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ABSTRACT

Contemporary evaluation techniques are inadequate for agentic systems. These
approaches either focus exclusively on final outcomes—ignoring the step-by-step
nature of the thinking done by agentic systems—or require excessive manual
labour. To address this, we introduce the Agent-as-a-Judge framework, wherein
agentic systems are used to evaluate agentic systems. This is a natural exten-
sion of the LLM-as-a-Judge framework, incorporating agentic features that en-
able intermediate feedback for the entire task-solving processes for more precise
evaluations. We apply the Agent-as-a-Judge framework to the task of code gen-
eration. To overcome issues with existing benchmarks and provide a proof-of-
concept testbed for Agent-as-a-Judge, we present DevAI, a new benchmark of
55 realistic AI code generation tasks. DevAI includes rich manual annotations,
like a total of 365 hierarchical solution requirements, which make it particularly
suitable for an agentic evaluator. We benchmark three of the top code-generating
agentic systems using Agent-as-a-Judge and find that our framework dramatically
outperforms LLM-as-a-Judge and is as reliable as our human evaluation baseline.
Altogether, we believe that this work represents a concrete step towards enabling
vastly more sophisticated agentic systems. To help that, our dataset and the full
implementation of Agent-as-a-Judge will be publically available at [REDACTED]

1 INTRODUCTION

Recent years have seen multimodal agentic systems move from occasionally being able to solve
small toy problems to being regularly deployed for challenging real-world problems (the dream of
most AI research). Yet, the current evaluation methods and the available benchmarks for agentic
systems are struggling to keep up with these rapid advances, dramatically slowing true progress.

We believe that the current issue with evaluating agentic systems stems from the lack of feedback
during the intermediate task-solving stages for these nontraditional systems. Agentic systems think
more like a human, often act step-by-step (Wooldridge, 1999) and often hosting very human-like
natural language discussions internally to solve problems (Zhuge et al., 2023). And thus agentic
systems should be evaluated like a human, with rich evaluative feedback which looks at the full
thought and action trajectory; evaluating an agentic system in the traditional way is like evaluating
a student using multiple-choice testing—a comparatively unreliable estimator (Park, 2010). For
example, while SWE-Bench (Jimenez et al.) is widespread, its evaluation method, which relies
solely on the final resolve rate for long-term automated repair tasks, does not effectively pinpoint
what is happening within agentic systems that affects the resolve rate. On the other hand, performing
a better evaluation with a human is prohibitively expensive. We instead propose that agentic systems
should be used to evaluate agentic systems. Inspired by LLM-as-a-Judge (Zheng et al., 2024; Fu
et al., 2024; Chen et al.), which uses LLMs to evaluate LLMs, we call this framework Agent-as-a-
Judge, of which it is a key extension to the world of agentic systems (see Figure 1). It not only retains
the cost-effectiveness of LLM-as-a-Judge but is also equipped with agentic features, allowing it to
provide rich intermediate feedback throughout the entire process, as it acts as an agentic system. We
apply the Agent-as-a-Judge systems to the problem of evaluating code generating systems—one of
the areas where agentic systems have looked the most promising recently.

In code generation, the development of benchmarks has also lagged behind the rapid advancement
of agentic systems. HumanEval (Chen et al., 2021), for example, focuses exclusively on algorithmic
problems, while MBPP (Austin et al., 2021) deals with simple programming tasks. Although they
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Upgrade

LLM-as-a-Judge

If the FED buys bonds in the secondary market (A) the
money supply will increase. (B) the money supply will
decrease. (C) the money supply will not be affected. (D)
the discount rate would be affected. Output the answer
only.

User

The Federal Reserve
buys bonds in the
secondary market to
increase the money
supply.

(A) the money supply 
will increase.

LLM A LLM B
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Judge LLM
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directly, following the required format of the
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Accuracy: 
10/10
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Accuracy: 
10/10
Instruct-Following: 
10/10

Agent-as-a-Judge

User (Agentic Task)

Judge Agent

Compare-based Judge 

Metrics-based Judge 

Time: 1800.6 s
Cost: $1.7
Requirements:
Satisfied 0/2 (0%)

Hi! Please follow the instruction and set up the script from the
blog https://www.factsmachine.ai/p/hidden-in-
plain-sight to generate 1080p images with hidden text
(“FUTURE,” in src/visualize.py. Save them in
results/ and verify the text is embedded.

Time: 500.7s
Cost: $1.5
Requirements:
Satisfied 2/2 (100%)

1 # src/visualize.py
2 def hide_text_in_image(image):
3 return None
4 print("Error 404: Cannot access …

1 # src/visualize.py
...
120 sd = StableDiffusion()
121 images = sd.run_inference.remote(
122 prompt=prompt,
123 negative_prompt=negative_prompt,

B is better because it runs and generates the required
files, fulfilling the user's request. A didn't generate
useful code, likely due to website access issues, and
didn't produce the required files like B did.

Interact

Agent A Agent B

EnvironmentWorkspace

Workspace

src

visualize.py
Act Act

Workspace

Workspace

src

visualize.py

results

hidden.jpg

Imitate

Replace

Human-as-a-Judge

User (Agentic Task)

User

Hi! Please follow the instruction and set up the script from the
blog https://www.factsmachine.ai/p/hidden-in-
plain-sight to generate 1080p images with hidden text
(“FUTURE,” in src/visualize.py. Save them in
results/ and verify the text is embedded.

As a User

As a Developer

It starts to run

Navigate the website

Jump to GitHub

Writing codes

Execute and get images

Interact

It starts to run

It can’t browse the web

Stuck in an strange loop

Codes are unreliable

Agent A Agent B
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Workspace

src
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After step-by-step checks, it‘s clear Agent B is better and
satisfy two requirements of the query. But comparing these
agents or evaluate them took too much time. As a developer,
this would be a bottleneck due to the heavy manual effort.

Figure 1: In this paper, we introduce the Agent-as-a-Judge framework wherein agentic systems are
used to evaluate agentic systems. We compare this to LLM-as-a-Judge, which uses LLMs to evaluate
LLMs and for which Agent-as-a-Judge is a natural evolution, and Human-as-a-Judge, where skilled
humans labourers manually evaluate an agentic system.

are useful for evaluating the basic skills of foundation models, neither of these two reflects the most
practical challenges developers face. As a step away from this, SWE-Bench (Jimenez et al.) did
introduce more realistic problems from GitHub, offering a fresh approach to evaluation, but still
primarily focuses on automated repairs tasks development process. Concerningly, recent research
shows that large language models (LLMs) can already solve over 27% of the tasks in SWE-Bench
without needing of advanced agentic systems (Xia et al., 2024). Equally concerning, recent work
has begun to introduce mechanisms designed specifically for the individual tasks in the SWE-Bench
dataset, leading to a lack of real-world generalization and violating Goodhart’s law: “When a mea-
sure becomes a target, it ceases to be a good measure” (Goodhart, 1976).

To address the aforementioned issues with the current benchmarks in code generation, we intro-
duce DevAI: the AI Developer Dataset, which contains 55 real-world comprehensive AI app de-
velopment tasks created by expert annotators. We apply three leading open-source code-generating
agentic frameworks to the tasks in DevAI: MetaGPT (Hong et al., 2024b), GPT-Pilot (Pythagora.io,
2023), and OpenHands (Wang et al., 2024b). We evaluate their performance using human judges (a
painstaking process), LLM-as-a-Judge (Zheng et al., 2024), and our Agent-as-a-Judge framework.

Through human evaluation, we found that GPT-Pilot and OpenHands were each able to satisfy about
29% of the task requirements in DevAI, but only one full task—showing that DevAI presents a good
level of challenge to current systems. When comparing our human judges with our automatic Agent-
as-a-Judge framework, we found that Agent-as-a-Judge aligns more closely with the consensus of
our human judges (90%) as compared to LLM-as-a-Judge (70%) in all cases tested. In addition,
we find that it aligns more closely with this ensemble than the individual human evaluators do,
suggesting that—not only is it suitable as a replacement for a human evaluator—but it could in fact
be more useful than an average lone human evaluator. In addition, considering the evaluation cost,
Agent-as-a-Judge reduces 97.72% of the time and 97.64% of the cost.

In summary, the principal contributions of this work are:
• We release the DevAI dataset, which consists of 55 comprehensive AI development tasks with

accompanying tags, individual hierarchical requirements, and individual preferences.
• We benchmark three top open-source code generation agentic frameworks in DevAI, providing a

more comprehensive analysis than previous evaluations of them.
• We introduce the general Agent-as-a-Judge concept, allowing agentic systems a fair and rich

evaluation without the traditional cost this would require in human labour.
• We demonstrate that an Agent-as-a-Judge outperforms an LLM-as-a-Judge and performs compa-

rably to human evaluators in our proof-of-concept.

This paper is structured as follows: Section 2 introduces DevAI to address the lack of benchmarks
for verifying agentic systems with intermediate processes. Section 3 establishes Human-as-a-Judge
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Figure 2: Distribution of DevAI Tasks (1) DevAI focuses on AI development tasks and so terms
such as “dataset,” “model,” and “results” are particularly common in the queries. (2) The first 53
tasks in DevAI all have a one-paragraph query but of varying lengths (note that task 54 and 55 are
excluded here as they are outliers, representing the longest and most complex tasks in the dataset).
(3) Each task has one or more tags. The prevalence of supervised learning here reflects the fact that
it dominates many machine learning applications. (4) SVM classifiers (Cortes, 1995) and LSTM
models (Hochreiter, 1997) are two of the most widely used architectures—a fact reflected by DevAI.

as a manual evaluation baseline, highlighting its limitations. Finally, Section 4 presents Agent-as-a-
Judge, a scalable solution to these challenges. More details are provided in Appendices A and B.

2 DEVAI: A DATASET FOR AUTOMATED AI DEVELOPMENT

2.1 MOTIVATION

Background The code generation domain is an area where agentic systems have seen significant
industrial deployment during the past 2 years (e.g., see Devin1 and Cursor2). However, in code
generation, there isn’t yet a benchmark that accurately reflects realistic user queries for developing
complete AI systems. We believe this is because of the difficulty to evaluate such complex, real-
world tasks. For example, while many companies advertise their systems based on the performance
of it on benchmarks like SWE-Bench (Jimenez et al.) (for automated repair) or HumanEval (Chen
et al., 2021) (for algorithmic tasks), these benchmarks cover only a small bit of an actual develop-
ment process. A benchmark that can evaluate the entire development process—ideally in a way that
can help understand the degree to which current AI methods can reduce human labour—is missing.

Topic We chose automated AI development as our main topic. While AI and ML tasks are often
more complex, they follow clear, standard procedures. For example, data processing typically comes
first in an AI pipeline, and performance reporting goes at the end. We believe this topological nature
can help better monitor the development process and provide useful signals to the agentic systems.

Goals An ideal benchmark should address critical issues in automated development by focusing
on three key factors. First, it should reflect practical software scenarios, where tasks are often too
complex for a single LLM, requiring human or agentic systems. Second, it should emphasize the
development process, not just final outcomes (e.g., pass@1 rates offer limited feedback and fail
to highlight intermediate problems). Lastly, the evaluation should be computationally cost-effective
and efficient, avoiding long training times or excessive manual oversight.

