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ABSTRACT

Compositional generalization – the ability to reason about novel combinations of
familiar concepts – is fundamental to human cognition and a critical challenge for
machine learning. Object-centric learning, representing a scene as a set of objects,
has been proposed as a promising approach for achieving this capability. However,
systematic evaluation of these methods in visually complex settings remains limited.
In this work, we introduce a Visual Question Answering benchmark consisting of
three different visual worlds to measure how well vision encoders, with and without
object-centric biases, generalize to unseen combinations of object properties. To
ensure a fair and comprehensive comparison, we carefully account for the capacity
of the image representation, training data diversity, downstream compute, and
sample size. In this study, we use DINOv2 and SigLIP2, two widely used vision
encoders, as the foundation models and their object-centric counterparts. Our key
findings reveal that (1) object-centric approaches are superior in harder composi-
tional generalization settings; (2) original dense representations surpass OC only
on easier settings and typically require substantially more downstream compute;
and (3) OC models are more sample-efficient, achieving stronger generalization
with fewer images, whereas dense encoders catch up or surpass them only with
sufficient data and diversity. Overall, object-centric representations offer stronger
compositional generalization when any one of training data diversity, sample size,
or downstream compute is constrained.

1 INTRODUCTION

Compositionality, the ability to perceive and generalize to novel combinations of familiar elements,
is widely seen as a cornerstone of human cognition and has long been linked to the systematic ability
of humans to understand and produce novel expressions from known parts (Fodor & Pylyshyn, 1988;
Treisman, 1996; Chomsky, 2002). In machine learning, compositional generalization – the robustness
of models to novel combinations of familiar concepts – has been explored in various forms. In
natural language, compositional generalization can be assessed by testing the response of the model
to rearranged or recombined words and numbers (Lake & Baroni, 2018; Dziri et al., 2024); in vision,
it may involve creating novel objects by recombining seen object properties or combining known
objects in novel configurations (Kim et al., 2024; Haramati et al., 2024; Montero et al., 2024; Abbasi
et al., 2024).

Even though modern VLMs and generative models show impressive abilities, multiple studies have
shown that they remain brittle on rigorous tests for compositional generalization. For instance, ConMe
exposes a benchmarking gap, inducing up to a 33% drop in accuracy for state-of-the-art VLMs once
negatives are made genuinely hard (Huang et al., 2024). SugarCrepe demonstrates that several
widely used “compositionality benchmarks” were hackable – so much so that blind (image-free)
models could outperform vision–language systems, revealing spurious lexical cues and weak binding
of attributes and relations (Hsieh et al., 2024). In text-to-image, ConceptMix and GenAI-Bench
both find steep degradations as prompts combine more entities, attributes, spatial relations, or logic;
models frequently omit objects, misbind attributes, or miscount (Wu et al., 2024; Li et al., 2024).
Scaling alone has not solved this: recent studies report large accuracy drops on unseen combinations
despite substantial data increases, and show that compositional generalization strongly depends on
pretraining frequencies and diversity (Kempf et al., 2025; Wiedemer et al., 2025; Uselis et al., 2025).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

These observations have motivated vision representations aimed at supporting compositional gen-
eralization more naturally. In particular, object-centric (OC) representations represent a scene as a
collection of objects, commonly binding different objects into separate slot vectors (Locatello et al.,
2020). Because such representations match the natural structure of a scene by decomposing it into
discrete objects, they are conjectured to provide more compositional and generalizable representations
(Greff et al., 2020; Locatello et al., 2020; Dittadi et al., 2022; Jiang et al., 2023; Brady et al., 2023).
However, beyond a few preliminary indications (Yoon et al., 2023; Montero et al., 2024; Kim et al.,
2024; Haramati et al., 2024), the relationship between object-centric representations and composi-
tionality remains largely untested in a systematic and principled manner. In this work, we investigate
those claims in greater depth. Specifically, we study how well different visual representations support
compositional generalization of object properties on the visual question answering (VQA) task.

The flavor of compositionality we are most interested in is object property composition (Johnson et al.,
2017; Abbasi et al., 2024; Montero et al., 2024; Kim et al., 2024) – the ability of a model to generalize
to novel combinations of previously seen object properties. For example, a model trained only on red
cubes and blue spheres should be able to successfully handle blue cubes at test time. As this form of
compositionality requires precise control over the factors of variation in the visual world, most works
rely on synthetically generated images from a computer graphics tool (Kim et al., 2024; Montero
et al., 2024) or a pretrained generative model (Abbasi et al., 2024). Although compositionality is often
described as a core motivation for object-centric representations, its evaluation is typically limited to
changing the number of objects (Johnson et al., 2017; Locatello et al., 2020; Karazija et al., 2021;
Biza et al., 2023). The works most similar to ours are Kim et al. (2024) and Montero et al. (2024),
both investigating compositional generalization of object properties. However, Kim et al. (2024) use
a protocol that only allows evaluation of generative models rather than general image representations
and do not isolate which design choices contribute to better performance, while Montero et al. (2024)
examine compositionality only under the more limited setting of simpler images with a single object.

In order to rigorously study the compositional generalization capabilities of visual representations
for object property composition, we design our own benchmark. First, inspired by Kim et al.
(2024), we generate images in a CLEVRTex-(Karazija et al., 2021), Super-CLEVR- (Li et al.,
2023), and MOVi-C-style (Greff et al., 2022), allowing us to precisely define the entire visual world.
Specifically, we consider every combination of individual factors of variation (e.g., shape, material,
and size) characterizing each object. Then, we reserve 20% of these object combinations for testing
compositional generalization while allocating the rest to progressively smaller subsets for training.
This ensures that no test objects of the compositional generalization dataset were encountered during
training, even though their individual properties were. To evaluate this compositional generalization
via VQA, we follow Mamaghan et al. (2024); Li et al. (2023) by generating question–answer pairs
for all images. This results in three different base datasets with 3 training datasets each – CLEVRTex,
Super-CLEVR, and MOVi-C “easy”, “medium”, and “hard” – and one dataset for each base dataset
dedicated to testing compositional generalization, called “COOD”.

For our comparisons, we focus on pretrained foundation models and object-centric models that
incorporate such foundation models as backbones, a leading approach in this domain. Specifically,
we use DINOv2 (Oquab et al., 2023) and SigLIP2 (Tschannen et al., 2025) as the foundation models
with DINOSAURv2 (Seitzer et al., 2022; Didolkar et al., 2024) and SigLIPSAUR2 as its object-
centric counterparts. To ensure a fair and comprehensive comparison, we account for differences in
representation format by controlling for image representation sizes, both for the number of tokens and
the token dimension, ensuring that differences in compute allocation do not unfairly advantage one
approach over another. We evaluate all models by training distinct downstream models on the VQA
task on training sets of increasing difficulty, testing on in-distribution (ID) as well as compositional
out-of-distribution (COOD) generalization sets. Following the framework of Mamaghan et al. (2024),
we vary the size of the downstream model and, additionally, the input size of the image representation.
Finally, by carefully controlling the visual combinations that models are exposed to at train and test
time, we can systematically adjust the hardness of the generalization task until even an oracle with
access to ground-truth inputs struggles to generalize at test time.

