
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENT-AS-A-JUDGE:
EVALUATE AGENTS WITH AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Contemporary evaluation techniques are inadequate for agentic systems. These
approaches either focus exclusively on final outcomes—ignoring the step-by-step
nature of the thinking done by agentic systems—or require excessive manual
labour. To address this, we introduce the Agent-as-a-Judge framework, wherein
agentic systems are used to evaluate agentic systems. This is a natural exten-
sion of the LLM-as-a-Judge framework, incorporating agentic features that en-
able intermediate feedback for the entire task-solving processes for more precise
evaluations. We apply the Agent-as-a-Judge framework to the task of code gen-
eration. To overcome issues with existing benchmarks and provide a proof-of-
concept testbed for Agent-as-a-Judge, we present DevAI, a new benchmark of
55 realistic AI code generation tasks. DevAI includes rich manual annotations,
like a total of 365 hierarchical solution requirements, which make it particularly
suitable for an agentic evaluator. We benchmark three of the top code-generating
agentic systems using Agent-as-a-Judge and find that our framework dramatically
outperforms LLM-as-a-Judge and is as reliable as our human evaluation baseline.
Altogether, we believe that this work represents a concrete step towards enabling
vastly more sophisticated agentic systems. To help that, our dataset and the full
implementation of Agent-as-a-Judge will be publically available at [REDACTED]

1 INTRODUCTION

Recent years have seen multimodal agentic systems move from occasionally being able to solve
small toy problems to being regularly deployed for challenging real-world problems (the dream of
most AI research). Yet, the current evaluation methods and the available benchmarks for agentic
systems are struggling to keep up with these rapid advances, dramatically slowing true progress.

We believe that the current issue with evaluating agentic systems stems from the lack of feedback
during the intermediate task-solving stages for these nontraditional systems. Agentic systems think
more like a human, often act step-by-step (Wooldridge, 1999) and often hosting very human-like
natural language discussions internally to solve problems (Zhuge et al., 2023). And thus agentic
systems should be evaluated like a human, with rich evaluative feedback which looks at the full
thought and action trajectory; evaluating an agentic system in the traditional way is like evaluating
a student using multiple-choice testing—a comparatively unreliable estimator (Park, 2010). For
example, while SWE-Bench (Jimenez et al.) is widespread, its evaluation method, which relies
solely on the final resolve rate for long-term automated repair tasks, does not effectively pinpoint
what is happening within agentic systems that affects the resolve rate. On the other hand, performing
a better evaluation with a human is prohibitively expensive. We instead propose that agentic systems
should be used to evaluate agentic systems. Inspired by LLM-as-a-Judge (Zheng et al., 2024; Fu
et al., 2024; Chen et al.), which uses LLMs to evaluate LLMs, we call this framework Agent-as-a-
Judge, of which it is a key extension to the world of agentic systems (see Figure 1). It not only retains
the cost-effectiveness of LLM-as-a-Judge but is also equipped with agentic features, allowing it to
provide rich intermediate feedback throughout the entire process, as it acts as an agentic system. We
apply the Agent-as-a-Judge systems to the problem of evaluating code generating systems—one of
the areas where agentic systems have looked the most promising recently.

In code generation, the development of benchmarks has also lagged behind the rapid advancement
of agentic systems. HumanEval (Chen et al., 2021), for example, focuses exclusively on algorithmic
problems, while MBPP (Austin et al., 2021) deals with simple programming tasks. Although they

1

[REDACTED]

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Upgrade

LLM-as-a-Judge

If the FED buys bonds in the secondary market (A) the
money supply will increase. (B) the money supply will
decrease. (C) the money supply will not be affected. (D)
the discount rate would be affected. Output the answer
only.

User

The Federal Reserve
buys bonds in the
secondary market to
increase the money
supply.

(A) the money supply
will increase.

LLM A LLM B

(Conversation Task)

Judge LLM

B is better because it gives the correct option
directly, following the required format of the
question.

Compare-based Judge

Metrics-based Judge

Accuracy:
10/10
Instruct-Following:
5/10

Accuracy:
10/10
Instruct-Following:
10/10

Agent-as-a-Judge

User (Agentic Task)

Judge Agent

Compare-based Judge

Metrics-based Judge

Time: 1800.6 s
Cost: $1.7
Requirements:
Satisfied 0/2 (0%)

Hi! Please follow the instruction and set up the script from the
blog https://www.factsmachine.ai/p/hidden-in-
plain-sight to generate 1080p images with hidden text
(“FUTURE,” in src/visualize.py. Save them in
results/ and verify the text is embedded.

Time: 500.7s
Cost: $1.5
Requirements:
Satisfied 2/2 (100%)

1 # src/visualize.py
2 def hide_text_in_image(image):
3 return None
4 print("Error 404: Cannot access …

1 # src/visualize.py
...
120 sd = StableDiffusion()
121 images = sd.run_inference.remote(
122 prompt=prompt,
123 negative_prompt=negative_prompt,

B is better because it runs and generates the required
files, fulfilling the user's request. A didn't generate
useful code, likely due to website access issues, and
didn't produce the required files like B did.

Interact

Agent A Agent B

EnvironmentWorkspace

Workspace

src

visualize.py
Act Act

Workspace

Workspace

src

visualize.py

results

hidden.jpg

Imitate

Replace

Human-as-a-Judge

User (Agentic Task)

User

Hi! Please follow the instruction and set up the script from the
blog https://www.factsmachine.ai/p/hidden-in-
plain-sight to generate 1080p images with hidden text
(“FUTURE,” in src/visualize.py. Save them in
results/ and verify the text is embedded.

As a User

As a Developer

It starts to run

Navigate the website

Jump to GitHub

Writing codes

Execute and get images

Interact

It starts to run

It can’t browse the web

Stuck in an strange loop

Codes are unreliable

Agent A Agent B

EnvironmentWorkspace

Workspace

src

visualize.py
Act Act

Workspace

Workspace

src

visualize.py

results

hidden.jpg

After step-by-step checks, it‘s clear Agent B is better and
satisfy two requirements of the query. But comparing these
agents or evaluate them took too much time. As a developer,
this would be a bottleneck due to the heavy manual effort.

Figure 1: In this paper, we introduce the Agent-as-a-Judge framework wherein agentic systems are
used to evaluate agentic systems. We compare this to LLM-as-a-Judge, which uses LLMs to evaluate
LLMs and for which Agent-as-a-Judge is a natural evolution, and Human-as-a-Judge, where skilled
humans labourers manually evaluate an agentic system.

are useful for evaluating the basic skills of foundation models, neither of these two reflects the most
practical challenges developers face. As a step away from this, SWE-Bench (Jimenez et al.) did
introduce more realistic problems from GitHub, offering a fresh approach to evaluation, but still
primarily focuses on automated repairs tasks development process. Concerningly, recent research
shows that large language models (LLMs) can already solve over 27% of the tasks in SWE-Bench
without needing of advanced agentic systems (Xia et al., 2024). Equally concerning, recent work
has begun to introduce mechanisms designed specifically for the individual tasks in the SWE-Bench
dataset, leading to a lack of real-world generalization and violating Goodhart’s law: “When a mea-
sure becomes a target, it ceases to be a good measure” (Goodhart, 1976).

To address the aforementioned issues with the current benchmarks in code generation, we intro-
duce DevAI: the AI Developer Dataset, which contains 55 real-world comprehensive AI app de-
velopment tasks created by expert annotators. We apply three leading open-source code-generating
agentic frameworks to the tasks in DevAI: MetaGPT (Hong et al., 2024b), GPT-Pilot (Pythagora.io,
2023), and OpenHands (Wang et al., 2024b). We evaluate their performance using human judges (a
painstaking process), LLM-as-a-Judge (Zheng et al., 2024), and our Agent-as-a-Judge framework.

Through human evaluation, we found that GPT-Pilot and OpenHands were each able to satisfy about
29% of the task requirements in DevAI, but only one full task—showing that DevAI presents a good
level of challenge to current systems. When comparing our human judges with our automatic Agent-
as-a-Judge framework, we found that Agent-as-a-Judge aligns more closely with the consensus of
our human judges (90%) as compared to LLM-as-a-Judge (70%) in all cases tested. In addition,
we find that it aligns more closely with this ensemble than the individual human evaluators do,
suggesting that—not only is it suitable as a replacement for a human evaluator—but it could in fact
be more useful than an average lone human evaluator. In addition, considering the evaluation cost,
Agent-as-a-Judge reduces 97.72% of the time and 97.64% of the cost.

In summary, the principal contributions of this work are:
• We release the DevAI dataset, which consists of 55 comprehensive AI development tasks with

accompanying tags, individual hierarchical requirements, and individual preferences.
• We benchmark three top open-source code generation agentic frameworks in DevAI, providing a

more comprehensive analysis than previous evaluations of them.
• We introduce the general Agent-as-a-Judge concept, allowing agentic systems a fair and rich

evaluation without the traditional cost this would require in human labour.
• We demonstrate that an Agent-as-a-Judge outperforms an LLM-as-a-Judge and performs compa-

rably to human evaluators in our proof-of-concept.

This paper is structured as follows: Section 2 introduces DevAI to address the lack of benchmarks
for verifying agentic systems with intermediate processes. Section 3 establishes Human-as-a-Judge

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

!"#$%&'($)*&+(,$&-$.,/'$0+/'1/,

(2) Number of Words in User Queirs

!2#$3/451&4,$&-$3&(/*,

!6#$7+89/'$&-$%&'(,$14$.,/'$0+/'1/,

!:#$7+89/'$&-$;<=,$&-$.,/'$0+/'1/,

Figure 2: Distribution of DevAI Tasks (1) DevAI focuses on AI development tasks and so terms
such as “dataset,” “model,” and “results” are particularly common in the queries. (2) The first 53
tasks in DevAI all have a one-paragraph query but of varying lengths (note that task 54 and 55 are
excluded here as they are outliers, representing the longest and most complex tasks in the dataset).
(3) Each task has one or more tags. The prevalence of supervised learning here reflects the fact that
it dominates many machine learning applications. (4) SVM classifiers (Cortes, 1995) and LSTM
models (Hochreiter, 1997) are two of the most widely used architectures—a fact reflected by DevAI.

as a manual evaluation baseline, highlighting its limitations. Finally, Section 4 presents Agent-as-a-
Judge, a scalable solution to these challenges. More details are provided in Appendices A and B.

2 DEVAI: A DATASET FOR AUTOMATED AI DEVELOPMENT

2.1 MOTIVATION

Background The code generation domain is an area where agentic systems have seen significant
industrial deployment during the past 2 years (e.g., see Devin1 and Cursor2). However, in code
generation, there isn’t yet a benchmark that accurately reflects realistic user queries for developing
complete AI systems. We believe this is because of the difficulty to evaluate such complex, real-
world tasks. For example, while many companies advertise their systems based on the performance
of it on benchmarks like SWE-Bench (Jimenez et al.) (for automated repair) or HumanEval (Chen
et al., 2021) (for algorithmic tasks), these benchmarks cover only a small bit of an actual develop-
ment process. A benchmark that can evaluate the entire development process—ideally in a way that
can help understand the degree to which current AI methods can reduce human labour—is missing.

Topic We chose automated AI development as our main topic. While AI and ML tasks are often
more complex, they follow clear, standard procedures. For example, data processing typically comes
first in an AI pipeline, and performance reporting goes at the end. We believe this topological nature
can help better monitor the development process and provide useful signals to the agentic systems.

Goals An ideal benchmark should address critical issues in automated development by focusing
on three key factors. First, it should reflect practical software scenarios, where tasks are often too
complex for a single LLM, requiring human or agentic systems. Second, it should emphasize the
development process, not just final outcomes (e.g., pass@1 rates offer limited feedback and fail
to highlight intermediate problems). Lastly, the evaluation should be computationally cost-effective
and efficient, avoiding long training times or excessive manual oversight.

1https://www.cognition.ai/blog/introducing-devin
2https://www.cursor.com/

3

https://www.cognition.ai/blog/introducing-devin
https://www.cursor.com/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task 51: Devin AI Software Engineer Plants Secret Messages in Images

Query
Hi! Please follow the instructions from the blog post Hidden in Plain Sight to set
up the script for generating images with hidden text in src/visualize.py. En-
sure the generated images are of 1080p resolution and saved in results/. Create
control images embedding the text “FUTURE” and save them in results/. Please
manually verify that the hidden text is embedded in the images.

Requirements
■ R0

Criteria: Follow the instructions from the blog post Hidden in Plain Sight to set up
the script for generating images with hidden text in src/visualize.py.
Dependencies → {}

■ R1
Criteria: Ensure the generated images are of 1080p resolution and saved in
results/.
Dependencies → {R0}

■ R2
Criteria: Create control images embedding the text ”FUTURE” and save them in
results/.
Dependencies → {R1}

Preferences (Optional)
■ P0

Criteria: The system should be capable of learning and adapting to unfamiliar tech-
nologies and tools as required.

■ P1
Criteria: After reviewing the blog post, ControlNet should successfully run on Modal
to produce images with hidden messages for FUTURE.

Figure 3: A task example in DevAI. This task is adapted from a real-world demo given at https:
//www.cognition.ai/blog/introducing-devin. As this example shows, task require-
ments in DevAI are structured as a Directed Acyclic Graph (DAG), with nodes representing individ-
ual requirements and directed edges showing dependencies. More examples are in Appendix G.