1https://www.cognition.ai/blog/introducing-devin
2https://www.cursor.com/
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Task 51: Devin AI Software Engineer Plants Secret Messages in Images

Query
Hi! Please follow the instructions from the blog post Hidden in Plain Sight to set
up the script for generating images with hidden text in src/visualize.py. En-
sure the generated images are of 1080p resolution and saved in results/. Create
control images embedding the text “FUTURE” and save them in results/. Please
manually verify that the hidden text is embedded in the images.

Requirements
■ R0

Criteria: Follow the instructions from the blog post Hidden in Plain Sight to set up
the script for generating images with hidden text in src/visualize.py.
Dependencies → {}

■ R1
Criteria: Ensure the generated images are of 1080p resolution and saved in
results/.
Dependencies → {R0}

■ R2
Criteria: Create control images embedding the text ”FUTURE” and save them in
results/.
Dependencies → {R1}

Preferences (Optional)
■ P0

Criteria: The system should be capable of learning and adapting to unfamiliar tech-
nologies and tools as required.

■ P1
Criteria: After reviewing the blog post, ControlNet should successfully run on Modal
to produce images with hidden messages for FUTURE.

Figure 3: A task example in DevAI. This task is adapted from a real-world demo given at https:
//www.cognition.ai/blog/introducing-devin. As this example shows, task require-
ments in DevAI are structured as a Directed Acyclic Graph (DAG), with nodes representing individ-
ual requirements and directed edges showing dependencies. More examples are in Appendix G.

2.2 THE DEVAI DATASET

Motivated by the ideas outlined above, we propose the DevAI dataset. DevAI consists of a carefully
curated set of 55 tasks, each defined by (1) a plain text query that describes an AI development task;
(2) a set of plain text requirements (for a total of 365 requirements), each with a set of dependencies
connecting them to other requirements; and (3) a set of preferences (for a total of 125 preferences)
which represent softer requirements. DevAI is structured so that an agentic system starts by re-
ceiving a user query to begin development. The system is then evaluated on how well it meets the
requirements, with preferences serving as optional, softer criteria. An example of one of the DevAI
tasks can be seen in Figure 3 and the full suite is available at [REDACTED]

The tasks in DevAI are relatively small-scale but cover commonly used key development techniques.
As shown in Figure 2, our tasks are tagged and cover a variety of key areas in AI: supervised
learning, reinforcement learning, computer vision, natural language processing, generative models,
and others. Each of the tasks is a real-world problem that could be given to a research engineer,
while simultaneously being relatively inexpensive computationally to run so as to reduce the cost
of evaluating a method on this benchmark. Details of the sample collection and human labeling
process for DevAI are provided in Appendix E.

The requirements belonging to each task represent a milestone in the comprehensive development
process and are arranged as a directed acyclic graph (similar to the work by He et al. (2021)), with
requirements such as visualizing results depending on correct data loading and modeling. This
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Table 1: Preliminary Statistics of AI Developers. We compare three leading open-source code
agents using metrics such as average cost, average time, and the average number of generated files.

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)
Basic Statistics

Version Data Interpreter (Hong et al., 2024a) 0.2.13 CodeAct v1.9 (Wang et al.)
(1) Average Cost $1.19 $3.92 $6.38
(2) Average Time 775.29s 1622.38s 362.41s
(3) Average Input Tokens 152863 606707 1252482
(4) Average Output Tokens 28546 59707 8457
(4) Average Saved Code Files 0.42 3.84 2.53
(5) Average Saved Code Lines 11.15 273.33 96.56
(6) Average Saved Files 4.42 5.91 3.60

allows for more comprehensive non-sparse feedback than a binary success metric. Furthermore, the
inclusion of milestones makes simple memorization not viable as a solution strategy as code that
performs the entire task is unlikely to exist online at this time.

2.3 PRELIMINARY BENCHMARK

We first conduct experiments to collect development outcomes from different frameworks, which
serve as baselines in the DevAI dataset. We test three of the most popular open-source frame-
works (which we will refer to as “AI developers”): MetaGPT (Hong et al., 2024b), GPT-
Pilot (Pythagora.io, 2023), and OpenHands (Wang et al., 2024b)—all selected for their strong com-
munity acceptance (each having over 30,000 stars on GitHub).

Experiment Setup All of these three systems require a language model as a back-end engine,
for which we use gpt-4o-2024-05-13, a state-of-the-art language model. These AI develop-
ers were given a time-limit of 1800 seconds to solve each task and were forcefully halted if they
exceeded this time limit (we imposed this constraint, which was visible to the AI developers, as de-
tailed in Appendix I). We capture the outputs generated during the automated development process,
including code, files, and other artifacts. Additionally, we record key decisions and actions made by
the agentic systems through some custom instrumentation code, resulting in a thought trajectory for
each of the agentic systems.

Analysis The basic statistics are shown in Table 1. MetaGPT is the most cost-efficient (1.19 USD),
while OpenHands is the most expensive (6.38 USD). In terms of development time, OpenHands
completes tasks in an average of 362.41s, while GPT-Pilot takes the longest at 1622.38s. On average,
a full evaluation on DevAI with one of these three took around 210.65 USD and 14 hours to perform.
While running, GPT-Pilot generates the most output tokens at 59707 tokens, whereas OpenHands
processed the most at 1252482 tokens while producing the fewest at 8457 tokens. This suggests that
OpenHands’s internal communication is more complicated but is more parsimonious in its decisions.

MetaGPT, while being the most cost-effective, generates fewer saved code files (0.42), suggesting
it may be less inclined to save files. In contrast, GPT-Pilot generates the most saved files (3.84),
reflecting a more prolific output. The difference in saved code lines, with GPT-Pilot saving 273.33
lines versus MetaGPT’s 11.15, underscores GPT-Pilot’s extensive output. Meanwhile, OpenHands,
despite handling larger inputs, seems less focused on executing code to generate files, as evidenced
by its lower file output (2.53 saved files). These statistics align with real user experiences (as dis-
cussed in Appendix F).

Evaluations Note that the results in Table 1 are not directly indicative of performance, but provide
valuable intuition about the practical utility of DevAI. The generated workspaces (generated files,
code, etc.) and trajectories are utilized in subsequent experiments to perform evaluations using
Human-as-a-Judge (section 3), LLM-as-a-Judge, and Agent-as-a-Judge (section 4).

3 HUMAN-AS-A-JUDGE: MANUAL EVALUATION ON DEVAI

To determine the pragmatic validity of DevAI and to accurately estimate the actual code-generating
abilities of current state-of-the-art agentic systems, in this section, we run and then manually evaluate
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the application of three AI developer baselines to DevAI. In Section 4, we show how this evaluation
can be automated.

Table 2: Human-as-a-Judge for AI Developers. (I) and (D) represent independent performance
versus performance considering task dependencies. indicates multiple experts evolved, and
means the evaluations use white-box testing (allowing access to the generated workspace, human-
collected trajectories, and open-source codebases). The results were derived from expert judgments
and deliberations (see Appendix H).

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)

/ Human-as-a-Judge

(A) Requirements Met (I) 22.13% 44.80% 42.89%

(B) Requirements Met (D) 6.55% 28.96% 28.68%

(C) Self-Termination 41.81% 5.45% 54.54%

(D) Task Solve Rate 0.00% 1.81% 1.81%

3.1 BENCHMARK BASELINES BY HUMAN-AS-A-JUDGE

Human Evaluation Setup After obtaining the baseline executions and conducting basic statistical
analysis, we have three expert human evaluators (referred to here by their anonymous names: 231a,
38bb, and cn90) review the outputs of AI developer baselines to assess whether each requirement
was satisfied. We have two rounds of human evaluations. To capture the bias inherent in typical
human evaluation (this is desirable to capture here as it represents a likely scenario in deployment),
in the first round, our evaluators first discussed the basic standards but were given minimal instruc-
tions. The templates the evaluators were given for the evaluation and their self-reported post-hoc
descriptions of how they resolved ambiguities are reported in Figure 12 in Appendix H.

After the initial round of human evaluations (which totaled an estimated total of 58 human hours), we
asked our evaluators to discuss and reach a consensus on their assessments (which took an estimated
total of 28.5 additional human hours). This consensus, achieved after long sessions of debate, was
used as the final human evaluation result for each method.

Performance Analysis The results of this experiment are shown in Table 2. We found that the
two best-performing methods (GPT-Pilot and OpenHands) could satisfy about 29% of the require-
ments (or around 44% if prerequisites are ignored) but only on one task could they meet all the
requirements. This highlights that DevAI offers a considerable but appropriate level of challenge
for current and future methods. Moreover, the fulfillment of intermediate requirements aligns with
our expectations (see Section 2) that DevAI provides richer feedback by uncovering how agentic
systems falter during the process instead of just focusing on a single performance metric at the end.

3.2 JUDGING HUMAN-AS-A-JUDGE

Figure 4: Between the three human evaluators, a large amount of disagreement was observed in their
individual evaluations—highlighting the inherent unreliability of a single human evaluation.

Disagreement Analysis To analyze the presence of inductive bias and the reliability of the
Human-as-a-Judge paradigm here, we calculate the disagreement rate between individual evalua-
tors (shown in Figure 4). The results indicate that the disagreement rates between pairs of evaluators
range from around 10% to 30%. Although each human evaluator has over five years of experience
in AI research and development, the disagreement highlights the inherent challenges of evaluating
AI development.

6
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Figure 5: Mismatch between the individ-
ual evaluations and the consensus evaluation.
Note that the majority vote showed the small-
est deviation from the consensus evaluation.

Due to the complexity of a complete AI develop-
ment task, which typically involves multiple steps
with varying outcomes at each step, humans can
easily make errors when critical information is
missed, such as environment feedback indicating
small but severe coding errors or bugs. Addition-
ally, some disagreements are not necessarily incor-
rect but arise from differing perspectives on how
ambiguity should be resolved.

To determine if the disagreement between the three
human judges is too large for them to serve as a
strong baseline, we recruited ten additional experts
and had them evaluate a random selection of 7 task
samples. We observed that the majority vote of
these additional experts had a 95.23% agreement
rate with the consensus result of our other experts
on these 7 tasks and a 97.67% agreement rate with
the majority vote. See Appendix P.

Error Analysis As previously noted, the evaluators engaged in a round of debating after their
initial evaluations until they reached a consensus on each requirement in each task (with the results
of this consensus evaluation shown in Table 2).

In our Human-as-a-Judge pipeline, evaluators could be convinced by evidence from others and ac-
knowledge their judgment errors, adjusting their answers accordingly. This can be used to approxi-
mate individual errors. If the consensus evaluation more accurately predicts any extant ground truth,
we would expect the majority vote from the individual evaluations to more closely approximate this
than any single evaluation, due to the fundamental properties of ensemble classifiers (see Hastie
et al. (2009)).

While the consensus evaluation may not represent the absolute ground truth (we acknowledge that
some quantity of error likely would still exist even after this procedure), we expect the consensus
evaluation to more accurately approximate the extant ground truth (Clemen, 1989). If this holds, the
majority vote should align more closely with the consensus than with any individual evaluation. As
shown in Figure 5, this is indeed the case.

As seen in the results, although significant errors occur among all evaluators, the majority vote
effectively corrects most of these errors. Notably, cn9o made the most errors (for example, 23.77%
in evaluating GPT-Pilot). After applying the majority vote from all three evaluators, the overall error
rate dropped to 6.01%, demonstrating the inherent benefits of majority voting.