Our main contributions can be summarized as follows:

• Datasets: We design our own compositional generalization benchmark based on the CLEVRTex,
Super-CLEVR, and MOVi-C (images) datasets (Karazija et al., 2021; Li et al., 2023; Greff et al.,
2022; Kim et al., 2024; Mamaghan et al., 2024). To assess compositional generalization, we
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Figure 1: Compositional Generalization. To increase generalization difficulty, we decrease the number of
unique object property combinations that are seen during training. In the conceptual example, each object is
defined by its shape and size, which coincides with MOVi-C. Datasets. For each generalization difficulty and
base dataset, we generate images and corresponding question–answer pairs by sampling objects with the allowed
combinations. Training. We pretrain object-centric (OC) models by reconstructing the self-supervised (Dense)
features from pretrained vision encoders. For VQA downstream training, we concatenate the image features
(OC: red; Dense: blue) with the fixed text embeddings and train transformer models of various sizes to predict
the answer given image and question.

define fixed held-out test sets containing 20% of all object-property combinations, along with
three progressively smaller subsets from the remaining combinations. The smaller the subset, the
greater the challenge for generalization. The compositional test set ensures that no test objects
appear during training, while all their individual properties – such as e.g., shape, material, and
size – are encountered. Finally, we generate question–answer pairs for all images to evaluate all
models on a VQA task.

• Finding I (Training diversity). Reducing training diversity inflates ID accuracy but hurts
COOD; object-centric (OC) representations degrade less and remain superior to dense features
on harder generalizations at comparable representation sizes. With maximal diversity, OC
stays competitive; dense features only match or slightly surpass OC on the easiest settings, and
typically require stronger downstream models to do so (see §4.1,§4.2).

• Finding II (Compute). At matched downstream FLOPs, OC representations deliver higher
COOD across budgets; they are especially strong with smaller downstream models. Dense
counterparts need substantially more compute (and often larger downstream models) to overtake
OC – and then mainly on easier generalizations. Cross-attention resizing often offers no
compute–accuracy benefit: downsizing dense features via CA remains worse than equally small
OC features, and upsizing OC via CA consistently hurts the performance (§4.3).

• Finding III (Sample size). OC is more sample-efficient: it reaches better COOD with fewer im-
ages, particularly with a small downstream model. Given enough data and a larger downstream
model, dense features can match or slightly surpass OC on the easiest settings; otherwise OC re-
mains better. Increased data diversity amplifies the COOD gains from larger sample sizes, where
the benefit of adding more samples of less diverse data slows down or even goes down (§4.4).
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2 RELATED WORK: COMPOSITIONALITY

This section briefly summarizes different ways in which compositionality has been defined and tested.

Text. Lake & Baroni (2018) studied compositionality by training a model to decode natural-language
commands into action sequences that feature novel combinations of concepts at test time. Dziri
et al. (2024) demonstrated that transformers can fail catastrophically on seemingly simple tasks (e.g.,
multi-digit integer multiplication) when test conditions differ slightly from training (e.g., more digits).

Images. Kim et al. (2024) explored compositionality without language annotations by constructing a
visual world of objects with simple attributes (e.g., shape, texture). They controlled which portion of
the combinatorial attribute space was shown during training and formulated a generative task where
the model must learn and apply transformation rules (e.g., swapping shapes) to unseen combinations
at test time. Haramati et al. (2024) probe, among other things, the compositional generalization of
different components of their architecture in a reinforcement learning task that involves arranging
objects in a specified way on a table with a robotic arm.

Text-to-image. Some recent work frames compositionality as a text-to-image generation task, prompt-
ing models with increasingly complex combinations of visual concepts to test that all mentioned
concepts appear in the generated image (Wu et al., 2024; Li et al., 2024).

Image-to-text and VQA. The SugarCrepe benchmark evaluates compositional comprehension by
presenting an image alongside a correct caption and a closely matched ”hard negative”, which can
involve object swapping or replacement (Hsieh et al., 2024). The model must choose the caption that
accurately describes the image, extending earlier approaches such as Ma et al. (2023).

Object-centric representations. In the context of reinforcement learning, Yoon et al. (2023) and
Haramati et al. (2024) found that object-centric representations are mostly beneficial for tasks
requiring relational reasoning with object interactions. Additionally, Haramati et al. (2024) also
demonstrated that their agent can generalize compositionally to more objects than seen during training,
both empirically and theoretically. Kim et al. (2024) provided some evidence that a slot-based State-
Space Model improves compositional generalization, though the specific design elements driving this
improvement remain unclear. Furthermore, Montero et al. (2024) show that a simple object-centric
model reconstructs novel objects with hold-out ranges of properties (e.g., color or rotation) for a
single object better than a non-object-centric alternative when the models have been trained on all
combinations for the rest of the objects. Rubinstein et al. (2025) and Baldassarre et al. (2024) both
advocate for revisiting the original goals of object-centric learning and a departure from the evaluation
of these representations solely or mostly on (unsupervised) image segmentation. Concretely, their
downstream tasks consist of OOD image classification or scene classification and action recognition
in videos, respectively.

3 PROBLEM SETUP

3.1 DATASET GENERATION

Inspired by Kim et al. (2024), we create datasets in the style of CLEVRTex (Karazija et al., 2021),
Super-CLEVR (Li et al., 2023), and MOVi-C (Greff et al., 2022). For each base dataset, we create
training splits with progressively smaller subsets of all possible objects, resulting in increasingly
harder OOD problems. For example, for CLEVRTex, each object is defined by a triplet of properties,
shape, size, and material, yielding 192 unique objects in total (see Appendix A for details about the
other base datasets). We then randomly select 3–6 objects from the set of allowed objects per scene.
We render images using Blender1. As a result, we obtain three training datasets per base dataset –
CLEVRTex, Super-CLEVR, and MOVi-C “easy”, “medium”, and “hard” – each time decreasing
the diversity by roughly halving the number of admissible objects. Every training set consists of 48k
images: 40k for training, 4k for validation, and 4k for in-distribution testing. Finally, we generate a
COOD test set for each base dataset, each containing 4k images using the remaining 20% of objects.

Our goal is to evaluate the quality of representations using VQA. Thus, for each image, we generate
multiple question-answer pairs, using the generation approach of Johnson et al. (2017) adapted to

1https://www.blender.org/

4

https://www.blender.org/


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

CLEVRTex and MOVi-C, and the existing implementation for Super-CLEVR (Li et al., 2023) (see
Appendix A). This results in 42 question-answer pairs per image on average, resulting in roughly
1.7M per training set and 170k per test set (ID & COOD).