2.2 THE DEVAI DATASET

Motivated by the ideas outlined above, we propose the DevAI dataset. DevAI consists of a carefully
curated set of 55 tasks, each defined by (1) a plain text query that describes an AI development task;
(2) a set of plain text requirements (for a total of 365 requirements), each with a set of dependencies
connecting them to other requirements; and (3) a set of preferences (for a total of 125 preferences)
which represent softer requirements. DevAI is structured so that an agentic system starts by re-
ceiving a user query to begin development. The system is then evaluated on how well it meets the
requirements, with preferences serving as optional, softer criteria. An example of one of the DevAI
tasks can be seen in Figure 3 and the full suite is available at [REDACTED]

The tasks in DevAI are relatively small-scale but cover commonly used key development techniques.
As shown in Figure 2, our tasks are tagged and cover a variety of key areas in AI: supervised
learning, reinforcement learning, computer vision, natural language processing, generative models,
and others. Each of the tasks is a real-world problem that could be given to a research engineer,
while simultaneously being relatively inexpensive computationally to run so as to reduce the cost
of evaluating a method on this benchmark. Details of the sample collection and human labeling
process for DevAI are provided in Appendix E.

The requirements belonging to each task represent a milestone in the comprehensive development
process and are arranged as a directed acyclic graph (similar to the work by He et al. (2021)), with
requirements such as visualizing results depending on correct data loading and modeling. This

4

https://www.factsmachine.ai/p/hidden-in-plain-sight
https://www.factsmachine.ai/p/hidden-in-plain-sight
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
[REDACTED]

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Preliminary Statistics of AI Developers. We compare three leading open-source code
agents using metrics such as average cost, average time, and the average number of generated files.

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)
Basic Statistics

Version Data Interpreter (Hong et al., 2024a) 0.2.13 CodeAct v1.9 (Wang et al.)
(1) Average Cost $1.19 $3.92 $6.38
(2) Average Time 775.29s 1622.38s 362.41s
(3) Average Input Tokens 152863 606707 1252482
(4) Average Output Tokens 28546 59707 8457
(4) Average Saved Code Files 0.42 3.84 2.53
(5) Average Saved Code Lines 11.15 273.33 96.56
(6) Average Saved Files 4.42 5.91 3.60

allows for more comprehensive non-sparse feedback than a binary success metric. Furthermore, the
inclusion of milestones makes simple memorization not viable as a solution strategy as code that
performs the entire task is unlikely to exist online at this time.

2.3 PRELIMINARY BENCHMARK

We first conduct experiments to collect development outcomes from different frameworks, which
serve as baselines in the DevAI dataset. We test three of the most popular open-source frame-
works (which we will refer to as “AI developers”): MetaGPT (Hong et al., 2024b), GPT-
Pilot (Pythagora.io, 2023), and OpenHands (Wang et al., 2024b)—all selected for their strong com-
munity acceptance (each having over 30,000 stars on GitHub).

Experiment Setup All of these three systems require a language model as a back-end engine,
for which we use gpt-4o-2024-05-13, a state-of-the-art language model. These AI develop-
ers were given a time-limit of 1800 seconds to solve each task and were forcefully halted if they
exceeded this time limit (we imposed this constraint, which was visible to the AI developers, as de-
tailed in Appendix I). We capture the outputs generated during the automated development process,
including code, files, and other artifacts. Additionally, we record key decisions and actions made by
the agentic systems through some custom instrumentation code, resulting in a thought trajectory for
each of the agentic systems.

Analysis The basic statistics are shown in Table 1. MetaGPT is the most cost-efficient (1.19 USD),
while OpenHands is the most expensive (6.38 USD). In terms of development time, OpenHands
completes tasks in an average of 362.41s, while GPT-Pilot takes the longest at 1622.38s. On average,
a full evaluation on DevAI with one of these three took around 210.65 USD and 14 hours to perform.
While running, GPT-Pilot generates the most output tokens at 59707 tokens, whereas OpenHands
processed the most at 1252482 tokens while producing the fewest at 8457 tokens. This suggests that
OpenHands’s internal communication is more complicated but is more parsimonious in its decisions.

MetaGPT, while being the most cost-effective, generates fewer saved code files (0.42), suggesting
it may be less inclined to save files. In contrast, GPT-Pilot generates the most saved files (3.84),
reflecting a more prolific output. The difference in saved code lines, with GPT-Pilot saving 273.33
lines versus MetaGPT’s 11.15, underscores GPT-Pilot’s extensive output. Meanwhile, OpenHands,
despite handling larger inputs, seems less focused on executing code to generate files, as evidenced
by its lower file output (2.53 saved files). These statistics align with real user experiences (as dis-
cussed in Appendix F).

Evaluations Note that the results in Table 1 are not directly indicative of performance, but provide
valuable intuition about the practical utility of DevAI. The generated workspaces (generated files,
code, etc.) and trajectories are utilized in subsequent experiments to perform evaluations using
Human-as-a-Judge (section 3), LLM-as-a-Judge, and Agent-as-a-Judge (section 4).

3 HUMAN-AS-A-JUDGE: MANUAL EVALUATION ON DEVAI

To determine the pragmatic validity of DevAI and to accurately estimate the actual code-generating
abilities of current state-of-the-art agentic systems, in this section, we run and then manually evaluate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the application of three AI developer baselines to DevAI. In Section 4, we show how this evaluation
can be automated.

Table 2: Human-as-a-Judge for AI Developers. (I) and (D) represent independent performance
versus performance considering task dependencies. indicates multiple experts evolved, and
means the evaluations use white-box testing (allowing access to the generated workspace, human-
collected trajectories, and open-source codebases). The results were derived from expert judgments
and deliberations (see Appendix H).

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)

/ Human-as-a-Judge

(A) Requirements Met (I) 22.13% 44.80% 42.89%

(B) Requirements Met (D) 6.55% 28.96% 28.68%

(C) Self-Termination 41.81% 5.45% 54.54%

(D) Task Solve Rate 0.00% 1.81% 1.81%

3.1 BENCHMARK BASELINES BY HUMAN-AS-A-JUDGE

Human Evaluation Setup After obtaining the baseline executions and conducting basic statistical
analysis, we have three expert human evaluators (referred to here by their anonymous names: 231a,
38bb, and cn90) review the outputs of AI developer baselines to assess whether each requirement
was satisfied. We have two rounds of human evaluations. To capture the bias inherent in typical
human evaluation (this is desirable to capture here as it represents a likely scenario in deployment),
in the first round, our evaluators first discussed the basic standards but were given minimal instruc-
tions. The templates the evaluators were given for the evaluation and their self-reported post-hoc
descriptions of how they resolved ambiguities are reported in Figure 12 in Appendix H.

After the initial round of human evaluations (which totaled an estimated total of 58 human hours), we
asked our evaluators to discuss and reach a consensus on their assessments (which took an estimated
total of 28.5 additional human hours). This consensus, achieved after long sessions of debate, was
used as the final human evaluation result for each method.

Performance Analysis The results of this experiment are shown in Table 2. We found that the
two best-performing methods (GPT-Pilot and OpenHands) could satisfy about 29% of the require-
ments (or around 44% if prerequisites are ignored) but only on one task could they meet all the
requirements. This highlights that DevAI offers a considerable but appropriate level of challenge
for current and future methods. Moreover, the fulfillment of intermediate requirements aligns with
our expectations (see Section 2) that DevAI provides richer feedback by uncovering how agentic
systems falter during the process instead of just focusing on a single performance metric at the end.

3.2 JUDGING HUMAN-AS-A-JUDGE

Figure 4: Between the three human evaluators, a large amount of disagreement was observed in their
individual evaluations—highlighting the inherent unreliability of a single human evaluation.

Disagreement Analysis To analyze the presence of inductive bias and the reliability of the
Human-as-a-Judge paradigm here, we calculate the disagreement rate between individual evalua-
tors (shown in Figure 4). The results indicate that the disagreement rates between pairs of evaluators
range from around 10% to 30%. Although each human evaluator has over five years of experience
in AI research and development, the disagreement highlights the inherent challenges of evaluating
AI development.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Mismatch between the individ-
ual evaluations and the consensus evaluation.
Note that the majority vote showed the small-
est deviation from the consensus evaluation.

Due to the complexity of a complete AI develop-
ment task, which typically involves multiple steps
with varying outcomes at each step, humans can
easily make errors when critical information is
missed, such as environment feedback indicating
small but severe coding errors or bugs. Addition-
ally, some disagreements are not necessarily incor-
rect but arise from differing perspectives on how
ambiguity should be resolved.

To determine if the disagreement between the three
human judges is too large for them to serve as a
strong baseline, we recruited ten additional experts
and had them evaluate a random selection of 7 task
samples. We observed that the majority vote of
these additional experts had a 95.23% agreement
rate with the consensus result of our other experts
on these 7 tasks and a 97.67% agreement rate with
the majority vote. See Appendix P.

Error Analysis As previously noted, the evaluators engaged in a round of debating after their
initial evaluations until they reached a consensus on each requirement in each task (with the results
of this consensus evaluation shown in Table 2).

In our Human-as-a-Judge pipeline, evaluators could be convinced by evidence from others and ac-
knowledge their judgment errors, adjusting their answers accordingly. This can be used to approxi-
mate individual errors. If the consensus evaluation more accurately predicts any extant ground truth,
we would expect the majority vote from the individual evaluations to more closely approximate this
than any single evaluation, due to the fundamental properties of ensemble classifiers (see Hastie
et al. (2009)).

While the consensus evaluation may not represent the absolute ground truth (we acknowledge that
some quantity of error likely would still exist even after this procedure), we expect the consensus
evaluation to more accurately approximate the extant ground truth (Clemen, 1989). If this holds, the
majority vote should align more closely with the consensus than with any individual evaluation. As
shown in Figure 5, this is indeed the case.

As seen in the results, although significant errors occur among all evaluators, the majority vote
effectively corrects most of these errors. Notably, cn9o made the most errors (for example, 23.77%
in evaluating GPT-Pilot). After applying the majority vote from all three evaluators, the overall error
rate dropped to 6.01%, demonstrating the inherent benefits of majority voting.

Conclusion Human judgment errors are inevitable. To reduce them, we suggest two methods.
First, like in this work, introduce a debate round after each judgment, where individuals present
evidence and either persuade others or adjust their own opinions after discussion. This is particularly
important when there are only a few evaluators, as majority voting with a small group can still
lead to errors (around 5% compared to consensus evaluation, as shown in Figure 5). The second
approach involves assembling a larger panel of experts (more is better when their accuracy exceeds
50% (Grofman et al., 1983)), with over 5 people recommended by Hastie & Kameda (2005); Larrick
& Soll (2006), and relying on a majority vote. However, due to the high cost of engaging more
experts and the fact that this is not always feasible in practice, we argue for the former.

4 AGENT-AS-A-JUDGE: EVALUATING AGENTS WITH AGENTS

Human evaluation, while somewhat reliable, is time-consuming and requires significant expertise.
To address this, we propose the Agent-as-a-Judge framework. If such an agentic system could
evaluate like a human, it would reduce the need for human involvement, eliminating the trade-off
between evaluation thoroughness and effort.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: AI Judges and Their Shift/Alignment with Human-as-a-Judge. We compare the results
of LLM-as-a-Judge and Agent-as-a-Judge with Human-as-a-Judge. (I) represents performance on
independent tasks, while (D) represents performance considering task dependencies. Note: gray-
box settings use carefully manually collected trajectory data (which is nearly inaccessible in practical
situations, see Appendix J). In contrast, black-box setting doesn’t need to access to such data.
The red scores represent the absolute judge shift compared with Human-as-a-Judge (e.g., 2.74%).

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)
LLM-as-a-Judge

(a) Requirements Met (I) 19.39% (2.74%) 12.56% (32.24%) 11.47% (31.42%)
(b) Requirements Met (D) 1.63% (4.92%) 4.09% (24.87%) 2.18% (26.50%)
(c) Task Solve Rate 0.0% (0.0%) 0.0% (1.81%) 0.0% (1.81%)
Alignment Rate ↑ 84.15% 65.30% 60.38%

Agent-as-a-Judge
(I) Requirements Met (I) 25.40% (3.26%) 53.00% (8.20%) 42.62% (0.27%)
(II) Requirements Met (D) 5.73% (0.81%) 39.89% (10.93%) 26.50% (2.17%)
(III) Task Solve Rate 0.0% (0.0%) 5.45% (3.64%) 1.81% (0.00%)
Alignment Rate ↑ 88.52% 83.88% 90.44%

LLM-as-a-Judge
(a) Requirements Met (I) 28.68% (6.55%) 38.79% (4.10%) 43.16% (0.27%)
(b) Requirements Met (D) 17.75% (11.20%) 33.06% (4.10%) 32.24% (3.56%)
(c) Task Solve Rate 1.81% (1.81%) 3.63% (1.82%) 7.27% (5.46%)
Alignment Rate ↑ 68.86% 71.85% 70.76%

Agent-as-a-Judge
(I) Requirements Met (I) 23.49% (1.35%) 46.44% (1.64%) 43.44% (0.54%)
(II) Requirements Met (D) 6.01% (0.54%) 30.60% (1.64%) 28.14% (0.53%)
(III) Task Solve Rate 0.0% (0.00%) 5.45% (3.64%) 3.63% (1.82%)
Alignment Rate ↑ 92.07% 86.61% 90.16%

/ Human-as-a-Judge
Alignment Rate (38bb) 92.63% 90.98% 89.89%
Alignment Rate (cn9o) 83.33% 76.23% 78.15%
Alignment Rate (231a) 92.07% 87.43% 89.07%
Average of individuals 89.34% 84.88% 85.70%
Alignment Rate (Majority Vote) 95.08% 93.98% 94.26%

4.1 PROOF-OF-CONCEPT

Based on our prior experiences with agent design and by imitating the human evaluation process,
we initially designed eight modular, interacting components that form the foundation of our Proof-
of-Concept for the Agent-as-a-Judge.