Conclusion Human judgment errors are inevitable. To reduce them, we suggest two methods.
First, like in this work, introduce a debate round after each judgment, where individuals present
evidence and either persuade others or adjust their own opinions after discussion. This is particularly
important when there are only a few evaluators, as majority voting with a small group can still
lead to errors (around 5% compared to consensus evaluation, as shown in Figure 5). The second
approach involves assembling a larger panel of experts (more is better when their accuracy exceeds
50% (Grofman et al., 1983)), with over 5 people recommended by Hastie & Kameda (2005); Larrick
& Soll (2006), and relying on a majority vote. However, due to the high cost of engaging more
experts and the fact that this is not always feasible in practice, we argue for the former.

4 AGENT-AS-A-JUDGE: EVALUATING AGENTS WITH AGENTS

Human evaluation, while somewhat reliable, is time-consuming and requires significant expertise.
To address this, we propose the Agent-as-a-Judge framework. If such an agentic system could
evaluate like a human, it would reduce the need for human involvement, eliminating the trade-off
between evaluation thoroughness and effort.

7
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Table 3: AI Judges and Their Shift/Alignment with Human-as-a-Judge. We compare the results
of LLM-as-a-Judge and Agent-as-a-Judge with Human-as-a-Judge. (I) represents performance on
independent tasks, while (D) represents performance considering task dependencies. Note: gray-
box settings use carefully manually collected trajectory data (which is nearly inaccessible in practical
situations, see Appendix J). In contrast, black-box setting doesn’t need to access to such data.
The red scores represent the absolute judge shift compared with Human-as-a-Judge (e.g., 2.74%).

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)
LLM-as-a-Judge

(a) Requirements Met (I) 19.39% (2.74%) 12.56% (32.24%) 11.47% (31.42%)
(b) Requirements Met (D) 1.63% (4.92%) 4.09% (24.87%) 2.18% (26.50%)
(c) Task Solve Rate 0.0% (0.0%) 0.0% (1.81%) 0.0% (1.81%)
Alignment Rate ↑ 84.15% 65.30% 60.38%

Agent-as-a-Judge
(I) Requirements Met (I) 25.40% (3.26%) 53.00% (8.20%) 42.62% (0.27%)
(II) Requirements Met (D) 5.73% (0.81%) 39.89% (10.93%) 26.50% (2.17%)
(III) Task Solve Rate 0.0% (0.0%) 5.45% (3.64%) 1.81% (0.00%)
Alignment Rate ↑ 88.52% 83.88% 90.44%

LLM-as-a-Judge
(a) Requirements Met (I) 28.68% (6.55%) 38.79% (4.10%) 43.16% (0.27%)
(b) Requirements Met (D) 17.75% (11.20%) 33.06% (4.10%) 32.24% (3.56%)
(c) Task Solve Rate 1.81% (1.81%) 3.63% (1.82%) 7.27% (5.46%)
Alignment Rate ↑ 68.86% 71.85% 70.76%

Agent-as-a-Judge
(I) Requirements Met (I) 23.49% (1.35%) 46.44% (1.64%) 43.44% (0.54%)
(II) Requirements Met (D) 6.01% (0.54%) 30.60% (1.64%) 28.14% (0.53%)
(III) Task Solve Rate 0.0% (0.00%) 5.45% (3.64%) 3.63% (1.82%)
Alignment Rate ↑ 92.07% 86.61% 90.16%

/ Human-as-a-Judge
Alignment Rate (38bb) 92.63% 90.98% 89.89%
Alignment Rate (cn9o) 83.33% 76.23% 78.15%
Alignment Rate (231a) 92.07% 87.43% 89.07%
Average of individuals 89.34% 84.88% 85.70%
Alignment Rate (Majority Vote) 95.08% 93.98% 94.26%

4.1 PROOF-OF-CONCEPT

Based on our prior experiences with agent design and by imitating the human evaluation process,
we initially designed eight modular, interacting components that form the foundation of our Proof-
of-Concept for the Agent-as-a-Judge.

MemoryPlanning

OUTPUTS

INPUTS

Locate

Search

Retrieve

Read

Ask

Graph

Figure 6: Initial diagram of Agent-as-a-Judge.

(1) The graph module constructs a graph that
captures the entire structure of the project, in-
cluding files, modules, and dependencies. It can
also break down chunks of code into code snip-
pets. (2) The locate module identifies the spe-
cific folder or file referred to by a requirement.(3)
The read module goes beyond simple file pars-
ing, supporting the reading and understanding
of multimodal data across 33 different formats,
including code, images, videos and documents.
This allows the agent to cross-reference various
data streams and check different kinds of require-
ment. (4) The search module offers a contextual
understanding of code and can quickly retrieve
highly relevant code snippets, as well as the nuances behind them (e.g., hidden dependencies). (5)
The retrieve module extracts information from long texts, identifying relevant segments in trajec-
tories. With context from the above, (6) the ask module determines whether a given requirement
is satisfied.(7) The memory module stores historical judgment information, allowing the agent to
build on past evaluations. Finally, (8) the planning module plans out actions, allowing the agent to
strategize and sequence tasks based on the current state and project goals.

Our initial design of the Agent-as-a-Judge is shown in Figure 6. After conducting comprehensive
ablation studies, we found that the modular combination of (1), (2), (3), (5), and (6) achieved the
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highest performance (see Appendix C). A sample of the dynamic evidence collected by the Agent-
as-a-Judge is shown in Appendix M. We hypothesize this is because Agent-as-a-Judge needs high-
quality factual information and is sensitive to noise. For example, while our design of the planning
module introduces promising decision-making for future actions, the procedure is unstable. Ini-
tially, we hoped that historical information from the memory module would help to assess current
requirements. However, it proved detrimental, as any errors in previous judgments could lead to a
chain of errors, negatively affecting current decisions. Besides, the current workspaces generated
by developer agents, having only hundreds of lines of code, cannot fully benefit from the search
module. The details of these findings are explained in Appendix K. Note that a perfect Agent-as-a-
Judge is not the focus of this proof of concept, and thus, we leave the utilization of advanced agentic
optimization methods for Agent-as-a-Judge, such as automated prompt optimization and workflow
design (Zhuge et al.; Hu et al., 2024), for future work.

4.2 JUDGING AGENT-AS-A-JUDGE AND LLM-AS-A-JUDGE

Judge Shift Judge Shift measures deviation from the Human-as-a-Judge consensus results, with
lower values indicating a closer alignment. As shown in table 3, Agent-as-a-Judge consistently
outperforms LLM-as-a-Judge across tasks, particularly those with task dependencies. For example,
in Requirement (I), Agent-as-a-Judge shows a Judge Shift as low as 0.27%, while LLM-as-a-Judge
reaches 31.24% for OpenHands. This underscores Agent-as-a-Judge’s stability and suitability for
meeting task requirements. Furthermore, in the gray-box setting, both Agent-as-a-Judge and LLM-
as-a-Judge show even better results than their performance in the black-box setting.

Figure 7: PR Curves comparing judge Methods.

Alignment Rate The Alignment Rate re-
flects how closely the AI Judges’ evaluations
align with human consensus across all 365 re-
quirements. It is defined as the percentage
of requirement evaluations that are the same
as the Human-as-a-Judge consensus evalua-
tion. Compared to LLM-as-a-Judge, Agent-as-
a-Judge consistently achieves a higher Align-
ment Rate, closely matching human judg-
ments. For example, when evaluating Open-
Hands, Agent-as-a-Judge reaches 92.07% and
90.44%, surpassing LLM-as-a-Judge’s 70.76%
and 60.38% in both gray-box and black-box
settings. This suggests that Agent-as-a-Judge
is more accurate and human-aligned.

PR Curves Judging developer agents is a class-imbalanced task, where meeting requirements is
much rarer than failing. Metrics like judge shift and alignment rate can be misleading. For example,
since MetaGPT rarely meets requirements, LLM-as-a-Judge easily identifies most cases as negative
(achieving 84.15% in the black-box setting). PR Curves offer a clearer performance measure by
balancing precision and recall. This shows that, in some cases, Agent-as-a-Judge can nearly re-
place human evaluators. Our observations indicate the relative reliability of evaluation methods as:
LLM-as-a-Judge < Single-Human-as-a-Judge < Agent-as-a-Judge < Ensemble of Human Judges.
Future advancements in foundation models and Agent-as-a-Judge designs may shift this order.

4.3 ABLATIONS FOR AGENT-AS-A-JUDGE

Table 4: Component Ablation Studies for Agent-
as-a-Judge. We analyze the impact of adding vari-
ous components (ask, graph, read, locate, and
retrieve) on the performance of Agent-as-a-Judge
for judging OpenHands.

Metric + ask + graph + read + locate + retrieve

Agent-as-a-Judge Performance
Alignment Rate 65.03% 75.95% 82.24% 90.44% 90.16%

We conduct ablations to evaluate the
impact of adding different components
on Agent-as-a-Judge’s performance.
The components analyzed include
ask, graph, read, locate, and
retrieve. The component ablation
study for Agent-as-a-Judge reveals key
insights into the performance gains from
adding specific functionalities. With only
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ask component, the agent achieves a 65.03% alignment rate. Adding the graph component
increases performance to 75.95%, as the agent can better understand relationships between files.
The introduction of read further improves the alignment rate to 82.24%, reflecting the value of
direct access to the contents of the file. Incorporating locate brings a substantial boost to 90.44%,
as the agent can efficiently target files relevant to the requirements. Adding retrieve does
not always provide a significant benefit in this case. We found the retrieve module effective
for judging MetaGPT and GPT-Pilot, as it provides valuable trajectory information (as shown in
Table 3). However, it is less effective for OpenHands, which sometimes fails to execute files,
resulting in missing responses. In such cases, judgment without trajectories remains viable.

4.4 COST ANALYSIS

Our three evaluators a self-reported total of 86.5 hours. With a 15 USD hourly wage (assuming this
would buy a subject expert in AI), a full evaluation under DevAI would cost around 1297.50 USD.
In comparison, Agent-as-a-Judge cost only 30.58 USD (2.29%) in API calls and took only 118.43
minutes (2.36%). LLM-as-a-Judge was faster at 10.99 minutes, but due to the absence of intelligent
context selection by the Agent-as-a-Judge’s modules, it still cost 29.63 USD.

5 RELATED WORK

Agentic systems is a highly active research area, so we only detail the most closely related works
here. We provide a treatment of the marginally less relevant related works in Appendix D.

AI Developers AI in software development is growing fast (Liu et al., 2024). AI-driven developers
have been applied to directly imitate software companies (Hong et al., 2024b; Qian et al., 2024a),
debug code (Yang et al., 2024a), run data science methods (Guo et al.; Hong et al., 2024a; Li et al.,
2024; Qiao et al., 2023), and even write academic papers (Lu et al., 2024a).

Benchmarks for AI developments Benchmarks like MLAgentBench (Huang et al., 2024), ML-
Bench (Liu et al., 2023), and SUPER (Bogin et al., 2024) all focus on benchmarking agentic sys-
tems using AI tasks. However, DevAI distinguishes itself from all of these by focusing on realistic
user queries that target a complete development cycle. It further includes a more comprehensive
evaluation with multiple hierarchical requirements and preferences for each task. Comparatively,
MLAgentBench (Huang et al., 2024), for example, focuses on final performance for a limited set of
well-known tasks, which risks overfitting and fails to assess a system’s generalization or adaptability.