3.2 MODELS AND EVALUATION

Setup. To evaluate VQA, we follow the setup of Mamaghan et al. (2024). The downstream VQA
model is a transformer that receives concatenated text and image representations as input and outputs
a class label (details in Appendix B.3). We report results for two different sizes: a small 2-layer
variant (TF 2) and a larger 5-layer variant (TF 5). Questions are encoded by a pretrained T5-base
model (Raffel et al., 2020). The answers are represented as 28 (CLEVRTex), 106 (Super-CLEVR), or
48 (MOVi-C) distinct labels, which include “yes”, “no”, natural numbers up to the maximum number
of objects, and all possible values of object properties (including part names for Super-CLEVR).

To gauge dataset difficulty, we train two additional baselines: a naive question-only baseline using
only the questions as inputs to the downstream model and a ground-truth oracle that supplies the true
object properties of all visible objects in the scene as “image representations” for the downstream
model. After training, each downstream model is evaluated on its corresponding in-distribution (ID)
and compositional out-of-distribution (COOD) test set at every training checkpoint.

Vision Models. First, we evaluate the dense representations of two strong pretrained vision models:
DINOv2 ViT-S/14 (Oquab et al., 2023) and SigLIP2 ViT-B/16 (Tschannen et al., 2025). We then con-
sider different approaches of transforming these representations to study how COOD performance is
affected. In particular, we pretrain an object-centric model for every dataset variant by reconstructing
the pretrained dense representation with a Slot Attention (Locatello et al., 2020) bottleneck (Seitzer
et al., 2022). This yields DINOSAURv2 (Didolkar et al., 2024) and, to the best of our knowledge, the
first object-centric SigLIP2 variant, SigLIPSAUR2. Architectural and hyperparameter details are in
Appendix B.1. As an alternative to Slot Attention, we also run k-means on the set of dense patch
tokens to extract a set of cluster centroids representing the image (as Baldassarre et al. (2024)).

The original vision encoders and their respective object-centric counterparts produce image represen-
tations of different sizes, which strongly impacts the downstream model’s FLOPs (see Appendix C
for details). Concretely, in our setting, the number of tokens and token dimensions are: [256, 384] for
DINOv2 vs. [7, 256] for DINOSAURv2, and [196, 768] for SigLIP2 vs. [7, 256] for SigLIPSAUR2.
To enable a fair comparison, we change the size of the image representation with downstream model
variants that include a single cross-attention layer immediately after the vision encoder output. This
layer modifies the size of the image representation by using a number of learned queries matching
the target size. We evaluate both increasing the size of the object-centric representation to the size of
the original vision encoder, or, vice-versa, decreasing the representation size of the original vision
encoder. The latter could be seen as a possible alternative to Slot Attention. The cross-attention layer
is trained jointly with the downstream model, and results in identical compute requirements for these
variants2. We also experimented with replacing the Slot Attention bottleneck, e.g., in DINOSAURv2,
with a cross-attention module, and replacing the downstream model’s cross-attention layer with Slot
Attention. Both attempts yielded suboptimal results, suggesting either that more extensive tuning is
needed or that these substitutions are ill-suited for the VQA task3.

4 EXPERIMENTS

Summary. Across three base datasets, CLEVRTex, Super-CLEVR, and MOVi-C, we study how train-
ing diversity, downstream compute, and sample size affect VQA compositional out-of-distribution
(COOD) performance. First, in §4.1, we observe that decreasing training diversity increases gen-
eralization difficulty (Fig. 2). Then, comparing the generalization capabilities of different image
representation types in §4.2, we observe that object-centric representations almost always match or
surpass the original dense encoders when the generalization is sufficiently difficult (Tables 1 and 11).
In §4.3, we consider downstream compute, which depends on the image representation size, and show

2We choose to ignore the compute from the cross-attention layer as the goal is to compare the performance
of different representations fairly with respect to image representation size.

3For a discussion of cross-attention as an alternative to Slot Attention–and why it may be suboptimal for this
kind of pretraining–see Wu et al. (2023).
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Table 1: VQA accuracy (%) of both downstream models (TF 2 & 5) on the respective compositional general-
ization test sets for all DINOv2-based models trained on “easy” (E), “medium” (M), and “hard” (H) training
sets. We compute deltas compared to the original pretrained vision encoder, and list the number of tokens of the
representations (“size”).

CLEVRTex Super-CLEVR MOVi-C

Model Size E M H E M H E M H

T
F

2

DINOv2 256 69.5 58.8 50.0 60.9 57.0 49.7 57.5 53.6 51.4

DINOv2 + CA 7 -1.2 -4.8 -2.3 -1.2 -1.2 -0.8 -1.7 -0.1 +0.2
DINOv2 + k-means 7 -16.5 -9.1 -3.1 -10.1 -7.1 -2.2 -5.8 -2.6 -1.6
DINOv2 + k-means 128 -1.1 +1.2 -0.6 -1.4 -0.8 -0.1 -0.7 -0.3 +0.9
DINOSAURv2 7 +7.0 +12.3 +5.6 -0.3 +1.6 +1.2 +1.0 +1.1 +1.6
DINOSAURv2 + CA 256 +0.1 +9.8 +1.0 -3.3 -1.9 -0.4 -3.3 -1.0 -0.6

T
F

5

DINOv2 256 85.4 70.3 55.4 68.1 63.0 51.7 60.0 56.0 54.0

DINOv2 + CA 7 -6.5 -2.4 -1.7 -2.9 -1.9 -0.9 -1.7 -0.7 -0.8
DINOv2 + k-means 7 -32.6 -21.3 -9.1 -17.5 -13.1 -4.5 -8.5 -6.0 -4.9
DINOv2 + k-means 128 -4.7 -4.3 -1.3 -3.7 -1.2 -0.4 +0.6 +0.5 -0.1
DINOSAURv2 7 -2.9 +3.0 +0.1 -3.5 -2.2 +0.4 -0.8 -0.4 0.0
DINOSAURv2 + CA 256 -5.9 -0.3 -1.4 -5.3 -3.7 -0.6 -2.3 -2.1 -2.0
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Figure 2: VQA in-distribution and compositional out-of-distribution accuracy are very strongly correlated (highly
significant: p-value < .01). Performances for CLEVRTex, Super-CLEVR, MOVi-C “easy”, “medium”, and

“hard” at the end of training with correlations and ground-truth oracle (upper right: filled black) and question-only
baseline (lower left: filled gray).

that object-centric models are in general preferable both under constrained compute budgets and
when the generalization is hard (Fig. 3). Finally, in §4.4, we elucidate the interplay of sample size and
training diversity, and we find that OC models are more sample-efficient: dense representations only
outperform them with enough diversity, sample size, and a larger downstream model (Figs. 4 and 5).

For easier readability, we often refer to a single base dataset in the following and explicitly mention
if trends differ across datasets. All results can be found in Appendix D.

