/o SR HierDiff

A vibrant pink pig trots through a snowy landscape,
a bright blue backpack strapped securely to its back.
The pig’s thick coat contrasts with the soft white
blanket of snow that covers the ground around it.
As it moves, the blue backpack stands out against
the pig’s colorful hide and the winter scene, creat-
ing a striking visual amidst the serene, frost-covered
backdrop.

An outsized dolphin with a sleek, gray body glides
through the blue waters, while a small, fluffy
chicken with speckled brown and white feathers
stands on the nearby sandy shore, appearing diminu-
tive in comparison. The dolphin’s fins cut through
the water, creating gentle ripples, while the chicken
pecks at the ground, seemingly oblivious to the vast
size difference. The stark contrast between the dol-
phin’s smooth, aquatic grace and the chicken’s ter-
restrial, feathered form is highlighted by their prox-
imity to one another.

Figure 10: More ablation studies. Without time-dependence (TD), the model fails to understand
the relationship among the objects in the prompt. Without sparsity regularization (SR), the influence
of each prompt could be large, e.g., the attention map of local prompt 1 covers the pineapple and
beers. Combining the two proposed designs, HierDiff generates images that accurately follow the
complex text prompt.
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A domestic cat with a 
sleek coat stands alert 
next to a plush brown 
teddy bear. ... a 
houseplant's green 
leaves ... .<L1>A 
domestic cat ...<L2>A 
plush brown teddy 
bear ...<L3>A 
houseplant's green 
leaves ...

(b) Cat and teddy bear

Ours SD 1.4

G L1 L2 L3 G

901

501

101

A ... calico ... a garden 
table ..., sports a pair 
of large, reflective 
aviator sunglasses ... 
orange and pink 
skies … <L1>A calico 
cat...<L2>A pair of 
large, reflective aviator 
sunglasses ...<L3> ... 
orange and pink 
skies …

(a) Cat with sunglasses

Ours SD 1.4

G L1 L2 L3 G

901

501

101

... photograph ... text 
spelling ‘hello’ ... fluffy 
material surrounds... 
arrangement is 
perfectly centered, 
...<L1> ... text spelling 
‘hello’ ...<L2> … fluffy 
material surrounds the 
photograph, ...<L3>
arrangement is 
centered ...

(c) Photograph with“hello”

Ours SD 1.4

G L1 L2 L3 G

901

501

101

A rustic wooden table 
... baked brown 
bread … purple 
eggplant. … napkin 
and an assortment of 
herbs...<L1>... the 
wood grain.<L2> ... 
brown bread... <L3> ... 
purple eggplant  ... 
napkin and an 
assortment of herbs.

(d) Multiple objects on the table

Figure 11: Fine-grained comparison between our method and Stable Diffusion 1.4. G and Li

indicate full caption and split captions (for our method), and indices denote diffusion steps (901 is
closer to noise). White indicates high attention scores.
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