MemoryPlanning

OUTPUTS

INPUTS

Locate

Search

Retrieve

Read

Ask

Graph

Figure 6: Initial diagram of Agent-as-a-Judge.

(1) The graph module constructs a graph that
captures the entire structure of the project, in-
cluding files, modules, and dependencies. It can
also break down chunks of code into code snip-
pets. (2) The locate module identifies the spe-
cific folder or file referred to by a requirement.(3)
The read module goes beyond simple file pars-
ing, supporting the reading and understanding
of multimodal data across 33 different formats,
including code, images, videos and documents.
This allows the agent to cross-reference various
data streams and check different kinds of require-
ment. (4) The search module offers a contextual
understanding of code and can quickly retrieve
highly relevant code snippets, as well as the nuances behind them (e.g., hidden dependencies). (5)
The retrieve module extracts information from long texts, identifying relevant segments in trajec-
tories. With context from the above, (6) the ask module determines whether a given requirement
is satisfied.(7) The memory module stores historical judgment information, allowing the agent to
build on past evaluations. Finally, (8) the planning module plans out actions, allowing the agent to
strategize and sequence tasks based on the current state and project goals.

Our initial design of the Agent-as-a-Judge is shown in Figure 6. After conducting comprehensive
ablation studies, we found that the modular combination of (1), (2), (3), (5), and (6) achieved the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

highest performance (see Appendix C). A sample of the dynamic evidence collected by the Agent-
as-a-Judge is shown in Appendix M. We hypothesize this is because Agent-as-a-Judge needs high-
quality factual information and is sensitive to noise. For example, while our design of the planning
module introduces promising decision-making for future actions, the procedure is unstable. Ini-
tially, we hoped that historical information from the memory module would help to assess current
requirements. However, it proved detrimental, as any errors in previous judgments could lead to a
chain of errors, negatively affecting current decisions. Besides, the current workspaces generated
by developer agents, having only hundreds of lines of code, cannot fully benefit from the search
module. The details of these findings are explained in Appendix K. Note that a perfect Agent-as-a-
Judge is not the focus of this proof of concept, and thus, we leave the utilization of advanced agentic
optimization methods for Agent-as-a-Judge, such as automated prompt optimization and workflow
design (Zhuge et al.; Hu et al., 2024), for future work.

4.2 JUDGING AGENT-AS-A-JUDGE AND LLM-AS-A-JUDGE

Judge Shift Judge Shift measures deviation from the Human-as-a-Judge consensus results, with
lower values indicating a closer alignment. As shown in table 3, Agent-as-a-Judge consistently
outperforms LLM-as-a-Judge across tasks, particularly those with task dependencies. For example,
in Requirement (I), Agent-as-a-Judge shows a Judge Shift as low as 0.27%, while LLM-as-a-Judge
reaches 31.24% for OpenHands. This underscores Agent-as-a-Judge’s stability and suitability for
meeting task requirements. Furthermore, in the gray-box setting, both Agent-as-a-Judge and LLM-
as-a-Judge show even better results than their performance in the black-box setting.

Figure 7: PR Curves comparing judge Methods.

Alignment Rate The Alignment Rate re-
flects how closely the AI Judges’ evaluations
align with human consensus across all 365 re-
quirements. It is defined as the percentage
of requirement evaluations that are the same
as the Human-as-a-Judge consensus evalua-
tion. Compared to LLM-as-a-Judge, Agent-as-
a-Judge consistently achieves a higher Align-
ment Rate, closely matching human judg-
ments. For example, when evaluating Open-
Hands, Agent-as-a-Judge reaches 92.07% and
90.44%, surpassing LLM-as-a-Judge’s 70.76%
and 60.38% in both gray-box and black-box
settings. This suggests that Agent-as-a-Judge
is more accurate and human-aligned.

PR Curves Judging developer agents is a class-imbalanced task, where meeting requirements is
much rarer than failing. Metrics like judge shift and alignment rate can be misleading. For example,
since MetaGPT rarely meets requirements, LLM-as-a-Judge easily identifies most cases as negative
(achieving 84.15% in the black-box setting). PR Curves offer a clearer performance measure by
balancing precision and recall. This shows that, in some cases, Agent-as-a-Judge can nearly re-
place human evaluators. Our observations indicate the relative reliability of evaluation methods as:
LLM-as-a-Judge < Single-Human-as-a-Judge < Agent-as-a-Judge < Ensemble of Human Judges.
Future advancements in foundation models and Agent-as-a-Judge designs may shift this order.

4.3 ABLATIONS FOR AGENT-AS-A-JUDGE

Table 4: Component Ablation Studies for Agent-
as-a-Judge. We analyze the impact of adding vari-
ous components (ask, graph, read, locate, and
retrieve) on the performance of Agent-as-a-Judge
for judging OpenHands.

Metric + ask + graph + read + locate + retrieve

Agent-as-a-Judge Performance
Alignment Rate 65.03% 75.95% 82.24% 90.44% 90.16%

We conduct ablations to evaluate the
impact of adding different components
on Agent-as-a-Judge’s performance.
The components analyzed include
ask, graph, read, locate, and
retrieve. The component ablation
study for Agent-as-a-Judge reveals key
insights into the performance gains from
adding specific functionalities. With only

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ask component, the agent achieves a 65.03% alignment rate. Adding the graph component
increases performance to 75.95%, as the agent can better understand relationships between files.
The introduction of read further improves the alignment rate to 82.24%, reflecting the value of
direct access to the contents of the file. Incorporating locate brings a substantial boost to 90.44%,
as the agent can efficiently target files relevant to the requirements. Adding retrieve does
not always provide a significant benefit in this case. We found the retrieve module effective
for judging MetaGPT and GPT-Pilot, as it provides valuable trajectory information (as shown in
Table 3). However, it is less effective for OpenHands, which sometimes fails to execute files,
resulting in missing responses. In such cases, judgment without trajectories remains viable.

4.4 COST ANALYSIS

Our three evaluators a self-reported total of 86.5 hours. With a 15 USD hourly wage (assuming this
would buy a subject expert in AI), a full evaluation under DevAI would cost around 1297.50 USD.
In comparison, Agent-as-a-Judge cost only 30.58 USD (2.29%) in API calls and took only 118.43
minutes (2.36%). LLM-as-a-Judge was faster at 10.99 minutes, but due to the absence of intelligent
context selection by the Agent-as-a-Judge’s modules, it still cost 29.63 USD.

5 RELATED WORK

Agentic systems is a highly active research area, so we only detail the most closely related works
here. We provide a treatment of the marginally less relevant related works in Appendix D.

AI Developers AI in software development is growing fast (Liu et al., 2024). AI-driven developers
have been applied to directly imitate software companies (Hong et al., 2024b; Qian et al., 2024a),
debug code (Yang et al., 2024a), run data science methods (Guo et al.; Hong et al., 2024a; Li et al.,
2024; Qiao et al., 2023), and even write academic papers (Lu et al., 2024a).

Benchmarks for AI developments Benchmarks like MLAgentBench (Huang et al., 2024), ML-
Bench (Liu et al., 2023), and SUPER (Bogin et al., 2024) all focus on benchmarking agentic sys-
tems using AI tasks. However, DevAI distinguishes itself from all of these by focusing on realistic
user queries that target a complete development cycle. It further includes a more comprehensive
evaluation with multiple hierarchical requirements and preferences for each task. Comparatively,
MLAgentBench (Huang et al., 2024), for example, focuses on final performance for a limited set of
well-known tasks, which risks overfitting and fails to assess a system’s generalization or adaptability.

AI Judges Several works have looked at using AI systems as judges. The work by Chan et al.;
Zhao et al. (2024), for example, extends LLM-as-a-Judge to have multiple LLMs in their evaluation
process for conversational tasks. Unlike Agent-as-a-Judge, they employ a trivial agentic system and
apply it only to evaluate LLMs under traditional evaluation setups. In contrast, (Lu et al., 2024b) uses
a single LLM-based evaluator but, unlike LLM-as-a-Judge, applies this to multimodal tasks rather
than just for evaluating LLMs. Less relevant are frameworks like those by Chen et al. (2024a); Arora
et al. (2024); Mündler et al. (2024), where intermediate signals are used during coding development.

6 DISCUSSION AND CONCLUSION

Discussion A key power of the Agent-as-a-Judge that we have not exploited here is the feedback it
provides being directly used by the agentic system being evaluated. Perhaps the greatest strength of
the Agent-as-a-Judge framework is that an agentic system could use it to fix issues in their solutions
to complex multistage problems on the fly—something older delayed feedback methods did not
permit. In addition, a cycle of mutual improvement between Agent-as-a-Judge and the evaluated
agents, where both evolve together through iterative feedback, presents a promising perspective.

Conclusion In this work, we introduced the Agent-as-a-Judge method to use agentic systems to
evaluate agentic systems. We simultaneously released DevAI: a new benchmark that evaluates
the code-generating ability of agentic systems on complete AI development tasks when used with
Agent-as-a-Judge. We went on to show that Agent-as-a-Judge outperforms existing methods on
this task and that it performs similarly to an ensemble of expert human evaluators. Altogether, we
believe that the above opens the door for scaling up agentic far more than before.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The nature of this work necessitates the public release of the DevAI dataset and the implementation
of Agent-as-a-Judge as part of that. The authors are committed to open science and will be doing so
upon paper acceptance. In tandem with the details provided in the various Appendices, this should
allow full reproducibility of the results shown in this paper.

ETHICS STATEMENT

Our work, like similar works, aims to reduce human labour costs while maintaining the rigour
needed for meaningful science. This should serve to make it easier for the field to adopt more
accessible and open evaluation methods. The DevAI dataset is sourced from widely used general-
purpose datasets, and all examples are annotated by experts to minimize bias. Furthermore, our
dataset enhances transparency in the field of automated AI development, contributing to more open,
equitable, and responsible progress in AI research. We do not forsee any obvious exceptional ethical
implications of this work beyond the above.

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https:
//www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc61885
7627/Model_Card_Claude_3.pdf.

Daman Arora, Atharv Sonwane, Nalin Wadhwa, Abhav Mehrotra, Saiteja Utpala, Ramakrishna
Bairi, Aditya Kanade, and Nagarajan Natarajan. MASAI: Modular architecture for software-
engineering ai agents. arXiv preprint arXiv:2406.11638, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández, Al-
bert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, et al. LLMs instead
of human judges? a large scale empirical study across 20 NLP evaluation tasks. arXiv preprint
arXiv:2406.18403, 2024.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish
Sabharwal, and Tushar Khot. SUPER: Evaluating agents on setting up and executing tasks from
research repositories. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 12622–12645, 2024.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. MultiPL-
E: a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions
on Software Engineering, 49(7):3675–3691, 2023.

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
Berman, George Chakhnashvili, Anton Lozhkov, Carolyn Jane Anderson, and Arjun Guha. Can
it edit? evaluating the ability of large language models to follow code editing instructions. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
D06yk3DBas.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=D06yk3DBas
https://openreview.net/forum?id=D06yk3DBas

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. ChatEval: Towards better LLM-based evaluators through multi-agent debate. In
The Twelfth International Conference on Learning Representations.

Harrison Chase. LangChain. https://github.com/hwchase17/langchain, 2022.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun
Sun, Hao Yu, Guoliang Dong, Artem Aliev, et al. CodeR: Issue resolving with multi-agent and
task graphs. arXiv preprint arXiv:2406.01304, 2024a.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
Yao Wan, Pan Zhou, and Lichao Sun. MLLM-as-a-Judge: Assessing multimodal LLM-as-
a-Judge with vision-language benchmark. In Forty-first International Conference on Machine
Learning.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong
Wang, Huichi Zhou, Yiqiang Li, et al. GUI-WORLD: A dataset for GUI-oriented multimodal
LLM-based agents. arXiv preprint arXiv:2406.10819, 2024b.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or LLMs
as the judge? a study on judgement bias. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 8301–8327, Miami, Florida, USA, November 2024c. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2024.emnlp-main.474.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the new AutoDiff—unlocking ef-
ficient optimization of computational workflows. In ICML 2024 Workshop on Automated Rein-
forcement Learning: Exploring Meta-Learning, AutoML, and LLMs.

Robert T Clemen. Combining forecasts: A review and annotated bibliography. International journal
of forecasting, 5(4):559–583, 1989.

Corinna Cortes. Support-vector networks. Machine Learning, 1995.

Yijiang River Dong, Tiancheng Hu, and Nigel Collier. Can LLM be a personalized judge? In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 10126–10141, Miami, Florida, USA, November
2024. Association for Computational Linguistics. URL https://aclanthology.org/2
024.findings-emnlp.592.

Zhuoyun Du, Chen Qian, Wei Liu, Zihao Xie, Yifei Wang, Yufan Dang, Weize Chen, and Cheng
Yang. Multi-agent software development through cross-team collaboration. arXiv preprint
arXiv:2406.08979, 2024.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining to knowledge
discovery in databases. AI magazine, 17(3):37–37, 1996.