4.1 THE EFFECT OF DATA DIVERSITY

Oracle. We first validate that our experimental setup, including datasets and downstream models,
is suitable for testing compositional generalization by establishing that a model with the ”right”
representation is able to solve the task in-distribution (ID) but still might lack in compositional
out-of-distribution (COOD) generalization as the difficulty increases. Specifically, we train an oracle
that uses the ground-truth object properties as image representation. For all training datasets, the
oracle can achieve nearly perfect ID test accuracy (Fig. 2), given a sufficiently large downstream
model. However, its compositional generalization drops notably when trained on smaller subsets
of the full visual space. As an example, it still reaches almost 100% on CLEVRTex “COOD” by
training on “easy”, but struggles to even reach 80% when training on “hard”.
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ID vs. COOD. Having established the suitability of our setup, we now investigate models with
learned image representations. Evaluating all vision encoders, as depicted in Fig. 2, we observe
a consistent and intuitive pattern: as we constrain the diversity of the training data – thereby
increasing generalization difficulty – the models’ in-distribution accuracy improves due to fewer
visual combinations to learn. However, this simplification in ID tasks simultaneously intensifies
COOD challenges, as models must generalize from fewer learned combinations to the fixed COOD
test set. This is consistent across all base datasets and vision encoders.

4.2 THE EFFECT OF IMAGE REPRESENTATION TYPE

OC vs. Dense. We naively compare the object-centric representations to their dense counterparts,
ignoring the differences in their representation sizes. The object-centric versions are almost always
better at compositional generalization with the smaller downstream model (Table 1). Concretely,
the improvements in generalization for DINOSAURv2 over DINOv2 for TF 2 range from -0.3%
to +12.3% (absolute) across all training datasets and are especially large on CLEVRTex. The trend
is consistent across vision encoder families for SigLIP2-based representations (Table 11). When
increasing the power of the downstream model (Table 1: TF 5), the dense representations are
better for easier generalizations (“easy”) but lose their benefit when the OC representations either
match or slightly surpass them for harder generalizations (“hard”). For example, the differences in
generalization with the larger downstream model for DINOSAURv2 and its dense counterpart are
from 0.0% to +0.4%. This is again consistent for SigLIP2-based models (Table 11).

K-means vs. Slot Attention. Comparing OC-like representations in Table 1, i.e., the pretrained Slot
Attention and k-means variants, we observe that the k-means representations with the same number of
tokens as the SA versions (7 tokens) are quite worse in compositional generalization. We hypothesize
that this is due to the ineffectiveness of k-means, a method that does not use additional training, in
drastically reducing the number of visual tokens (e.g., from 256 to 7 for DINOv2) by simply taking
the centers of each cluster, compared to a “soft k-means” as performed by Slot Attention (Locatello
et al., 2020). This is in contrast to Baldassarre et al. (2024), where a small number of tokens was often
sufficient. This discrepancy may be explained by VQA being a task that requires more fine-grained
visual information compared to the more global or coarse-grained tasks in Baldassarre et al. (2024).
In order to partially overcome this, we increase the number of clusters used for k-means, i.e., the
number of visual tokens here, to 128 such that there is still a reduction from the original representation
while getting the best performance compared to using any number of fewer tokens (for details see
Appendix B.2). The improved k-means representation, at the cost of using more tokens, is sometimes
able to match the generalization capabilities of the SA versions with the bigger downstream model,
especially on MOVi-C, while still falling behind for the smaller one (Table 1).

Reduction with Cross-Attention. To match the capacity of OC models, we turn to alternatives
for decreasing the size of the original dense image representation. Using a cross-attention layer for
this purpose, it is again not as effective as the SA models. Especially at the lower resource settings
with a smaller downstream model, the downsized versions of DINOv2, i.e., DINOv2 + CA, are
considerably worse compared to their object-centric counterparts in DINOSAURv2 (Table 1). The
gap decreases for the bigger downstream model, but it is still there. The same trend can be observed
for the SigLIP2-based models (Table 11). We argue this is due to the object-centric representations
encoding the necessary information for the task more explicitly, making it easier for the smaller
downstream model to extract the relevant information (Mamaghan et al., 2024).

Expansion with Cross-Attention. For the other direction of increasing the size of the object-centric
representation, it is almost always worse for compositional generalization across all datasets and
downstream models (Tables 1 and 11), both compared to the then same-sized original representation,
e.g., DINOSAURv2 + CA versus DINOv2, and to the representation before increasing its size, e.g.,
DINOSAURv2 + CA versus DINOSAURv2.

4.3 THE EFFECT OF DOWNSTREAM COMPUTE

Small Compute Budgets. The COOD accuracies at different compute budgets and training difficulties
of Super-CLEVR for the DINO-family are shown in Fig. 3. For small compute budgets – up to
roughly four PFLOPs, the end of training for smaller image representations – and generalization
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Figure 3: VQA COOD accuracy for training on Super-CLEVR “easy” (left), “medium” (middle), and “hard”
(right) at different compute budgets (log FLOPs) with DINOv2-based models and question-only baseline (dashed
grey). Object-centric representations slightly surpassed on easier generalization tasks (left) but are not matched
on harder compositional out-of-distribution tasks (right) by dense representations, even at 3 × the compute.

difficulties, Slot Attention-based object-centric representations consistently outperform all other
representations.

Easy Generalizations. To surpass the COOD performance of DINOSAURv2 for easier generalization
tasks, the non-object-centric counterpart, DINOv2, requires substantially more downstream compute.
Even then, the eventual final accuracy gain is modest (≤ 3.5%). For Super-CLEVR “easy” in
Fig. 3 (left), DINOv2 reaches the best generalization accuracy of DINOSAURv2 with 1.5 × the
compute and improves +3.5% at the end after consuming 3 × the computational resources. The
same observations can be made for the SigLIP2-based models (Table 11).

Hard Generalizations. For the settings with the hardest compositional generalization, for example,
Super-CLEVR “hard” (Fig. 3 right), small object-centric representations consistently match or
outperform their non-object-centric counterparts within the same backbone family at any given
compute budget. Even when granting original vision encoders up to 3 × the compute, they often fail
to surpass the object-centric representations (Table 11).

Small Downstream Model. Considering the performance of representations across downstream
models, employing a smaller downstream model for the best COOD performance is justified only
under very constrained compute budgets (for example, below 0.5 PFLOPs in Fig. 3). Under these
limited compute conditions, DINOSAURv2’s or SigLIPSAUR2’s small image representation paired
with the small downstream model consistently outperforms all alternatives.

4.4 THE EFFECT OF SAMPLE SIZE
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Figure 4: Object-centric models are more sample efficient, espe-
cially at lower sample sizes or with smaller downstream models.
Compositional generalization of models trained on different sub-
sets of the full data for MOVi-C “easy” for the small (left: TF
2) and bigger downstream model (right: TF 5). Question-Only
baseline trained on full data in grey.

Varying Sample Size. To examine
how the amount of training data and
its diversity affect compositional gen-
eralization, we train both the origi-
nal vision encoders and their object-
centric counterparts on subsets of all
datasets. Specifically, we vary the sam-
ple size, defined as the number of train-
ing images, from 210 (1024) up to 215

(32768), each paired with correspond-
ing question–answer pairs, and com-
pare results to training on the full set
of 40k images.

