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ABSTRACT

Natural agents interact with their environment through noisy and continuous sen-
sorimotor loops. Stochastic optimal control provides a principled framework for
this problem, but existing analytical solutions are restricted to linear dynamics
with Gaussian observations and additive noise. They cannot address scenarios
with multiplicative noise in control or observations, and with internal noise affect-
ing estimation – features central to biological and robotic systems. We provide
a provably convergent algorithm that computes fixed-point controller–filter solu-
tions for linear dynamics with quadratic costs under multiplicative and internal
noise. Our method overcomes the limitations of prior analytical approaches and
improves the efficiency of state-of-the-art gradient-based methods by more than
three orders of magnitude in realistic tasks. Importantly, it also optimizes inter-
nal dynamics, relaxing the classical assumption that internal models must match
external dynamics. Allowing such model mismatch yields substantially better
performance under internal noise. In sum, we provide the first full solution to
stochastic optimal linear control under multiplicative and internal noise, covering
both matched and mismatched internal models.

1 INTRODUCTION

Understanding the computational mechanisms that govern the sensorimotor system in humans and
other animals is a long-standing goal in systems and computational neuroscience (Wolpert et al.,
1995; Shadmehr & Krakauer, 2008; Franklin & Wolpert, 2011; Todorov, 2004). Yet, developing
formal and mathematically tractable models that accurately capture these mechanisms remains an
open problem, with far-reaching implications for fields such as artificial intelligence and robotics.
In this context, stochastic optimal control theory provides a powerful mathematical framework for
explaining behavior in terms of optimality principles, accounting for uncertainty and variability in-
herent in biological systems (Todorov & Jordan, 2002; Todorov, 2005; Straub & Rothkopf, 2022;
Schultheis et al., 2021; Faisal et al., 2008). The seminal work in Todorov (2005) extended the classic
Linear-Quadratic-Additive-Gaussian – LQAG – framework (usually referred to as Linear-Quadratic-
Gaussian – LQG – problem (Davis, 2013)) to incorporate a more biologically realistic noise model
of the sensorimotor system. This includes control-dependent noise (Schmidt et al., 1979; Todorov,
2002), signal-dependent sensory feedback noise (Todorov & Jordan, 2002; Harris & Wolpert, 1998),
and internal neural noise (Faisal et al., 2008; Moreno-Bote et al., 2014; Churchland et al., 2006) –
all of which are essential for reproducing key signatures of human motor behavior (Todorov, 2005;
Flash & Hogan, 1985; Harris & Wolpert, 1998; Todorov, 2002; Schmidt et al., 1979). However, ex-
plaining behavior through optimal control requires first obtaining optimal solutions to the underlying
problem (Todorov, 2005; Schultheis et al., 2021).

The study of Todorov (2005) provided the first analytically-derived algorithm for optimal linear con-
trol under multiplicative and internal noise. Despite its wide applicability (Schultheis et al., 2021;
Straub & Rothkopf, 2022; Sensinger & Dosen, 2020; Liu & Todorov, 2007; Izawa et al., 2008; Takei
et al., 2021; Shanechi et al., 2013), Damiani et al. (2024) demonstrated that this solution fails to yield
truly optimal results in the presence of internal noise, due to the incorrect assumption of unbiased
estimators and its connection with the orthogonality principle (Appendix A.1). More recent theoret-
ical work has continued to assume unbiased estimation in extended applications, including iterative
LQG (iLQG) and differential dynamic programming (DDP) (Li & Todorov, 2007). To address this
limitation, Damiani et al. (2024) introduced a numerical gradient-based algorithm that achieves op-
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timal performance, in terms of cost-minimization, under multiplicative and internal noise, albeit
at high computational cost, making it impractical for inverse optimal control applications. They
also proposed an analytical counterpart, the FPOMP algorithm, which solves the problem in the
one-dimensional case and, in higher dimensions, only under additive noise, due to the increased
mathematical complexity of the full setting. Consequently, no previous work provides a general
analytical solution or formal convergence guarantees.

In this work, we derive an algorithm that fully solves the stochastic control problem of Todorov
(2005); our algorithm exploits coordinate descent, and we prove its monotonic improvement and
convergence to a critical point (Appendix A.2). This overcomes prior analytical limitations and,
unlike the state-of-the-art numerical methods, yields an analytically-derived algorithm for the full
problem with speedups of more than three orders of magnitude in realistic tasks. Our framework
thus provides both a conceptual advance and a major efficiency gain over existing approaches.

A further limitation of current theoretical work on stochastic optimal control is the reliance on
two core assumptions: (1) a strict separation between estimation and control, and (2) the matched-
dynamics assumption, i.e., that the internal model used for estimation and control perfectly matches
the dynamics of the external environment. These limitations underlie both Todorov (2005) and
Damiani et al. (2024), where noisy sensory feedback is first processed by a Kalman filter to produce
a state estimate – based on the same forward model of the environment – which then guides linear
control actions. Within the classical LQAG problem, this methodology is mathematically justified
by the separation principle (Davis, 2013). However, once multiplicative and internal noise are in-
cluded, the separation principle no longer holds, making estimation and control inherently coupled
(Todorov, 2005). Moreover, the assumption that the agent’s internal model exactly matches the
external dynamics strongly limits the realism of this approach, overlooking a substantial body of
research emphasizing the role of internal models in motor control (Wolpert et al., 1995; Shadmehr
et al., 2010; Körding & Wolpert, 2004; Kawato, 1999; Golub et al., 2015).

Our second main contribution is to relax these assumptions by considering the more general case
where the internal dynamics – used by the agent to process sensory stimuli and generate motor out-
puts – need not match the dynamics of the external world and must themselves be optimized (Sec.
4). We refer to the classical case as Model Match (M-Match), and to our extension as Model Mis-
match (M-Mis). We extend the algorithm developed for the M-Match case (Appendix A.2.2) to this
scenario, providing an analytical solution for mismatched internal models. In Sec. 5, we demon-
strate that this additional flexibility leads to improved solutions relative to M-Match, particularly in
the presence of internal noise. Finally, we illustrate the generality of our framework by applying
it to the steering of linear neural populations, which connects directly to computational principles
underlying reservoir computing (Jaeger & Haas, 2004; Maass et al., 2002) and, more broadly, to
recurrent neural network models that generate task-relevant outputs (Sussillo & Abbott, 2009).

2 STOCHASTIC LINEAR OPTIMAL CONTROL: PROBLEM FORMULATION

We first review the standard Linear-Quadratic-Additive-Gaussian (LQAG) problem, then extend the
noise model, following Todorov (2005), to include multiplicative observation, control noise, and
internal noise, yielding the Linear-Quadratic-Multiplicative-Internal (LQMI) formulation. In both
LQAG and LQMI, internal and state dynamics are matched; the more general mismatched case is
discussed in Sec. 4.

2.1 STOCHASTIC OPTIMAL CONTROL UNDER MULTIPLICATIVE AND INTERNAL NOISE

In the standard LQAG formulation, an agent receives noisy observations yt ∈ Rk (t = 0, 1, ..., T )
from a state variable xt ∈ Rm,

yt = Hxt + ωt , (1)

where H ∈ Rk×m is the observation matrix and ωt ∈ Rk is a zero-mean noise with covariance Σω .
The control problem consists in finding the optimal control signal ut(yt−1, ..., y0) ∈ Rp that steers
the stochastic linear dynamical system

xt+1 = Axt +But + ξt , (2)
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so as to minimize the expected cumulative quadratic cost

C =

T∑
t=0

E
[
x⊤
t Qtxt + u⊤

t Rtut

]
. (3)

The dynamics of the state variable, Eq. 2, is assumed to be linear in state and control with matrices
A ∈ Rm×m and B ∈ Rm×p and corrupted by zero-mean noise ξt ∈ Rm with covariance Σξ.
All noises are uncorrelated in time and are not required to be Gaussian. We observe that time-
dependent matrices in the dynamics or noise can be trivially incorporated. The initial condition of
the dynamics is x0, usually drawn from a Gaussian distribution. The control signal ut(yt−1, ..., y0)
at time t is allowed to depend only on previous observations, but not on the state nor on future
observations to enforce partial observability and causality, respectively. The expectation in Eq. 3 is
over the realizations of the noise and the initial conditions. Each term in the sum is the expected
instantaneous cost at time t. The total expected cost C penalizes large control signals – reflecting
energetic or metabolic constraints – as well as deviations from desired trajectories or targets, through
the symmetric positive semidefinite matrices Rt ∈ Rp×p, Rt ≥ 0, and Qt ∈ Rm×m, Qt ≥ 0,
respectively.

The LQAG problem admits an analytical solution (Davis, 2013), which is the combination of a linear
Kalman filter, providing optimal estimates x̂t ≡ zt of the partially observable state xt, and a linear
feedback controller defined by ut = Ltzt, which are computed independently, without mathematical
dependence between control and filter gains – the so-called separation principle (Davis, 2013). We
return to this point in Appendix A.4.7, where we empirically examine the consequences of relying
on this principle. The internal variable becomes a state estimate evolving according to

zt+1 = Azt +But +Kt(yt −Hzt) , (4)
where Kt ∈ Rm×k is the Kalman gain at time t. Solving the optimal control problem therefore
consists in computing both the optimal filter and control gains, respectively Kt and Lt ∈ Rp×m, un-
der the constraint that the internal dynamics follow the same forward dynamics as the state variable
(matrices A and B; see Appendix A.2.3 for the well-known solutions).

While the analytical tractability of the LQAG framework is a key advantage, it comes at the expense
of reduced biological realism. In particular, the noise model does not account for multiplicative
noise, also neglecting internal sources of variability (Faisal et al., 2008; Moreno-Bote et al., 2014;
Churchland et al., 2006; Franklin & Wolpert, 2011). To consider a more general and realistic noise
model, following Todorov (2005), we first introduce multiplicative noise – both control-dependent
and observational – into the system and observation dynamics in Eqs. 1,2. This leads to the modified
equations

xt+1 = Axt +But + ξt +
∑

i
εitCiut (5)

yt = Hxt + ωt +
∑

i
ρitDixt . (6)

In this framework, executing a control input ut adds noise whose magnitude scales with the input
itself (Sutton & Sykes, 1967; Schmidt et al., 1979; Harris & Wolpert, 1998), Eq. 5. Conversely,
sensing the partially observable state xt introduces sensory noise whose magnitude scales with the
state itself (Burbeck & Yap, 1990; Whitaker & Latham, 1997), Eq. 6. The matrices Ci ∈ Rm×p

and Di ∈ Rk×m define fixed gain patterns for the multiplicative noise components, while εt ∈ Rc

and ρt ∈ Rd represent zero-mean noise vectors, each with identity covariance, Σε = Ic×c and
Σρ = Id×d. As in the LQAG problem, control and observation noises are assumed to be mutually
independent, and also independent from both the additive and multiplicative noise components.
Finding the optimal control signal ut(yt−1, ..., y0) that minimizes the cost in Eq. 3 with system
and observation dynamics given by Eqs. 5,6 is a challenging problem with no known solutions,
even in the case of Gaussian noise. In particular, no sufficient statistic, analogous to x̂t ≡ zt, is
known that would allow for a Kalman filter-like recursion. Following Todorov (2005), we assume
that the control signal ut can only linearly depend on the estimate zt ∈ Rm, that is, ut = Ltzt, with
Lt ∈ Rp×m, and that the state estimate obeys the matched dynamical equation

zt+1 = Azt +But +Kt(yt −Hzt) + ηt , ut = Ltzt , (7)
with the same terminology as in Eq. 4, but where we have introduced an internal additive noise term
ηt ∈ Rm, with zero mean and covariance Ση . The internal noise may represent internal neural vari-
ability (Faisal et al., 2008; Moreno-Bote et al., 2014; Churchland et al., 2006; Franklin & Wolpert,
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2011) or flaws in the filtering process itself, and it is introduced here to obtain a more realistic and
general model (Todorov, 2005). Taken together, incorporating multiplicative and internal noise with
the assumptions of a linear Kalman filter for state estimation and a linear control policy based on an
internal estimate whose forward dynamics match those of the state (matrices A and B) gives rise to
the more general Linear–Quadratic–Multiplicative–Internal (LQMI) problem. Solving this problem
involves determining the optimal control gains L0,...,T and filter gains K0,...,T that minimize the
quadratic cost function in Eq. 3 under the system, observation and estimate dynamics in Eqs. 5,6,7.

3 SOLVING THE LQMI PROBLEM

We derive an algorithm that is guaranteed to converge to a critical point of the cost function in Eq. 3,
under the dynamics in Eqs. 5, 6, and 7. Importantly, this guarantee holds even though the problem
is non-convex: indeed, the global LQAG problem in the fully observable setting – which is a special
case of our LQMI formulation – is itself non-convex (Fazel et al., 2018). Our algorithm yields
improved pairs of control and filter gains, fully solving the LQMI problem. Complete derivations
and pseudocode appear in Appendices A.2 and A.3.1 – Algorithm 1. Below, we summarize the main
ideas and corresponding equations.

Assuming a linear control signal ut = Ltzt, we first rewrite the cost function in Eq. 3 as
C =

∑T
t=0

(
tr(QtS

xx
t ) + tr(L⊤

t RtLtS
zz
t )
)
, where we introduce the 2nd-order moment matri-

ces Sxx
t =

∫
dxdzpt(x, z)xx

⊤, Szz
t =

∫
dxdzpt(x, z)zz

⊤, and Sxz
t =

∫
dxdzpt(x, z)xz

⊤, with
pt(x, z) being the joint distribution of x and z at time t generated by previous control and filter gains
and averaging over noises and initial conditions following the distribution p0(x, z). To find the con-
ditions for extrema on the control L0,...,T and filter K0,...,T gains we add Lagrange multipliers and
define the new objective

CL =

T∑
t=0

(
tr(QtS

xx
t ) + tr(L⊤

t RtLtS
zz
t )
)
−

T+1∑
t=1

(tr(ΛtG
xx
t ) + tr(ΩtG

zz
t ) + tr(ΓtG

xz
t )) , (8)

where Λt, Ωt and Γt are Rm×m matrices of Lagrange multipliers (see Eqs. 16 in Appendix A.2).
The constraints Gxx

t = Gzz
t = Gxz

t = 0 are given by the temporal evolution of the 2nd-order
moment matrices Sxx

t , Szz
t and Sxz

t , respectively, between two consecutive time steps t and t + 1,
obtained from Eqs. 5,6,7 (see Appendices A.2 and A.2.4 for details). A crucial step in solving the
LQMI problem is to observe that the total cost in Eq. 3 admits the decomposition

C = C<t + Ct (9)

for any t, where C<t =
∑t−1

τ=0 tr(QτS
xx
τ +L⊤

τ RτLτS
zz
τ ) and the cost-to-go from time t onward is

defined as Ct = tr(ΛtS
xx
t + ΩtS

zz
t + ΓtS

xz
t ) + γt. Thus, Ct depends on the Lagrange multipliers

(given by Eqs. 16) and on the additional scalar parameter γt (following Eq. 19). Given this structure,
and since Lt affects only the expected cost from time t onward, we can locally optimize Lt at each
time step – as shown in Appendix A.2 – as

L∗
t = argmin

Lt

Ct = E−1
t

(
FtS

xz
t (Szz

t )−1 + Jt
)
, (10)

(with matrices Et, Ft and Jt defined in Appendix A.2.6) while keeping the rest of gains fixed, i.e.,
L0,...,t−1,t+1,...,T and K0,...,T are held constant.