Jinlan Fu, See Kiong Ng, Zhengbao Jiang, and Pengfei Liu. GPTScore: Evaluate as you desire.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 6556–
6576, 2024.

Charles Goodhart. Monetary relationships: a view from Threadneedle Street. University of War-
wick, 1976.

Significant Gravitas. Auto-GPT. GitHub repository, 2023.

Bernard Grofman, Guillermo Owen, and Scott L Feld. Thirteen theorems in search of the truth.
Theory and decision, 15(3):261–278, 1983.

12

https://github.com/hwchase17/langchain
https://aclanthology.org/2024.emnlp-main.474
https://aclanthology.org/2024.findings-emnlp.592
https://aclanthology.org/2024.findings-emnlp.592

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-Agent: Auto-
mated data science by empowering large language models with case-based reasoning. In Forty-
first International Conference on Machine Learning.

Md Mahim Anjum Haque. FixEval: Execution-based evaluation of program fixes for competitive
programming problems. PhD thesis, Virginia Tech, 2023.

Reid Hastie and Tatsuya Kameda. The robust beauty of majority rules in group decisions. Psycho-
logical review, 112(2):494, 2005.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2 edition, 2009. doi: 10.1007/978-0-387-84
858-7.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with APPS. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An LLM agent for data science.
arXiv preprint arXiv:2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. MetaGPT: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2024b.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. AgentCoder:
Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating language
agents on machine learning experimentation. In Forty-first International Conference on Machine
Learning, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Peter Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi Mishra, Bod-
hisattwa Prasad Majumder, Oyvind Tafjord, and Peter Clark. DISCOVERYWORLD: A virtual
environment for developing and evaluating automated scientific discovery agents. arXiv preprint
arXiv:2406.06769, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues? In The
Twelfth International Conference on Learning Representations.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From LLMs to
LLM-based agents for software engineering: A survey of current, challenges and future. arXiv
preprint arXiv:2408.02479, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
state-of-the-art pipelines. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=sY5N0zY5Od.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

LangChain-AI. LangGraph. https://github.com/langchain-ai/langgraph, 2024.

Richard P Larrick and Jack B Soll. Intuitions about combining opinions: Misappreciation of the
averaging principle. Management science, 52(1):111–127, 2006.

V Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Proceedings
of the Soviet physics doklady, 1966.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL:
Communicative agents for” mind” exploration of large language model society. Advances in
Neural Information Processing Systems, 36:51991–52008, 2023.

Ruochen Li, Teerth Patel, Qingyun Wang, and Xinya Du. MLR-Copilot: Autonomous machine
learning research based on large language models agents. arXiv preprint arXiv:2408.14033, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with AlphaCode. Science, 378(6624):1092–1097, 2022.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and Yiling
Lou. Large language model-based agents for software engineering: A survey. arXiv preprint
arXiv:2409.02977, 2024.

Tianyang Liu, Canwen Xu, and Julian McAuley. RepoBench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations,
a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. AgentBench: Evaluating llms as agents. In The Twelfth Inter-
national Conference on Learning Representations, b.

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu, Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan
Hu, Zengxian Yang, Kaikai An, et al. ML-Bench: Large language models leverage open-source
libraries for machine learning tasks. arXiv preprint arXiv:2311.09835, 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024a.

Yujie Lu, Xianjun Yang, Xiujun Li, Xin Eric Wang, and William Yang Wang. LLMScore: Unveiling
the power of large language models in text-to-image synthesis evaluation. Advances in Neural
Information Processing Systems, 36, 2024b.

Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Code agents are state of the
art software testers. arXiv preprint arXiv:2406.12952, 2024.

OpenAI. GPT-4 technical report, 2023.

Jooyong Park. Constructive multiple-choice testing system. British Journal of Educational
Technology, 41(6):1054–1064, 2010. doi: https://doi.org/10.1111/j.1467-8535.2010.01058
.x. URL https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1
111/j.1467-8535.2010.01058.x.

14

https://openreview.net/forum?id=sY5N0zY5Od
https://github.com/langchain-ai/langgraph
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8535.2010.01058.x
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8535.2010.01058.x

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Huy Nhat Phan, Phong X Nguyen, and Nghi DQ Bui. Hyperagent: Generalist software engineering
agents to solve coding tasks at scale. arXiv preprint arXiv:2409.16299, 2024.

Pythagora.io. GPT-Pilot: Your ai copilot for software development. https://github.com/P
ythagora-io/gpt-pilot, 2023. URL https://github.com/Pythagora-io/gp
t-pilot. GitHub repository.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 15174–15186, Bangkok, Thailand, August
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-long.810.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024b.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong,
Jue Zhang, Lu Wang, et al. Taskweaver: A code-first agent framework. arXiv preprint
arXiv:2311.17541, 2023.

Vyas Raina, Adian Liusie, and Mark Gales. Is LLM-as-a-judge robust? investigating universal
adversarial attacks on zero-shot LLM assessment. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 7499–7517, Miami, Florida, USA, November 2024. Association for Com-
putational Linguistics. URL https://aclanthology.org/2024.emnlp-main.427.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–
3992, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Retrieval, 3(4):333–389, 2009.

Lin Shi, Weicheng Ma, and Soroush Vosoughi. Judging the judges: A systematic investigation of
position bias in pairwise comparative assessments by LLMs. arXiv preprint arXiv:2406.07791,
2024.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, and
Chi Wang. Adaptive in-conversation team building for language model agents. arXiv preprint
arXiv:2405.19425, 2024.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia,
Jiechuan Jiang, Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A mul-
timodal agent for Red Dead Redemption II as a case study. In ICLR 2024 Workshop on Large
Language Model (LLM) Agents.

Wei Tao, Yucheng Zhou, Wenqiang Zhang, and Yu Cheng. MAGIS: LLM-Based multi-agent frame-
work for GitHub issue resolution. arXiv preprint arXiv:2403.17927, 2024.

Aman Singh Thakur, Kartik Choudhary, Venkat Srinik Ramayapally, Sankaran Vaidyanathan, and
Dieuwke Hupkes. Judging the judges: Evaluating alignment and vulnerabilities in llms-as-judges.
arXiv preprint arXiv:2406.12624, 2024.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Hui Haotian, Liu
Weichuan, Zhiyuan Liu, and Maosong Sun. DebugBench: Evaluating debugging capability of
large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 4173–4198, Bangkok, Thailand,

15

https://github.com/Pythagora-io/gpt-pilot
https://github.com/Pythagora-io/gpt-pilot
https://github.com/Pythagora-io/gpt-pilot
https://github.com/Pythagora-io/gpt-pilot
https://aclanthology.org/2024.acl-long.810
https://aclanthology.org/2024.emnlp-main.427
https://aclanthology.org/D19-1410

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.24
7. URL https://aclanthology.org/2024.findings-acl.247.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Michele Tufano, Anisha Agarwal, Jinu Jang, Roshanak Zilouchian Moghaddam, and Neel Sundare-
san. AutoDev: Automated AI-driven development. arXiv preprint arXiv:2403.08299, 2024.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024a.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better LLM agents. In ICLR 2024 Workshop on Large Language Model
(LLM) Agents.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. OpenDevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Rüdiger Wirth and Jochen Hipp. CRISP-DM: Towards a standard process model for data mining.
In Proceedings of the 4th international conference on the practical applications of knowledge
discovery and data mining, volume 1, pp. 29–39. Manchester, 2000.

Michael Wooldridge. Intelligent agents. Multiagent systems: A modern approach to distributed
artificial intelligence, 1:27–73, 1999.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. AutoGen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang, and Qingyun Wu. StateFlow: Enhancing LLM
task-solving through state-driven workflows. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=3nTbuygoop.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
LLM-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, et al. CRAB: Cross-environment agent benchmark
for multimodal language model agents. arXiv preprint arXiv:2407.01511, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. AppAgent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. MatPlotAgent:
Method and evaluation for LLM-based agentic scientific data visualization. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, pp. 11789–11804, Bangkok, Thailand, August 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.701. URL https://aclanthology.org
/2024.findings-acl.701.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 2471–2484, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-mai
n.151. URL https://aclanthology.org/2023.emnlp-main.151.

16

https://aclanthology.org/2024.findings-acl.247
https://openreview.net/forum?id=3nTbuygoop
https://aclanthology.org/2024.findings-acl.701
https://aclanthology.org/2024.findings-acl.701
https://aclanthology.org/2023.emnlp-main.151

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ruochen Zhao, Wenxuan Zhang, Yew Ken Chia, Deli Zhao, and Lidong Bing. Auto arena of LLMs:
Automating LLM evaluations with agent peer-battles and committee discussions. arXiv preprint
arXiv:2405.20267, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-Judge with MT-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jin-
tian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
autonomous language agents. arXiv preprint arXiv:2309.07870, 2023.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand
Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann,
Kazuki Irie, et al. Mindstorms in natural language-based societies of mind. arXiv preprint
arXiv:2305.17066, 2023.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Logic Flow of this Paper 19

B Experiment Designs 20
B.1 Summary of Experiments . 20
B.2 Judges and Subjects of Evaluation . 20

C Agent-as-a-Judge Pipeline 21

D Extend Related Work 22

E The Procedures of Creating DevAI Dataset 24
E.1 Manually draft user queries . 24
E.2 Set Judging Criteria . 24
E.3 Building Dependency Among Requirements 24
E.4 Refine the dataset . 24
E.5 Analyse the dataset . 24
E.6 Auxiliary Information . 25
E.7 A Json Format of Our Sample . 25

F User experiences of code-generation agentic systems 28

G More DevAI dataset samples 29

H Human Evaluation Procedure 31

I Suggest Constraints 33

J Collected Trajectories 34
J.1 Schema . 34
J.2 A Sample of Trajectory . 36

K Ablations of Agent-as-a-Judge 40
K.1 Component Abalations . 40
K.2 Search Algorithms in Search Module . 40
K.3 Search Algorithms in Retrieve Module . 40

L Prompt Demos of Agent-as-a-Judge 42
L.1 System Prompt for Agent-as-a-Judge . 42
L.2 System Prompt for Locate Module . 43
L.3 System Prompt for Retrieve Module . 43
L.4 Prompt for Ask Module (for requirement check) 44
L.5 Prompt for Locate Module . 44

M Judge Evidences Collected from Agent-as-a-Judge 45

N Analysis of failure cases 46

O Sensitivity w.r.t the choice of the backend LLM 47

P Additional Human Evaluation Details 47

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A LOGIC FLOW OF THIS PAPER

Paper: Agent-as-a-Judge: Evaluating Agents with Agents

Key Logic
■ Step 1: Concept Proposal

Description: We propose the Agent-as-a-Judge concept, an extension of the LLM-
as-a-Judge framework, aimed at evaluating agentic systems using other agentic sys-
tems.

■ Step 2: Dataset Creation
Description: To address the lack of suitable datasets for evaluating agentic systems
in automated AI development, we introduce DevAI, a new dataset consisting of 55
realistic AI code generation tasks. This also serves as a testbed for the Agent-as-a-
Judge proof-of-concept.

■ Step 3: Baseline Evaluation of Developer Agents (Experiment Level 1)
Description: In the first level of experiments, we select three popular open-source
developer agents: MetaGPT, GPT-Pilot, and OpenDevin. These agents are evalu-
ated on the DevAI tasks to establish performance baselines.

■ Step 4: Conducting Human-as-a-Judge Evaluation
Description: We conduct a Human-as-a-Judge experiment, where three human ex-
perts assess the performance of the developer agents on the same DevAI tasks.

■ Step 5: Human-as-a-Judge Analysis (Experiment Level 2)
Description: In the second level of experiments, we statistically analyze the results
of Human-as-a-Judge evaluations, focusing on the costs of human labor and potential
biases, highlighting the challenges of relying on human evaluation for complex tasks.

■ Step 6: Agent-as-a-Judge Implementation
Description: We design and implement the Agent-as-a-Judge proof-of-concept to
evaluate code generation on the DevAI dataset. This system incorporates modules
such as graph, search, read, and ask, providing multi-dimensional evaluation metrics.

■ Step 7: Comparing Judgment Systems (Experiment Level 3)
Description: In the third level of experiments, we compare three judgment systems:
Agent-as-a-Judge, LLM-as-a-Judge, and Human-as-a-Judge, all applied to the
same DevAI tasks. Our results show that Agent-as-a-Judge performs comparably to
human evaluators and surpasses LLM-as-a-Judge in more complex reasoning and
evaluation tasks.

Future Directions
■ Direction 1: Enhancing Agent-as-a-Judge

Description: Future work should focus on improving the performance of Agent-as-a-
Judge, especially in more complex and diverse environments, to handle increasingly
sophisticated decision-making tasks.

■ Direction 2: Intermediate Feedback for Self-Improvement
Description: A promising extension of this work is enabling Agent-as-a-Judge to
provide intermediate feedback, helping developer agents iteratively improve and self-
optimize their decision-making processes.

Figure 8: Logical Flow of the Agent-as-a-Judge Paper.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B EXPERIMENT DESIGNS

This section outlines the experimental designs aimed at evaluating developer agents’ performance,
analyzing human evaluations, and comparing AI-based judging systems. The experiments are struc-
tured across three levels, as illustrated below.