Sample Size vs Highest Diversity.
When training on subsets of the dataset
with the highest diversity, here shown for MOVi-C “easy” as an example in Fig. 4, the object-centric
models consistently achieve better compositional generalization than their non-object-centric coun-
terparts across all sample sizes when paired with the small downstream model (Fig. 4 left). In
contrast, with more computational resources (larger downstream model, right), non-object-centric
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representations can match or slightly surpass object-centric representations at larger sample sizes,
here only at the largest sample size of the full dataset (40k). This indicates that object-centric models
are more sample-efficient, likely because their smaller representations explicitly decompose the visual
content of objects into different tokens, i.e., slots.
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Figure 5: Object-centric models generalize better compositionally
at lower diversities across almost all sample sizes. Compositional
generalization of DINOv2 and DINOSAURv2 trained on different
sample sizes of the full data for all diversities of MOVi-C “easy”–

“hard” for the small (left: TF 2) and bigger downstream model
(right: TF 5). Question-only baseline trained on full data in grey.

Sample Size vs Diversity. Comparing
the effect of data diversity, the number
of unique objects we see during train-
ing in “easy” – “hard”, across sample
sizes: models trained on more diverse
data almost always generalize better
compositionally, especially at higher
sample sizes. For example, for MOVi-
C in Fig. 5, a higher diversity is al-
ways better for generalization for both
DINOv2 and DINOSAURv2.

For all models and datasets, there al-
ways exists a breakpoint where increas-
ing (i.e. doubling) the number of sam-
ples improves the compositional gener-
alization ability more for higher com-
pared to lower diversities. Concretely, for MOVi-C in Fig. 5, both models struggle to clear the
question-only baseline (trained on the full data) for lower sample sizes, then both models across all
three diversities behave pretty similarly until 213 (8k) samples when doubling the number of samples
again to 214 brings a bigger improvement for higher diversities compared to lower ones for both
models, where the improvement is bigger for the object-centric representation of DINOSAURv2.
The sample size for this breakpoint can depend on the dataset, model, and diversity, but the overall
trend is consistent. Finally, the accuracy for lower diversities and higher sample sizes can plateau, or
even go down, depending on the dataset, model, and downstream model. Lastly, nearly all models
match or surpass their compositional performance of the second-most diverse dataset (“medium”,
full sample) with a lot fewer samples from the most diverse dataset (“easy”), here for MOVi-C with
only 214 images (around 40% of the full data), indicating that diversity is more important than sample
size for generalization.

OC vs Dense. Focusing now on the difference between models, the object-centric representation
is better at generalizing than its dense counterpart for all diversities across all sample sizes for the
small downstream model4, sometimes even comparing across diversities (cite fig). For the bigger
downstream model, the dense representations only surpass the OC model at higher diversities and
sample sizes. For MOVi-C in Fig. 5 (right), DINOv2 only surpasses DINOSAURv2 on “easy” and

“medium” for the highest sample size. If we restrict one or both of diversity and sample size enough,
the object-centric representation generalizes equally well or better.

5 CONCLUSION

In this work, we systematically evaluated the compositional generalization capabilities of object-
centric representations in fully controlled and visually rich settings. By introducing a benchmark
based on the CLEVRTex, Super-CLEVR, and MOVi-C datasets, we demonstrated that object-centric
models, specifically DINOSAURv2 and SigLIPSAUR2, exhibit superior compositional generalization
compared to their non-object-centric alternatives, DINOv2 and SigLIP2, while requiring significantly
less compute.

These findings reinforce the potential of object-centric approaches for tasks requiring systematic
compositional reasoning and highlight the need for further exploration into their applications beyond
synthetic benchmarks. Future work may extend this by investigating the effectiveness of object-centric
learning in real-world scenarios, incorporating more diverse datasets, and optimizing architectural
choices to enhance performance across a broader range of vision tasks.

4We have observed this previously for all sample sizes of the “easy” versions.
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REPRODUCIBILITY STATEMENT

All the required information to reproduce the results is provided in the main text and the appendix.
Specifically, model architectures, training and evaluation procedures, and hyperparameters are
summarized in §3.2 and Appendix B. We use publicly available implementations of all models, which
are properly cited in the paper. Datasets are generated from publicly released codebases, and the
details of the data generation pipeline are documented in §3.1 and Appendix A.

REFERENCES

Reza Abbasi, Mohammad Hossein Rohban, and Mahdieh Soleymani Baghshah. Deciphering the
role of representation disentanglement: Investigating compositional generalization in clip models.
arXiv preprint arXiv:2407.05897, 2024.

Federico Baldassarre, Josselin Somerville Roberts, Huy V Vo, Maxime Oquab, and Piotr Bojanowski.
A clustering baseline for object-centric representations. 2024.

Ondrej Biza, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gamaleldin Fathy Elsayed, Aravindh
Mahendran, and Thomas Kipf. Invariant slot attention: Object discovery with slot-centric reference
frames. In International Conference on Machine Learning, 2023.

Jack Brady, Roland S Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius von Kügelgen,
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Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
encoders with improved semantic understanding, localization, and dense features, 2025.

Arnas Uselis, Andrea Dittadi, and Seong Joon Oh. Does data scaling lead to visual compositional
generalization?, 2025. URL https://arxiv.org/abs/2507.07102.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely as a writing assistant for language polishing (grammar,
wording, and clarity). All scientific contributions, including problem formulation, dataset generation,
experiments, and analyses, were produced by the authors.

A DATA GENERATION

The used attributes for image generation are in Table 2 for CLEVRTex, Table 3 for Super-CLEVR
and Table 4 for MOVi-C, with some example images with question–answer pairs in Fig. 6, Fig. 7 and
Fig. 8, respectively. For each base dataset, we define an object as the combination of all its attributes,
and create three training datasets, which we label as “easy” (containing 80% of all possible objects),

“medium” (40%), and “hard” (20%). We reserve the holdout 20% of object–property combinations for
testing compositional generalization. During initial investigations, we found that for Super-CLEVR
the generalization problem at these proportions is not ”hard” enough yet, i.e., generalization behaves
as in-distribution. This is likely due to the many factors of Super-CLEVR, of which not all are equally
important for answering questions. Therefore, for Super-CLEVR only, we reduced the proportions to
10% (“easy”), 5% (“medium”) and 1% (“hard”).

Table 2: Attributes for the image and question generation for CLEVRTex.

Shape (8) Size (3) Material (8)

cube small green tiled
cylinder medium blue denim

monkey head large red fabric
icosahedron green forest

teapot red leather
sphere rocky gravel
cone rusty metal
torus white sandstone

Table 3: Attributes for the image and question generation for Super-CLEVR.

Shape (21) Size (2) Material (2) Color (8) Texture (4)

suv small rubber gray none
wagon large metal red checkered

minivan blue stripped
sedan green dotted
truck brown

articulated bus purple
regular bus cyan
double bus yellow
school bus

chopper
dirtbike
scooter
cruiser

jet
fighter
biplane
airliner

road bike
utility bike

mountain bike
tandem bike
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Figure 6: Dataset examples with question–answer pairs for CLEVRTex.
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Figure 7: Dataset examples with question–answer pairs for Super-CLEVR.
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Figure 8: Dataset examples with question–answer pairs for MOVi-C.
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Table 4: Attributes for the image and question generation for MOVi-C.