For each local subproblem (i.e., optimizing Lt with all other gains held fixed), a global minimum
for Lt exists because Ct is convex. As shown in Appendix A.2, starting from a set of gains L(n) ≡
L
(n)
0,...,T and K(n) ≡ K

(n)
0,...,T , we can update the control gains by optimizing Lt sequentially from

t = 0 to T using Eq. 10. This yields the new set of gains L(n+1), after which the Lagrange
multipliers are recomputed backward in time using Eqs. 16. Because of the local optimization, we
obtain that the cost is non-increasing, that is, C(L(n+1),K(n)) ≤ C(L(n),K(n)). A full forward
pass that sequentially optimizes the control gains, followed by a full backward pass of the multipliers
is referred to as control pass. An analogous procedure can be applied to optimize Kt (Eq. 26 in
Appendix A.2), defining the corresponding filter pass.

In conclusion, starting from arbitrary L(0) and K(0) and distribution of initial conditions p0(x, z),
we can alternate the control and filter passes, so that C(L(0),K(0)) ≥ C(L(1),K(0)) ≥
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C(L(1),K(1)) ≥ ... ≥ C(L(n+1),K(n)) ≥ C(L(n+1),K(n+1)) ≥ ... ≥ Cmin ≥ 0. Since the
series is non-negative, it converges to a total cost no higher than the initial one with optimal filters
L∗ = L(∞) and K∗ = K(∞). In summary, in our coordinate descent algorithm, each block update
solves a convex quadratic subproblem exactly, which guarantees that the total cost decreases mono-
tonically and therefore converges. Because the converged solution is also a stationary point of the
Lagrangian, Eq. 8, it corresponds to a fixed point of the original cost function (see Appendix A.2).
Following this reasoning, we prove

Theorem 1. Starting with arbitrary L(0) and K0 and distribution of initial conditions p0(x, z), the
coordinate descent algorithm defined by iterating in alternation control and filter passes converges
to an improved pair of control and filter gains L∗ and K∗. The improved pair corresponds to a
critical point of the cost function in Eq. 3.

We first remark that the Lagrange equations may admit multiple solutions. In practice, our algorithm
converges to different critical points depending on the initialization, but when initializing the control
and filter matrices trying to impose the orthogonality principle and then freely running the algorithm,
the best critical point is found, empirically. Secondly, it is worth mentioning that in the derivation of
our algorithm we do not assume the orthogonality principle (OP: Sxz

t = Szz
t for all t, equivalent to

E[(xt− zt)z
⊤
t ] = 0), which is shown (Sec. 3.1 and Appendix A.1) to be violated in the general case

(specifically, whenever there is internal noise). Thirdly, we have not assumed any parametric form
for initial distribution p0(x, z). Finally, as shown in Eqs. 16, 23, 26, and 32, only the first and second
noise moments enter the moment propagation and optimality conditions. No further assumptions are
required beyond finite second moments, so the method applies to any noise distribution with finite
covariance. In AppendixA.4.8 we validate this empirically using non-Gaussian noise.

3.1 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT AT ZERO INTERNAL NOISE

Theorem 2. Take initial condition p0(x, z) such that Szz
0 = Sxz

0 . A solution to the Lagrange
equations 13,14,15,16 is given by the orthogonality principle Szz

t = Sxz
t for t = 1, ..., T , iff internal

noise is zero, that is, Ση = 0. The solution corresponds to a critical point of the cost in Eq. 8

See the proof in Appendix A.2.7. We note that OP is implied by the unbiasedness condition (Ap-
pendix A.1), but not vice versa. While unbiasedness was empirically shown to be violated in Dami-
ani et al. (2024), we have now formally demonstrated that only the weaker OP condition is required
to obtain a critical point of the cost. In Appendix A.2.8, we further show that, without multiplicative
or internal noise, enforcing OP recovers the classical LQAG solution.

4 OPTIMAL CONTROL WITH MODEL MISMATCH

We have shown that an analytical solution to the LQMI control problem can be derived requiring
only standard assumptions: linear Kalman filtering for estimation and linear control laws. However,
a central assumption remains unaddressed. By optimizing estimation and control gains (K0,...,T

and L0,...,T ) one implicitly assumes i) that the agent’s internal model exactly matches the true dy-
namics, and ii) that optimal behavior emerges from optimizing estimation and control as a partially
decoupled process. This formalization weakens the notion of partial observability by presuming full
access to the external world’s dynamics. Although such knowledge could, in principle, be learned,
it imposes strong constraints on the agent’s internal strategy, leaving little room for internal compu-
tations that are structurally independent from the environment.

This perspective also risks underestimating the role of internal representations, which are central
to many motor control studies (Wolpert et al., 1995; Kawato, 1999; Shadmehr & Krakauer, 2008;
Franklin & Wolpert, 2011; Golub et al., 2013; 2015). Beyond these classical formulations, a broader
neuroscience literature has shown that internal models need not faithfully match the external dynam-
ics. Frameworks such as optimal feedback control and forward-model learning posit that internal
dynamics may be simplified, biased, or task-dependent (Kawato, 1999; Wolpert & Ghahramani,
2000; Shadmehr & Holcomb, 1997; Scott, 2004). Empirical work further demonstrates that neural
population activity often reflects internally generated dynamics optimized for control or prediction
rather than a veridical copy of the physical plant (Churchland et al., 2012; Gallego et al., 2017).
These ideas align with the conceptual motivation behind our Model-Mismatch framework, intro-
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duced next, where the internal model is optimized jointly with control rather than constrained to
follow the true system dynamics.

Allowing internal models to differ from the laws governing the external world extends the flexibil-
ity of the stochastic optimal control framework, opening the door to a richer class of biologically
plausible computations. In addition, this flexibility may lead to improved solutions in terms of cost
minimization, particularly when internal representations are affected by noise (Hazon et al., 2022;
Panzeri et al., 2022; Moreno-Bote et al., 2014).

We then consider a more general control problem where the internal dynamics are also optimized
and may become mismatched with the actual forward dynamics of the state variables. We formalize
the new Model Mismatch (M-Mis) framework over an even more general LQMI problem than the
one described in Sec. 2, allowing fully generalized multiplicative noise: both the state and the
internal dynamics may be affected by noise that depends on the state and on the internal variable.
We define the control problem as

xt+1 = Axt +BLtzt + nx
t , yt = Hxt + ny

t , zt+1 = Wtzt + Ptyt + nz
t (11)

nc
t = ϵct +

∑
r
ηctU

c
rxt +

∑
l
ξctV

c
l Ltzt , c ∈ {x, y, z} ,

where notation follows Eqs. 5-7, with appropriate matrix dimensions and noises with covariances
E[ϵctϵc

′

t ] = Σϵcδcc′ , and i.i.d. one-dimensional noises ηct and ξct with unit variance. We introduce
additive and multiplicative noises nc

t in the dynamics, observation and internal dynamics zt. Sums
over r and l can be c-dependent. We consider control-dependent noise, where the control is given by
ut = Ltzt, rather than modeling the multiplicative noise as directly proportional to zt. Pt ∈ Rn×m

is a pseudo-filter matrix that takes the observation yt and inputs it to the dynamics of the internal
variable zt, which follows a linear system with time-dependent forward dynamics Wt ∈ Rn×n.

Importantly, in the M-Mis framework, the internal variable zt integrates both control and estimation
signals, unlike in the Model Match case where zt is constrained to represent a state estimate. In the
former, since Wt need not match the external dynamics, zt can evolve independently of xt and en-
code dynamics optimized for control rather than estimation. The internal variable zt has dimension
n, while the control signal ut = Ltzt is again p-dimensional, with Lt ∈ Rp×n. The problem con-
sists in optimizing the time-dependent, forward dynamics W0,...,T , pseudo-filter P0,...,T and control
L0,...,T matrices so as to minimize the cost in Eq. 3, with initial condition p0(x, z). Using the same
procedure as in the Model Match approach (Sec. 3) – since the two problems share the same under-
lying mathematical structure – we derive a coordinate-descent algorithm guaranteed to converge to
a critical point of the cost (Appendix A.2.9; pseudocode in Appendix A.3.2, Algorithm 2).

5 EXPERIMENTS

5.1 COMPARISON WITH CURRENT NUMERICAL AND ANALYTICAL METHODS

To compare against the current state-of-the-art numerical approach for LQMI cost minimization –
the gradient- descent (GD) method of Damiani et al. (2024) – we apply our algorithm to the same
single-joint reaching task used in Todorov (2005) and Damiani et al. (2024) (problem details in
Appendix A.4.1). Our M-Match algorithm (Algorithm 1) converges to a critical point of the cost
function (Fig. 1a) and recovers the same optimal control and filter gains as the GD approach (control
gains shown in Fig. 1b), while achieving a substantial computational speedup. On a standard laptop,
our algorithm (Algorithm 1) converges in approximately 6 seconds, compared to more than 5 hours
for the GD method, and achieves the same expected cost, C = 0.32. In Appendix A.4.2, we
further evaluate computational scaling on increasingly high-dimensional systems (up to 100 state
dimensions), demonstrating both robustness and a growing advantage over GD. In the largest setting
tested, runtime decreases from more than two days to only 2.7 seconds. Moreover, we confirm
the findings of Damiani et al. (2024), showing that the suboptimal (see the discussions in Sec. 1
and Appendix A.1) solutions obtained with the algorithm of Todorov (2005) diverge substantially
once internal noise is present, yielding much larger (in absolute value) control gains (Fig. 1c) and
significantly worse performance, with an expected cost of C = 0.50.
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5.2 OPTIMAL CONTROL IN MULTIDIMENSIONAL MOTOR TASKS

We then apply the Model Match (M-Match), Model Mismatch (M-Mis), and (Todorov, 2005) (TOD)
approaches to two additional motor-control tasks.

3D Reaching Task We first examine a 3D reaching task – a multidimensional extension of the
classic single-joint paradigm of the previous Section – with a 6-dimensional state including posi-
tions and velocities (m = n = p = k = 6; see Appendix A.4.3 for details). The coordinate-
descent algorithm for the M-Mis framework (Algorithm 2) converges reliably across a wide range
of internal-noise levels ση (Fig. 1d), achieving substantially lower cost as internal noise increases
(Fig. 1e) when compared to the M-Match and TOD solutions. In Fig. 1f, W̃t = A + BLt − PtH
(with Pt corresponding to Kt in Eq. 7) denotes the forward dynamics required for M-Mis to reduce
to the classical M-Match case. Indeed, setting Wt = W̃t recovers the Kalman filter update for zt
in Eq. 11, so that zt acts as a standard state estimate of xt. As internal noise increases, however,
the optimal Wt deviates progressively from W̃t (Fig. 1f), indicating that internal representations no
longer attempt to mirror the external dynamics. Instead, zt becomes an abstract internal variable
that integrates sensory feedback and past information in a way that supports robust control rather
than faithful state estimation. Consequently, the internal variable zt can no longer be interpreted as
an estimate of the state xt; instead, it becomes a more abstract representation that integrates sensory
feedback and past information to support optimal control (Fig. 1g), yet drastically reducing the cost
- Fig. 1e. Appendix A.4.3 provides additional analyses illustrating how sensory weighting, control
readouts, and internal dynamics adapt to internal fluctuations in the M-Mis framework. To further
illustrate the conceptual shift, Appendix A.4.4 outlines example behavioral and neural predictions
that distinguish the Model Mismatch and Model Match approaches.

Figure 1: Comparison With Current Methods and Cost Reduction via Model Mismatch. (a) Expected
accumulated cost C (Eq. 3), during joint optimization of control and filter gains using Algorithm 1.
(b) Optimal control gains Lt obtained with the M-Match algorithm – Algorithm 1 – (red, left) and
with the numerical gradient-descent approach of Damiani et al. (2024) (green, right). Here, Li,t

denotes the i-th component of the 4-dimensional control-gain vector at time t. (c) Same as (b),
but for the solutions obtained using the algorithm of Todorov (2005) (d) Convergence of the Model
Mismatch algorithm – Algorithm 2 – for different internal noise levels ση . (e) Expected cost for
TOD (Todorov, 2005) (blue), Model Match (red), and Model Mismatch (purple). (f) Time-averaged
norm of Wt − W̃t. (g) Second component of xt and zt (mean ± SEM, ση = 0.1) for M-Mis (left)
and M-Match (right).

Application to a Redundant Arm-Control Task We next evaluate our algorithms on a more re-
alistic and structurally complex motor-control problem: a 3-DOF planar arm performing a reaching
movement around a stable reference posture. The arm is actuated by nine muscle-like control chan-
nels that map linearly onto three joint torques through a matrix S (the full model and parameter
choices are reported in Appendix A.4.5). This actuation redundancy (9 controls for 3 torques) is a
hallmark of biological musculo-skeletal systems and is widely studied in robotics and computational
motor control to analyze coordination under redundancy (Tahara et al., 2009).