AI Judges Several works have looked at using AI systems as judges. The work by Chan et al.;
Zhao et al. (2024), for example, extends LLM-as-a-Judge to have multiple LLMs in their evaluation
process for conversational tasks. Unlike Agent-as-a-Judge, they employ a trivial agentic system and
apply it only to evaluate LLMs under traditional evaluation setups. In contrast, (Lu et al., 2024b) uses
a single LLM-based evaluator but, unlike LLM-as-a-Judge, applies this to multimodal tasks rather
than just for evaluating LLMs. Less relevant are frameworks like those by Chen et al. (2024a); Arora
et al. (2024); Mündler et al. (2024), where intermediate signals are used during coding development.

6 DISCUSSION AND CONCLUSION

Discussion A key power of the Agent-as-a-Judge that we have not exploited here is the feedback it
provides being directly used by the agentic system being evaluated. Perhaps the greatest strength of
the Agent-as-a-Judge framework is that an agentic system could use it to fix issues in their solutions
to complex multistage problems on the fly—something older delayed feedback methods did not
permit. In addition, a cycle of mutual improvement between Agent-as-a-Judge and the evaluated
agents, where both evolve together through iterative feedback, presents a promising perspective.

Conclusion In this work, we introduced the Agent-as-a-Judge method to use agentic systems to
evaluate agentic systems. We simultaneously released DevAI: a new benchmark that evaluates
the code-generating ability of agentic systems on complete AI development tasks when used with
Agent-as-a-Judge. We went on to show that Agent-as-a-Judge outperforms existing methods on
this task and that it performs similarly to an ensemble of expert human evaluators. Altogether, we
believe that the above opens the door for scaling up agentic far more than before.
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REPRODUCIBILITY STATEMENT

The nature of this work necessitates the public release of the DevAI dataset and the implementation
of Agent-as-a-Judge as part of that. The authors are committed to open science and will be doing so
upon paper acceptance. In tandem with the details provided in the various Appendices, this should
allow full reproducibility of the results shown in this paper.

ETHICS STATEMENT

Our work, like similar works, aims to reduce human labour costs while maintaining the rigour
needed for meaningful science. This should serve to make it easier for the field to adopt more
accessible and open evaluation methods. The DevAI dataset is sourced from widely used general-
purpose datasets, and all examples are annotated by experts to minimize bias. Furthermore, our
dataset enhances transparency in the field of automated AI development, contributing to more open,
equitable, and responsible progress in AI research. We do not forsee any obvious exceptional ethical
implications of this work beyond the above.
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A LOGIC FLOW OF THIS PAPER

Paper: Agent-as-a-Judge: Evaluating Agents with Agents

Key Logic
■ Step 1: Concept Proposal

Description: We propose the Agent-as-a-Judge concept, an extension of the LLM-
as-a-Judge framework, aimed at evaluating agentic systems using other agentic sys-
tems.

■ Step 2: Dataset Creation
Description: To address the lack of suitable datasets for evaluating agentic systems
in automated AI development, we introduce DevAI, a new dataset consisting of 55
realistic AI code generation tasks. This also serves as a testbed for the Agent-as-a-
Judge proof-of-concept.

■ Step 3: Baseline Evaluation of Developer Agents (Experiment Level 1)
Description: In the first level of experiments, we select three popular open-source
developer agents: MetaGPT, GPT-Pilot, and OpenDevin. These agents are evalu-
ated on the DevAI tasks to establish performance baselines.

■ Step 4: Conducting Human-as-a-Judge Evaluation
Description: We conduct a Human-as-a-Judge experiment, where three human ex-
perts assess the performance of the developer agents on the same DevAI tasks.

■ Step 5: Human-as-a-Judge Analysis (Experiment Level 2)
Description: In the second level of experiments, we statistically analyze the results
of Human-as-a-Judge evaluations, focusing on the costs of human labor and potential
biases, highlighting the challenges of relying on human evaluation for complex tasks.

■ Step 6: Agent-as-a-Judge Implementation
Description: We design and implement the Agent-as-a-Judge proof-of-concept to
evaluate code generation on the DevAI dataset. This system incorporates modules
such as graph, search, read, and ask, providing multi-dimensional evaluation metrics.

■ Step 7: Comparing Judgment Systems (Experiment Level 3)
Description: In the third level of experiments, we compare three judgment systems:
Agent-as-a-Judge, LLM-as-a-Judge, and Human-as-a-Judge, all applied to the
same DevAI tasks. Our results show that Agent-as-a-Judge performs comparably to
human evaluators and surpasses LLM-as-a-Judge in more complex reasoning and
evaluation tasks.

Future Directions
■ Direction 1: Enhancing Agent-as-a-Judge

Description: Future work should focus on improving the performance of Agent-as-a-
Judge, especially in more complex and diverse environments, to handle increasingly
sophisticated decision-making tasks.

■ Direction 2: Intermediate Feedback for Self-Improvement
Description: A promising extension of this work is enabling Agent-as-a-Judge to
provide intermediate feedback, helping developer agents iteratively improve and self-
optimize their decision-making processes.

Figure 8: Logical Flow of the Agent-as-a-Judge Paper.
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B EXPERIMENT DESIGNS

This section outlines the experimental designs aimed at evaluating developer agents’ performance,
analyzing human evaluations, and comparing AI-based judging systems. The experiments are struc-
tured across three levels, as illustrated below.

Judging Developer Agents Judging Human-as-a-Judge Judging Agent(/LLM)-as-a-Judge
Level 1 Level 2 Level 3

Section 2.3 Section 3.1 Section 3.2 Section 4.2 Section 4.3

B.1 SUMMARY OF EXPERIMENTS

The experiments are categorized into three levels as follows:

Level 1: Human evaluation of developer agents
l Experiment 1a: Basic performance statistics for developer agents (Section 2.3)
l Experiment 1b: Human evaluations of developer agents (Section 3.1)

Level 2: Error and bias analysis of human evaluations
l Experiment 2a: Error analysis of human evaluations (Section 3.2)

Level 3: AI-based judging systems
l Experiment 3a: AI judge baselines (Section 4.2)
l Experiment 3b: Ablation studies for Agent-as-a-Judge (Section 4.3)

B.2 JUDGES AND SUBJECTS OF EVALUATION

The following table summarizes the judge and the subject being evaluated in each experiment:

Experiment Who is the Judge? Who is being Judged?
Section 2.3 Human Developer Agents
Section 3.1 Human Developer Agents

Section 3.2 Human Human

Section 4.2 (1) LLM-as-a-Judge (1) Developer Agents
(2) Agent-as-a-Judge (2) Developer Agents
(3) Human (3) LLM-as-a-Judge
(4) Human (4) Agent-as-a-Judge

Section 4.3 Human Agent-as-a-Judge
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C AGENT-AS-A-JUDGE PIPELINE

User

Hi! Please follow the instruction and set up the script from the blog https://www.factsmachine.ai/p/hidden-
in-plain-sight to generate 1080p images with hidden text ("FUTURE," in src/visualize.py. Save them in
results/ and verify the text is embedded.

Agentic Task

workspace

src

visualize.py

results

hidden.jpg

mask.jpg

aimages

Judge Process

hidden.jpg

mask.jpg

visualize.py

Build the workspace graph.

Are the requirement 
{R0} satisfied?

Collect information based on 
{R0} and the workspace graph.

Judge Agent Graph Read RetrieveAsk
Verify all requirements and 
their related analyses.

Write and run src/visualize.py to generate masks and save the figures in the results/ directory.

Open the mentioned link and carefully read the blog mentioned in the user query.

Go to the GitHub repository mentioned in the blog, and read the code and the README file.

Set up the environment, then install the package.

Set up the Modal library by installing it and configuring the API for serverless deployment.

Develop Process

Developer 
Agent

Locate

Figure 9: The pipelines of developer agents and judge agent.
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D EXTEND RELATED WORK

Our main paper includes mostly related works of AI developers, Benchmarks for AI develop-
ments, and AI judges. However, the following works contribute significantly to the community and
also relate to this work. We record this work as additional related work3.

LLM-based Autonomous Agents Recent developments in LLM-based agents have expanded
their capabilities beyond simple task execution to more autonomous problem-solving and decision-
making. AutoGPT (Gravitas, 2023) and LangChain (Chase, 2022) provide frameworks for single-
agent systems that leverage external tools for more complex tasks. Similarly, research such as
MetaGPT (Hong et al., 2024b), AutoGen (Wu et al., 2023) and CAMEL (Li et al., 2023) focus on
role-based multi-agent communication, improving collaboration among agents. However, the chal-
lenge of maintaining coherence in agents’ dialogue and preventing hallucination remains promi-
nent (Du et al., 2024; Zhou et al., 2023). Most recently, using graphs to build agents has gained
prominence. Earlier work like GPTSwarm (Zhuge et al.) and LangGraph (LangChain-AI, 2024)
proposed using nodes to represent operations and edges to represent the connections between them.
In GPTSwarm, multiple agents represented as subgraphs in a graph are connected by optimizable
edges, and reinforcement learning is employed to optimize the edges. Following this approach, sev-
eral agent frameworks have incorporated graphs into their designs (Hong et al., 2024a; Zhou et al.,
2024; Qian et al., 2024b). Additionally, various optimization methods have been developed to en-
hance agent performance further (Wu et al., 2024; Song et al., 2024; Hu et al., 2024). In practical ap-
plications, many studies focus on understanding and interacting with GUIs (Wang et al., 2024a; Chen
et al., 2024b; Yang et al., 2023; Xu et al., 2024; Tan et al.). For code generation agents (Jin et al.,
2024), current research mainly emphasizes automated repair (Yang et al., 2024a; Phan et al., 2024;
Tao et al., 2024), computational modular design (Khattab et al., 2024; Cheng et al.), and automated
development (Tufano et al., 2024; Huang et al., 2023). Among these, open-sourced frameworks like
OpenHands (Wang et al., 2024b) have gained popularity due to their strong user experience. More-
over, scientific discovery (Jansen et al., 2024; Lu et al., 2024a) and ML agents (Yang et al., 2024b)
are also receiving increased attention.

LLM-as-a-Judge In the domain of AI evaluation and judgment, frameworks (Zheng et al., 2024;
Fu et al., 2024; Chen et al.) have pioneered the use of LLMs to assess conversational agents, demon-
strating how LLMs can evaluate dialogue quality and consistency. Expanding beyond dialogue,
LLMs like CodeR (Chen et al., 2024a) and MASAI (Arora et al., 2024) apply similar judging prin-
ciples to the code validation process, where AI systems autonomously evaluate and verify computer
programs. Our work builds on these advancements by exploring how LLMs can perform more
nuanced judgment tasks, further investigating their potential in decision-making across various do-
mains. Recent research also focuses on judging LLM-as-a-Judges (Chen et al., 2024c; Bavaresco
et al., 2024; Thakur et al., 2024; Dong et al., 2024; Shi et al., 2024; Raina et al., 2024).

Coding Benchmarks Recent advances in code generation have led to the innovation of vari-
ous benchmarks to evaluate model performance (Liu et al., 2024). Early benchmarks, such as
MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021), and MultiPL-E (Cassano et al., 2023),
focus primarily on generating simple functions. While these benchmarks are useful for evaluating
the correctness of generated code, they are limited in complexity and do not fully represent the
challenges encountered in real-world software development.