Shape (36) Size (3)

athletic shoe small
boot medium

sandal large
flip flop

ballet flat
action figure

stuffed animal
board game
puzzle toy

construction toy
toy vehicle
musical toy

doll
game console
ink cartridge

computer mouse
keyboard

headphones
router

hard drive
tablet

coffee mug
bowl
plate

hand towel
screwdriver

scissors
tape roll
plant pot
lunch bag

dish drying mat
mixing bowl
frying pan

blender
toaster

coffee maker

B MODELS

B.1 DINOSAURV2 AND SIGLIPSAUR2

The hyperparameters for DINOSAURv2 and SigLIPSAUR2 for all datasets can be found in Table 5.

B.2 K-MEANS

For extracting an image representation via k-means from the pretrained vision encoders, we follow
Baldassarre et al. (2024). Concretely, we concatenate the global image representation g (from the
CLS token) with the set of centroids derived from performing K-Means on the patch tokens for
different numbers of clusters. After choosing the maximum number of clusters kmax, as a power
of two, we use the standard sklearn5 implementation for k ∈ {1, 2, . . . , 2log2(kmax)}. In contrast to
Baldassarre et al. (2024), who mostly use a smaller kmax = 8 or 16 for their more ”global” tasks,
e.g, scene classification and action recognition in videos, our VQA tasks require a more fine-grained

5https://scikit-learn.org/
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spatial understanding and knowledge of visual details to distinguish between spatial relationships
(e.g., left or right) and different objects (e.g., mountain or road bike). In preliminary experiments, we
tried using kmax ∈ {8, 16, 32, 64}, but image representations with kmax ≤ 32 performed quite bad,
especially on CLEVRTex. In order to achieve reasonable performance while still resulting in a smaller
image representation, therefore requiring less compute, we chose kmax = 64 which results in a
representation with 128 = 1 (g) +1 (k=1) +1 (k=2) + . . .+64 (k=64) tokens and feature dimension
corresponding to the original vision encoder. For compute comparisons, refer to Appendix C.

Table 5: Hyperparameters of DINOSAURv2 and SigLIPSAUR2.

Hyperparameter DINOSAURv2 SigLIPSAUR2
Training Steps 300k 300k
Batch Size 128 128
LR Warmup Steps 10k 10k
Peak LR 0.0003 0.0002
LR Schedule Cosine Exp. Decay
Exp. Decay Half-Life - 100k
Cosine T-Max 300k -
Feature Extractor DINOv2 S SigLIP2 B
Patch Size 14 16
Feature Dim. 384 768
Gradient Norm Clipping 0.1 0.1

Image Size 224 224
Cropping Strategy Full Full
Image Tokens 256 196

Decoder
Type MLP MLP

Layers 4 4
MLP Hidden Dim. 2048 2048

Slot Attention
Iterations 3 3

Number of Slots 7 7
Slot Dim. 256 256

MLP Hidden Dim. 1024 1024

B.3 DOWSTREAM VQA MODEL

Architecture We adopt a transformer-based architecture for VQA, following Mamaghan et al. (2024).
We first project both image and text representations via separate linear layers (output size 126) with a
dropout of 0.1, and augment them with a two-dimensional one-hot vector to indicate whether they
originate from image features or text embeddings. We then add a sinusoidal positional encoding to the
text embeddings. To perform classification, we use a trainable CLS ∈ R128 vector. We concatenate
the image and text representations (plus the CLS token) and pass them through a transformer encoder
with dmodel = 128 and a hidden dimension of 128. The transformed CLS token is fed into a two-layer
MLP (hidden dimension 128) with layer normalization, a dropout rate of 0.1, and a ReLU activation
between layers. This MLP outputs a probability distribution over all possible answers.

Training For all CLEVRTex, Super-CLEVR and MOVi-C variants, we train the downstream models
with a batch size of 128, a learning rate of 0.0001, and a cross-entropy loss for steps defined in
section Appendix C. We use downstream model variants where we vary the number of layers of the
transformer encoder, either 2 or 5 layers with 64 heads. We tried changing the learning rate and
schedule, including linear warm-up and/or different learning rate schedules, e.g., cosine, but all of
them resulted in worse performance compared to the above setting.

C COMPUTE

The base models DINOv2, SigLIP2, and DINOSAURv2/SigLIPSAUR2 produce for all datasets
here, i.e., with an image size of 224, representations of shape [256, 384], [196, 768], and [7, 256],
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respectively. This results in a huge compute mismatch for the downstream model6 in Fig. 9, where,
for example, the FLOPs for the downstream model with the DINOv2 image representation are
roughly four times that of DINOSAURv2 for both transformer sizes. To remedy that, we use a single
cross-attention (CA) layer with four heads right after the vision encoder to map from the large, i.e.,
the shape for DINOv2, to the small image representation or vice-versa. We additionally considered
mapping from the input to the same output size and using a different number of layers or heads for
CA, but none of this resulted in consistent improvements. In order to choose the number of steps
to train each model, we train the downstream model with the image representation that needs the
most compute, i.e., for DINOv2 see Fig. 9, until convergence for 600k steps (same as Mamaghan
et al. (2024)). Then, for each training checkpoint of this model, the union of every 50k steps and a
power of two series, we calculate the corresponding number of steps for all other models, depending
on their compute ratios. As this results in a very high number of steps for some of the models with
smaller image representations, e.g., DINOSAURv2, we choose a reasonable (fixed) number of max
steps for which models are already converged or learning slowed down a lot. For the number of steps
used consistently for all models shown here, see Table 6.

Table 6: Number of steps for the two downstream models for all image representations.

Number of steps
Model Name Image Repr. Size TF 2 TF 5
SigLIP2 / SigLIPSAUR2 + CA [196,768] 641123 688733
DINOv2 / DINOSAURv2 + CA [256,384] 600000 600000
SigLIP2 + K-Means [128,768] 718928 617749
DINOv2 + K-Means [128,384] 643602 652251
SigLIPSAUR2 / DINOSAURv2 / [7,256] 762329 809568
SigLIP2 + CA / DINOv2 + CA /
SigLIP2 + K-Means (7) / DINOv2 + K-Means (7)

D ADDITIONAL COMPARISONS

Table 7: VQA Accuracy in-distribution for all image representations and the small downstream model (TF 2).