As in the previous 3D reaching task, the M-Mis framework yields substantially more robust perfor-
mance across internal-noise levels, consistently achieving lower cost than both M-Match and TOD
(Todorov, 2005) (Fig. 2a, purple curve).
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Because musculo-skeletal systems admit multiple muscle activation patterns that produce identical
torques, a standard approach for understanding coordination is through muscle synergies, i.e., low-
dimensional patterns of co-activation (d’Avella & Bizzi, 2005; Tresch et al., 2006; Valero-Cuevas
et al., 2009; Kutch & Valero-Cuevas, 2012; Todorov & Jordan, 2002). Synergy analyses show
that biological motor systems concentrate control effort along task-relevant directions, in line with
the “minimal intervention principle” (Valero-Cuevas et al., 2009; Safavynia & Ting, 2012). Our
solutions exhibit the same structure. We decompose the control signal ut using the standard pseu-
doinverse projection: utorque

t = S†Sut and unull
t = (I − S†S)ut, where S† is the pseudoinverse

of S, yielding components in the torque-producing and muscle null spaces (with Sunull
t = 0 by

construction). Computing the projected effort E[|uproj
t |2] for proj ∈ {torque,null} shows that vir-

tually all control effort lies in the torque-producing subspace, with negligible activation in the null
space (Fig. 2b; identical results for M-Mis, not shown). Thus, redundancy is resolved by selecting
minimal-effort torque-producing patterns rather than co-activating muscles along null directions –
consistent with empirical observations in human and animal motor control (Valero-Cuevas et al.,
2009) and widely used strategies in robotics (Dietrich et al., 2015).

Figure 2: Task-Aligned Control Under Model Match and Model Mismatch.(a) Expected cost for the
algorithm from Todorov (2005) (TOD, blue), Model-Match (M-Match, red) and Model-Mismatch
(M-Mis, purple), averaged over 500 Monte-Carlo trials (shaded areas show the standard error
of the mean). (b) Squared magnitude of the time-dependent control signal projected onto the
torque-producing subspace and onto the muscle null-space, with proj ∈ {torque,null} defined
as utorque

t = S†Sut and unull
t = (I − S†S)ut. Curves are averaged over 500 trials (standard error

mean shading barely visible) for ση = 0.23 in the M-Match solution (M-Mis shows similar trends;
not shown). (c) Time-averaged logarithm of the pseudodeterminant of the control gain matrices
Kt in the M-Match framework as a function of internal noise. The log of the pseudodeterminant
is computed as the sum of the logarithms of all singular values of Kt above a numerical tolerance
(10−12). (d) First (left panel) and fifth (right panel) component of the vectors xt and zt for a repre-
sentative trial of the M-Match solution with ση = 0.23 (temporal window between 1–2 s shown for
clarity). (e) Alignment between the state xt and the internal state zt, averaged over time and over
500 trials, in the Model-Match framework (left panel) and in the Model-Mismatch framework (right
panel). Circles indicate alignment between the full vectors; squares indicate alignment restricted to
cost-irrelevant dimensions (the last three components, i.e. the angular velocities, which are weakly
penalized by the cost Qt); and diamonds indicate alignment restricted to cost-relevant dimensions
(the first three components, i.e. joint angles).

The performance gap between the M-Match and M-Mis frameworks in Fig. 2a stems from fun-
damentally different internal computations. In the M-Match case, the internal dynamics tend to
channel variability into cost-irrelevant and unobserved state dimensions, thereby stabilizing the con-
trol output (in this task only joint angles are penalized and observed, as defined by Q and H) – see
Appendix A.4.5 for additional analyses. In parallel, sensory feedback gains increase with internal-
noise magnitude (Fig. 2c shows the time-averaged log-pseudodeterminant of Kt, i.e. the sum of the
logarithms of its non-zero singular values), allowing the system to compensate for internal fluctua-
tions while maintaining accurate estimates of the cost-relevant state components. Consequently, on
individual trials, the first three components of zt reliably track the corresponding components of the
physical state (Fig. 2d, left panel), whereas the remaining components diverge and decouple from
xt (Fig. 2d, right panel). This strategy remains stable across noise levels (see Appendix A.4.5). In
the M-Mis framework, by contrast, the internal dynamics are no longer constrained to implement a
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Kalman-like recursion. Instead, they reorganize to stabilize the entire control loop, producing inter-
nal representations that no longer track xt (consistent with Figs. 1f–g), but instead adapt to noise in a
way that supports robust control (see Appendix A.4.5). Fig. 2e illustrates this difference: we plot the
alignment (absolute cosine similarity) between xt and zt across state dimensions. In M-Match, the
observed—and cost-relevant components remain strongly aligned with zt, while the cost-irrelevant
ones progressively decouple as internal noise grows. In M-Mis, all components show uniformly low
alignment with zt, indicating that the internal variable encodes representations optimized for control
rather than for state estimation.

Taken together, these results show that our algorithm scales naturally to high-dimensional, redun-
dant biomechanical systems and yields clear, testable predictions. In M-Match, internal noise drives
a noise-suppression strategy that channels variability into unobserved, cost-irrelevant dimensions;
in M-Mis, synergies remain stable while internal dynamics reorganize to preserve output stability.
These contrasting computations lead to experimentally accessible signatures – such as EMG pat-
terns, muscle-synergy adaptation, alignment or misalignment between neural and behavioral sub-
spaces, and noise-dependent changes in sensory weighting – that can be directly probed in human
motor control and robotics.

5.3 NEURAL POPULATION STEERING VIA MODEL MISMATCH CONTROL

Finally, we apply our framework to a neural population–steering task, where an unstable recurrent
network is driven toward a target state via optimized linear readouts from another population –
a setting reminiscent of biologically inspired machine-learning approaches (Jaeger & Haas, 2004;
Maass et al., 2002; Sussillo & Abbott, 2009). This task connects to recent work using optimal
control to study neural population dynamics (Costa et al., 2024; Kao et al., 2021; Slijkhuis et al.,
2023; Athalye et al., 2023). Classical approaches (Todorov, 2005; Damiani et al., 2024) require the
internal variable zt to behave as a Kalman filter estimate of xt by enforcing the structural constraint
Wt = A + BLt − PtH in Eq. 11, so that zt follows Eq. 7. In contrast, the Model Mismatch
framework removes this constraint by allowing Wt to be freely optimized, enabling zt and xt to
represent distinct neural populations with independent connectivity matrices W and A (Fig. 3a).
The M-Mis algorithm also supports partial optimization; for instance, W and P can be fixed (e.g.,
random or biologically plausible) while optimizing only Lt. Such configurations are incompatible
with the Model Match framework, which ties zt’s connectivity to xt and forces Wt to vary over
time, making it unsuitable for simulating interactions between distinct neural populations.

Figure 3: Model Mismatch for Neural Population Steering. (a) Sketch of the neural population
steering task. (b) Average (over noise realizations) norm of xt, zt, and of the control signal ut =
Ltzt with error bars (standard error of the mean). (c) Distribution of the control signal over time
and realizations with Gaussian fit (left), and average control magnitude (over time and realizations)
received by each unit as a function of its initial absolute activity (right). (d) Activity of two units
from the population vector xt in a single trial. (e) Heatmaps of the matrices Lt at two time points:
early (left) and mid-trial (right).

We consider two populations of Nunits = 100 linear neurons, each with sparse, time-invariant ran-
dom connectivity (Appendix A.4.6 for details). The activity of the population zt is read out through
a time-varying matrix Lt, optimized to steer the population xt toward a target while minimizing
control effort (Fig. 3a). The population zt receives inputs from xt through sparse random pro-
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jections. The Gaussian-distributed recurrent and feedforward matrices (A, W , P ) follow standard
assumptions from dynamical mean-field theory (Sompolinsky et al., 1988; Rajan et al., 2010).

We optimize only the readout weights L0,...,T keeping all other parameters fixed. As a result, xt is
reliably steered toward the target (Fig. 3b) through a distributed control strategy: all units in the x
population receive, on average, similar amounts of control (Fig. 3c). Despite this overall uniform
drive, the control selectively targets the units initially farthest from the target (zero in this coordinate
frame), as shown in Fig. 3d. This selective modulation likely reflects the interplay between the
recurrent dynamics of x and the structure of L0,...,T . Early in the trial, L1 is highly structured
and low-rank (Mastrogiuseppe & Ostojic, 2018), strongly pulling activity toward the target; after
a transient (t ≥ t̃), Lt̃,...,T becomes sparse and high-rank, stabilizing the system around the target
despite intrinsic instability and noise (Fig. 3e). This mirrors strategies observed when controlling
recurrent networks with reinforcement learning (Mastrogiuseppe & Moreno-Bote, 2024).

The Model Mismatch framework therefore extends stochastic control beyond the standard
agent–environment formulation and provides a tool for studying also neural computation. In this
simplified setting, zt can be viewed as a premotor population driving a downstream motor pop-
ulation xt, consistent with experimental findings where premotor activity initializes motor cortex
before movement (Kao et al., 2021; Logiaco et al., 2021). While not intended as a detailed bio-
logical model, this example illustrates how the framework captures computational strategies – such
as low-to-high rank transitions, selective modulation, and stabilization of unstable dynamics – that
classical Model Match approaches cannot represent.

6 CONCLUSIONS

We have introduced a convergent iterative algorithm (Sec. 3) that fully solves stochastic optimal
control problems under a general noise model with both multiplicative and internal noise, assuming
linear control with a quadratic cost – the so-called LQMI problem. This goes beyond previous
analytical approaches, which remained incomplete (Todorov, 2005; Damiani et al., 2024). Our
algorithm also outperforms existing state-of-the-art gradient-based methods (Damiani et al., 2024)
by more than three orders of magnitude in efficiency on realistic tasks, making it particularly well
suited for inverse optimal control.

Moreover, the Model Mismatch framework relaxes two central assumptions in stochastic control:
(1) the partial decoupling of estimation and control, and (2) the requirement that internal forward
dynamics match the actual state dynamics. By allowing internal dynamics – used to generate con-
trol signals – to be optimized jointly with control and pseudo-filter gains, our framework broadens
the solution space. Notably, we find that mismatched forward dynamics can outperform matched
dynamics in the presence of internal noise. This suggests that internal representations need not faith-
fully track the state variable; instead, mixed representations of estimation and control signals can
provide superior performance. Furthermore, the Model Mismatch framework extends the applica-
bility of stochastic optimal control to the control of neural populations.

Overall, our work expands stochastic optimal control to a more general and realistic setting, with
direct applications to neuroscience and robotics, while preserving analytical tractability and inter-
pretability.

Limitations and Future Work We assume linear dynamics, linear control, and a quadratic cost,
which yield closed-form second-order moments and analytical tractability but might not capture all
problems of interest. Nevertheless, the framework accommodates time-varying dynamics, which
can approximate nonlinearities. Another promising research direction is to combine our solutions
with iLQG and DDP methods (Li & Todorov, 2007; Tassa et al., 2014; Van Den Berg et al., 2016;
Liao & Shoemaker, 1991), which approximate optimal control in nonlinear systems under partial
observability by locally linearizing the dynamics and using quadratic approximations to the value
function. A potential advantage of our approach is that, by using the Model-Mismatch framework,
we do not need to assume a model-matched extended Kalman filter – as is typically done in iLQG
and DDP – and we can also avoid the unbiased-estimator assumption. Another relevant direction is
that the Model Mismatch framework allows internal dimensionality to be freely chosen – a promis-
ing but unexplored direction that could support nonlinear strategies via linear representations (Korda
& Mezić, 2018; Brunton et al., 2016).
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A APPENDIX

A.1 UNBIASEDNESS AND ORTHOGONALITY: CLARIFICATIONS AND IMPLICATIONS

Here we briefly review related work on stochastic optimal control in the presence of multiplicative
and internal noise (LQMI problem, Sec. 2.1). The influential work of Todorov (2005) introduced an
iterative algorithm that alternates between optimizing the control and filter gains until convergence.
A key assumption in this derivation is unbiased estimation, i.e., E[xt | zt] = zt, used to constrain
the control policy to depend solely on the internal estimate zt, in line with the problem’s partial
observability.

However, Damiani et al. (2024) empirically showed that this unbiasedness condition is generally
violated, with the discrepancy growing as internal noise increases. They also proposed an alternative
numerical algorithm that avoids assuming unbiasedness and empirically outperforms the original
approach under internal noise.

The reason the method in Todorov (2005) still performs optimally when internal noise is absent is
that unbiasedness implies the orthogonality principle (Davis, 2013; Damiani et al., 2024), which
characterizes the optimal estimator in that specific case. Importantly, orthogonality does not imply
unbiasedness, so the converse does not hold. Thus, the success of Todorov (2005) in the zero internal
noise regime stems from its implicit reliance on orthogonality, which breaks down otherwise.

In Appendix A.2.7, we provide a formal proof that the orthogonality principle corresponds to a
critical point of the cost function in Eq. 3 only in the absence of internal noise, extending and math-
ematically validating the empirical observations in Damiani et al. (2024). Moreover, in Appendix
A.2.8, we demonstrate that the orthogonality principle actually leads to the global optimum for the
classic LQAG problem.

A.2 SOLVING THE LQMI PROBLEM: FULL DERIVATIONS

Here we provide an algorithm guaranteed to converge to a critical point of the cost function in Eq.
3, under the dynamics in Eqs. 5,6,7. As shown in prior work (Fazel et al., 2018), the global LQAG
problem is non-convex even in the fully observable, noise-free setting. This implies that the more
general problem considered here - featuring multiplicative and internal noise - is also non-convex.
The algorithm yields improved pairs of control and filter gains, fully solving the LQMI problem.
The pseudocode is shown in Appendix A.3.1.