As the field progressed, newer benchmarks began to focus on more complex and realistic tasks.
APPS (Hendrycks et al.), CodeContests (Li et al., 2022), and LiveCodeBench (Jain et al., 2024)
moved toward competitive programming challenges that involve advanced algorithms and data struc-
tures. These tasks are more representative of problems encountered in coding competitions and help
push models toward more sophisticated problem-solving. DS-1000 (Lai et al., 2023) was intro-
duced to assess the skills of models with data science libraries, evaluating their ability to use APIs
and execute complex data analysis workflows. Meanwhile, AgentBench (Liu et al., b) focuses on

3Additionally, we were pleased to find that a recent industry blog (https://www.cognition.ai/blo
g/evaluating-coding-agents), published two weeks before our submission, shares very similar ideas
and provides further evidence that the Agent-as-a-Judge could have practical applications in agent systems.
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testing reasoning and decision-making abilities in interactive environments, highlighting differences
in performance between commercial and open-source models.

To address real-world programming needs beyond code generation, specialized benchmarks have
been created to evaluate tasks such as debugging, refactoring, and code navigation. CANITE-
DIT (Cassano et al., 2024), DebugBench (Tian et al., 2024), and FixEval (Haque, 2023) evalu-
ate the ability of a model to edit and improve existing code. Additionally, benchmarks such as
SWE-Bench (Jimenez et al.) focus on resolving issues in GitHub repositories, simulating practical
software development scenarios. Finally, benchmarks such as RepoBench (Liu et al., a) and RepoE-
val (Zhang et al., 2023) delve into the evaluation of models in large-scale, multifile codebases. These
benchmarks measure the ability of language models to understand the structure of repositories and
solve problems within more complex, collaborative environments.
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E THE PROCEDURES OF CREATING DEVAI DATASET

E.1 MANUALLY DRAFT USER QUERIES

Given the execution cost of the developer agents, we collect small-scale AI tasks to ensure the prac-
tical applicability of our benchmark. Since these tasks are small-scale and well studied, which are
easy to overfit in terms of task performance metrics, unlike previous benchmarks (e.g., (Huang et al.,
2024)), we do not evaluate task performance as the development performance measure. Instead, we
prioritize the step-by-step task-solving ability, which is essential for real-world development. Our
quires are specifically designed to require the development agents to understand user intentions,
solve the task in multiple steps, and adapt to unexpected step outcomes. This approach also makes
our benchmark user-friendly, transparent, and better reflects real-world deployment situations. To
enable effective evaluation, our queries present a specific development file structure for the devel-
oper agents to follow. To ensure that the developer agents save the files to be evaluated in the
workspace, we develop constraint prompts added to the query to form an extended query. The con-
straint prompts guide the developer agents to save and execute the source codes, which are in line
with the real-world development standard. See Appendix I for our constraint prompts.

E.2 SET JUDGING CRITERIA

To make the evaluation of the developer agent precise, we assign to each task query a list of require-
ments as task milestones. The requirements are chosen so that satisfying all the requirements is a
necessary condition to consider the task to be solved successively. Since our tasks are AI-centric, our
queries target essential elements of AI development, including data processing, AI method, presen-
tation of evaluation metrics, visualization, and human-computer interaction, covering the key areas
that matter most in real-world scenarios. On the other hand, breaking down tasks into individual
requirements also reflects the multi-step nature of code development. Importantly, to avoid ambigu-
ity, we set the requirements to be explicit, binary, and straightforward to evaluate. To include other
human predispositions, we include a list of preferences per task that covers subjective, ambiguous,
or non-explicitly stated characteristics.

E.3 BUILDING DEPENDENCY AMONG REQUIREMENTS

To enhance the realism of our benchmark, we analyzed the dependencies among requirements.
Over the past decades, methodologies such as the KDD Process (Fayyad et al., 1996) and CRISP-
DM (Wirth & Hipp, 2000) have guided ML/AI development, establishing foundational frameworks
that have been further refined with the rise of AutoML (He et al., 2021).

Inspired by these methodologies, we identified a seven-step process for automated AI development
tasks. This process includes critical stages such as data preprocessing, feature engineering, model
selection, and hyperparameter tuning, along with essential post-development activities like metrics
recording, report generation, and the development of interactive user applications. This structured
approach allows us to evaluate the agent’s ability to manage task dependencies and effectively navi-
gate complex, real-world scenarios.

E.4 REFINE THE DATASET

Manual refinements were necessary to ensure the accuracy and clarity of DevAI. We perform two
rounds of comprehensive review and edits on DevAI, each round being done by a different partic-
ipant. During these manual refinements, we focus on the logical consistency of our queries and
requirements, the correctness and ambiguity of the language, and the applicability of the content to
the task domain. We identified a moderate number of errors in our dataset during the review.

E.5 ANALYSE THE DATASET

We categorized each requirement based on its focus, whether it was related to the data set, the
machine learning method, visualization, metrics, HCI, or data processing. While this approach
provides a useful framework, it is important to recognize that these categories might overlap or miss
certain nuances. Similarly, preferences were classified by how strongly they appeared in the query
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text, ranging from those inferred by common sense to those explicitly stated. Although this helps to
organize preferences, it is worth noting that such classifications can be subjective and may not fully
capture the importance of each preference in practical applications. By structuring the requirements
and preferences this way, we aim to enhance the evaluation process, though flexibility and context
awareness remain crucial for truly robust assessments.

E.6 AUXILIARY INFORMATION

Some of the tasks require the download of a Kaggle data set, where a Kaggle credential is needed.
Our constraint I requires an “is kaggle api needed” tag to determine whether the creden-
tial is needed to be included in the extended query. We further mark each task with some tags
describing the AI sub-fields related to the task, including computer vision, supervised learning, rein-
forcement learning, natural language processing, etc., as well as two “is training needed”
and “is web navigation needed” tags as auxiliary information. We also categorize
each requirement into one of the following: (1) dataset or environment, (2) data
preprocessing and postprocessing, (3) machine learning method, (4) save
trained model, (4) performance metrics, (5) human computer interaction,
(6) visualization, and (7) other, reflecting the nature of the requirement.

E.7 A JSON FORMAT OF OUR SAMPLE

Here, we provide a sample of the DevAI with its json format. We also provide more samples in
Appendix G.

{
"name": "25_Speech_Emotion_Recognition_CNN_LSTM_RAVDESS_DL",
"query": "I am seeking a speech emotion recognition project using a

CNN-LSTM model with the RAVDESS dataset, which should be
downloaded from Kaggle or [this Hugging Face link](https://
huggingface.co/datasets/xbgoose/ravdess). The project should load
the dataset and perform robust audio preprocessing (noise

removal and normalization) and MFCC feature extraction,
implemented in ‘src/data_loader.py‘. The CNN-LSTM model should be
implemented in ’src/model.py’. Recognition accuracy should be

saved in ‘results/metrics/recognition_accuracy.txt‘, and a
confusion matrix should be generated and saved as ‘results/
figures/confusion_matrix.png‘. Additionally, a user-friendly
local API should be created using Flask to allow users to upload
audio files and receive emotion recognition results, with the
implementation included in ‘src/hci.py‘.",

"tags": [
"Audio Processing",
"Classification"

],
"requirements": [

{
"requirement_id": 0,
"prerequisites": [],
"criteria": "The \"RAVDESS\" dataset is loaded in ‘src/

data_loader.py‘, which is downloaded from Kaggle or [this
Hugging Face link](https://huggingface.co/datasets/

xbgoose/ravdess).",
"category": "Dataset or Environment",
"satisfied": null

},
{

"requirement_id": 1,
"prerequisites": [

0
],
"criteria": "Audio preprocessing, including noise removal and

normalization, is implemented in ‘src/data_loader.py‘.",
"category": "Data preprocessing and postprocessing",
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"satisfied": null
},
{

"requirement_id": 2,
"prerequisites": [

0,
1

],
"criteria": "MFCC feature extraction is implemented in ‘src/

data_loader.py‘.",
"category": "Data preprocessing and postprocessing",
"satisfied": null

},
{

"requirement_id": 3,
"prerequisites": [],
"criteria": "The \"CNN-LSTM\" model is implemented in ’src/

model.py’.",
"category": "Machine Learning Method",
"satisfied": null

},
{

"requirement_id": 4,
"prerequisites": [

2,
3

],
"criteria": "Recognition accuracy is saved in ‘results/

metrics/recognition_accuracy.txt‘.",
"category": "Performance Metrics",
"satisfied": null

},
{

"requirement_id": 5,
"prerequisites": [

2,
3,
4

],
"criteria": "The confusion matrix is generated and saved as ‘

results/figures/confusion_matrix.png‘.",
"category": "Visualization",
"satisfied": null

},
{

"requirement_id": 6,
"prerequisites": [

2,
3

],
"criteria": "A local API is created using \"Flask\" to allow

users to upload audio files and receive emotion
recognition results. The implementation should be
included in ‘src/hci.py‘.",

"category": "Human Computer Interaction",
"satisfied": null

}
],
"preferences": [

{
"preference_id": 0,
"criteria": "The audio preprocessing step should be robust,

effectively reducing noise while preserving the integrity
of the speech signals.",

"satisfied": null
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},
{

"preference_id": 1,
"criteria": "The local API should be user-friendly, with

clear instructions for uploading files and interpreting
results.",

"satisfied": null
}

],
"is_kaggle_api_needed": true,
"is_training_needed": true,
"is_web_navigation_needed": true

}
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F USER EXPERIENCES OF CODE-GENERATION AGENTIC SYSTEMS

OpenHands (Wang et al., 2024b) offers the most refined user experience, leveraging its highly inter-
active frontend to enable seamless user interaction and task execution. This interface allows users to
engage directly with the system, resulting in a smoother and more intuitive workflow, which drives
operational efficiency.

In contrast, MetaGPT (Hong et al., 2024b) excels in task decomposition through its use of Directed
Acyclic Graphs (DAGs), a well-structured and scalable approach aligned with industry best practices
in system modularization. This enhances its appeal for users focused on task clarity and modular
breakdowns. However, in practical deployments, MetaGPT tends to be less aggressive in file man-
agement and preservation, potentially due to its core positioning as a data analysis tool, which does
not prioritize persistent state management. Similarly, OpenDevin demonstrates a notable overconfi-
dence in its code generation, frequently skipping the critical step of post-generation code execution,
requiring users to intervene manually.

GPT-Pilot (Pythagora.io, 2023), praised for its detailed task delegation via over 20 specialized
agents, suffers from reduced interactivity due to an overly granular division of responsibilities, re-
sulting in a more fragmented user experience. These qualitative insights, although not fully captured
by quantitative metrics, were evident through the DevAI dataset, providing key areas for improve-
ment in user engagement and operational fluidity in future releases of these frameworks.
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G MORE DEVAI DATASET SAMPLES

Task 13: Style Transfer with Perceptual Loss in PyTorch

Query
Please create a PyTorch Perceptual Loss project for image style transfer (re-
fer to this paper: Perceptual Losses for Real-Time Style Transfer). You can build
the Perceptual Loss Network using VGG16 in src/model.py. The project
should combine content and style images, allow smooth adjustment of style in-
tensity by tuning the weights of style loss and content loss, and save the styl-
ized images in results/figures/. Additionally, log the processing time to
results/processing time.txt, and save the intermediate results of the style
transfer process to results/figures/intermediate results.png. For
testing, input a famous content image (Mona Lisa) from this link and a famous
style image (The Starry Night) from this link, and generate a style-transferred im-
age. Save the content, style, and style-transferred images to data/content.jpg,
data/style.jpg, and results/figures/, respectively. The project should
efficiently handle high-resolution images without excessive processing time.