Judging Developer Agents Judging Human-as-a-Judge Judging Agent(/LLM)-as-a-Judge
Level 1 Level 2 Level 3

Section 2.3 Section 3.1 Section 3.2 Section 4.2 Section 4.3

B.1 SUMMARY OF EXPERIMENTS

The experiments are categorized into three levels as follows:

Level 1: Human evaluation of developer agents
l Experiment 1a: Basic performance statistics for developer agents (Section 2.3)
l Experiment 1b: Human evaluations of developer agents (Section 3.1)

Level 2: Error and bias analysis of human evaluations
l Experiment 2a: Error analysis of human evaluations (Section 3.2)

Level 3: AI-based judging systems
l Experiment 3a: AI judge baselines (Section 4.2)
l Experiment 3b: Ablation studies for Agent-as-a-Judge (Section 4.3)

B.2 JUDGES AND SUBJECTS OF EVALUATION

The following table summarizes the judge and the subject being evaluated in each experiment:

Experiment Who is the Judge? Who is being Judged?
Section 2.3 Human Developer Agents
Section 3.1 Human Developer Agents

Section 3.2 Human Human

Section 4.2 (1) LLM-as-a-Judge (1) Developer Agents
(2) Agent-as-a-Judge (2) Developer Agents
(3) Human (3) LLM-as-a-Judge
(4) Human (4) Agent-as-a-Judge

Section 4.3 Human Agent-as-a-Judge

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C AGENT-AS-A-JUDGE PIPELINE

User

Hi! Please follow the instruction and set up the script from the blog https://www.factsmachine.ai/p/hidden-
in-plain-sight to generate 1080p images with hidden text ("FUTURE," in src/visualize.py. Save them in
results/ and verify the text is embedded.

Agentic Task

workspace

src

visualize.py

results

hidden.jpg

mask.jpg

aimages

Judge Process

hidden.jpg

mask.jpg

visualize.py

Build the workspace graph.

Are the requirement
{R0} satisfied?

Collect information based on
{R0} and the workspace graph.

Judge Agent Graph Read RetrieveAsk
Verify all requirements and
their related analyses.

Write and run src/visualize.py to generate masks and save the figures in the results/ directory.

Open the mentioned link and carefully read the blog mentioned in the user query.

Go to the GitHub repository mentioned in the blog, and read the code and the README file.

Set up the environment, then install the package.

Set up the Modal library by installing it and configuring the API for serverless deployment.

Develop Process

Developer
Agent

Locate

Figure 9: The pipelines of developer agents and judge agent.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D EXTEND RELATED WORK

Our main paper includes mostly related works of AI developers, Benchmarks for AI develop-
ments, and AI judges. However, the following works contribute significantly to the community and
also relate to this work. We record this work as additional related work3.

LLM-based Autonomous Agents Recent developments in LLM-based agents have expanded
their capabilities beyond simple task execution to more autonomous problem-solving and decision-
making. AutoGPT (Gravitas, 2023) and LangChain (Chase, 2022) provide frameworks for single-
agent systems that leverage external tools for more complex tasks. Similarly, research such as
MetaGPT (Hong et al., 2024b), AutoGen (Wu et al., 2023) and CAMEL (Li et al., 2023) focus on
role-based multi-agent communication, improving collaboration among agents. However, the chal-
lenge of maintaining coherence in agents’ dialogue and preventing hallucination remains promi-
nent (Du et al., 2024; Zhou et al., 2023). Most recently, using graphs to build agents has gained
prominence. Earlier work like GPTSwarm (Zhuge et al.) and LangGraph (LangChain-AI, 2024)
proposed using nodes to represent operations and edges to represent the connections between them.
In GPTSwarm, multiple agents represented as subgraphs in a graph are connected by optimizable
edges, and reinforcement learning is employed to optimize the edges. Following this approach, sev-
eral agent frameworks have incorporated graphs into their designs (Hong et al., 2024a; Zhou et al.,
2024; Qian et al., 2024b). Additionally, various optimization methods have been developed to en-
hance agent performance further (Wu et al., 2024; Song et al., 2024; Hu et al., 2024). In practical ap-
plications, many studies focus on understanding and interacting with GUIs (Wang et al., 2024a; Chen
et al., 2024b; Yang et al., 2023; Xu et al., 2024; Tan et al.). For code generation agents (Jin et al.,
2024), current research mainly emphasizes automated repair (Yang et al., 2024a; Phan et al., 2024;
Tao et al., 2024), computational modular design (Khattab et al., 2024; Cheng et al.), and automated
development (Tufano et al., 2024; Huang et al., 2023). Among these, open-sourced frameworks like
OpenHands (Wang et al., 2024b) have gained popularity due to their strong user experience. More-
over, scientific discovery (Jansen et al., 2024; Lu et al., 2024a) and ML agents (Yang et al., 2024b)
are also receiving increased attention.

LLM-as-a-Judge In the domain of AI evaluation and judgment, frameworks (Zheng et al., 2024;
Fu et al., 2024; Chen et al.) have pioneered the use of LLMs to assess conversational agents, demon-
strating how LLMs can evaluate dialogue quality and consistency. Expanding beyond dialogue,
LLMs like CodeR (Chen et al., 2024a) and MASAI (Arora et al., 2024) apply similar judging prin-
ciples to the code validation process, where AI systems autonomously evaluate and verify computer
programs. Our work builds on these advancements by exploring how LLMs can perform more
nuanced judgment tasks, further investigating their potential in decision-making across various do-
mains. Recent research also focuses on judging LLM-as-a-Judges (Chen et al., 2024c; Bavaresco
et al., 2024; Thakur et al., 2024; Dong et al., 2024; Shi et al., 2024; Raina et al., 2024).

Coding Benchmarks Recent advances in code generation have led to the innovation of vari-
ous benchmarks to evaluate model performance (Liu et al., 2024). Early benchmarks, such as
MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021), and MultiPL-E (Cassano et al., 2023),
focus primarily on generating simple functions. While these benchmarks are useful for evaluating
the correctness of generated code, they are limited in complexity and do not fully represent the
challenges encountered in real-world software development.

As the field progressed, newer benchmarks began to focus on more complex and realistic tasks.
APPS (Hendrycks et al.), CodeContests (Li et al., 2022), and LiveCodeBench (Jain et al., 2024)
moved toward competitive programming challenges that involve advanced algorithms and data struc-
tures. These tasks are more representative of problems encountered in coding competitions and help
push models toward more sophisticated problem-solving. DS-1000 (Lai et al., 2023) was intro-
duced to assess the skills of models with data science libraries, evaluating their ability to use APIs
and execute complex data analysis workflows. Meanwhile, AgentBench (Liu et al., b) focuses on

3Additionally, we were pleased to find that a recent industry blog (https://www.cognition.ai/blo
g/evaluating-coding-agents), published two weeks before our submission, shares very similar ideas
and provides further evidence that the Agent-as-a-Judge could have practical applications in agent systems.

22

https://www.cognition.ai/blog/evaluating-coding-agents
https://www.cognition.ai/blog/evaluating-coding-agents

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

testing reasoning and decision-making abilities in interactive environments, highlighting differences
in performance between commercial and open-source models.

To address real-world programming needs beyond code generation, specialized benchmarks have
been created to evaluate tasks such as debugging, refactoring, and code navigation. CANITE-
DIT (Cassano et al., 2024), DebugBench (Tian et al., 2024), and FixEval (Haque, 2023) evalu-
ate the ability of a model to edit and improve existing code. Additionally, benchmarks such as
SWE-Bench (Jimenez et al.) focus on resolving issues in GitHub repositories, simulating practical
software development scenarios. Finally, benchmarks such as RepoBench (Liu et al., a) and RepoE-
val (Zhang et al., 2023) delve into the evaluation of models in large-scale, multifile codebases. These
benchmarks measure the ability of language models to understand the structure of repositories and
solve problems within more complex, collaborative environments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E THE PROCEDURES OF CREATING DEVAI DATASET

E.1 MANUALLY DRAFT USER QUERIES

Given the execution cost of the developer agents, we collect small-scale AI tasks to ensure the prac-
tical applicability of our benchmark. Since these tasks are small-scale and well studied, which are
easy to overfit in terms of task performance metrics, unlike previous benchmarks (e.g., (Huang et al.,
2024)), we do not evaluate task performance as the development performance measure. Instead, we
prioritize the step-by-step task-solving ability, which is essential for real-world development. Our
quires are specifically designed to require the development agents to understand user intentions,
solve the task in multiple steps, and adapt to unexpected step outcomes. This approach also makes
our benchmark user-friendly, transparent, and better reflects real-world deployment situations. To
enable effective evaluation, our queries present a specific development file structure for the devel-
oper agents to follow. To ensure that the developer agents save the files to be evaluated in the
workspace, we develop constraint prompts added to the query to form an extended query. The con-
straint prompts guide the developer agents to save and execute the source codes, which are in line
with the real-world development standard. See Appendix I for our constraint prompts.

E.2 SET JUDGING CRITERIA

To make the evaluation of the developer agent precise, we assign to each task query a list of require-
ments as task milestones. The requirements are chosen so that satisfying all the requirements is a
necessary condition to consider the task to be solved successively. Since our tasks are AI-centric, our
queries target essential elements of AI development, including data processing, AI method, presen-
tation of evaluation metrics, visualization, and human-computer interaction, covering the key areas
that matter most in real-world scenarios. On the other hand, breaking down tasks into individual
requirements also reflects the multi-step nature of code development. Importantly, to avoid ambigu-
ity, we set the requirements to be explicit, binary, and straightforward to evaluate. To include other
human predispositions, we include a list of preferences per task that covers subjective, ambiguous,
or non-explicitly stated characteristics.

E.3 BUILDING DEPENDENCY AMONG REQUIREMENTS

To enhance the realism of our benchmark, we analyzed the dependencies among requirements.
Over the past decades, methodologies such as the KDD Process (Fayyad et al., 1996) and CRISP-
DM (Wirth & Hipp, 2000) have guided ML/AI development, establishing foundational frameworks
that have been further refined with the rise of AutoML (He et al., 2021).

Inspired by these methodologies, we identified a seven-step process for automated AI development
tasks. This process includes critical stages such as data preprocessing, feature engineering, model
selection, and hyperparameter tuning, along with essential post-development activities like metrics
recording, report generation, and the development of interactive user applications. This structured
approach allows us to evaluate the agent’s ability to manage task dependencies and effectively navi-
gate complex, real-world scenarios.

E.4 REFINE THE DATASET

Manual refinements were necessary to ensure the accuracy and clarity of DevAI. We perform two
rounds of comprehensive review and edits on DevAI, each round being done by a different partic-
ipant. During these manual refinements, we focus on the logical consistency of our queries and
requirements, the correctness and ambiguity of the language, and the applicability of the content to
the task domain. We identified a moderate number of errors in our dataset during the review.

E.5 ANALYSE THE DATASET

We categorized each requirement based on its focus, whether it was related to the data set, the
machine learning method, visualization, metrics, HCI, or data processing. While this approach
provides a useful framework, it is important to recognize that these categories might overlap or miss
certain nuances. Similarly, preferences were classified by how strongly they appeared in the query

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

text, ranging from those inferred by common sense to those explicitly stated. Although this helps to
organize preferences, it is worth noting that such classifications can be subjective and may not fully
capture the importance of each preference in practical applications. By structuring the requirements
and preferences this way, we aim to enhance the evaluation process, though flexibility and context
awareness remain crucial for truly robust assessments.

E.6 AUXILIARY INFORMATION

Some of the tasks require the download of a Kaggle data set, where a Kaggle credential is needed.
Our constraint I requires an “is kaggle api needed” tag to determine whether the creden-
tial is needed to be included in the extended query. We further mark each task with some tags
describing the AI sub-fields related to the task, including computer vision, supervised learning, rein-
forcement learning, natural language processing, etc., as well as two “is training needed”
and “is web navigation needed” tags as auxiliary information. We also categorize
each requirement into one of the following: (1) dataset or environment, (2) data
preprocessing and postprocessing, (3) machine learning method, (4) save
trained model, (4) performance metrics, (5) human computer interaction,
(6) visualization, and (7) other, reflecting the nature of the requirement.

E.7 A JSON FORMAT OF OUR SAMPLE

Here, we provide a sample of the DevAI with its json format. We also provide more samples in
Appendix G.