A.2.1 FIXED-POINT EQUATIONS OF THE COST FUNCTION

Assuming a linear control ut = Ltzt, we first rewrite the cost function in Eq. 3 as C =∑T
t=0

(
tr(QtS

xx
t ) + tr(L⊤

t RtLtS
zz
t )
)
, where we introduce the 2nd-order moment matrices Sxx

t =∫
dxdzpt(x, z)xx

⊤, Szz
t =

∫
dxdzpt(x, z)zz

⊤, and Sxz
t =

∫
dxdzpt(x, z)xz

⊤, with pt(x, z) be-
ing the joint distribution of x and z at time t generated by previous control and filter gains and
averaging over noises and initial conditions following p0(x, z). To find the conditions for extrema
on the control L0,...,T and filter K0,...,T gains we add Lagrange multipliers and define the new ob-
jective

CL =

T∑
t=0

(
tr(QtS

xx
t ) + tr(L⊤

t RtLtS
zz
t )
)
−

T+1∑
t=1

(tr(ΛtG
xx
t ) + tr(ΩtG

zz
t ) + tr(ΓtG

xz
t )) , (12)

where Λt, Ωt and Γt are Rm×m matrices of Lagrange multipliers. The constraints Gxx
t = Gzz

t =
Gxz

t = 0 are given by the temporal evolution of the 2nd-order moment matrices Sxx
t , Szz

t and Sxz
t ,

respectively, between two consecutive time steps t and t+1, obtained from Eqs. 5,6,7 (see Appendix
A.2.4 for details), as

Gxx
t+1 = Sxx

t+1 −ASxx
t A⊤ −ASxz

t L⊤
t B

⊤ −BLt(S
xz
t )⊤A⊤ −BLtS

zz
t L⊤

t B
⊤ − Σxx

t

Gzz
t+1 = Szz

t+1 −KtHSxx
t H⊤K⊤

t −KtHSxz
t M⊤

t −Mt(S
xz
t )⊤H⊤K⊤

t −MtS
zz
t M⊤

t − Σzz
t

Gxz
t+1 = Sxz

t+1 −ASxx
t H⊤K⊤

t −BLtS
zz
t M⊤

t −ASxz
t M⊤

t −BLt(S
xz
t )⊤H⊤K⊤

t , (13)
where we have introduced the short-hand notation Mt = A + BLt − KtH , showing up repeti-
tively, and the noise matrices Σxx

t = Σξ +
∑

i CiLtS
zz
t L⊤

t C
⊤
i and Σzz

t = Ση + KtΣωK
⊤
t +
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Kt

(∑
i DiS

xx
t D⊤

i

)
K⊤

t . Since the cost function is defined in terms of quadratic terms in x and z
and the temporal evolution of moments is closed at 2nd-order, the 2nd-order moments matrices are
sufficient statistics of the problem (i.e., pt(x, z) does not need to be explicitly known), and only the
constraints in their temporal evolution suffice.

For convenience, we define the Lagrange multipliers at time T + 1 to be all equal to zero,
ΛT+1 = ΩT+1 = ΓT+1 = 0 (hereafter 0 meaning a matrix of zeros of consistent dimensions), so
the constraints at that time are irrelevant. The introduction of Lagrange multipliers enables to take
derivatives with respect the control and filter gains to find the fixed point conditions ∂CL/∂Lt = 0
and ∂CL/∂Kt = 0 for extrema without the need to propagate derivatives over the terms in the sum
of the cost. The fixed point equations take the form

Lt = E−1
t

(
FtS

xz
t (Szz

t )−1 + Jt
)

(14)

Kt =
(
SAH + Ω̃−1

t+1Γt+1SLH

)
S−1
HH , (15)

with matrices defined in Appendix A.2.6 – note that these equations express the control and filter
gains as a function of themselves, and therefore they are implicit.

From the conditions ∂CL/∂S
xx
t = ∂CL/∂S

zz
t = ∂CL/∂S

xz
t = 0, the Lagrange multipliers them-

selves obey the set of equations

Λt = Qt +A⊤Λt+1A+H⊤K⊤
t Ωt+1KtH +H⊤K⊤

t Γt+1A+
∑

i
D⊤

i K
⊤
t Ωt+1KtDi

Ωt = L⊤
t RtLt + L⊤

t B
⊤Λt+1BLt +M⊤

t Ωt+1Mt +M⊤
t Γt+1BLt +

∑
i
L⊤
t C

⊤
i Λt+1CiLt

Γt = L⊤
t B

⊤Λ̃t+1A+M⊤
t Ω̃t+1KtH +M⊤

t Γt+1A+ L⊤
t B

⊤Γ⊤
t+1KtH . (16)

These equations can be solved backwards given control and filter gains, and using the boundary
conditions ΛT+1 = ΩT+1 = ΓT+1 = 0. However, the full solution to Eqs. 14,15,16 would require
simultaneously determining gains and multipliers. We bypass this by deriving an iterative algorithm
to find fixed point solutions, as described in the next section.

It is worth mentioning that in the derivation of Eqs. 14,15,16 and main algorithm described below
we have not assumed the orthogonality principle (OP: Sxz

t = Szz
t for all t, equivalent to E[(xt −

zt)z
⊤
t ] = 0), which is shown (Sec. 3.1, see also Appendix A.1) to be violated in the general case

(specifically, whenever there is internal noise). Secondly, we have not assumed any specific initial
distribution p0(x, z). Also, note that we have not assumed Gaussian noises nor Gaussian distribution
on x or z. Further, our algorithm is guaranteed to converge to a fixed-point pair of control and filter
gains, and reduce the cost at every step (Sec. A.2.2). The algorithm in Todorov (2005) can actually
increase the cost in the first iteration step because not for any arbitrary initial filter gain OP is
obeyed. Finally, the model described in Eqs. 5,6,7 could be readily extended to the case where i)
the internal noise is multiplicative in Eq. 7, ii) when there is x-dependent multiplicative noise in
the state dynamics, Eq. 5, and iii) when there is z-dependent multiplicative noise in the feedback
dynamics, Eq. 6. However, we refrain from doing so to avoid clutter and because a more general
framework (Model Mismatch) is introduced in Sec. 4.

A.2.2 COORDINATE-DESCENT ALGORITHM FOR JOINT CONTROL AND FILTER
OPTIMIZATION

Here we derive the main algorithm of the paper, a coordinate-descent iterative algorithm that gives
a pair of improved, fixed-point control and filter gains. We first start by showing the connection
between the Lagrange multipliers and the cost-to-go incurred by starting at fixed x and z.

We define the cost-to-go starting at x and z from time t (t = 0, ..., T ) up to time T as Ct(x, z) =

tr(Qtxx
⊤ + L⊤

t RtLtzz
⊤) +

∑T
τ=t+1 E

[
x⊤
τ Qτxτ + u⊤

τ Rτuτ

]
, where the expectation is over the

noises with initial conditions fixed at x and z at time t, and for specific control and filter gains
from time t onward. This definition is consistent with our definition of cost in Eq. 3, as C =∫
p0(x, z)C0(x, z), where p0(x, z) is the distribution of initial conditions over x and z. The cost-to-

go obeys the Bellman equation

Ct(x, z) = tr(Qtxx
⊤ + L⊤

t RtLtzz
⊤) +

∫
dx′dz′Ct+1(x

′, z′)px,t+1(x
′|x, z)pz,t+1(z

′|x, z) ,
(17)
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where the transition probability densities px,t+1(x
′|x, z) and pz,t+1(z

′|x, z) are defined by equations
5,6,7 with ut = Ltzt, with means E[x′|x, z] = Ax + BLtz and E[z′|x, z] = KtHx + Mtz, and
conditional 2nd-order moments given by Eqs. 33.

The Bellman equation 17 can be solved backwards: noticing that the boundary condition is the final
cost-to-go CT (x, z) = tr(QTxx

⊤+L⊤
TRTLT zz

⊤) and that the 2nd-order moments are closed (that
is, no higher nor lower moments appear when propagating backwards the cost-to-go using Eq. 17),
we find that the solution is given by

Ct(x, z) = tr(Λtxx
⊤ +Ωtzz

⊤ + Γtxz
⊤) + γt , (18)

where it can be seen that the coefficients Λt, Ωt and Γt are actually the Lagrange multipliers com-
puted in Eqs. 16 with the same boundary conditions (see Appendix A.2.5), and where γt can be
recursively calculated as

γt = tr(Λt+1Σξ +Ωt+1KtΣωK
⊤
t +Ωt+1Ση) + γt+1 , (19)

with boundary condition γT = 0. Eqs. 18,19 correctly captures the cost-to-go expression at time T ,
and it can be checked that recursively solve Eq. 17. From the definition of the Lagrange multipliers
in Eqs. 16, one can see that e.g. higher noise levels or control costs enlarge the corresponding
cost-to-go in Eq. 18, and these effects accumulate backwards, as expected.

While Eqs. 18,19 express the exact cost-to-go given control and filter gains if the exact world
state x is known, partial observability dictates that our choices of control and filter gains cannot
depend on x. Indeed, our assumptions that the filter depends only on time and that the control law
depends linearly on the current state estimate zt, that is, ut = Ltzt, have already been used in our
derivation and problem formalization, and they are subject to partial observability. Because of this,
we integrate over the (generally unknown) joint probability density pt(x, z) given control and filter
gains and initial condition p0(x, z) to define the averaged cost-to-go as

Ct =

∫
dxdz pt(x, z)Ct(x, z) = tr(ΛtS

xx
t +ΩtS

zz
t + ΓtS

xz
t ) + γt . (20)

We can express the total cost in Eq. 3 as C = C0, and therefore

C = C<t + Ct (21)

with C<t =
∑t−1

τ=0 tr(QτS
xx
τ + L⊤

τ RτLτS
zz
τ ) is valid for all t. In Eq. 21, Ct is the only term

depending on Lt, as C<t does not depend on it. Therefore, we locally optimize Lt as

L∗
t = argmin

Lt

Ct , (22)

while keeping the rest of gains fixed, that is, L0,...,t−1,t+1,...,T and K0,...,T are held constant. A
global minimum always exists because Ct is non-negative. After noting that in Ct (Eq. 20) only
the Lagrange multipliers depend on Lt (see Eqs. 16), while the 2nd-order moments at time t only
depend on previous Lτ with τ < t (see Eqs. 32), the minimization results in

L∗
t = E−1

t

(
FtS

xz
t (Szz

t )−1 + Jt
)
, (23)

with matrices identical to those in Eq. 14 and Appendix A.2.6, and whenever matrix inverses exist.

If L0,...,T and K0,...,T are the values of the control and filter gains before the optimization in Eq. 22,
clearly the cost is non-increasing after the optimization,

C(L0, ..., Lt−1, L
∗
t , Lt+1, ..., LT ) ≤ C(L0, ..., Lt−1, Lt, Lt+1, ..., LT ) . (24)

Note that after the optimization, the total cost in Eq. 21 becomes

C = C<t+tr(QtS
xx
t +L∗⊤

t RtL
∗
tS

zz
t )+ tr(Λt+1S

xx,∗
t+1 +Ωt+1S

zz,∗
t+1 +Γt+1S

xz,∗
t+1 )+ γt+1 , (25)

where the new 2nd-order moments at time t + 1, S∗
t+1, are computed from the moments at the

previous time t using Eqs. 32 with the optimal L∗
t and noticing that the Lagrange multipliers from

t + 1 onward have not changed. Redefining L∗
t as Lt and the Sab,∗

t+1 as Sab
t+1, ab ∈ {xx, zz, xz},

we can now proceed to optimize Lt+1 using the same procedure as above (changing t to t + 1) to
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minimize again the total cost C(L0, ..., Lt, L
∗
t+1, ..., LT ) ≤ C(L0, ..., Lt, Lt+1, ..., LT ) fixing all

the gains except Lt+1, and consecutively for all t up to T .

Therefore, starting from a set of gains L(n) ≡ L
(n)
0,...,T and K(n) ≡ K

(n)
0,...,T , we can optimize Lt in

order from t = 0 up to time T following the above steps to get a new set of control gains L(n+1), and
clearly we have C(L(n+1),K(n)) ≤ C(L(n),K(n)). After this, the Lagrange multipliers in Eq. 16
are recomputed backwards with the updated values of the control gains, L(n+1). In this way, we can
express again the cost as in Eq. 21, but with updated values of control gains and multipliers. This
represents a full forward pass to sequentially optimize control gains followed by a full backward
pass of the multipliers, and we refer to this process as control pass.

We can proceed similarly for the filter gains by repeating the above steps but for Kt instead of Lt.
We optimize Kt by keeping fixed the remaining filter gains and all control gains by minimizing the
cost C in Eq. 21, resulting in

K∗
t = argmin

Kt

Ct =
(
SAH + Ω̃−1

t+1Γt+1SLH

)
S−1
HH , (26)

with matrices as in Eq. 15 and Appendix A.2.6. After updating the cost C with the new K∗
t ,

we obtain an equation analogous to Eq. 25 having a new γt+1 term. This leads to a non-
increasing cost change when going from the old Kt to the optimized K∗

t , C(K0, ...,K
∗
t , ...,KT ) ≤

C(K0, ...,Kt, ...,KT ). Therefore, starting from a set of gains L(n+1) and K(n), we optimize Kt in
order for t = 0, ..., T to get a new set of filter gains K(n+1), which will obey C(L(n+1),K(n+1)) ≤
C(L(n+1),K(n)). After this, the Lagrange multipliers are updated. This represents a filter pass: full
forward pass to sequentially optimize filter gains followed by a full backwards pass to recompute
the multipliers. Starting from arbitrary L(0) and K(0) and distribution of initial conditions p0(x, z),
we can alternate now the control and filter passes, so that C(L(0),K(0)) ≥ C(L(1),K(0)) ≥
C(L(1),K(1)) ≥ ... ≥ C(L(n+1),K(n)) ≥ C(L(n+1),K(n+1)) ≥ ... ≥ Cmin ≥ 0. Since the
series is non-negative, it converges to a total cost no higher than the initial one with optimal filters
L∗ = L(∞) and K∗ = K(∞). In summary, each block update solves a convex quadratic subproblem
exactly, which guarantees that the total cost decreases monotonically and therefore converges. The
converged pair of control and filter gains obey the Lagrange Eqs. 32,14,15,16, because Eqs. 23,26,
after convergence, are identical to the fixed point Eqs. 14,15. Therefore, the converged pair corre-
sponds a to a fixed point solution of the Lagrangian in Eq. 12, and hence, they must be a critical
point of the cost function in Eq. 3. We have thus proven the following

Theorem 1. Starting with arbitrary L(0) and K0 and distribution of initial conditions p0(x, z), the
coordinate descent algorithm defined by iterating in alternation control and filter passes converges
to an improved pair of control and filter gains L∗ and K∗. The improved pair corresponds to a
critical point of the cost function in Eq. 3.

As shown in Eqs. 16, 23, 26, and 32, only the first and second noise moments enter the moment
propagation and optimality conditions. No further assumptions are required beyond finite second
moments, so the method applies to any noise distribution with finite covariance. In Sec. A.4.8 we
validate this empirically using non-Gaussian noise (Student-t for heavy tails and Beta distributions
for skewness). We also note that the Lagrange equations may admit multiple solutions. In practice,
our algorithm converges to different critical points depending on the initialization, but when ini-
tializing the control and filter matrices trying to impose the orthogonality principle and then freely
running the algorithm, the best critical point is found, empirically.