Requirements
■ R0

Criteria: A famous content image is inputted for testing, downloaded from this link
and saved to data/content.jpg. Dependencies → {}

■ R1
Criteria: A famous style image is inputted for testing, downloaded from this link and
saved in data/style.jpg. Dependencies → {}

■ R2
Criteria: The Perceptual Loss model is implemented in PyTorch and loaded in
src/model.py. Dependencies → {}

■ R3
Criteria: Stylized images are saved to the specified folder results/figures/.
Dependencies → {R0, R1, R2}

■ R4
Criteria: Style intensity is adjusted by tuning the weights of style loss and content
loss in src/model.py. Dependencies → {R0, R1, R2}

■ R5
Criteria: Processing time is recorded and saved as
results/processing time.txt. Dependencies → {R0, R1, R2, R3, R4}

■ R6
Criteria: Intermediate results of style transfer are saved as
results/figures/intermediate results.png. Dependencies → {R0,
R1, R2, R3, R4}

Preferences (Optional)
■ P0

Criteria: The style transfer process should allow for smooth adjustment of style in-
tensity, making the stylized image visually appealing.

■ P1
Criteria: The project should handle high-resolution images efficiently without exces-
sive processing time.

Figure 10: An Example Task in DevAI: Task 13.
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Task 19: Time Series Forecasting with Seq2Seq LSTM on Rossmann Store Sales

Query
Develop a sales forecasting system using a sequence-to-sequence model
based on LSTM with the Rossmann Store Sales dataset, downloading it
from Kaggle here and loading it in src/data loader.py. Split the data
into training and testing sets and save them in src/data loader.py.
Apply a sequence-to-sequence model based on LSTM and save the
trained model under the models/saved models/ directory. Save the
forecast results as results/figures/forecast results.png.
Save a comparison plot between the predicted and actual values to
results/figures/comparison plot.png. Generate an HTML report that
includes the prediction results and comparison plots, with some interactive elements
for exploring different forecast horizons, and save it as results/report.html.
Ensure the model is tuned to capture seasonal trends in the sales data.

Requirements
■ R0

Criteria: The Rossmann Store Sales dataset is used, potentially downloaded from
(this link) and loaded in src/data loader.py. Dependencies → {}

■ R1
Criteria: The data is split into training and testing sets and implemented in
src/data loader.py. Dependencies → {R0}

■ R2
Criteria: A sequence-to-sequence model based on LSTM is used. The trained model
should be saved under models/saved models/. Dependencies → {R1}

■ R3
Criteria: The forecast results are plotted and saved as
results/figures/forecast results.png. Dependencies → {R1, R2}

■ R4
Criteria: A comparison plot of predicted vs. actual values is saved as
results/figures/comparison plot.png. Dependencies → {R1, R2,
R3}

■ R5
Criteria: An HTML report containing forecast results and comparison plots is gener-
ated and saved as results/report.html. Dependencies → {R1, R2, R3, R4}

■ R6
Criteria: The HTML report should include interactive elements that allow users to
explore different forecast horizons. Dependencies → {R5}

Preferences (Optional)
■ P0

Criteria: The model should be tuned to capture seasonal trends in the sales data for
more accurate forecasting.

Figure 11: An Example Task in DevAI: Task 19.
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H HUMAN EVALUATION PROCEDURE

We recruited three AI experts from the authors to perform human evaluation on the output of agentic
code generation systems. There we present the evaluation details.

First round For the first round of evaluations, our three evaluators reported spending 16.5, 19.5,
and 22.0 hours, respectively. To capture the bias that a human evaluator will have, the instruc-
tions given to our experts were minimal, with them only receiving a scorecard to complete for each
agentic system and each task. Results that all evaluators agree on are considered trustworthy. The
assumption here is that it is unlikely that all three evaluators make a mistake or have an effective
bias in the same judgment. The self-reported post-hoc evaluation criteria are shown in Figure 12.

Second round In the second round, the evaluators present and discuss their reasons for disagree-
ing with judges. In doing so, human errors are likely corrected by their peers. Discussion among
evaluators also helps reduce human bias by examining each other’s thought processes thoroughly.
Furthermore, the consensed results are considered trustworthy given the assumption that it is un-
likely that all three evaluators are convinced by the same mistake or the same cognitive bias. The
three evaluators took 9.5 hours together for this second round of evaluation.
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Self-reported Post-hoc Evaluation Criteria after round one

Evaluator 231a

EXECUTED SUCCESSFULLY: Yes [ ] / No [ ]
1. Must be checked based on the overall completeness of the task, based on looking at the code,
the artifacts, and the trajectory.
2. The training has finished, the model snapshot and the metrics breakdown have been saved,
and at least one artifact of required analytics has been produced - mark as successful. If some
analytic artifacts are missing but not all, mark as successful.
3. No need to run the code.
4. If training was finished but on fake data, mark as successful.
Requirements:
Marking a requirement as satisfied must be made for this specific requirement disregarding the
dependency list. If a file (code, image, snapshot) is there but is empty or without any meaning-
ful content - mark as No.
1. Code:
The functionality must be in a file with the requested path.
The real data is replaced by simple synthetic - not satisfied.
2. Visualization/Reports:
The contents must be there and make sense even if not perfect from the ML/DS point of view.
3. Snapshots:
If a binary snapshot is not empty, mark as Yes.

Evaluator 38bb

EXECUTED SUCCESSFULLY: Yes [ ] / No [ ]
An output is marked yes if none of the following is satisfied.
1. The time spent is close to the time limit.
2. The last environmental message includes an error.
3. The last thought indicates that the task is completed.
4. The last step of the trajectory is incomplete.
Requirements:
If a required is unsatisfied only because of an unsatisification of a previously marked unsatisfied
requirment, then judge it based on the assumption that a minimum implementation satisfies the
previous requirment exists.
1. Code:
Mark yes if the code executes and does the required function. If no entrypoint is given, the
evaluator will set an entrypoint. If the code is not executable due to previous unsatisfied re-
quirements, then it is judged based on eye-checking.
2. Visualization/Reports:
Mark yes if the visualization or report exists in a right path and the content aligns the require-
ment.
3. Snapshots:
Mark yes if the snapshot exists in a right path and is not empty.

Evaluator cn9o

I evaluated everything based on whether the requirement was satisfied verbatim, using my own
professional judgement when there was ambiguity. If there was a data folder and a look at the
trajectory indicated it was real, I allowed it to be loaded directly. If there were results and no
clear source code making them, I considered the task incomplete. I didn’t consider a dummy
data path to be correct (GPT-Pilot used a lot of these). To determine if something was executed
correctly, I skimmed the end of the logs (e.g., trajectory) for any obvious signs of an error. If
there wasn’t any, I said it was correctly executed. I ignored prerequisites while evaluating and
did not execute anything, instead just eyeballing the code for correctness. I was lenient in what
I considered to be sufficient in terms of the more vague requirements (e.g., if the preprocessing
had to include scaling and rotation, just those two would be sufficient to consider it done).

Figure 12: Each evaluator was given a full description of each task and the associated requirements
and preferences in markdown format. They were then asked, for each workspace and trajectory
generated by each of the agents on each of the task, whether (1) the agent successfully finished its
execution cycle and (2) which of the requirements were satisfied. After the evaluation was complete,
the evaluators were asked to self-report the nuances of their evaluation.
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I SUGGEST CONSTRAINTS

Below is a sample of constraints in JSON format that describes task-specific guidelines:

{
"generic": "This is a task that requires you to write, execute, and

save source code. You have a hard time limit of 30 minutes to
produce your programmatic solution to the given task. This time
limit includes execution time. The quality of your solution will
be judged based on what you left in the working folder by the time
30 minutes expire. Additionally, the hardware you are running on

is unknown, and the presence of a GPU is not guaranteed.",
"is_training_needed": "Keep the time limit in mind when setting

hyperparameters for training.",
"is_kaggle_api_needed": "You can use the Kaggle API credentials stored

in ‘kaggle.json‘ in your current working directory."
}

To address automation and security concerns, we have written code to place the kaggle.json
file into the current workspace for each baseline during each run. However, dataset users are free to
modify the solution to enable the Kaggle API for their specific developer agents.
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J COLLECTED TRAJECTORIES

J.1 SCHEMA

Below is the required JSON format for a trajectory in gray-box settings (where the trajectories can
serve as input for LLM-as-a-Judge and Agent-as-a-Judge).

{
"type": "array",
"items": {

"type": "object",
"properties": {
"step": {
"type": "integer",
"description": "The step number in the trajectory, 0-based."

},
"user_message": {
"type": ["string", "null"],
"description": "The message from the external user to the agent.

If null, no message was sent."
},
"agent": {
"type": "object",
"properties": {
"thought": {

"type": "string",
"description": "The agent’s thought at this step."

},
"action": {

"type": ["string", "null"],
"description": "The agent’s action sent to the environment.

If null, the agent did not take any action, for example,
when the agent has finished the task."

},
"agent_name": {

"type": "string",
"description": "The name of the agent that made the action."

}
},
"required": ["thought", "action"],
"description": "Everything related to the agent at this step."

},
"environment": {
"type": ["string", "null"],
"description": "The environment’s (shell, python interpreter)

response to the action submitted by the agent. If null, the
environment was not involved in this step."

},
"step_usage": {
"type": "object",
"properties": {
"input_tokens": {

"type": "integer",
"description": "The number of input tokens passed as LLM

context."
},
"output_tokens": {

"type": "integer",
"description": "The number of tokens produced by the LLM."

},
"model": {

"type": "string",
"description": "The name of the LLM model used."

},
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"cost": {
"type": "number",
"description": "The cost of the LLM inference, in USD."

},
"llm_inference_time": {

"type": "number",
"description": "The time taken by the LLM to generate the

output tokens, in seconds."
},
"step_execution_time": {

"type": "number",
"description": "The time taken to make an entire step

including LLM inference and environment execution, in
seconds."

}
},
"required": [
"input_tokens",
"output_tokens",
"model",
"cost",
"llm_inference_time",
"step_execution_time"

]
},
"accumulated_usage": {
"type": "object",
"properties": {
"accumulated_cost": {

"type": "number",
"description": "The total cost of the trajectory up to this

step, in USD."
},
"accumulated_time": {

"type": "number",
"description": "The total time taken by the agent to complete

the trajectory up to this step, in seconds."
}

},
"required": [
"accumulated_cost",
"accumulated_time"

]
}

},
"required": ["step", "user_message", "agent", "environment", "

step_usage", "accumulated_usage"]
}

}
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J.2 A SAMPLE OF TRAJECTORY

This is sample trajectories (we select 4 steps of it) in OpenHands (Wang et al., 2024b). All steps are
recorded to enable replay of the trajectory.