{
"name": "25_Speech_Emotion_Recognition_CNN_LSTM_RAVDESS_DL",
"query": "I am seeking a speech emotion recognition project using a

CNN-LSTM model with the RAVDESS dataset, which should be
downloaded from Kaggle or [this Hugging Face link](https://
huggingface.co/datasets/xbgoose/ravdess). The project should load
the dataset and perform robust audio preprocessing (noise

removal and normalization) and MFCC feature extraction,
implemented in ‘src/data_loader.py‘. The CNN-LSTM model should be
implemented in ’src/model.py’. Recognition accuracy should be

saved in ‘results/metrics/recognition_accuracy.txt‘, and a
confusion matrix should be generated and saved as ‘results/
figures/confusion_matrix.png‘. Additionally, a user-friendly
local API should be created using Flask to allow users to upload
audio files and receive emotion recognition results, with the
implementation included in ‘src/hci.py‘.",

"tags": [
"Audio Processing",
"Classification"

],
"requirements": [

{
"requirement_id": 0,
"prerequisites": [],
"criteria": "The \"RAVDESS\" dataset is loaded in ‘src/

data_loader.py‘, which is downloaded from Kaggle or [this
Hugging Face link](https://huggingface.co/datasets/

xbgoose/ravdess).",
"category": "Dataset or Environment",
"satisfied": null

},
{

"requirement_id": 1,
"prerequisites": [

0
],
"criteria": "Audio preprocessing, including noise removal and

normalization, is implemented in ‘src/data_loader.py‘.",
"category": "Data preprocessing and postprocessing",

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

"satisfied": null
},
{

"requirement_id": 2,
"prerequisites": [

0,
1

],
"criteria": "MFCC feature extraction is implemented in ‘src/

data_loader.py‘.",
"category": "Data preprocessing and postprocessing",
"satisfied": null

},
{

"requirement_id": 3,
"prerequisites": [],
"criteria": "The \"CNN-LSTM\" model is implemented in ’src/

model.py’.",
"category": "Machine Learning Method",
"satisfied": null

},
{

"requirement_id": 4,
"prerequisites": [

2,
3

],
"criteria": "Recognition accuracy is saved in ‘results/

metrics/recognition_accuracy.txt‘.",
"category": "Performance Metrics",
"satisfied": null

},
{

"requirement_id": 5,
"prerequisites": [

2,
3,
4

],
"criteria": "The confusion matrix is generated and saved as ‘

results/figures/confusion_matrix.png‘.",
"category": "Visualization",
"satisfied": null

},
{

"requirement_id": 6,
"prerequisites": [

2,
3

],
"criteria": "A local API is created using \"Flask\" to allow

users to upload audio files and receive emotion
recognition results. The implementation should be
included in ‘src/hci.py‘.",

"category": "Human Computer Interaction",
"satisfied": null

}
],
"preferences": [

{
"preference_id": 0,
"criteria": "The audio preprocessing step should be robust,

effectively reducing noise while preserving the integrity
of the speech signals.",

"satisfied": null

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

},
{

"preference_id": 1,
"criteria": "The local API should be user-friendly, with

clear instructions for uploading files and interpreting
results.",

"satisfied": null
}

],
"is_kaggle_api_needed": true,
"is_training_needed": true,
"is_web_navigation_needed": true

}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F USER EXPERIENCES OF CODE-GENERATION AGENTIC SYSTEMS

OpenHands (Wang et al., 2024b) offers the most refined user experience, leveraging its highly inter-
active frontend to enable seamless user interaction and task execution. This interface allows users to
engage directly with the system, resulting in a smoother and more intuitive workflow, which drives
operational efficiency.

In contrast, MetaGPT (Hong et al., 2024b) excels in task decomposition through its use of Directed
Acyclic Graphs (DAGs), a well-structured and scalable approach aligned with industry best practices
in system modularization. This enhances its appeal for users focused on task clarity and modular
breakdowns. However, in practical deployments, MetaGPT tends to be less aggressive in file man-
agement and preservation, potentially due to its core positioning as a data analysis tool, which does
not prioritize persistent state management. Similarly, OpenDevin demonstrates a notable overconfi-
dence in its code generation, frequently skipping the critical step of post-generation code execution,
requiring users to intervene manually.

GPT-Pilot (Pythagora.io, 2023), praised for its detailed task delegation via over 20 specialized
agents, suffers from reduced interactivity due to an overly granular division of responsibilities, re-
sulting in a more fragmented user experience. These qualitative insights, although not fully captured
by quantitative metrics, were evident through the DevAI dataset, providing key areas for improve-
ment in user engagement and operational fluidity in future releases of these frameworks.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G MORE DEVAI DATASET SAMPLES

Task 13: Style Transfer with Perceptual Loss in PyTorch

Query
Please create a PyTorch Perceptual Loss project for image style transfer (re-
fer to this paper: Perceptual Losses for Real-Time Style Transfer). You can build
the Perceptual Loss Network using VGG16 in src/model.py. The project
should combine content and style images, allow smooth adjustment of style in-
tensity by tuning the weights of style loss and content loss, and save the styl-
ized images in results/figures/. Additionally, log the processing time to
results/processing time.txt, and save the intermediate results of the style
transfer process to results/figures/intermediate results.png. For
testing, input a famous content image (Mona Lisa) from this link and a famous
style image (The Starry Night) from this link, and generate a style-transferred im-
age. Save the content, style, and style-transferred images to data/content.jpg,
data/style.jpg, and results/figures/, respectively. The project should
efficiently handle high-resolution images without excessive processing time.

Requirements
■ R0

Criteria: A famous content image is inputted for testing, downloaded from this link
and saved to data/content.jpg. Dependencies → {}

■ R1
Criteria: A famous style image is inputted for testing, downloaded from this link and
saved in data/style.jpg. Dependencies → {}

■ R2
Criteria: The Perceptual Loss model is implemented in PyTorch and loaded in
src/model.py. Dependencies → {}

■ R3
Criteria: Stylized images are saved to the specified folder results/figures/.
Dependencies → {R0, R1, R2}

■ R4
Criteria: Style intensity is adjusted by tuning the weights of style loss and content
loss in src/model.py. Dependencies → {R0, R1, R2}

■ R5
Criteria: Processing time is recorded and saved as
results/processing time.txt. Dependencies → {R0, R1, R2, R3, R4}

■ R6
Criteria: Intermediate results of style transfer are saved as
results/figures/intermediate results.png. Dependencies → {R0,
R1, R2, R3, R4}

Preferences (Optional)
■ P0

Criteria: The style transfer process should allow for smooth adjustment of style in-
tensity, making the stylized image visually appealing.

■ P1
Criteria: The project should handle high-resolution images efficiently without exces-
sive processing time.

Figure 10: An Example Task in DevAI: Task 13.

29

https://arxiv.org/pdf/1603.08155
https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/768px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
https://ia904705.us.archive.org/34/items/the-starry-night-vincent-van-gogh/The%20Starry%20Night%20-%20Vincent%20van%20Gogh/%21PREVIEW%21%20-%20The%20Starry%20Night%20-%20Vincent%20van%20Gogh.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg/768px-Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
https://ia904705.us.archive.org/34/items/the-starry-night-vincent-van-gogh/The%20Starry%20Night%20-%20Vincent%20van%20Gogh/%21PREVIEW%21%20-%20The%20Starry%20Night%20-%20Vincent%20van%20Gogh.jpg

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Task 19: Time Series Forecasting with Seq2Seq LSTM on Rossmann Store Sales

Query
Develop a sales forecasting system using a sequence-to-sequence model
based on LSTM with the Rossmann Store Sales dataset, downloading it
from Kaggle here and loading it in src/data loader.py. Split the data
into training and testing sets and save them in src/data loader.py.
Apply a sequence-to-sequence model based on LSTM and save the
trained model under the models/saved models/ directory. Save the
forecast results as results/figures/forecast results.png.
Save a comparison plot between the predicted and actual values to
results/figures/comparison plot.png. Generate an HTML report that
includes the prediction results and comparison plots, with some interactive elements
for exploring different forecast horizons, and save it as results/report.html.
Ensure the model is tuned to capture seasonal trends in the sales data.

Requirements
■ R0

Criteria: The Rossmann Store Sales dataset is used, potentially downloaded from
(this link) and loaded in src/data loader.py. Dependencies → {}

■ R1
Criteria: The data is split into training and testing sets and implemented in
src/data loader.py. Dependencies → {R0}

■ R2
Criteria: A sequence-to-sequence model based on LSTM is used. The trained model
should be saved under models/saved models/. Dependencies → {R1}

■ R3
Criteria: The forecast results are plotted and saved as
results/figures/forecast results.png. Dependencies → {R1, R2}

■ R4
Criteria: A comparison plot of predicted vs. actual values is saved as
results/figures/comparison plot.png. Dependencies → {R1, R2,
R3}

■ R5
Criteria: An HTML report containing forecast results and comparison plots is gener-
ated and saved as results/report.html. Dependencies → {R1, R2, R3, R4}

■ R6
Criteria: The HTML report should include interactive elements that allow users to
explore different forecast horizons. Dependencies → {R5}

Preferences (Optional)
■ P0

Criteria: The model should be tuned to capture seasonal trends in the sales data for
more accurate forecasting.

Figure 11: An Example Task in DevAI: Task 19.

30

https://www.kaggle.com/c/rossmann-store-sales/data
https://www.kaggle.com/c/rossmann-store-sales/data

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

H HUMAN EVALUATION PROCEDURE

We recruited three AI experts from the authors to perform human evaluation on the output of agentic
code generation systems. There we present the evaluation details.

First round For the first round of evaluations, our three evaluators reported spending 16.5, 19.5,
and 22.0 hours, respectively. To capture the bias that a human evaluator will have, the instruc-
tions given to our experts were minimal, with them only receiving a scorecard to complete for each
agentic system and each task. Results that all evaluators agree on are considered trustworthy. The
assumption here is that it is unlikely that all three evaluators make a mistake or have an effective
bias in the same judgment. The self-reported post-hoc evaluation criteria are shown in Figure 12.

Second round In the second round, the evaluators present and discuss their reasons for disagree-
ing with judges. In doing so, human errors are likely corrected by their peers. Discussion among
evaluators also helps reduce human bias by examining each other’s thought processes thoroughly.
Furthermore, the consensed results are considered trustworthy given the assumption that it is un-
likely that all three evaluators are convinced by the same mistake or the same cognitive bias. The
three evaluators took 9.5 hours together for this second round of evaluation.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Self-reported Post-hoc Evaluation Criteria after round one

Evaluator 231a

EXECUTED SUCCESSFULLY: Yes [] / No []
1. Must be checked based on the overall completeness of the task, based on looking at the code,
the artifacts, and the trajectory.
2. The training has finished, the model snapshot and the metrics breakdown have been saved,
and at least one artifact of required analytics has been produced - mark as successful. If some
analytic artifacts are missing but not all, mark as successful.
3. No need to run the code.
4. If training was finished but on fake data, mark as successful.
Requirements:
Marking a requirement as satisfied must be made for this specific requirement disregarding the
dependency list. If a file (code, image, snapshot) is there but is empty or without any meaning-
ful content - mark as No.
1. Code:
The functionality must be in a file with the requested path.
The real data is replaced by simple synthetic - not satisfied.
2. Visualization/Reports:
The contents must be there and make sense even if not perfect from the ML/DS point of view.
3. Snapshots:
If a binary snapshot is not empty, mark as Yes.

Evaluator 38bb

EXECUTED SUCCESSFULLY: Yes [] / No []
An output is marked yes if none of the following is satisfied.
1. The time spent is close to the time limit.
2. The last environmental message includes an error.
3. The last thought indicates that the task is completed.
4. The last step of the trajectory is incomplete.
Requirements:
If a required is unsatisfied only because of an unsatisification of a previously marked unsatisfied
requirment, then judge it based on the assumption that a minimum implementation satisfies the
previous requirment exists.
1. Code:
Mark yes if the code executes and does the required function. If no entrypoint is given, the
evaluator will set an entrypoint. If the code is not executable due to previous unsatisfied re-
quirements, then it is judged based on eye-checking.
2. Visualization/Reports:
Mark yes if the visualization or report exists in a right path and the content aligns the require-
ment.
3. Snapshots:
Mark yes if the snapshot exists in a right path and is not empty.

Evaluator cn9o

I evaluated everything based on whether the requirement was satisfied verbatim, using my own
professional judgement when there was ambiguity. If there was a data folder and a look at the
trajectory indicated it was real, I allowed it to be loaded directly. If there were results and no
clear source code making them, I considered the task incomplete. I didn’t consider a dummy
data path to be correct (GPT-Pilot used a lot of these). To determine if something was executed
correctly, I skimmed the end of the logs (e.g., trajectory) for any obvious signs of an error. If
there wasn’t any, I said it was correctly executed. I ignored prerequisites while evaluating and
did not execute anything, instead just eyeballing the code for correctness. I was lenient in what
I considered to be sufficient in terms of the more vague requirements (e.g., if the preprocessing
had to include scaling and rotation, just those two would be sufficient to consider it done).

Figure 12: Each evaluator was given a full description of each task and the associated requirements
and preferences in markdown format. They were then asked, for each workspace and trajectory
generated by each of the agents on each of the task, whether (1) the agent successfully finished its
execution cycle and (2) which of the requirements were satisfied. After the evaluation was complete,
the evaluators were asked to self-report the nuances of their evaluation.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

I SUGGEST CONSTRAINTS

Below is a sample of constraints in JSON format that describes task-specific guidelines:

{
"generic": "This is a task that requires you to write, execute, and

save source code. You have a hard time limit of 30 minutes to
produce your programmatic solution to the given task. This time
limit includes execution time. The quality of your solution will
be judged based on what you left in the working folder by the time
30 minutes expire. Additionally, the hardware you are running on

is unknown, and the presence of a GPU is not guaranteed.",
"is_training_needed": "Keep the time limit in mind when setting

hyperparameters for training.",
"is_kaggle_api_needed": "You can use the Kaggle API credentials stored

in ‘kaggle.json‘ in your current working directory."
}

To address automation and security concerns, we have written code to place the kaggle.json
file into the current workspace for each baseline during each run. However, dataset users are free to
modify the solution to enable the Kaggle API for their specific developer agents.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

J COLLECTED TRAJECTORIES

J.1 SCHEMA

Below is the required JSON format for a trajectory in gray-box settings (where the trajectories can
serve as input for LLM-as-a-Judge and Agent-as-a-Judge).