A.2.3 SOLUTIONS OF THE CLASSIC LQAG PROBLEM

The optimal L0,...,T and K0,...,T , for the classic LQAG problem — defined in Sec. 2.1 – are given
by (Doya, 2007; Davis, 2013; Todorov, 2005)

Lt = (2Rt +B⊤St+1B)−1B⊤St+1A (27)

St = 2Qt +A⊤St+1(A+BLt) (28)

Kt = AΣe
tH

⊤(HΣe
tH

⊤ +Σω)
−1 (29)

Σe
t+1 = Σξ + (A−KtH)Σe

tA
⊤ . (30)
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A detailed derivation can be found in Doya (2007), Chapter 12, Sections 4 and 5. We observe that
the only differences with the Eqs. in Doya (2007) arise from slightly different conventions: in the
standard LQAG formulation, there is a prefactor of 1/2 in front of the cost function, and the control
signal is defined as ut = −Ltzt, meaning the control gain has the opposite sign compared to our
convention.

In Appendix A.2.8, we prove that the solutions derived in Sec. A.2 recover these classical results in
the absence of multiplicative and internal noise.

A.2.4 DERIVING THE PROPAGATION OF SECOND-ORDER MOMENTS

Here we derive the temporal evolution of the 2nd-order moment matrices. We first rewrite Eqs. 5,6,7
in a more compact form by inserting the observation in the state estimate variable and grouping terms
as

xt+1 = Axt +BLtzt + ξt +
∑

i
εitCiLtzt

zt+1 = Mtzt +KtHxt + ηt +Ktωt +Kt

∑
i
ρitDixt (31)

with Mt = A+BLt −KtH .

The 2nd-order moments at time t can be computed based on those in the previous time step t by
using the appropriate averages and interactions between terms in Eqs. 31. The result is

Sxx
t+1 = ASxx

t A⊤ +ASxz
t L⊤

t B
⊤ +BLt(S

xz
t )⊤A⊤ +BLtS

zz
t L⊤

t B
⊤ +Σxx

t

Szz
t+1 = KtHSxx

t H⊤K⊤
t +KtHSxz

t M⊤
t +Mt(S

xz
t )⊤H⊤K⊤

t +MtS
zz
t M⊤

t +Σzz
t

Sxz
t+1 = ASxx

t H⊤K⊤
t +BLtS

zz
t M⊤

t +ASxz
t M⊤

t +BLt(S
xz
t )⊤H⊤K⊤

t . (32)

with Mt = A + BLt −KtH and noise covariances Σxx
t = Σξ +

∑
i CiLtS

zz
t L⊤

t C
⊤
i and Σzz

t =

Ση +KtΣωK
⊤
t +Kt

(∑
i DiS

xx
t D⊤

i

)
K⊤

t .

The conditional second-order moments at time t+ 1 conditioned on x and z at time t are defined as

Ŝxx
t =

∫
dx′dz′x′x′⊤px,t+1(x

′|x, z)pz,t+1(z
′|x, z)

Ŝzz
t =

∫
dx′dz′z′z′⊤px,t+1(x

′|x, z)pz,t+1(z
′|x, z)

Ŝxz
t =

∫
dx′dz′x′z′⊤px,t+1(x

′|x, z)pz,t+1(z
′|x, z) ,

where the transition probabilities px,t+1(x
′|x, z) and pz,t+1(z

′|x, z) are defined by equations 5,6,7
(with ut = Ltzt), or, equivalently, by Eqs. 31. The conditional second-order moments at time t+ 1
are obtained simply by replacing the second-order moments on the right hand side of Eqs. 32 by
their corresponding non-averaged x and z as

Ŝxx
t+1 = Axx⊤A⊤ +Axz⊤L⊤

t B
⊤ +BLtzx

⊤A⊤ +BLtzz
⊤L⊤

t B
⊤ + Σ̂xx

t

Ŝzz
t+1 = KtHxx⊤H⊤K⊤

t +KtHxz⊤M⊤
t +Mtzx

⊤H⊤K⊤
t +Mtzz

⊤M⊤
t + Σ̂zz

t

Ŝxz
t+1 = Axx⊤H⊤K⊤

t +BLtzz
⊤M⊤

t +Axz⊤M⊤
t +BLtzx

⊤H⊤K⊤
t . (33)

with conditional noise covariances Σ̂xx
t = Σξ +

∑
i CiLtzz

⊤L⊤
t C

⊤
i and Σ̂zz

t = Ση +KtΣωK
⊤
t +

Kt

(∑
i Dixx

⊤D⊤
i

)
K⊤

t .

A.2.5 CONSISTENCY OF THE COST-TO-GO SOLUTION

The cost-to-go obeys the Bellman equation

Ct(x, z) = tr(Qtxx
⊤ + L⊤

t RtLtzz
⊤) +

∫
dx′dz′Ct+1(x

′, z′)px,t+1(x
′|x, z)pz,t+1(z

′|x, z) ,
(34)

identical to Eq. 17. The transition probability densities px,t+1(x
′|x, z) and pz,t+1(z

′|x, z) are de-
fined by equations 5,6,7 with ut = Ltzt, with means E[x′|x, z] = Ax + BLtz and E[z′|x, z] =
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KtHx + Mtz, and 2nd-order moments given by Eqs. 33. These will be important to compute
averages as needed.

We propose a solution to the Bellman equation of the form

Ct(x, z) = tr(Λtxx
⊤ +Ωtzz

⊤ + Γtxz
⊤) + γt , (35)

identical to Eq. 18. Our goal is to show that it is possible to find a solution with such a form, and that
the expression of the coefficients Λt, Ωt and Γt are actually identical to the Lagrange multipliers in
Eqs. 16 with the same boundary conditions. In addition we want to show that γt follows Eq. 19
with boundary condition γT = 0.

We first note that Eq. 35 is true for t = T , because CT (x, z) should be CT (x, z) = tr(QTxx
⊤ +

L⊤
TRTLT zz

⊤) and indeed this coincides with Eq. 35 when taking ΛT = QT , ΩT = L⊤
TRTLT ,

ΓT = 0 and γT = 0, which in turn are consistent with the Lagrange multiplier expression in Eq. 16
for t = T .

Now, assume that Eq. 35 is true for some t+ 1. Let us show that then it is true for t. We insert Eq.
35 for t+ 1 into Eq. 34 and use the expression of the conditional 2nd-order moments in Eqs. 33 to
obtain

Ct(x, z) = tr(Qtxx
⊤ + L⊤

t RtLtzz
⊤)

+

∫
dx′dz′

(
tr(Λt+1x

′x′⊤ +Ωt+1z
′z′⊤ + Γt+1x

′z′⊤) + γt+1

)
px,t+1(x

′|x, z)pz,t+1(z
′|x, z)

= tr(Qtxx
⊤ + L⊤

t RtLtzz
⊤)

+ tr[Λt+1(Axx⊤A⊤ +BLtzz
⊤L⊤

t B
⊤ +Axz⊤L⊤

t B
⊤ +BLtzx

⊤A⊤ + Σ̂xx
t )]

+ tr[Ωt+1(KtHxx⊤H⊤K⊤
t +Mtzz

⊤M⊤
t +KtHxz⊤M⊤

t +Mtzx
⊤H⊤K⊤

t + Σ̂zz
t )]

+ tr[Γt+1(Axx⊤H⊤K⊤
t +BLtzz

⊤M⊤
t +Axz⊤M⊤

t +BLtzx
⊤H⊤K⊤

t )]

+ γt+1 . (36)

Grouping terms proportional to xx⊤, xz⊤ and zz⊤ and constant, we find that the cost-to-go can be
written as Eq. 35 where the coefficients obey the Lagrange multiplier equations in Eqs. 16 at time
t. In addition, γt is computed using Eq. 19.

By induction, then we have that Eq. 35 is true for all t and that the coefficients are indeed the
Lagrange multipliers defined in Eqs. 16 and Eq. 19.

A.2.6 FIXED-POINT EQUATIONS FOR CONTROL AND FILTER DERIVATIVES

The fixed point equations ∂CL/∂Lt = 0 and ∂CL/∂Kt = 0 for the extrema of the Lagrangian 8
take the form

∂CL

∂Lt
=
[
2RtLt +B⊤

(
Λ̃t+1BLt + Ω̃t+1Mt + Γt+1BLt + Γ⊤

t+1Mt

)
+
∑

i
C⊤

i Λ̃t+1CiLt

]
Szz
t

+B⊤
[
Λ̃t+1A+ Ω̃t+1KtH + Γt+1A+ Γ⊤

t+1KtH

]
Sxz
t = 0 , (37)

∂CL

∂Kt
=
[
Ω̃t+1KtH + Γt+1A

]
Sxx
t H⊤ −

[
Ω̃t+1Mt + Γt+1BLt

]
Szz
t H⊤ − Ω̃t+1KtHSxz

t H⊤

+ Ω̃t+1Mt(S
xz
t )⊤H⊤ − Γt+1ASxz

t H⊤ + Γt+1BLt(S
xz
t )⊤H⊤ + Ω̃t+1KtΣω

+ Ω̃t+1Kt

∑
i
DiS

xx
t D⊤

i = 0 , (38)

with symmetric matrices Λ̃t = Λt + Λ⊤
t and Ω̃t = Ωt + Ω⊤

t , after using elementary properties of
the trace operator and its derivatives.

The fixed point equations can be further manipulated to express Lt and Kt as

Lt = E−1
t

(
FtS

xz
t (Szz

t )−1 + Jt
)
,
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where

Et = 2Rt +B⊤(Λ̃t+1 + Ω̃t+1 + Γt+1 + Γ⊤
t+1)B +

∑
i
C⊤

i Λ̃t+1Ci ,

Ft = −B⊤(Λ̃t+1A+ Ω̃t+1KtH + Γt+1A+ Γ⊤
t+1KtH) ,

Jt = −B⊤(Ω̃t+1 + Γ⊤
t+1)(A−KtH) ,

and
Kt =

(
SAH + Ω̃−1

t+1Γt+1SLH

)
S−1
HH

with

SAH = (A+BLt)(S
zz
t − (Sxz

t )⊤)H⊤ ,

SLH =
(
−A(Sxx

t − Sxz
t ) +BLt(S

zz
t − (Sxz

t )⊤)
)
H⊤ ,

SHH = H(Sxx
t + Szz

t − Sxz
t − (Sxz

t )⊤)H⊤ +Σω +
∑

i
DiS

xx
t D⊤

i .

Note that the equation for Lt explicitly depends on Kt on the right side, while the equation for Kt

depends on Lt on the right side. This property enables the coordinate-descent algorithm described
in the paper. The above expressions coincide with Eqs. 14,15.

A.2.7 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT IF AND ONLY IF INTERNAL
NOISE VANISHES

Theorem 2. Take the initial condition p0(x, z) such that Szz
0 = Sxz

0 . A solution to the Lagrange
equations 13,14,15,16 is given by the orthogonality principle Szz

t = Sxz
t for t = 1, ..., T , iff internal

noise is zero, that is Ση = 0. The solution corresponds to a critical point of the cost in Eq. 8

Proof. We first show that (1) assuming OP (Sxz
t = Szz

t for t = 0, ..., T ) is true, we prove that the
satisfaction of the Lagrange equations for the multipliers, Eqs. 16, and the equation for the fixed
point of Lt, Eq. 14, for all t implies that the Lagrange equality, Γt = −Ω̃t for all t (Ω̃t ≡ Ωt+Ω⊤

t ),
is true, regardless of the value of internal noise. Next, we show that (2) OP and the Lagrange equality
imply satisfaction of the fixed point equation for Kt, Eq. 15, and the 2nd-order moments equations,
Eqs. A.2.4, if and only if internal noise is zero, Ση = 0. This will show that OP solves all Lagrange
equations iff internal noise is zero, and therefore it will correspond to a critical point of the cost
function in Eq. 8.

(1) Assume that OP holds. From the boundary condition of the Lagrange equations for the multi-
pliers we have that ΛT+1 = ΩT+1 = ΓT+1 = 0. Therefore, at time T + 1 the Lagrange equality
ΓT+1 = −Ω̃T+1 is true. Let us prove by induction that the equality holds for all t. Assume that the
Lagrange equality is true for some t+ 1, that is, Γt+1 = −Ω̃t+1 (note that Γt+1 is then symmetric).
Then, from the Lagrange multipliers Eqs. 16 we can write

Γt = L⊤
t B

⊤Λ̃t+1A+M⊤
t Ω̃t+1KtH +M⊤

t Γt+1A+ L⊤
t B

⊤Γ⊤
t+1KtH

= L⊤
t B

⊤Λ̃t+1A−M⊤
t Γt+1KtH +M⊤

t Γt+1A+ L⊤
t B

⊤Γt+1KtH

Ω̃t = 2L⊤
t RtLt + L⊤

t B
⊤Λ̃t+1BLt +M⊤

t Ω̃t+1Mt +M⊤
t Γt+1BLt + L⊤

t B
⊤Γt+1Mt

+
∑

i
L⊤
t C

⊤
i Λ̃t+1CiLt

= 2L⊤
t RtLt + L⊤

t B
⊤Λ̃t+1BLt −M⊤

t Γt+1Mt +M⊤
t Γt+1BLt + L⊤

t B
⊤Γt+1Mt

+
∑

i
L⊤
t C

⊤
i Λ̃t+1CiLt ,

where we have replaced Ω̃t+1 by −Γt+1 and using that Γt+1 is symmetric. Now, summing we have

Γt + Ω̃t = 2L⊤
t RtLt + L⊤

t B
⊤Λ̃t+1(A+BLt) +M⊤

t Γt+1(A+BLt −KtH −Mt)

+ L⊤
t B

⊤Γ⊤
t+1(A+BLt) +

∑
i
L⊤
t C

⊤
i Λ̃t+1CiLt

= L⊤
t

[
2RtLt +B⊤Λ̃t+1(A+BLt) +B⊤Γ⊤

t+1(A+BLt) +
∑

i
C⊤

i Λ̃t+1CiLt

]
,

(39)
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where we have realized that the last term in the first line is zero.

Now, the solution for which OP holds should satisfy all other Lagrange equations, in particular the
one for the fixed point equation for Lt, Eq. 14. As OP is assumed to be true at all times, and in
particular at time t, and the Lagrange equality is assumed to be true for t+1, Eq. 14 (see Sec. A.2.6)
largely simplifies to

Lt = Ē−1
t F̄t , (40)

with Ēt = 2Rt + B⊤(Λ̃t+1 + Γt+1)B +
∑

i C
⊤
i Λ̃t+1Ci and F̄t = −B⊤(Λ̃t+1 + Γt+1)A. Then,

it is clear that the bracket in the last line of Eq. 39 is zero, and therefore the Lagrange equality
Γt = −Ω̃t is true. Therefore, by induction we conclude that the Lagrange equality is true for all t
and that Lagrange equations for the multipliers and Lt are solved. Notice that the above results are
true regardless of the presence of internal noise.