{
"step": 0,
"user_message": "Help me develop an object detection system using

the YOLOv3 model and the COCO dataset. Download the dataset
and preprocess the images by resizing and normalization in ‘
src/data_loader.py‘. Implement the YOLOv3 model and use Non-
Maximum Suppression (NMS) to refine the results in ‘src/model
.py‘. Save the detected objects to ‘results/figures/‘, and
create an interactive Streamlit web page in ‘src/app.py‘ to
display the detection results. Finally, evaluate the model’s
performance, including metrics such as mAP and inference time
, and save the evaluation results to ‘results/metrics/
model_performance.txt‘. The system should properly manage the
launch and termination of the Streamlit application to

prevent unnecessary resource usage.\n\nThis is a task that
requires you to write, execute, and save source code. You
have a hard time limit of 30 minutes to produce your
programmatic solution to the given task. This time limit
includes execution time. The quality of your solution will be
judged based on what you left in the working folder by the

time 30 minutes expire. Additionally, the hardware you are
running on is unknown, and the presence of a GPU is not
guaranteed.\n\nKeep the time limit in mind when setting
hyperparameters for training.\n",

"agent": {
"thought": "Let’s break down the task into manageable steps

and start implementing them one by one.\n\n### Steps:\n1.
**Set up the directory structure**:\n - Create

necessary directories: ‘src/‘ and ‘results/figures/‘.\n2.
**Download and preprocess the COCO dataset**:\n -

Implement ‘src/data_loader.py‘ to download, resize, and
normalize images.\n3. **Implement the YOLOv3 model**:\n

- Implement ‘src/model.py‘ to define the YOLOv3 model
and apply Non-Maximum Suppression (NMS).\n4. **Create an
interactive Streamlit web page**:\n - Implement ‘src/
app.py‘ to display detection results.\n5. **Evaluate the
model’s performance**:\n - Save evaluation metrics to ‘
results/metrics/model_performance.txt‘.\n\nLet’s start by
setting up the directory structure and creating the

necessary files.\n\n### Step 1: Set up the directory
structure",

"action": "Running command: mkdir -p src results/figures
results/metrics\ntouch src/data_loader.py src/model.py
src/app.py"

},
"environment": "\r\n[Python Interpreter: /openhands/poetry/

openhands-5O4_aCHf-py3.11/bin/python]\nopenhands@b34322eae8da
:/workspace $ touch src/data_loader.py src/model.py src/app.
py\r\n\r\n[Python Interpreter: /openhands/poetry/openhands-5O
4_aCHf-py3.11/bin/python]\nopenhands@b34322eae8da:/workspace
$ ",

"step_usage": {
"input_tokens": 4331,
"output_tokens": 220,
"llm_inference_time": 4.445789337158203,
"model": "gpt-4o-2024-05-13",
"cost": 0.024955,
"step_execution_time": 16.24921226501465

},
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"accumulated_usage": {
"accumulated_cost": 0.024955,
"accumulated_time": 16.24922204017639

}
},
{

"step": 1,
"user_message": null,
"agent": {

"thought": "Great! The directory structure and necessary
files are created. Let’s proceed with implementing the
data loader to download and preprocess the COCO dataset.\
n\n### Step 2: Implement ‘src/data_loader.py‘\nWe will:\n
1. Download the COCO dataset.\n2. Resize and normalize
the images.\n\nLet’s start by writing the code for ‘src/
data_loader.py‘.",

"action": "Running Python code interactively: create_file(’
src/data_loader.py’)"

},
"environment": "FileExistsError

Traceback (most recent call last)\nCell In[1], line 1\n---->
1 create_file(’src/data_loader.py’)\n\nFile /openhands/code/
openhands/runtime/plugins/agent_skills/file_ops/file_ops.py:2
57, in create_file(filename)\n 251 \"\"\"Creates and opens
a new file with the given name.\n 252 \n 253 Args:\n

254 filename: str: The name of the file to create.\n
255 \"\"\"\n 256 if os.path.exists(filename):\n--> 257
raise FileExistsError(f\"File ’{filename}’ already

exists.\")\n 259 with open(filename, ’w’) as file:\n 26
0 file.write(’\\n’)\n\nFileExistsError: File ’src/
data_loader.py’ already exists.\n[Jupyter current working
directory: /workspace]\n[Jupyter Python interpreter: /
openhands/poetry/openhands-5O4_aCHf-py3.11/bin/python]",

"step_usage": {
"input_tokens": 4675,
"output_tokens": 84,
"llm_inference_time": 2.136143207550049,
"model": "gpt-4o-2024-05-13",
"cost": 0.024635000000000004,
"step_execution_time": 3.345384359359741

},
"accumulated_usage": {

"accumulated_cost": 0.04959000000000001,
"accumulated_time": 19.594608068466187

}
},
{

"step": 2,
"user_message": null,
"agent": {

"thought": "The file ‘src/data_loader.py‘ already exists. Let
’s open it and start writing the code to download and
preprocess the COCO dataset.\n\n### Step 2: Implement ‘
src/data_loader.py‘",

"action": "Running Python code interactively: open_file(’src/
data_loader.py’)"

},
"environment": "[File: /workspace/src/data_loader.py (1 lines

total)]\n(this is the beginning of the file)\n1|\n(this is
the end of the file)\n[Jupyter current working directory: /
workspace]\n[Jupyter Python interpreter: /openhands/poetry/
openhands-5O4_aCHf-py3.11/bin/python]",

"step_usage": {
"input_tokens": 4982,
"output_tokens": 53,
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"llm_inference_time": 2.209756851196289,
"model": "gpt-4o-2024-05-13",
"cost": 0.025705000000000002,
"step_execution_time": 2.318861961364746

},
"accumulated_usage": {

"accumulated_cost": 0.07529500000000001,
"accumulated_time": 21.913471937179565

}
},
...
{

"step": 20,
"user_message": null,
"agent": {

"thought": "It seems the indentation issue persists. Let’s
correct the indentation manually.\n\n### Corrected Code
for ‘src/evaluate.py‘\n‘‘‘python\nimport time\nimport
numpy as np\nfrom model import yolo_v3_model,
non_max_suppression\nfrom data_loader import
preprocess_image, download_coco_dataset,
extract_coco_dataset\nimport os\n\ndef evaluate_model():\
n model = yolo_v3_model()\n download_coco_dataset()
\n extract_coco_dataset()\n\n image_dir = \"data/
val2017\"\n image_files = [os.path.join(image_dir, f)
for f in os.listdir(image_dir) if f.endswith(’.jpg’)]\n\n

total_inference_time = 0\n num_images = len(
image_files)\n all_boxes = []\n all_scores = []\n

all_classes = []\n\n for image_file in image_files:
\n image = preprocess_image(image_file)\n
image = np.expand_dims(image, axis=0)\n\n
start_time = time.time()\n predictions = model.
predict(image)\n end_time = time.time()\n\n

inference_time = end_time - start_time\n
total_inference_time += inference_time\n\n boxes,
scores, classes = non_max_suppression(predictions[0])\n

all_boxes.append(boxes)\n all_scores.append
(scores)\n all_classes.append(classes)\n\n
mean_inference_time = total_inference_time / num_images\n
\n # Placeholder for mAP calculation\n mAP = 0.0 #
This should be replaced with actual mAP calculation\n\n
with open(\"results/metrics/model_performance.txt\", \

"w\") as f:\n f.write(f\"Mean Inference Time: {
mean_inference_time:.4f} seconds\\n\")\n f.write(f
\"mAP: {mAP:.4f}\\n\")\n\nif __name__ == \"__main__\":\n

evaluate_model()\n‘‘‘\n\nLet’s update the file with
the corrected code.",

"action": "Running Python code interactively: EDITED_CODE = \
"\"\"import time\nimport numpy as np\nfrom model import
yolo_v3_model, non_max_suppression\nfrom data_loader
import preprocess_image, download_coco_dataset,
extract_coco_dataset\nimport os\n\ndef evaluate_model():\
n model = yolo_v3_model()\n download_coco_dataset()
\n extract_coco_dataset()\n\n image_dir = \"data/
val2017\"\n image_files = [os.path.join(image_dir, f)
for f in os.listdir(image_dir) if f.endswith(’.jpg’)]\n\n

total_inference_time = 0\n num_images = len(
image_files)\n all_boxes = []\n all_scores = []\n

all_classes = []\n\n for image_file in image_files:
\n image = preprocess_image(image_file)\n
image = np.expand_dims(image, axis=0)\n\n
start_time = time.time()\n predictions = model.
predict(image)\n end_time = time.time()\n\n

inference_time = end_time - start_time\n
total_inference_time += inference_time\n\n boxes,
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scores, classes = non_max_suppression(predictions[0])\n
all_boxes.append(boxes)\n all_scores.append

(scores)\n all_classes.append(classes)\n\n
mean_inference_time = total_inference_time / num_images\n
\n # Placeholder for mAP calculation\n mAP = 0.0 #
This should be replaced with actual mAP calculation\n\n
with open(\"results/metrics/model_performance.txt\", \

"w\") as f:\n f.write(f\"Mean Inference Time: {
mean_inference_time:.4f} seconds\\\\n\")\n f.write
(f\"mAP: {mAP:.4f}\\\\n\")\n\nif __name__ == \"__main__\"
:\n evaluate_model()\n\"\"\"\n\nedit_file_by_replace(’
src/evaluate.py’, ’with open(\"results/metrics/
model_performance.txt\", \"w\") as f:’, ’ with open(\"
results/metrics/model_performance.txt\", \"w\") as f:’)"

},
"environment": null,
"step_usage": {

"input_tokens": 20132,
"output_tokens": 805,
"llm_inference_time": 15.1565523147583,
"model": "gpt-4o-2024-05-13",
"cost": 0.11273500000000002,
"step_execution_time": 15.196227073669434

},
"accumulated_usage": {

"accumulated_cost": 1.2919750000000003,
"accumulated_time": 176.99772310256958

}
}
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K ABLATIONS OF AGENT-AS-A-JUDGE

K.1 COMPONENT ABALATIONS

Table 5: Component Ablation Studies for Agent-as-a-Judge. We analyze the impact of se-
quentially adding various components (ask, graph, read, locate, retrieve, planning,
memory, and search) on the performance of Agent-as-a-Judge for judging OpenHands.

Metric + ask + graph + read + locate + search + retrieve + planning + memory

Agent-as-a-Judge Performance

Alignment Rate 65.03% 75.95% 82.24% 90.44% 86.06% 90.16% 88.52% 87.97%

Analysis We designed 8 modular components for the Agent-as-a-Judge system. In the Table 5, com-
ponents are added progressively from left to right. If the addition of a component led to a significant
performance drop, we removed it from further iterations. Our experiments showed that adding the
components ask, graph, read, and locate resulted in significant performance gains. However,
when the search component was introduced, there was a noticeable decline in performance.

We hypothesize that the performance drop from search is due to its role in retrieving relevant code
snippets (top-3) using BM25. The retrieval accuracy of BM25 (Robertson et al., 2009) might not
have been high enough, potentially introducing noise. Moreover, as noted in Table 1, the DevAI
tasks in our experiments did not generate a large amount of code. In fact, even when all code was
fed into an LLM, the total content typically stayed within the maximum context length. Therefore,
in simpler workspaces, search was less critical. However, we believe this component will become
more important as the complexity of the workspace increases, making it more valuable in larger and
more complex environments.