CLEVRTex Super-CLEVR MOVi-C
TF 2 E M H E M H E M H

Question-Only Baseline 46.3 48.1 53.0 49.0 50.7 59.5 54.2 55.7 57.5

DINOv2 73.9 76.6 82.6 65.9 68.2 81.2 72.8 75.0 78.0
DINOv2 + CA 73.1 71.2 76.3 65.5 66.7 79.4 69.6 72.4 74.0
DINOv2 + KMeans (7) 59.2 62.2 68.6 55.5 58.0 70.9 61.7 64.2 66.5
DINOv2 + KMeans 73.1 76.3 80.6 65.1 67.7 80.5 72.4 74.8 77.3
DINOSAURv2 79.0 82.9 85.4 67.6 70.2 81.8 74.3 76.7 78.7
DINOSAURv2 + CA 73.8 80.4 81.0 63.0 65.6 78.4 68.8 72.3 74.5

SigLIP2 77.8 79.6 83.6 68.1 69.3 82.5 73.1 76.4 78.7
SigLIP2 + CA 69.4 73.8 78.6 65.4 67.0 80.3 69.1 72.5 75.3
SigLIP2 + KMeans (7) 60.4 63.1 70.0 57.2 60.1 72.6 62.8 65.3 68.2
SigLIP2 + KMeans 78.3 78.6 81.8 66.9 70.1 81.8 73.5 75.8 78.5
SigLIPSAUR2 84.7 85.2 87.1 71.0 73.4 84.1 76.8 79.0 81.0
SigLIPSAUR2 + CA 74.8 77.5 82.0 66.6 68.4 80.5 71.9 74.2 76.3

GT Oracle 95.3 95.4 96.1 91.3 91.6 93.5 95.0 95.7 95.7

6https://github.com/facebookresearch/fvcore
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Figure 9: GFLOPs for one step of the downstream model for image representations with both the smaller
(TF 2) and bigger transformer downstream model (TF 5), ignoring the compute needed for resizing with the
cross-attention layer.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pearson r=0.99**
Spearman r=0.99**

Super-CLEVR EASY

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pearson r=0.98**
Spearman r=0.97**

Super-CLEVR MEDIUM

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pearson r=0.96**
Spearman r=0.96**

Super-CLEVR HARD

Model
DINOSAURv2
DINOSAURv2 + CA
DINOv2
DINOv2 + CA
DINOv2 + KMeans
DINOv2 + KMeans (7)
SigLIPSAUR2
SigLIPSAUR2 + CA
SigLIP2
SigLIP2 + CA
SigLIP2 + KMeans
SigLIP2 + KMeans (7)
GT Oracle
Question-Only Baseline
Image Representation
large
small
Downstream Layers
TF 2
TF 5

Ac
cu

ra
cy

 o
n 

CO
OD

Accuracy In-Distribution

Figure 10: VQA in-distribution and compositional out-of-distribution accuracy are very strongly correlated
(highly significant: p-value < .01). Performances for Super-CLEVR “easy”, “medium”, and “hard” at the end
of training with correlations and ground-truth oracle (upper right: black) and question-only baseline (lower left:
grey).
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Figure 11: VQA in-distribution and compositional out-of-distribution accuracy are very strongly correlated
(highly significant: p-value < .01). Performances for CLEVRTex “easy”, “medium”, and “hard” at the end of
training with correlations and ground-truth oracle (upper right: black) and question-only baseline (lower left:
grey).
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Figure 12: VQA in-distribution and compositional out-of-distribution accuracy are very strongly correlated
(highly significant: p-value < .01). Performances for MOVi-C “easy”, “medium”, and “hard” at the end of
training with correlations and ground-truth oracle (upper right: black) and question-only baseline (lower left:
grey).
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Table 8: VQA Accuracy compositional out-of-distribution for all image representations and the small downstream
model (TF 2).

CLEVRTex Super-CLEVR MOVi-C
TF 2 E M H E M H E M H

Question-Only Baseline 42.1 41.5 41.6 45.0 45.2 44.1 47.7 48.4 48.1

DINOv2 69.5 58.8 50.0 60.9 57.0 49.7 57.5 53.6 51.4
DINOv2 + CA 68.4 54.1 47.7 59.8 55.8 48.9 55.8 53.6 51.7
DINOv2 + KMeans (7) 53.0 49.8 46.9 50.8 49.9 47.5 51.7 51.0 49.8
DINOv2 + KMeans 68.4 60.0 49.4 59.5 56.2 49.6 56.7 53.4 52.4
DINOSAURv2 76.5 71.2 55.6 60.6 58.6 50.9 58.5 54.7 53.0
DINOSAURv2 + CA 69.6 68.7 51.0 57.7 55.1 49.4 54.1 52.7 50.8

SigLIP2 74.1 65.6 51.4 62.3 57.6 50.4 58.2 54.4 53.1
SigLIP2 + CA 64.8 58.8 49.0 60.4 56.5 49.5 55.8 53.8 52.1
SigLIP2 + KMeans (7) 54.6 51.4 48.1 52.0 51.6 48.5 53.5 52.7 51.0
SigLIP2 + KMeans 75.2 63.9 50.5 61.6 59.1 49.9 58.0 53.8 52.7
SigLIPSAUR2 83.4 75.4 58.4 63.8 61.3 52.1 61.3 57.1 54.7
SigLIPSAUR2 + CA 71.5 66.4 50.7 60.5 56.4 49.9 57.4 54.1 52.8

GT Oracle 94.6 89.0 70.2 89.9 86.8 67.3 84.8 76.8 68.9

Table 9: VQA Accuracy in-distribution for all image representations and the big downstream model (TF 5).

CLEVRTex Super-CLEVR MOVi-C
TF 5 E M H E M H E M H

Question-Only Baseline 46.0 48.3 52.8 48.9 50.9 59.9 53.9 55.3 57.0

DINOv2 90.9 93.4 92.9 76.2 79.0 85.2 78.8 82.2 84.0
DINOv2 + CA 85.3 87.7 88.9 73.7 77.9 85.2 77.5 79.8 80.6
DINOv2 + KMeans (7) 58.6 62.9 69.0 55.0 58.2 70.8 62.0 64.1 66.6
DINOv2 + KMeans 86.1 87.9 88.2 71.7 77.1 85.5 79.7 82.2 83.4
DINOSAURv2 87.6 89.9 90.2 73.5 77.9 87.3 78.4 81.1 81.9
DINOSAURv2 + CA 84.7 87.7 88.4 70.3 74.6 85.9 75.2 77.7 79.2

SigLIP2 93.8 93.9 94.8 80.6 84.9 91.7 81.7 84.6 85.1
SigLIP2 + CA 86.4 87.2 88.4 72.8 76.4 85.1 75.8 78.8 80.7
SigLIP2 + KMeans (7) 59.4 63.9 70.2 57.3 60.6 73.5 62.8 65.3 67.8
SigLIP2 + KMeans 88.6 90.2 89.9 74.9 80.5 87.9 80.0 82.1 84.6
SigLIPSAUR2 90.8 92.0 92.4 77.5 81.3 89.0 80.8 82.9 84.5
SigLIPSAUR2 + CA 87.8 89.7 89.9 76.0 80.8 88.9 78.6 79.8 82.7

GT Oracle 99.7 99.7 99.6 95.8 97.0 97.1 99.0 98.9 98.7
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Table 10: VQA Accuracy compositional out-of-distribution for all image representations and the big downstream
model (TF 5).