(2) Still we have not used the Lagrange equation for Kt, Eq. 15, nor the Lagrange equations for
the 2nd-order moments, Eqs. 32. These equations must also be satisfied by the OP condition. First,
from OP (and the implied Lagrange equality shown in (1)) the expression for Kt (see Sec. A.2.6)
largely simplifies to

Kt = A (Sxx
t − Szz

t )H⊤S̄−1
HH , (41)

with S̄HH = H(Sxx
t − Szz

t )H⊤ +Σω +
∑

i DiS
xx
t D⊤

i .

Now, this expression of Kt must solve the Lagrange equations for the 2nd-order moments. The
equation for Sxx

t is trivially satisfied, but the equations for Sxz
t and Szz

t should be such that Sxz
t =

Szz
t for all t – otherwise, our OP initial assumption would be inconsistent; no other restrictions

are imposed by the Lagrange equations of the 2nd-order moments. This is only possible iff the
difference Szz

t+1 − Sxz
t+1 equals zero:

Szz
t+1 − Sxz

t+1 =
[
−(A−KtH)(Sxx

t − Szz
t )H⊤ +KtΣω +Kt

∑
i
D⊤

i S
xx
t Di

]
K⊤

t +Ση = 0 ,

(42)
for all t (this expression has been obtained using the 2nd-order moments in Eqs. 32 after several
cancellations). In this expression, the bracket equals zero after using Eq. 41. Therefore, consistency
of OP and satisfaction of the 2nd-order moments are satisfied if and only if internal noise is zero,
Ση = 0.

This concludes the proof, because iff Ση = 0 we have a full satisfaction of all Lagrange equations
for all t under the sole assumption of OP for all t.

A.2.8 RECOVERY OF CLASSICAL LQAG SOLUTIONS

In this section, we demonstrate that the solutions derived in Sec. A.2 exactly recover the classical
analytical solutions of the standard LQAG problem (see Appendix A.2.3) when both multiplicative
and internal noise terms vanish. To illustrate this, we examine the solutions presented in Appendix
A.2.7. As empirically validated in Damiani et al. (2024), the optimal solutions, when internal noise
is absent, satisfy the orthogonality principle (OP). Thus, by setting the multiplicative noise terms
to zero, we can directly verify whether these solutions converge to the classic LQAG solutions.
Additionally, this provides a proof that the orthogonality principle indeed corresponds to the global
optimum of the cost function for the standard LQAG problem.

The optimal controller derived under the orthogonality principle in Appendix A.2.7 is given by Eq.
40. When both multiplicative and internal noise terms are turned off, we obtain

Lt = −[2Rt +B⊤(Λ̃t+1 + Γt+1)B]−1[B⊤(Λ̃t+1 + Γt+1)A] , (43)

which corresponds to the optimal Lt for the classic LQAG case (see solutions in Sec. A.2.3) if
St = (Γt + Λ̃t). Using Eq.16 and imposing the OP (setting Γt = −Ω̃t – see Appendix A.2.7) we
obtain

Γt+1 + Λ̃t+1 = 2Qt + (A+BLt)
⊤(Λ̃t + Γt)A . (44)

Now we observe, as discussed in Appendix A.2.7, that Γt is symmetric and the same holds for Λ̃t

(by definition), therefore we can rewrite Eq. 44 as

Γt+1 + Λ̃t+1 = 2Qt +A⊤(Λ̃t + Γt)(A+BLt) . (45)
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which corresponds to the formula for St in Sec. A.2.3, therefore proving the equality between the
two optimal solutions.

The optimal Kalman filter derived under the OP in Appendix A.2.7 is given by Eq. 41, corresponding
to

Kt = A (Sxx
t − Szz

t )H⊤[H(Sxx
t − Szz

t )H⊤ +Σω]
−1 , (46)

when neither internal nor multiplicative noise is considered. We note that this solution corresponds
to the one presented in Sec. A.2.3 when Σe

t = Sxx
t −Szz

t , which is automatically satisfied when the
OP, stating Szz

t = Sxz
t , holds.

Therefore, the solutions derived in Appendix A.2.7 correspond to the globally optimal solutions of
the classic LQAG problem in the absence of multiplicative and internal noise.

A.2.9 JOINT OPTIMIZATION OF FORWARD DYNAMICS, PSEUDO-FILTER, AND CONTROL
WITH MODEL MISMATCH: FULL DERIVATIONS

Model and Moments The Model Mismatch approach is defined by the equations

xt+1 = Axt +BLtzt + nx
t , yt = Hxt + ny

t , zt+1 = Wtzt + Ptyt + nz
t (47)

nc
t = ϵct +

∑
r
ηctU

c
rxt +

∑
l
ξctV

c
l Ltzt , c ∈ {x, y, z} ,

identical to Eqs. 11. The goal is to optimize the forward dynamics Wt ∈ Rn×n, pseudo-filter
Pt ∈ Rn×m and control Lt ∈ Rp×n – where p is the dimensionality of the control signal ut = Ltzt-
matrices so as to minimize the expected cumulative quadratic cost

C =

T∑
t=0

E
[
x⊤
t Qtxt + z⊤t L⊤

t RtLtzt
]
=

T∑
t=0

(
tr(QtS

xx
t ) + tr(L⊤

t RtLtS
zz
t )
)
, (48)

with initial condition p0(x, z).

Eqs. 47 can be put in a more compact form as

xt+1 = Axt +BLtzt + nx
t (49)

zt+1 = Wtzt + PtHxt + Ptn
y
t + nz

t

nc
t = ϵct +

∑
r
ηctU

c
rxt +

∑
l
ξctV

c
l Ltzt , c ∈ {x, y, z} ,

from where it is more obvious that the system consists of two coupled linear dynamical systems with
free parameters Wt, Pt and Lt chosen so as the minimize the cost. The sums

∑
r and

∑
l can run

over different limits depending on the source c, but here we use the same symbol to avoid cluttered
notation.

Note that the Model Mismatch framework is strictly more general than the Model Match one because
one always is free to choose in Eqs. 49 Pt = Kt and Wt = A+BLt−KtH , leading exactly to the
Model Match approach in Eqs. 5,6,7. The reverse, mapping the Model Mismatch approach into the
Model Match one, is in general not possible.

The 2nd-order moments, appearing in the cost 48, obey

Sxx
t+1 = ASxx

t A⊤ +BLtS
zz
t L⊤

t B
⊤ +ASxz

t L⊤
t B

⊤ +BLt(S
xz
t )⊤A⊤ +Σx

t

Szz
t+1 = PtHSxx

t H⊤P⊤
t +WtS

zz
t W⊤

t + PtHSxz
t W⊤

t +Wt(S
xz
t )⊤H⊤P⊤

t + PtΣ
y
tP

⊤
t +Σz

t

Sxz
t+1 = ASxx

t H⊤P⊤
t +BLtS

zz
t W⊤

t +ASxz
t W⊤

t +BLt(S
xz
t )⊤H⊤P⊤

t , (50)

with Σc
t = Σϵc +

∑
r U

c
rS

xx
t (U c

r )
⊤ +

∑
l V

c
l LtS

zz
t L⊤

t (V
c
l )

⊤, c ∈ {x, y, x}.
Even though the Model Mismatch approach is more general than the Model Match one, defined
in Eqs. 5,6,7, it is already apparent that the equations for the second moments are simpler, more
compact and transparent. This will be a recurrent theme in all next derivations and equations, so we
will not repeat this below.
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Total Cost and Cost-to-Go Let us define the cost-to-go at time t starting from x and z as
Ct(x, z) = tr(Qtxx

⊤ + L⊤
t RtLtzz

⊤) +
∑T

τ=t+1 E
[
x⊤
τ Qτxτ + z⊤τ L⊤

t RτLtzτ
]
, where the ex-

pectation is over the noises with initial conditions fixed at x and z at time t, and for specific P , L
and W from time t onward. The cost-to-go obeys the Bellman equation

Ct(x, z) = tr(Qtxx
⊤) + tr(L⊤

t RtLtzz
⊤) +

∫
dx′dz′Ct+1(x

′, z′)px,t+1(x
′|x, z)pz,t+1(z

′|x, z) ,
(51)

where the transition probability densities px,t+1(x
′|x, z) and pz,t+1(z

′|x, z) are the transition prob-
ability functions over x′ and z′ at time t + 1 when starting from x and z at time t, as defined by
equations 47. Using backwards induction, and following similar steps to those in Secs. A.2.4 and
A.2.5, it is not difficult to show that the cost-to-go can be written for all t (t = 0, ..., T ) as

Ct(x, z) = tr(Λtxx
⊤) + tr(Ωtzz

⊤) + tr(Γtxz
⊤) + γt , (52)

with matrices Λt ∈ Rm×m, Ωt ∈ Rn×n, and Γt ∈ Rn×m and scalar γt obeying equations

Λt = Qt +A⊤Λt+1A+H⊤P⊤
t Ωt+1PtH +H⊤P⊤

t Γt+1A

+
∑

r
(Ux

r )
⊤Λt+1U

x
r +

∑
r
(Uy

r )
⊤P⊤

t Ωt+1PtU
y
r +

∑
r
(Uz

r )
⊤Ωt+1U

z
r ,

Ωt = L⊤
t RtLt + L⊤

t B
⊤Λt+1BLt +W⊤

t Ωt+1Wt +W⊤
t Γt+1BLt

+
∑

r
L⊤
t (V

x
r )⊤Λt+1V

x
r Lt +

∑
r
L⊤
t (V

y
r )

⊤P⊤
t Ωt+1PtV

y
r Lt +

∑
r
L⊤
t (V

z
r )

⊤Ωt+1V
z
r Lt ,

Γt = L⊤
t B

⊤(Λt+1 + Λ⊤
t+1)A+W⊤

t (Ωt+1 +Ω⊤
t+1)PtH +W⊤

t Γt+1A+ L⊤
t B

⊤Γ⊤
t+1PtH ,

γt = tr(Λt+1Σϵx) + tr(P⊤
t Ωt+1PtΣϵy ) + tr(Ωt+1Σϵz ) + γt+1 , (53)

with boundary conditions ΛT = QT , ΩT = L⊤
TRTLT , ΓT = 0 and γT = 0 (in this way the

boundary condition that CT (x, z) = tr(QTxx
⊤) + tr(L⊤

TRTLT zz
⊤) is satisfied).

We now define the averaged cost-to-go at time t as

Ct ≡
∫

dxdzpt(x, z)Ct(x, z) = tr(ΛtS
xx
t ) + tr(ΩtS

zz
t ) + tr(ΓtS

xz
t ) + γt , (54)

where pt(x, z) is the joint probability density over x and z given initial condition p0(x, z) and Wτ ,
Lτ , and Pτ for τ < t. We note that the total cost C in Eq. 48 can be written as

C = C0 ≡
∫

dxdzp0(x, z)C0(x, z) = tr(Λ0S
xx
0 ) + tr(Ω0S

zz
0 ) + tr(Γ0S

xz
t ) + γ0 , (55)

which it can also be expressed as
C = C<t + Ct (56)

with C<t =
∑t−1

τ=0 tr(QτS
xx
τ + L⊤

τ RτLτS
zz
τ ). It is important to note that Eq. 56 is valid for all t.

Algorithm Building an algorithm to find an improved triplet of time-dependent forward dynamics,
pseudo-filter and control matrices is slightly simpler than in the case of the Model Match approach
because Wt and Pt only appear in the internal variable dynamical equation and Lt only appears in
the state variable dynamics. In contrast, in the Model Match approach, Lt appeared both in the state
and state estimate dynamics, complicating the mathematical derivations.

Indeed, we note from Eqs. 53 that the coefficients Λt, Ωt, Γt and γt depend on Wτ , Pτ and Lτ only
for τ ≥ t, while Sab

t , ab ∈ {xx, zz, xz}, only depend on those matrices for τ < t, as it can be seen
from Eqs. 50. Therefore, choosing an arbitrary t, in Eq. 56 only the term Ct depends on Wt, and in
that term, Eq. 54, only the coefficients Λt, Ωt, Γt and γt can depend on Wt. In conclusion, starting
with a set of W0,...,T , P0,...,T and L0,...,T , we can improve the value of Wt as

W ∗
t = argmin

Wt

C = argmin
Wt

Ct , (57)

while keeping the Wτ for τ ̸= t and all P0,...,T and L0,...,T fixed. A global minimum exists because
Ct is always non-negative. Using elementary matrix operations, we find that

W ∗
t = −PtHSxz

t (Szz
t )−1 − (Ωt+1 +Ω⊤

t+1)
−1Γt+1

(
BLt +ASxz

t (Szz
t )−1

)
. (58)
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Note that if Szz
0 is not invertible, then W ∗

0 is not well defined, and thus we can take any arbitrary
matrix. This might correspond to z0 = 0. After the optimization, we must have

C∗ = C(W0, ...,W
∗
t , ...,Wt) ≤ C(W0, ...,Wt, ...,WT ) , (59)

so that the total cost is non-increasing. After optimizing Wt, using the new W ∗
t , the cost can be

written as

C∗ = C<t+1 + C∗
t+1 = C<t+1 + tr(Λt+1S

xx,∗
t+1 ) + tr(Ωt+1S

zz,∗
t+1 ) + tr(Γt+1S

xz,∗
t+1 ) + γt+1 (60)

where the coefficients at time t + 1 do not need to be updated (as they do not depend on W ∗
t ), but

where the Sab,∗
t+1 need to be updated using Eqs. 50 with the new W ∗

t .

Redefining W ∗
t as Wt and the Sab,∗

t+1 as Sab
t+1, we can now proceed to optimize Wt+1 us-

ing the same procedure as above (changing t to t + 1) to minimize again the total cost
C(W0, ...,Wt,W

∗
t+1, ...,WT ) ≤ C(W0, ...,Wt,Wt+1, ...,WT ) fixing P0,...,T , L0,...,T and all Wτ

except for τ = t. This procedure can be repeated consecutively from t = 0 up to T .