We also observed that the introduction of the planning mechanism did not bring a noticeable
improvement in performance. This may be related to the nature of the Judge - it needs clean factual
information. When planning is unstable, the evidence collected from different actions can be-
come inconsistent, leading to a decline in performance. Finally, we experimented with a memory
mechanism. Initially, we hypothesized that since DevAI tasks often involve interconnected require-
ments, memory could help track whether requirements were met. However, in practice, we saw
no improvement. We suspect that the interconnected nature of the requirements may have caused
biases: specifically, once a prior requirement was fulfilled, it might have overly influenced positive
judgments on subsequent requirements, even if they were not fully met.

K.2 SEARCH ALGORITHMS IN SEARCH MODULE

We initially hypothesized that the performance drop was due to the low precision of the search
component, particularly with BM2.5. To explore this, we replaced BM2.5 with Sentence-
BERT (Reimers & Gurevych, 2019) as a more advanced alternative and tested Fuzzy Search (Lev-
enshtein, 1966) as a less precise option. However, neither improved the performance of the Agent-
as-a-Judge.

Table 6: Comparisons on Search
module with different engines.

Search Method Alignment Rate
BM2.5 86.06%
Sentence-BERT 87.70%
Fuzzy Search 85.52%
without Search Module 90.44%

hese results suggest that the performance issue is not due to
BM2.5’s poor search accuracy. Instead, the workspaces gener-
ated in our DevAI tasks are too simple for the search compo-
nent to have a significant impact. In simpler workspaces, direct
retrieval and evaluation are sufficient. Even though Sentence-
BERT performed better than the other methods, its alignment
rate (87.70%) still falls short of the configuration without the
search component (90.44%). As workspace complexity in-
creases, the search component may become more valuable.

K.3 SEARCH ALGORITHMS IN RETRIEVE MODULE

In our experiments, we found that accurately locating relevant information within a trajectory is a
challenging task. Although the addition of the retrieve component (gray-box) did not lead to
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a significant improvement in performance in this specific case, its impact has been notable in other
settings, such as in GPT-Pilot. As shown in Table 3, the integration of retrieve in GPT-Pilot
brought substantial gains.

Table 7: Ablations on retrieve.

Method Alignment Rate
Without retrieve 83.88%
With retrieve (gray-box) 86.61%
Trajectory Truncate (head) 86.61%
Trajectory Truncate (middle) 85.52%
Trajectory Truncate (tail) 82.51%
Step Truncate (head) 86.34%
Step Truncate (middle) 86.61%
Step Truncate (tail) 83.88%

We conducted an ablation study on GPT-Pilot to optimize
the retrieval of useful information at each step. Our exper-
iments revealed that in large trajectories, truncating the
final sections of the file often results in losing critical in-
formation, as the latter part of the trajectory typically con-
tains dense information about the final development state.
Truncating the beginning of the trajectory proved to be the
most effective in improving the retrieval efficiency.

For individual steps, truncating the middle section
worked best. This is because error messages usually ap-
pear early in the output, while the corresponding file paths
and specific error locations are found towards the end.
By focusing on these retrieval strategies, we can significantly enhance the performance of the
retrieve component, particularly in complex scenarios like GPT-Pilot.
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L PROMPT DEMOS OF AGENT-AS-A-JUDGE

Here, we present some prompts used by the Agent-as-a-Judge system. Each of these prompt demos
plays a crucial role in guiding the agent’s behavior.

L.1 SYSTEM PROMPT FOR AGENT-AS-A-JUDGE

def get_system_prompt(language="English"):

if language == "English":
return """
You are an advanced AI system serving as an impartial judge for

intelligent code generation outputs. Your primary role is to
rigorously evaluate whether the agent’s outputs satisfy the
specified requirements by thoroughly analyzing the provided
code, data, and other relevant materials.

You will systematically assess aspects such as datasets, model
implementations, training procedures, and any task-specific
criteria outlined in the requirements. Your evaluations must
be objective, detailed, and based solely on the evidence
provided.

For each requirement, deliver one of the following judgments:

1. <SATISFIED>: Use this if the agent’s output fully meets the
requirement. Provide a brief and precise explanation
demonstrating how the specific criteria are fulfilled.

2. <UNSATISFIED>: Use this if the agent’s output does not meet
the requirement. Provide a concise explanation indicating the
deficiencies or omissions.

Your assessment should reference specific elements such as code
snippets, data samples, or output results where appropriate.
Ensure that your justifications are clear, precise, and
directly related to the criteria.

Respond with either <SATISFIED> or <UNSATISFIED>, followed by
your concise justification.

"""
else:

raise NotImplementedError(f"The language ’{language}’ is not
supported.")
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L.2 SYSTEM PROMPT FOR LOCATE MODULE

def get_locate_system_prompt(language="English"):
if language == "English":

return """
You are an advanced AI system specializing in understanding

project structures and determining file locations based on
provided criteria.

Your task is to locate specific files in the workspace based on
the user’s criteria and workspace information.ution problems
with the files mentioned in the criteria.

"""

else:
raise NotImplementedError(f"The language ’{language}’ is not

supported.")

L.3 SYSTEM PROMPT FOR RETRIEVE MODULE

def get_retrieve_system_prompt(language="English"):

if language == "English":
return """
You are an advanced AI system specializing in retrieving

environmental feedback from project execution trajectories.
Your task is to analyze the provided trajectory data and
extract information about the most relevant files mentioned
in the given criteria.

Focus on the following:

1. Identify the **most recent steps** where the files directly
related to the criteria were involved in execution, loading,
or saving operations.

2. Provide environmental feedback for these files, such as any
errors, warnings, or issues encountered during their
execution or processing.

3. Highlight whether any problems occurred that might affect the
functionality or success of these files in the project.

Your output should be structured as follows:

- **<RELEVANT STEPS>**: List the specific steps involving the
relevant files, including any environmental feedback such as
error messages, execution results, or other issues
encountered. Each step should concisely present the key
information needed to assess the files’ execution status.

Avoid including details about file contents or existence, as this
information is already available. Focus solely on the

environmental feedback related to the execution of the most
relevant files.

Your goal is to provide clear and concise information that helps
determine if there were any execution problems with the files
mentioned in the criteria.

"""
else:

raise NotImplementedError(f"The language ’{language}’ is not
supported.")
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L.4 PROMPT FOR ASK MODULE (FOR REQUIREMENT CHECK)

def get_ask_prompt(criteria: str, evidence: str) -> str:

return f"""
Provided below is relevant information about the project:
{evidence}

Kindly perform an evaluation of the following criteria:
{criteria}

As per the guidelines, respond with either <SATISFIED> or <
UNSATISFIED>, followed by a concise justification that references
specific elements from the project information, such as code

snippets, data samples, or output results.
"""

L.5 PROMPT FOR LOCATE MODULE

def get_locate_prompt(criteria: str, evidence: str) -> str:

return f"""
Provided below is the structure of the workspace:
{workspace_info}

This is the criteria related to the task:
{criteria}

Follow the format in the example below and return only the file paths
that match the criteria:

Example:

Suppose the criteria is:
’The database functionality is implemented in ‘src/db.py‘, and the

logging system is defined in ‘src/logging.py‘.’

And the workspace information is:
/project
|-- src
| |-- db.py
| |-- logging.py
| |-- utils.py
|-- tests

|-- test_db.py
|-- test_logging.py

Based on the criteria, the following paths (no more than 5) should be
returned, each wrapped in dollar signs (‘$‘):

$/project/src/db.py$
$/project/src/logging.py$
"""
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M JUDGE EVIDENCES COLLECTED FROM AGENT-AS-A-JUDGE

The Agent-as-a-Judge system dynamically collects evidence throughout the development process
of the code-generating agentic system to evaluate whether each requirement is satisfied. Using this
auxiliary information, the judge agent decides to focus on relevant data such as code, file structures,
and trajectories. This gathered evidence supports the agent’s final judgment, ensuring an informed
and accurate assessment of the project’s compliance with its requirements. A sample of the collected
evidence is shown in the following Appendix M.
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N ANALYSIS OF FAILURE CASES

We analyzed the failure cases and identified consistent patterns across the task categories. The
categories of these failure cases are summarized in Table 8. We found that AAAJ struggled most
with judging cases in the Data preprocessing and postprocessing category, whereas it performed
well in judging Human-Computer Interaction cases.

Table 8: Counts of failure cases aggregated over task categories.

Category Count
Data preprocessing and postprocessing 10
Dataset or Environment 8
Other 5
Machine Learning Method 4
Performance Metrics 3
Visualization 3
Human-Computer Interaction 3

We collect two failure cases in Table 9 and layout their analysis below.

Table 9: This table provides examples of failure cases observed in different task categories, compar-
ing judgments made by Agent-as-a-Judge and Human-as-a-Judge.

Ex.
#

Task Req.
ID

Category Agent-
as-a-
Judge

Human-
as-a-
Judge

Criteria

1 40 Text Summarization
BART CNNDailyMail DL

0 Dataset or En-
vironment

False True The ”CNN/Daily Mail”
news dataset is used,
including loading and
preparing the dataset in
src/data loader.py.

2 46 Speech Recognition
DeepSpeech LibriSpeech DL

2 Machine
Learning
Method

True False Hyperparameters such
as learning rate and
batch size are tuned in
src/train.py.

Analysis

• Failure Case Example 1: In this case, the dataset used was a synthesized one generated by
the OpenHands CodeAct agent. Human evaluators could quickly identify this discrepancy,
but the agent-as-a-judge, having only checked the file path and content, was misled into
believing it was the genuine CNN/DailyMail dataset.

• Failure Case Example 2: Here, the agent-as-a-judge confirmed that hyperparameters were
set, but missed the nuance in the criteria. The requirement implied that the learning rate and
batch size should dynamically adjust in src/train.py, something human evaluators
were able to detect.
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O SENSITIVITY W.R.T THE CHOICE OF THE BACKEND LLM

We have run an ablation experiment to determine how different LLM backends affect the perfor-
mance of Agent-as-a-Judge. The results are summarized in Table 10.

Table 10: This table reports alignment percentages between Agent-as-a-Judge and Human-as-a-
Judge for different backend LLMs.

Model Version # Param. Alignment (%)

LLAMA, Touvron et al. (2023) 3.2 90B 87.76%

Qwen, Bai et al. (2023) Coder 2.5 32B 88.73%

ChatGPT, OpenAI (2023) (This work) gpt-4o-2024-0513 Unknown 90.16%

Claude, Anthropic (2024) claude-3-5-sonnet-20241022 Unknown 92.95%

These results allow us to conclude that the backbone does have a noticeable effect on the alignment
but a relatively marginal one. We found that Claude’s results are better than GPT-4o’s that we used
throughout our experiments. We hypothesize, this is because claude-3-5-sonnet-20241022
has been trained with strong function calling skills and agentic features.

P ADDITIONAL HUMAN EVALUATION DETAILS

All ten of our additional participants are current M.Sc. and Ph.D. students in AI-related fields
with no direct relation to this work. The 7 random samples they evaluated were selected from the
answers produced by OpenHands. The additional participants reported an average completion time
of 1.13 hours each to evaluate all 7 samples. The additional ten participants self-reported an average
completion time of 1.13 hours. This means they took an average of 9.67 minutes to evaluate one
task, which is similar to our three main evaluators who self-reported taking an average of 10.48
minutes per task. Each of the ten additional participants was compensated for their time, with an
average compensation of 15.20 USD.
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