CLEVRTex Super-CLEVR MOVi-C
TF 5 E M H E M H E M H

Question-Only Baseline 42.0 41.8 41.4 45.0 44.9 43.9 48.7 47.8 48.0

DINOv2 85.4 70.3 55.4 68.1 63.0 51.7 60.0 56.0 54.0
DINOv2 + CA 78.9 67.9 53.8 65.2 61.1 50.8 58.3 55.3 53.2
DINOv2 + KMeans (7) 52.7 49.0 46.4 50.6 49.9 47.2 51.5 50.1 49.1
DINOv2 + KMeans (128) 80.6 66.0 54.1 64.4 61.8 51.3 60.6 56.5 53.9
DINOSAURv2 82.5 73.3 55.5 64.6 60.8 52.1 59.2 55.6 54.0
DINOSAURv2 + CA 79.5 70.1 54.0 62.8 59.3 51.1 57.7 53.9 52.0

SigLIP2 88.0 76.7 58.4 70.6 66.8 54.3 62.0 57.5 54.6
SigLIP2 + CA 81.1 68.1 54.2 64.7 60.9 51.5 57.8 55.4 53.0
SigLIP2 + KMeans (7) 53.0 50.5 47.4 52.4 50.9 48.1 52.9 51.8 50.6
SigLIP2 + KMeans (128) 84.2 72.3 56.2 66.3 63.7 52.9 61.6 56.6 54.5
SigLIPSAUR2 86.9 76.9 59.3 66.8 62.4 53.5 61.6 57.9 55.3
SigLIPSAUR2 + CA 84.6 74.6 57.8 65.6 62.1 52.7 60.2 56.3 54.0

GT Oracle 99.2 97.5 76.2 93.3 91.6 67.0 96.3 84.2 78.8

Table 11: VQA accuracy (%) of both downstream models (TF 2 & 5) on the respective compositional generaliza-
tion test sets for all models, trained on “easy” (E), “medium” (M), and “hard” (H) training sets. We compute
deltas compared to the original pretrained vision encoder.

CLEVRTex Super-CLEVR MOVi-C
TF 2 E M H E M H E M H

DINOv2 69.5 58.8 50.0 60.9 57.0 49.7 57.5 53.6 51.4

DINOv2 + CA -1.2 -4.8 -2.3 -1.2 -1.2 -0.8 -1.7 -0.1 0.2
DINOv2 + KMeans (7) -16.5 -9.1 -3.1 -10.1 -7.1 -2.2 -5.8 -2.6 -1.6
DINOv2 + KMeans -1.1 1.2 -0.6 -1.4 -0.8 -0.1 -0.7 -0.3 0.9
DINOSAURv2 7.0 12.3 5.6 -0.3 1.6 1.2 1.0 1.1 1.6
DINOSAURv2 + CA 0.1 9.8 1.0 -3.3 -1.9 -0.4 -3.3 -1.0 -0.6

SigLIP2 74.1 65.6 51.4 62.3 57.6 50.4 58.2 54.4 53.1

SigLIP2 + CA -9.3 -6.9 -2.4 -1.9 -1.0 -0.9 -2.3 -0.6 -0.9
SigLIP2 + KMeans (7) -19.5 -14.3 -3.3 -10.3 -6.0 -1.9 -4.7 -1.7 -2.1
SigLIP2 + KMeans 1.0 -1.8 -1.0 -0.6 1.5 -0.5 -0.2 -0.6 -0.3
SigLIPSAUR2 9.2 9.7 6.9 1.5 3.7 1.8 3.1 2.6 1.6
SigLIPSAUR2 + CA -2.6 0.8 -0.8 -1.8 -1.2 -0.5 -0.7 -0.3 -0.2

TF 5 E M H E M H E M H

DINOv2 85.4 70.3 55.4 68.1 63.0 51.7 60.0 56.0 54.0

DINOv2 + CA -6.5 -2.4 -1.7 -2.9 -1.9 -0.9 -1.7 -0.7 -0.8
DINOv2 + KMeans (7) -32.6 -21.3 -9.1 -17.5 -13.1 -4.5 -8.5 -6.0 -4.9
DINOv2 + KMeans -4.7 -4.3 -1.3 -3.7 -1.2 -0.4 0.6 0.5 -0.1
DINOSAURv2 -2.9 3.0 0.1 -3.5 -2.2 0.4 -0.8 -0.4 -0.0
DINOSAURv2 + CA -5.9 -0.3 -1.4 -5.3 -3.7 -0.6 -2.3 -2.1 -2.0

SigLIP2 88.0 76.7 58.4 70.6 66.8 54.3 62.0 57.5 54.6

SigLIP2 + CA -6.9 -8.6 -4.2 -5.9 -5.9 -2.8 -4.2 -2.1 -1.6
SigLIP2 + KMeans (7) -35.0 -26.2 -11.0 -18.2 -15.8 -6.2 -9.1 -5.7 -4.0
SigLIP2 + KMeans -3.8 -4.4 -2.1 -4.3 -3.1 -1.4 -0.4 -0.8 -0.1
SigLIPSAUR2 -1.1 0.2 0.9 -3.8 -4.4 -0.8 -0.4 0.4 0.7
SigLIPSAUR2 + CA -3.4 -2.0 -0.6 -5.0 -4.7 -1.6 -1.8 -1.2 -0.7

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.1 0.5 1 2 4 8 16
0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 In
-D

ist
rib

ut
io

n 
on

 C
LE

VR
Te

xE
AS

Y

ACCURACY ID

0.1 0.5 1 2 4 8 16
0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 C
OO

D

ACCURACY COOD

0.1 0.5 1 2 4 8 16
0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 In
-D

ist
rib

ut
io

n 
on

 C
LE

VR
Te

xM
ED

IU
M

0.1 0.5 1 2 4 8 16
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

 C
OO

D

0.1 0.5 1 2 4 8 16
0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 In
-D

ist
rib

ut
io

n 
on

 C
LE

VR
Te

xH
AR

D

0.1 0.5 1 2 4 8 16
0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

 C
OO

D

CLEVRTex

PFLOPS (1015)

Model
DINOSAURv2
DINOSAURv2 + CA
DINOv2
DINOv2 + CA
DINOv2 + KMeans
DINOv2 + KMeans (7)
SigLIPSAUR2
SigLIPSAUR2 + CA
SigLIP2
SigLIP2 + CA
SigLIP2 + KMeans
SigLIP2 + KMeans (7)
Image Representation
large
small
Downstream Layers
TF 2
TF 5

Figure 13: VQA in-distribution and compositional out-of-distribution accuracy for all CLEVRTex dataset
variants with question-only baseline (lower: dashed grey).
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Figure 14: VQA in-distribution and compositional out-of-distribution accuracy for all Super-CLEVR dataset
variants with question-only baseline (lower: dashed grey).
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Figure 15: VQA in-distribution and compositional out-of-distribution accuracy for all MOVi-C dataset variants
with question-only baseline (lower: dashed grey).
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Figure 17: Compositional generalization of models trained on different subsets of the full data for CLEVRTex,
Super-CLEVR and MOVi-C for DINOv2-based models.
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Figure 18: Compositional generalization of models trained on different subsets of the full data for CLEVRTex,
Super-CLEVR and MOVi-C for SigLIP2-based models.
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