{
"type": "array",
"items": {

"type": "object",
"properties": {
"step": {
"type": "integer",
"description": "The step number in the trajectory, 0-based."

},
"user_message": {
"type": ["string", "null"],
"description": "The message from the external user to the agent.

If null, no message was sent."
},
"agent": {
"type": "object",
"properties": {
"thought": {

"type": "string",
"description": "The agent’s thought at this step."

},
"action": {

"type": ["string", "null"],
"description": "The agent’s action sent to the environment.

If null, the agent did not take any action, for example,
when the agent has finished the task."

},
"agent_name": {

"type": "string",
"description": "The name of the agent that made the action."

}
},
"required": ["thought", "action"],
"description": "Everything related to the agent at this step."

},
"environment": {
"type": ["string", "null"],
"description": "The environment’s (shell, python interpreter)

response to the action submitted by the agent. If null, the
environment was not involved in this step."

},
"step_usage": {
"type": "object",
"properties": {
"input_tokens": {

"type": "integer",
"description": "The number of input tokens passed as LLM

context."
},
"output_tokens": {

"type": "integer",
"description": "The number of tokens produced by the LLM."

},
"model": {

"type": "string",
"description": "The name of the LLM model used."

},

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

"cost": {
"type": "number",
"description": "The cost of the LLM inference, in USD."

},
"llm_inference_time": {

"type": "number",
"description": "The time taken by the LLM to generate the

output tokens, in seconds."
},
"step_execution_time": {

"type": "number",
"description": "The time taken to make an entire step

including LLM inference and environment execution, in
seconds."

}
},
"required": [
"input_tokens",
"output_tokens",
"model",
"cost",
"llm_inference_time",
"step_execution_time"

]
},
"accumulated_usage": {
"type": "object",
"properties": {
"accumulated_cost": {

"type": "number",
"description": "The total cost of the trajectory up to this

step, in USD."
},
"accumulated_time": {

"type": "number",
"description": "The total time taken by the agent to complete

the trajectory up to this step, in seconds."
}

},
"required": [
"accumulated_cost",
"accumulated_time"

]
}

},
"required": ["step", "user_message", "agent", "environment", "

step_usage", "accumulated_usage"]
}

}

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

J.2 A SAMPLE OF TRAJECTORY

This is sample trajectories (we select 4 steps of it) in OpenHands (Wang et al., 2024b). All steps are
recorded to enable replay of the trajectory.

{
"step": 0,
"user_message": "Help me develop an object detection system using

the YOLOv3 model and the COCO dataset. Download the dataset
and preprocess the images by resizing and normalization in ‘
src/data_loader.py‘. Implement the YOLOv3 model and use Non-
Maximum Suppression (NMS) to refine the results in ‘src/model
.py‘. Save the detected objects to ‘results/figures/‘, and
create an interactive Streamlit web page in ‘src/app.py‘ to
display the detection results. Finally, evaluate the model’s
performance, including metrics such as mAP and inference time
, and save the evaluation results to ‘results/metrics/
model_performance.txt‘. The system should properly manage the
launch and termination of the Streamlit application to

prevent unnecessary resource usage.\n\nThis is a task that
requires you to write, execute, and save source code. You
have a hard time limit of 30 minutes to produce your
programmatic solution to the given task. This time limit
includes execution time. The quality of your solution will be
judged based on what you left in the working folder by the

time 30 minutes expire. Additionally, the hardware you are
running on is unknown, and the presence of a GPU is not
guaranteed.\n\nKeep the time limit in mind when setting
hyperparameters for training.\n",

"agent": {
"thought": "Let’s break down the task into manageable steps

and start implementing them one by one.\n\n### Steps:\n1.
Set up the directory structure:\n - Create

necessary directories: ‘src/‘ and ‘results/figures/‘.\n2.
Download and preprocess the COCO dataset:\n -

Implement ‘src/data_loader.py‘ to download, resize, and
normalize images.\n3. **Implement the YOLOv3 model**:\n

- Implement ‘src/model.py‘ to define the YOLOv3 model
and apply Non-Maximum Suppression (NMS).\n4. **Create an
interactive Streamlit web page**:\n - Implement ‘src/
app.py‘ to display detection results.\n5. **Evaluate the
model’s performance**:\n - Save evaluation metrics to ‘
results/metrics/model_performance.txt‘.\n\nLet’s start by
setting up the directory structure and creating the

necessary files.\n\n### Step 1: Set up the directory
structure",

"action": "Running command: mkdir -p src results/figures
results/metrics\ntouch src/data_loader.py src/model.py
src/app.py"

},
"environment": "\r\n[Python Interpreter: /openhands/poetry/

openhands-5O4_aCHf-py3.11/bin/python]\nopenhands@b34322eae8da
:/workspace $ touch src/data_loader.py src/model.py src/app.
py\r\n\r\n[Python Interpreter: /openhands/poetry/openhands-5O
4_aCHf-py3.11/bin/python]\nopenhands@b34322eae8da:/workspace
$ ",

"step_usage": {
"input_tokens": 4331,
"output_tokens": 220,
"llm_inference_time": 4.445789337158203,
"model": "gpt-4o-2024-05-13",
"cost": 0.024955,
"step_execution_time": 16.24921226501465

},

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

"accumulated_usage": {
"accumulated_cost": 0.024955,
"accumulated_time": 16.24922204017639

}
},
{

"step": 1,
"user_message": null,
"agent": {

"thought": "Great! The directory structure and necessary
files are created. Let’s proceed with implementing the
data loader to download and preprocess the COCO dataset.\
n\n### Step 2: Implement ‘src/data_loader.py‘\nWe will:\n
1. Download the COCO dataset.\n2. Resize and normalize
the images.\n\nLet’s start by writing the code for ‘src/
data_loader.py‘.",

"action": "Running Python code interactively: create_file(’
src/data_loader.py’)"

},
"environment": "FileExistsError

Traceback (most recent call last)\nCell In[1], line 1\n---->
1 create_file(’src/data_loader.py’)\n\nFile /openhands/code/
openhands/runtime/plugins/agent_skills/file_ops/file_ops.py:2
57, in create_file(filename)\n 251 \"\"\"Creates and opens
a new file with the given name.\n 252 \n 253 Args:\n

254 filename: str: The name of the file to create.\n
255 \"\"\"\n 256 if os.path.exists(filename):\n--> 257
raise FileExistsError(f\"File ’{filename}’ already

exists.\")\n 259 with open(filename, ’w’) as file:\n 26
0 file.write(’\\n’)\n\nFileExistsError: File ’src/
data_loader.py’ already exists.\n[Jupyter current working
directory: /workspace]\n[Jupyter Python interpreter: /
openhands/poetry/openhands-5O4_aCHf-py3.11/bin/python]",

"step_usage": {
"input_tokens": 4675,
"output_tokens": 84,
"llm_inference_time": 2.136143207550049,
"model": "gpt-4o-2024-05-13",
"cost": 0.024635000000000004,
"step_execution_time": 3.345384359359741

},
"accumulated_usage": {

"accumulated_cost": 0.04959000000000001,
"accumulated_time": 19.594608068466187

}
},
{

"step": 2,
"user_message": null,
"agent": {

"thought": "The file ‘src/data_loader.py‘ already exists. Let
’s open it and start writing the code to download and
preprocess the COCO dataset.\n\n### Step 2: Implement ‘
src/data_loader.py‘",

"action": "Running Python code interactively: open_file(’src/
data_loader.py’)"

},
"environment": "[File: /workspace/src/data_loader.py (1 lines

total)]\n(this is the beginning of the file)\n1|\n(this is
the end of the file)\n[Jupyter current working directory: /
workspace]\n[Jupyter Python interpreter: /openhands/poetry/
openhands-5O4_aCHf-py3.11/bin/python]",

"step_usage": {
"input_tokens": 4982,
"output_tokens": 53,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

"llm_inference_time": 2.209756851196289,
"model": "gpt-4o-2024-05-13",
"cost": 0.025705000000000002,
"step_execution_time": 2.318861961364746

},
"accumulated_usage": {

"accumulated_cost": 0.07529500000000001,
"accumulated_time": 21.913471937179565

}
},
...
{

"step": 20,
"user_message": null,
"agent": {

"thought": "It seems the indentation issue persists. Let’s
correct the indentation manually.\n\n### Corrected Code
for ‘src/evaluate.py‘\n‘‘‘python\nimport time\nimport
numpy as np\nfrom model import yolo_v3_model,
non_max_suppression\nfrom data_loader import
preprocess_image, download_coco_dataset,
extract_coco_dataset\nimport os\n\ndef evaluate_model():\
n model = yolo_v3_model()\n download_coco_dataset()
\n extract_coco_dataset()\n\n image_dir = \"data/
val2017\"\n image_files = [os.path.join(image_dir, f)
for f in os.listdir(image_dir) if f.endswith(’.jpg’)]\n\n

total_inference_time = 0\n num_images = len(
image_files)\n all_boxes = []\n all_scores = []\n

all_classes = []\n\n for image_file in image_files:
\n image = preprocess_image(image_file)\n
image = np.expand_dims(image, axis=0)\n\n
start_time = time.time()\n predictions = model.
predict(image)\n end_time = time.time()\n\n

inference_time = end_time - start_time\n
total_inference_time += inference_time\n\n boxes,
scores, classes = non_max_suppression(predictions[0])\n

all_boxes.append(boxes)\n all_scores.append
(scores)\n all_classes.append(classes)\n\n
mean_inference_time = total_inference_time / num_images\n
\n # Placeholder for mAP calculation\n mAP = 0.0 #
This should be replaced with actual mAP calculation\n\n
with open(\"results/metrics/model_performance.txt\", \

"w\") as f:\n f.write(f\"Mean Inference Time: {
mean_inference_time:.4f} seconds\\n\")\n f.write(f
\"mAP: {mAP:.4f}\\n\")\n\nif __name__ == \"__main__\":\n

evaluate_model()\n‘‘‘\n\nLet’s update the file with
the corrected code.",

"action": "Running Python code interactively: EDITED_CODE = \
"\"\"import time\nimport numpy as np\nfrom model import
yolo_v3_model, non_max_suppression\nfrom data_loader
import preprocess_image, download_coco_dataset,
extract_coco_dataset\nimport os\n\ndef evaluate_model():\
n model = yolo_v3_model()\n download_coco_dataset()
\n extract_coco_dataset()\n\n image_dir = \"data/
val2017\"\n image_files = [os.path.join(image_dir, f)
for f in os.listdir(image_dir) if f.endswith(’.jpg’)]\n\n

total_inference_time = 0\n num_images = len(
image_files)\n all_boxes = []\n all_scores = []\n

all_classes = []\n\n for image_file in image_files:
\n image = preprocess_image(image_file)\n
image = np.expand_dims(image, axis=0)\n\n
start_time = time.time()\n predictions = model.
predict(image)\n end_time = time.time()\n\n

inference_time = end_time - start_time\n
total_inference_time += inference_time\n\n boxes,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

scores, classes = non_max_suppression(predictions[0])\n
all_boxes.append(boxes)\n all_scores.append

(scores)\n all_classes.append(classes)\n\n
mean_inference_time = total_inference_time / num_images\n
\n # Placeholder for mAP calculation\n mAP = 0.0 #
This should be replaced with actual mAP calculation\n\n
with open(\"results/metrics/model_performance.txt\", \

"w\") as f:\n f.write(f\"Mean Inference Time: {
mean_inference_time:.4f} seconds\\\\n\")\n f.write
(f\"mAP: {mAP:.4f}\\\\n\")\n\nif __name__ == \"__main__\"
:\n evaluate_model()\n\"\"\"\n\nedit_file_by_replace(’
src/evaluate.py’, ’with open(\"results/metrics/
model_performance.txt\", \"w\") as f:’, ’ with open(\"
results/metrics/model_performance.txt\", \"w\") as f:’)"

},
"environment": null,
"step_usage": {

"input_tokens": 20132,
"output_tokens": 805,
"llm_inference_time": 15.1565523147583,
"model": "gpt-4o-2024-05-13",
"cost": 0.11273500000000002,
"step_execution_time": 15.196227073669434

},
"accumulated_usage": {

"accumulated_cost": 1.2919750000000003,
"accumulated_time": 176.99772310256958

}
}

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

K ABLATIONS OF AGENT-AS-A-JUDGE

K.1 COMPONENT ABALATIONS

Table 5: Component Ablation Studies for Agent-as-a-Judge. We analyze the impact of se-
quentially adding various components (ask, graph, read, locate, retrieve, planning,
memory, and search) on the performance of Agent-as-a-Judge for judging OpenHands.

Metric + ask + graph + read + locate + search + retrieve + planning + memory

Agent-as-a-Judge Performance

Alignment Rate 65.03% 75.95% 82.24% 90.44% 86.06% 90.16% 88.52% 87.97%

Analysis We designed 8 modular components for the Agent-as-a-Judge system. In the Table 5, com-
ponents are added progressively from left to right. If the addition of a component led to a significant
performance drop, we removed it from further iterations. Our experiments showed that adding the
components ask, graph, read, and locate resulted in significant performance gains. However,
when the search component was introduced, there was a noticeable decline in performance.

We hypothesize that the performance drop from search is due to its role in retrieving relevant code
snippets (top-3) using BM25. The retrieval accuracy of BM25 (Robertson et al., 2009) might not
have been high enough, potentially introducing noise. Moreover, as noted in Table 1, the DevAI
tasks in our experiments did not generate a large amount of code. In fact, even when all code was
fed into an LLM, the total content typically stayed within the maximum context length. Therefore,
in simpler workspaces, search was less critical. However, we believe this component will become
more important as the complexity of the workspace increases, making it more valuable in larger and
more complex environments.