After this forward pass, we would like to repeat the process for Pt and Lt instead of Wt. But before
doing this, the value of the coefficients in Eqs. 53 have to be recomputed so that Eq. 55 is true again.
The process of forward updating the Wt from t = 0 up to time T and, after this, recomputing the
coefficients using a backwards pass is called W -pass. Note that in this process, the moments have
been already recomputed. Starting from W (n) = W

(n)
0,...,T , P (n) = P

(n)
0,...,T and L(n) = L

(n)
0,...,T ,

the W -pass leads to a new set of forward dynamics matrices W (n+1) such that the cost is non-
increasing, C(W (n+1), P (n), L(n)) ≤ C(W (n), P (n), L(n)). We define a P -pass as that consisting
in exactly repeating the same procedure for the P0,...,T instead of the W0,...,T while keeping fixed
W0,...,T and L0,...,T , and using the expression (obtained after some calculations)

P ∗
t = −

[
Wt(S

xz
t )⊤ + (Ωt+1 +Ω⊤

t+1)
−1Γt+1

(
ASxx

t +BLt(S
xz
t )⊤

)]
H⊤E−1

t , (61)

with Et = HSxx
t H⊤+

∑
l U

y
l S

xx
t (Uy

l )
⊤+
∑

r V
y
l LtS

zz
t L⊤

t (V
y
l )

⊤+Σϵy . Starting from W (n+1) =

W
(n+1)
0,...,T , P (n) = P

(n)
0,...,T and L(n) = L

(n)
0,...,T , the P -pass leads to a new set of pseudo-filter matrices

P (n+1) such that the cost is non-increasing, C(W (n+1), P (n+1), L(n)) ≤ C(W (n+1), P (n), L(n)).
Finally, we define an L-pass as that consisting in following similar steps to the previous ones to
sequentially update the L0,...,T while keeping fixed W0,...,T and P0,...,T , and using the expression
(after some calculations)

L∗
t = −F−1

t B⊤
{
Λ̃t+1ASxz

t (Szz
t )−1 + Γ⊤

t+1

[
PtHSxz

t (Szz
t )−1 +Wt

]}
, (62)

with Ft = 2Rt+B⊤Λ̃t+1B+
∑

l(V
x
l )⊤Λ̃t+1V

x
l +

∑
l(V

y
l )

⊤P⊤
t Ω̃t+1PtV

y
l +

∑
l(V

z
l )

⊤Ω̃t+1V
x
l ,

where we have defined Λ̃t = Λt + Λ⊤
t and Ω̃t = Ωt + Ω⊤

t . Starting from W (n+1) = W
(n+1)
0,...,T ,

P (n+1) = P
(n+1)
0,...,T and L(n) = L

(n)
0,...,T , the L-pass leads to a new set of control matrices L(n+1)

such that the cost is non-increasing, C(W (n+1), P (n+1), L(n+1)) ≤ C(W (n+1), P (n+1), L(n)).

Now, alternating W -, P - and L-passes from some initial arbitrary values W (0), P (0), L(0) we find

C(W (0), P (0), L(0)) ≥ C(W (1), P (0), L(0)) ≥ C(W (1), P (1), L(0)) ≥ ...

≥ C(W (n+1), P (n), L(m)) ≥ C(W (n+1), P (n+1), L(n))

≥ C(W (n+1), P (n+1), L(n+1)) ≥ ... ≥ Cmin ≥ 0 . (63)

Since the series is non-negative, it converges to a total cost (not larger than the initial one) with op-
timal forward dynamics W ∗ = W (∞), pseudo-filter P ∗ = P (∞) and control L∗ = L(∞) matrices.
We have thus proven the first part of the following
Theorem 3. Starting with arbitrary W (0), P (0) and L(0) and distribution of initial conditions
p0(x, z), the coordinate descent algorithm defined by iterating in alternation W -, P - and L-passes
converges to an improved triplet of forward dynamics, pseudo-filter and control matrices W ∗, P ∗

and L∗. The improved triplet corresponds to a critical point of the cost function in Eq. 48.

We remark that it is straightforward to extend our algorithm to the case where any of the matrices
Wt, Pt and Lt are fixed simply by not updating the corresponding matrices using the above passes,
still enjoying convergence properties.
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Lagrangian, Fixed-Point Equations, and Critical Points To complete the last part of the theo-
rem, that is, that after convergence the triplet W ∗, P ∗ and L∗ is a critical point of the cost function
48, we must show that they solve all fixed points equations of the Lagrangian,

CL =

T∑
t=0

(tr(QtS
xx
t ) + tr(RtS

zz
t ))−

T+1∑
t=1

(tr(ΛtG
xx
t ) + tr(ΩtG

zz
t ) + tr(ΓtG

xz
t )) , (64)

where Λt, Ωt and Γt are matrices of Lagrange multipliers. The constraints Gxx
t = Gzz

t = Gxz
t = 0

are given by the temporal evolution of Sxx
t , Szz

t and Sxz
t , respectively, between two consecutive

time steps t and t+ 1, and can be computed using Eqs. 50 similarly as in Eqs. 13. Indeed, the fixed
point equations of the Lagrangian ∂CL/∂Wt = 0 and ∂CL/∂Pt = 0 are identical to Eqs. 58,61,62,
respectively, which must be satisfied after convergence by the improved triplet W ∗, P ∗ and L∗.
After some work, the Lagrange equations ∂CL/∂S

xx
t = 0, ∂CL/∂S

xx
t = 0 and ∂CL/∂S

xx
t = 0

can be seen to lead exactly to the coefficient Eqs. 53, which, again, are satisfied by the improved
triplet. Finally, the derivatives of the Lagrangian with respect to the multipliers reduce to the second-
order moment Eqs. 50, which are satisfied by the improved triplet. Thus, the improved triplet is a
fixed-point solution of the Lagrangian 64 and therefore a critical point of the cost function 48.

A.3 ALGORITHMS IMPLEMENTATION: PSEUDOCODES

A.3.1 PSEUDOCODE – MODEL MATCH FRAMEWORK

Algorithm 1 Model Match (M-Match) approach

Input: Sxx
0 , Sxz

0 , Szz
0 ; initial guesses L(0)

0,...,T ,K
(0)
0,...,T ; system parameters.

2: Output: Optimal gains L∗
0,...,T ,K

∗
0,...,T .

Steps:
4: for each iteration k = 1, . . . , optimization steps do

Λ1,...,T ,Ω1,...,T ,Γ1,...,T ← Eqs. 16 using L
(k−1)
0,...,T and K

(k−1)
0,...,T (backward equations)

6: for each iteration t = 0, . . . , T − 1 do
L
(k)
t ← Eq. 14,

8: Sxx
t+1, S

xz
t+1, S

zz
t+1← Eqs. 32 using L

(k)
t and K

(k−1)
t

end for
10: Λ1,...,T ,Ω1,...,T ,Γ1,...,T ← Eqs. 16 using L

(k)
0,...,T and K

(k−1)
0,...,T (backward equations)

for each iteration t = 0, . . . , T − 1 do
12: K

(k)
t ← Eq. 15,

Sxx
t+1, S

xz
t+1, S

zz
t+1← Eqs. 32 using L

(k)
t and K

(k)
t

14: end for
end for

16: L∗
0,...,T ← L

(k)
0,...,T ; K∗

0,...,T ← K
(k)
0,...,T

The pseudocode above implements the algorithm of Sec. A.2.2, referred to as the Model Match
(M-Match) approach, in contrast to the Model Mismatch (M-Mis) method of Sec. 4.
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A.3.2 PSEUDOCODE – MODEL MISMATCH FRAMEWORK

Algorithm 2 Model Mismatch (M-Mis) approach

Input: Sxx
0 , Sxz

0 , Szz
0 ; initial guesses L(0)

0,...,T , P
(0)
1,...,T ,W

(0)
1,...,T ; system parameters.

2: Output: Optimal matrices L∗
0,...,T , P

∗
1,...,T ,W

∗
1,...,T .

Steps:
4: for each iteration k = 1, . . . , optimization steps do

Λ1,...,T ,Ω1,...,T ,Γ1,...,T ← Eqs. 53 using P
(k−1)
1,...,T , W (k−1)

1,...,T and L
(k−1)
0,...,T (backward equations)

6: for each iteration t = 0, . . . , T − 1 do
P

(k)
t ← Eq. 61,

8: Sxx
t+1, S

xz
t+1, S

zz
t+1← Eqs. 50 using P

(k)
t , W (k−1)

t and L
(k−1)
t

end for
10: Λ1,...,T ,Ω1,...,T ,Γ1,...,T ← Eqs. 53 using P

(k)
1,...,T , W (k−1)

1,...,T and L
(k−1)
0,...,T (backward equations)

for each iteration t = 0, . . . , T − 1 do
12: W

(k)
t ← Eq. 58,

Sxx
t+1, S

xz
t+1, S

zz
t+1← Eqs. 50 using P

(k)
t , W (k)

t and L
(k−1)
t

14: end for
Λ1,...,T ,Ω1,...,T ,Γ1,...,T ← Eqs. 53 using P

(k)
1,...,T , W (k)

1,...,T and L
(k−1)
0,...,T (backward equations)

16: for each iteration t = 0, . . . , T − 1 do
L
(k)
t ← Eq. 62,

18: Sxx
t+1, S

xz
t+1, S

zz
t+1← Eqs. 50 using P

(k)
t , W (k)

t and L
(k)
t

end for
20: end for

P ∗
1,...,T ← P

(k)
1,...,T ; W ∗

1,...,T ←W
(k)
1,...,T ; L∗

0,...,T ← L
(k)
0,...,T

The pseudocode above outlines the Model Mismatch (M-Mis) approach, introduced in Sec. 4 and
detailed in Appendix A.2.9. While the order of optimization for P , W , and L differs from that in
Appendix A.2.9, all variants converge to a critical point of the cost function in Eq. 48.

A.3.3 IMPLEMENTATIONS DETAILS

Here we report the algorithms’ hyper-parameters, as selected for the experiments described in Sec.
A.4.

For the single-joint reaching task used to evaluate Algorithm 1 – and to compare it with the gradient-
based numerical method from Damiani et al. (2024) (referred to as GD) – we use the parameters
listed in Table 1. Note that, in line with Damiani et al. (2024), the GD algorithm is implemented
using the GradientDescent() function from the Optim.jl Julia package.

Table 1: Hyper-parameters of the algorithms used in the single-joint reaching task (Sec. A.4.1)

Algorithm Description value

GD (Damiani et al., 2024) Number of iterations of the ”GradientDescent()” function 50000
M-Match (Algorithm 1) Number of iterations of the estimation-control optimization 100

For the 3D reaching task, detailed in Appendix A.4.3 and for the Redundant Arm-Control Task,
detailed in Appendix A.4.5, we used
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Table 2: Hyper-parameters of the algorithms used in the 3D reaching task and in the Redundant
Arm-Control Task(Appendices A.4.3 and A.4.5)

Algorithm Description value

TOD (Todorov, 2005) Number of iterations of the estimation-control optimization 100
M-Match (Algorithm 1) Number of iterations of the estimation-control optimization 100
M-Mis (Algorithm 2) Number of iterations of the M-Mis optimization 100

while for the neural population steering task of Appendix A.4.6 we selected the following hyper-
parameters

Table 3: Hyper-parameters of the algorithm used in the neural population steering task (Appendix
A.4.6)

Algorithm Description value

M-Mis (Algorithm 2) Number of iterations of the L0,...,T optimization 20

A.4 EXPERIMENTAL DETAILS AND SUPPLEMENTARY RESULTS

A.4.1 SINGLE-JOINT REACHING TASK: MODEL AND PARAMETERS

In Sec. 5.1 we evaluated the M-Match algorithm – Algorithm 1 – on a single-joint reaching task,
using the same problem formulation as in (Todorov, 2005; Damiani et al., 2024). The system features
a four-dimensional state and one-dimensional control and sensory feedback, i.e., m = 4, p = k = 1.
The discrete-time dynamics is given by Todorov (2005),

p(t+∆t) = p(t) + ṗ(t)∆t

ṗ(t+∆t) = ṗ(t) + f(t)∆t/m

f(t+∆t) = f(t)(1−∆t/τ2) + g(t)∆t/τ2

g(t+∆t) = g(t)(1−∆t/τ1) + u(t)(1 + σεεt)∆t/τ1

with

A =

1 ∆t 0 0
0 1 ∆t/m 0
0 0 1−∆t/τ2 ∆t/τ2
0 0 0 1−∆t/τ1


B = (0 0 0 ∆t/τ1)

⊤

C = (0 0 0 σε∆t/τ1)
⊤

H =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



D =

σρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Q1,··· ,T−1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


QT = p⃗p⃗⊤ + v⃗v⃗⊤ + f⃗ f⃗⊤
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R1,··· ,T−1 =
r

T − 1

RT = 0

p⃗ = (1 0 0 0)

v⃗ = (0 wv 0 0)

f⃗ = (0 0 wv 0)

Σξ =

σ2
ξ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Σω = σ2

ω

Ση =


σ2
η 0 0 0
0 σ2

η 0 0
0 0 σ2

η 0
0 0 0 σ2

η


with the initial conditions given by

E[x1] = (x1 0 0 0)
⊤

E[z1] = E[x1]

Σx1
=

σ2
x 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Σz1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

The parameters of the problem are listed in Table 4 (std = standard deviation).

Table 4: Parameters of the single-joint reaching task

Name Description Value

∆t time-step (s) 0.010
m mass of the hand (Kg) 1
τ1 first time constant of the second order low pass filter 0.04
τ2 second time constant of the second order low pass filter 0.04
r Auxiliary variable for control-dependent cost 1e−5

wv Auxiliary variable for task-related cost 0.2
wf Auxiliary variable for task-related cost 0.01
T time steps 100
x1 Target position 0.15
σx Target position standard deviation 0.0
σξ std of dynamics noise ξt 0.1
σω std of the sensory noise ωt 0.1
σε std of the control-dependent noise εt 0.5
σρ std of the sensory-dependent noise ρ 0.5
ση std of the additive internal noise ηt 0.1
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A.4.2 COMPUTATIONAL EFFICIENCY AND DIMENSIONALITY SCALING: COMPARISON WITH
PRIOR WORK

As additional evidence for computational efficiency of Algorithm 1, we present a dimensionality-
scaling study comparing computation times with the numerical algorithm in Damiani et al. (2024),
extending the analysis up to m = 100. This complements the results in Sec. 5.1, which already
demonstrates a pronounced gap in runtime (6 s vs. 5 h).

To isolate the effect of dimensionality, we set m = k = p = nshared. Matrices A, B, C, and D are
drawn from zero-mean, unit-variance Gaussian distributions and rescaled to ensure spectral radius
< 1 for stability. We fix T = 6 and σξ = σω = σρ = σϵ = ση = 0.2, and vary nshared ∈
{5, 10, 15, 40, 100}. We then compare the total computation time of our method (Algorithm 1) with
the numerical approach in Damiani et al. (2024), initializing both with optimal gains from Todorov
(2005) to ensure a fair comparison. All results were obtained on a MacBook Pro (Apple M1, 16 GB
RAM).