We also observed that the introduction of the planning mechanism did not bring a noticeable
improvement in performance. This may be related to the nature of the Judge - it needs clean factual
information. When planning is unstable, the evidence collected from different actions can be-
come inconsistent, leading to a decline in performance. Finally, we experimented with a memory
mechanism. Initially, we hypothesized that since DevAI tasks often involve interconnected require-
ments, memory could help track whether requirements were met. However, in practice, we saw
no improvement. We suspect that the interconnected nature of the requirements may have caused
biases: specifically, once a prior requirement was fulfilled, it might have overly influenced positive
judgments on subsequent requirements, even if they were not fully met.

K.2 SEARCH ALGORITHMS IN SEARCH MODULE

We initially hypothesized that the performance drop was due to the low precision of the search
component, particularly with BM2.5. To explore this, we replaced BM2.5 with Sentence-
BERT (Reimers & Gurevych, 2019) as a more advanced alternative and tested Fuzzy Search (Lev-
enshtein, 1966) as a less precise option. However, neither improved the performance of the Agent-
as-a-Judge.

Table 6: Comparisons on Search
module with different engines.

Search Method Alignment Rate
BM2.5 86.06%
Sentence-BERT 87.70%
Fuzzy Search 85.52%
without Search Module 90.44%

hese results suggest that the performance issue is not due to
BM2.5’s poor search accuracy. Instead, the workspaces gener-
ated in our DevAI tasks are too simple for the search compo-
nent to have a significant impact. In simpler workspaces, direct
retrieval and evaluation are sufficient. Even though Sentence-
BERT performed better than the other methods, its alignment
rate (87.70%) still falls short of the configuration without the
search component (90.44%). As workspace complexity in-
creases, the search component may become more valuable.

K.3 SEARCH ALGORITHMS IN RETRIEVE MODULE

In our experiments, we found that accurately locating relevant information within a trajectory is a
challenging task. Although the addition of the retrieve component (gray-box) did not lead to

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

a significant improvement in performance in this specific case, its impact has been notable in other
settings, such as in GPT-Pilot. As shown in Table 3, the integration of retrieve in GPT-Pilot
brought substantial gains.

Table 7: Ablations on retrieve.

Method Alignment Rate
Without retrieve 83.88%
With retrieve (gray-box) 86.61%
Trajectory Truncate (head) 86.61%
Trajectory Truncate (middle) 85.52%
Trajectory Truncate (tail) 82.51%
Step Truncate (head) 86.34%
Step Truncate (middle) 86.61%
Step Truncate (tail) 83.88%

We conducted an ablation study on GPT-Pilot to optimize
the retrieval of useful information at each step. Our exper-
iments revealed that in large trajectories, truncating the
final sections of the file often results in losing critical in-
formation, as the latter part of the trajectory typically con-
tains dense information about the final development state.
Truncating the beginning of the trajectory proved to be the
most effective in improving the retrieval efficiency.

For individual steps, truncating the middle section
worked best. This is because error messages usually ap-
pear early in the output, while the corresponding file paths
and specific error locations are found towards the end.
By focusing on these retrieval strategies, we can significantly enhance the performance of the
retrieve component, particularly in complex scenarios like GPT-Pilot.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

L PROMPT DEMOS OF AGENT-AS-A-JUDGE

Here, we present some prompts used by the Agent-as-a-Judge system. Each of these prompt demos
plays a crucial role in guiding the agent’s behavior.

L.1 SYSTEM PROMPT FOR AGENT-AS-A-JUDGE

def get_system_prompt(language="English"):

if language == "English":
return """
You are an advanced AI system serving as an impartial judge for

intelligent code generation outputs. Your primary role is to
rigorously evaluate whether the agent’s outputs satisfy the
specified requirements by thoroughly analyzing the provided
code, data, and other relevant materials.

You will systematically assess aspects such as datasets, model
implementations, training procedures, and any task-specific
criteria outlined in the requirements. Your evaluations must
be objective, detailed, and based solely on the evidence
provided.

For each requirement, deliver one of the following judgments:

1. <SATISFIED>: Use this if the agent’s output fully meets the
requirement. Provide a brief and precise explanation
demonstrating how the specific criteria are fulfilled.

2. <UNSATISFIED>: Use this if the agent’s output does not meet
the requirement. Provide a concise explanation indicating the
deficiencies or omissions.

Your assessment should reference specific elements such as code
snippets, data samples, or output results where appropriate.
Ensure that your justifications are clear, precise, and
directly related to the criteria.

Respond with either <SATISFIED> or <UNSATISFIED>, followed by
your concise justification.

"""
else:

raise NotImplementedError(f"The language ’{language}’ is not
supported.")

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

L.2 SYSTEM PROMPT FOR LOCATE MODULE

def get_locate_system_prompt(language="English"):
if language == "English":

return """
You are an advanced AI system specializing in understanding

project structures and determining file locations based on
provided criteria.

Your task is to locate specific files in the workspace based on
the user’s criteria and workspace information.ution problems
with the files mentioned in the criteria.

"""

else:
raise NotImplementedError(f"The language ’{language}’ is not

supported.")

L.3 SYSTEM PROMPT FOR RETRIEVE MODULE

def get_retrieve_system_prompt(language="English"):

if language == "English":
return """
You are an advanced AI system specializing in retrieving

environmental feedback from project execution trajectories.
Your task is to analyze the provided trajectory data and
extract information about the most relevant files mentioned
in the given criteria.

Focus on the following:

1. Identify the **most recent steps** where the files directly
related to the criteria were involved in execution, loading,
or saving operations.

2. Provide environmental feedback for these files, such as any
errors, warnings, or issues encountered during their
execution or processing.

3. Highlight whether any problems occurred that might affect the
functionality or success of these files in the project.

Your output should be structured as follows:

- **<RELEVANT STEPS>**: List the specific steps involving the
relevant files, including any environmental feedback such as
error messages, execution results, or other issues
encountered. Each step should concisely present the key
information needed to assess the files’ execution status.

Avoid including details about file contents or existence, as this
information is already available. Focus solely on the

environmental feedback related to the execution of the most
relevant files.

Your goal is to provide clear and concise information that helps
determine if there were any execution problems with the files
mentioned in the criteria.

"""
else:

raise NotImplementedError(f"The language ’{language}’ is not
supported.")

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

L.4 PROMPT FOR ASK MODULE (FOR REQUIREMENT CHECK)

def get_ask_prompt(criteria: str, evidence: str) -> str:

return f"""
Provided below is relevant information about the project:
{evidence}

Kindly perform an evaluation of the following criteria:
{criteria}

As per the guidelines, respond with either <SATISFIED> or <
UNSATISFIED>, followed by a concise justification that references
specific elements from the project information, such as code

snippets, data samples, or output results.
"""

L.5 PROMPT FOR LOCATE MODULE

def get_locate_prompt(criteria: str, evidence: str) -> str:

return f"""
Provided below is the structure of the workspace:
{workspace_info}

This is the criteria related to the task:
{criteria}

Follow the format in the example below and return only the file paths
that match the criteria:

Example:

Suppose the criteria is:
’The database functionality is implemented in ‘src/db.py‘, and the

logging system is defined in ‘src/logging.py‘.’

And the workspace information is:
/project
|-- src
| |-- db.py
| |-- logging.py
| |-- utils.py
|-- tests

|-- test_db.py
|-- test_logging.py

Based on the criteria, the following paths (no more than 5) should be
returned, each wrapped in dollar signs (‘$‘):

$/project/src/db.py$
$/project/src/logging.py$
"""

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

M JUDGE EVIDENCES COLLECTED FROM AGENT-AS-A-JUDGE

The Agent-as-a-Judge system dynamically collects evidence throughout the development process
of the code-generating agentic system to evaluate whether each requirement is satisfied. Using this
auxiliary information, the judge agent decides to focus on relevant data such as code, file structures,
and trajectories. This gathered evidence supports the agent’s final judgment, ensuring an informed
and accurate assessment of the project’s compliance with its requirements. A sample of the collected
evidence is shown in the following Appendix M.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

N ANALYSIS OF FAILURE CASES

We analyzed the failure cases and identified consistent patterns across the task categories. The
categories of these failure cases are summarized in Table 8. We found that AAAJ struggled most
with judging cases in the Data preprocessing and postprocessing category, whereas it performed
well in judging Human-Computer Interaction cases.

Table 8: Counts of failure cases aggregated over task categories.

Category Count
Data preprocessing and postprocessing 10
Dataset or Environment 8
Other 5
Machine Learning Method 4
Performance Metrics 3
Visualization 3
Human-Computer Interaction 3

We collect two failure cases in Table 9 and layout their analysis below.

Table 9: This table provides examples of failure cases observed in different task categories, compar-
ing judgments made by Agent-as-a-Judge and Human-as-a-Judge.

Ex.
#

Task Req.
ID

Category Agent-
as-a-
Judge

Human-
as-a-
Judge

Criteria

1 40 Text Summarization
BART CNNDailyMail DL

0 Dataset or En-
vironment

False True The ”CNN/Daily Mail”
news dataset is used,
including loading and
preparing the dataset in
src/data loader.py.

2 46 Speech Recognition
DeepSpeech LibriSpeech DL

2 Machine
Learning
Method

True False Hyperparameters such
as learning rate and
batch size are tuned in
src/train.py.

Analysis

• Failure Case Example 1: In this case, the dataset used was a synthesized one generated by
the OpenHands CodeAct agent. Human evaluators could quickly identify this discrepancy,
but the agent-as-a-judge, having only checked the file path and content, was misled into
believing it was the genuine CNN/DailyMail dataset.

• Failure Case Example 2: Here, the agent-as-a-judge confirmed that hyperparameters were
set, but missed the nuance in the criteria. The requirement implied that the learning rate and
batch size should dynamically adjust in src/train.py, something human evaluators
were able to detect.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

O SENSITIVITY W.R.T THE CHOICE OF THE BACKEND LLM

We have run an ablation experiment to determine how different LLM backends affect the perfor-
mance of Agent-as-a-Judge. The results are summarized in Table 10.

Table 10: This table reports alignment percentages between Agent-as-a-Judge and Human-as-a-
Judge for different backend LLMs.

Model Version # Param. Alignment (%)

LLAMA, Touvron et al. (2023) 3.2 90B 87.76%

Qwen, Bai et al. (2023) Coder 2.5 32B 88.73%

ChatGPT, OpenAI (2023) (This work) gpt-4o-2024-0513 Unknown 90.16%

Claude, Anthropic (2024) claude-3-5-sonnet-20241022 Unknown 92.95%

These results allow us to conclude that the backbone does have a noticeable effect on the alignment
but a relatively marginal one. We found that Claude’s results are better than GPT-4o’s that we used
throughout our experiments. We hypothesize, this is because claude-3-5-sonnet-20241022
has been trained with strong function calling skills and agentic features.

P ADDITIONAL HUMAN EVALUATION DETAILS

All ten of our additional participants are current M.Sc. and Ph.D. students in AI-related fields
with no direct relation to this work. The 7 random samples they evaluated were selected from the
answers produced by OpenHands. The additional participants reported an average completion time
of 1.13 hours each to evaluate all 7 samples. The additional ten participants self-reported an average
completion time of 1.13 hours. This means they took an average of 9.67 minutes to evaluate one
task, which is similar to our three main evaluators who self-reported taking an average of 10.48
minutes per task. Each of the ten additional participants was compensated for their time, with an
average compensation of 15.20 USD.

47

	Introduction
	DevAI: A Dataset for Automated AI Development
	Motivation
	The DevAI Dataset
	Preliminary Benchmark

	Human-as-a-Judge: Manual Evaluation On DevAI
	Benchmark Baselines by Human-as-a-Judge
	Judging Human-as-a-Judge

	Agent-as-a-Judge: Evaluating Agents with Agents
	Proof-of-Concept
	Judging Agent-as-a-Judge and LLM-as-a-Judge
	Ablations For Agent-as-a-Judge
	Cost Analysis

	Related Work
	Discussion and Conclusion
	Appendix
	 Appendix
	Logic Flow of this Paper
	Experiment Designs
	Summary of Experiments
	Judges and Subjects of Evaluation

	Agent-as-a-Judge Pipeline
	Extend Related Work
	The Procedures of Creating DevAI Dataset
	Manually draft user queries
	Set Judging Criteria
	Building Dependency Among Requirements
	Refine the dataset
	Analyse the dataset
	Auxiliary Information
	A Json Format of Our Sample

	User experiences of code-generation agentic systems
	More DevAI dataset samples
	Human Evaluation Procedure
	Suggest Constraints
	Collected Trajectories
	Schema
	A Sample of Trajectory

	Ablations of Agent-as-a-Judge
	Component Abalations
	Search Algorithms in Search Module
	Search Algorithms in Retrieve Module

	Prompt Demos of Agent-as-a-Judge
	System Prompt for Agent-as-a-Judge
	System Prompt for Locate Module
	System Prompt for Retrieve Module
	Prompt for Ask Module (for requirement check)
	Prompt for Locate Module

	Judge Evidences Collected from Agent-as-a-Judge
	Analysis of failure cases
	Sensitivity w.r.t the choice of the backend LLM
	Additional Human Evaluation Details