Table 5: Comparison of runtime between this work and the numerical algorithm in Damiani et al.
(2024) as a function of the number of shared dimensions nshared.

nshared This work GD (Damiani et al., 2024)

5 1.15 s 8.4 min
10 1.25 s 75.7 min
15 1.40 s 6.4 h
40 2.7 s > 2 days
100 14 s –

Here, s = seconds, min = minutes, and h = hours. These results highlight the scalability of our
method. Similar time gaps also emerge in lower-dimensional settings as trial duration T increases,
due to the linear growth in optimization parameters with T .

This computational advantage is critical for applying stochastic optimal control to real-world prob-
lems, particularly in Inverse Optimal Control (Schultheis et al., 2021; Straub & Rothkopf, 2022),
which requires solving many control problems across parameter settings. The high cost of Damiani
et al. (2024) renders it impractical for realistic tasks such as that in Sec. A.4.1, first described in
Todorov (2005).

A.4.3 3D REACHING TASK: MODEL, PARAMETERS, AND ADDITIONAL ANALYSES

The first problem studied in Sec. 5.2 is defined by the following matrices:

A =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


B = I6

C = σε · I6
H = I6

D = σρ · I6
Σξ = σ2

ξ · I6
Σω = σ2

ω · I6
Ση = σ2

η · I6
Q1,...,T−1 = 06×6
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QT =


10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Rt = r · I6 for t = 1, . . . , T − 1

RT = 0 ,

where I6 denotes the 6 × 6 identity matrix, and 06×6 denotes the 6 × 6 zero matrix. The initial
conditions are given by:

E[x1] =
(
1.5 1.0 2.5 10−5 10−5 10−5

)⊤
E[z1] = E[x1]

Σx1
= 06×6

Σz1 = 06×6

The parameters of the problem are listed in Table 6 (std = standard deviation).

Table 6: Parameters of the 3D reaching task

Name Description Value

∆t Time step (s) 0.010
T Time steps 100
m Dimension of state xt 6
n Dimension of internal state zt (for M-Mis) 6
p Dimension of observation yt 6
k Dimension of control ut 6
r Control cost scaling 0.0001
σξ Std of dynamics noise ξt 0.5
σω Std of additive sensory noise ωt 0.5
σρ Std of multiplicative sensory noise ρ 0.4
σε Std of multiplicative control noise εt 0.4
ση Std of additive internal noise ηt {0.0, 0.1, 0.3, 0.4, 0.5, 1.0, 2.0}

In this experiment, we set the control matrix to B = I6 and use a control signal with dimensionality
equal to the state (p = m = 6), enabling full control of the system. This choice is primarily
motivated by numerical considerations: it avoids instabilities in our Model Mismatch algorithm
related to matrix inversions that arise when B is not full-rank or poorly conditioned.

Although this means that control directly affects all state variables – including positions – this can be
interpreted as an idealized feedback mechanism. The dynamics matrix A still captures the physical
structure, with positions evolving from velocities over time. Our focus is on assessing algorithmic
performance under internal and multiplicative noise, rather than enforcing strict biomechanical real-
ism. Nonetheless, the setup remains rich enough to support meaningful behavioral predictions and
comparisons with biological control strategies.

Additional Analyses As internal noise grows, the internal variable becomes increasingly reliant
on sensory feedback: the pseudo-filter matrices P0,...,T induce stronger transformations to compen-
sate for the unreliability of internal dynamics. In contrast, the control matrix Lt induces weaker
transformations (in terms of volume scaling) to suppress internal fluctuations when generating the
control signal ut = Ltzt (Fig. 4a).

Notably, this modulation impacts the scaling properties of the system but not the effective embedding
dimensionality – i.e., the number of dimensions corresponding to dynamically relevant directions
(see next paragraph) – of the matrices involved (Fig. 4b). Interestingly, the volume scaling of the
internal dynamics (Wt), remains constant (Fig. 4a).
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Figure 4: 3D Reaching Task: Additional Analyses. (a) Time-averaged determinants of Pt, Wt,
and Lt. (b) Time-averaged embedding dimensionality of the same matrices (see next paragraph for
details).

Embedding Dimensionality In Fig. 4b, we plot the embedding dimensionality of the matrices
P , W , and L. For each time step t, we compute the number of singular values of Pt, Wt, and Lt

that are larger than 0.01 ·maxσi∈SV {σi}, where SV denotes the set of singular values of the matrix
under consideration. We then average this count across time steps to obtain a measure of effective
dimensionality. Formally, we define:

SV thrCount =
∑

σi∈SV

θ

(
σi ≥ 0.01 · max

σj∈SV
σj

)

where θ(x) is the Heaviside step function. This quantity provides an estimate of the “effective”
dimensionality of the transformation induced by the matrix, relative to its dominant singular values.
This method accounts for changes in scale – such as reductions or increases in determinant magni-
tude due to varying levels of internal noise (Fig. 4a) – and thus provides a more meaningful estimate
of dimensionality across different values of ση .

A.4.4 DISTINCT NEURAL AND BEHAVIORAL SIGNATURES OF MODEL MATCH AND MODEL
MISMATCH APPROACHES

While our main focus is to introduce an analytical solution to stochastic optimal control problems
with multiplicative and internal noise, the two frameworks considered here – Model Match and
Model Mismatch – also lead to distinct, experimentally testable predictions. Below we outline
illustrative examples that highlight these differences and the importance of choosing between the
two approaches.

Divergence of internal dynamics In the 3D reaching task (Figs. 1d-g), the Model Mismatch ap-
proach exhibits qualitatively different strategies from the Model Match one. With internal noise,
optimal control (Fig.1e) is achieved when internal dynamics diverge from external ones (Fig. 1f),
leading to zt that no longer tracks xt (Fig. 1g). This suggests a fundamentally different way of
handling internal fluctuations. Using inverse optimal control (Schultheis et al., 2021; Straub &
Rothkopf, 2022), behavior can be fit under both Model Match and Model Mismatch approaches, al-
lowing one to test whether neural activity aligns more closely with the inferred internal dynamics of
one framework. If it resembles M-Match’s zt, it may reflect state estimation (e.g., posterior parietal
cortex or cerebellum); if it resembles M-Mis’s zt, it may reflect control-optimized representations,
possibly in premotor or motor areas.

Noise-Dependent Control Magnitude From a behavioral perspective, in the same task as above,
the magnitude of the control signal is strongly modulated by internal noise in the Model Match ap-
proach (Fig. 5a). In contrast, the Model Mismatch approach maintains a stable temporal profile of
control magnitude across noise levels (Fig. 5a), likely due to flexible internal representations not
constrained to track the external state (Figs. 1f,g). Internal fluctuations could in principle be ex-
perimentally influenced or estimated (Speed et al., 2020; Vinck et al., 2015), making this prediction
possibly testable.
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Figure 5: Noise-dependent control magnitude in the two approaches. (a) Expected control mag-
nitude |ut|, averaged over 10,000 realizations while varying internal noise ση in the Model Match
framework (shaded areas indicate the standard error of the mean). (b) Same as (a), but for the Model
Mismatch framework.

Perturbation Responses To further probe the distinction between the Model Match and Model
Mismatch approaches, we simulated the 3D reaching task from Figs. 1d-g with a transient bump of
magnitude d = 2.0 applied to the second component of xt at t = 20, without reoptimizing. Both
methods successfully compensate for the perturbation (Fig. 6a), as expected from their respective
optimal solutions. Moreover, the behavioral output does not show visible qualitative differences
across approaches (Fig. 6a). However, the internal dynamics diverge: in M-Mis, zt shows a non-
linear, non-monotonic response with a slower return to baseline (Fig. 6b), strongly modulated by
internal noise ση (Fig. 6c). In contrast, M-Match displays a Kalman-like profile, where zt follows
the perturbation magnitude and decays smoothly and monotonically (Fig. 6b), largely independent
of noise (Fig. 6d). These findings suggest that M-Match and M-Mis could yield distinguishable
neural signatures following perturbations, even when behavioral outputs remain similar.

Figure 6: Perturbation Responses in Model Match and Model Mismatch. (a) Difference in the
second component of the state (y-coordinate) between perturbed and unperturbed trials (same noise
realization), averaged over 10,000 trials for the Model Match and Model Mismatch approaches, with
ση = 0.5. (b). Difference in the second component of the internal estimate between perturbed and
unperturbed trials (same noise realization), averaged over 10,000 realizations for both approaches,
normalized to their maximum, with ση = 0.5. (c). Difference in the second component of the
internal estimate between perturbed and unperturbed trials (same noise realization), averaged over
10,000, for the Model Mismatch approach at different levels of internal noise. (d). Same as (c), but
for the Model Match approach. In all panels, shaded areas indicate the standard error of the mean.
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A.4.5 REDUNDANT ARM-CONTROL TASK: MODEL, PARAMETERS, AND ADDITIONAL
ANALYSES

In Sec. 5.2, we also apply our algorithms to a 3-DOF planar arm performing a reaching move-
ment around a stable reference posture. Below, we outline the full model, parameter choices, and
additional analyses.

Problem definition We use a standard linear time-invariant (LTI) approximation around a fixed
posture, as is common for moderate-amplitude reaching movements (Todorov & Jordan, 2002).

We consider a six-dimensional state (three joint angles and their angular velocities), a nine-
dimensional control (muscle-like activations), and a three-dimensional observation (only joint an-
gles are observed), i.e. m = 6, p = 9, k = 3. We denote by θt ∈ R3 the joint-angle vector and by
ωt ∈ R3 the corresponding angular velocities. The discrete-time dynamics with time step ∆t are

θt+1 = θt +∆t ωt,

ωt+1 =
(
I3 −∆tM−1

jointDjoint

)
ωt +∆tM−1

jointS ut,

where I3 denotes the 3× 3 identity matrix and ut ∈ R9 is the control vector.

The muscle-to-joint map S ∈ R3×9, which linearly converts muscle activations into joint torques, is

S =

(
1.2 −1.0 0.0 0.8 −0.6 0.0 0.5 0.0 0.0
0.0 0.0 1.0 −0.4 0.6 −0.5 0.0 0.5 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 −0.3 0.6

)
.

To construct the muscle-to-joint actuation matrix S ∈ R3×9, we aimed to introduce a realistic and in-
terpretable form of redundancy rather than an arbitrary high-dimensional control map. The structure
of S loosely mimics the organization of mono-articular and bi-articular muscles in the upper limb
(e.g., Tahara et al. (2009)): each control channel acts as a simplified “muscle-like” actuator whose
nonzero entries indicate which joints it spans, and whose signs emulate flexor versus extensor ac-
tion. Although the exact numerical values are not intended to reproduce detailed biomechanics, the
sparsity and sign patterns encode meaningful coupling across joints. This yields a redundant but
structured control system in which multiple activation patterns can produce the same torque, pre-
serving the essential geometric properties of musculo-skeletal redundancy while keeping the model
analytically tractable.
The inertia and damping matrices are

Mjoint = diag(m1,m2,m3), Djoint = ddampI3,

with m1 = 1.2, m2 = 0.8, m3 = 0.5 and ddamp = 2.0.

We define the state, control, and observation variables as

xt =

(
θt

ωt

)
∈ R6, θt, ωt ∈ R3, ut ∈ R9, yt ∈ R3.

The matrices of the whole dynamical system are

A =

(
I3 ∆t I3

03×3 I3 −∆tM−1
jointDjoint

)
∈ R6×6,

B =

(
03×9

∆tM−1
jointS

)
∈ R6×9,

and the multiplicative control-noise matrix is

C = σε B.

Only joint angles are observed, hence

H = (I3 03×3) ∈ R3×6, D = σρ H ∈ R3×6.
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The state cost used in the optimal control problem is diagonal:
Qt = diag(qθ, qθ, qθ, qω, qω, qω) , t = 1, . . . , T,

with qθ = 1.0 and qω = 10−3. The control cost is
Rt = r I9, r = 10−2, t = 1, . . . , T − 1 ,

with the last control cost being zero. Additive process and sensory noises are
Σξ = σ2

ξI6, Σω = σ2
ωI3,

and internal noise is modeled as
Ση = σ2

ηI6.

In all simulations we use zero-mean, zero-covariance initial conditions:
E[x1] = 06×1, E[z1] = 06×1,

Σx1 = 06×6, Σz1 = 06×6.

The parameters of the problem are listed in Table 7 (std = standard deviation).

Table 7: Parameters of the Redundant arm-control task
Name Description Value

∆t time-step (s) 0.010
T time steps 300
σξ std of dynamics noise ξt 0.1
σω std of the sensory noise ωt 0.1
σε std of the control-dependent noise εt 0.1
σρ std of the sensory-dependent noise ρ 0.1
ση std of the additive internal noise ηt ∈ [0.2, 0.5]

Additional Analyses As described in Sec. 5.2, the M-Match solution channels internal variability
into cost-irrelevant and unobserved state dimensions, thereby stabilizing the control output (in this
task only joint angles are strongly penalized and observed, as specified by Q and H). This can be
seen by analyzing the principal components of the internal variable zt. As internal noise increases,
the first PC of zt (explaining more than 90% of total variance) becomes aligned with the directions
corresponding to the unobserved and cost-irrelevant components of the state (here the angular veloc-
ities). In Fig.7a, the first PC of zt has negligible loading on the first three (cost-relevant) dimensions
and substantial loading only on the last three (cost-irrelevant) dimensions, indicating that variability
is routed into the cost-irrelevant subspace. Notably, the first PC of zt maintains nearly identical
direction as ση increases (Fig.7b, red line, where the absolute projection with first PC at low noise
level and all other first PCs at higher noise levels is computed).

Conversely, in the Model Mismatch framework, the first PC of zt substantially changes with internal
noise (Fig.7b, purple curve), reflecting a noise-adaptive internal computation unavailable to the M-
Match model.

Figure 7: Redundant Arm-Control Task: Additional Analyses. (a) Components of the first principal
component (PC1) of the internal state zt in the M-Match solution (computed over 500 trials) for
ση = 0.33. (b) Alignment between the first principal components of zt across noise levels, computed
as the normalized absolute scalar product (i.e absolute cosine similarity) between the reference PC1
at the smallest ση and the PC1 at higher noise levels.
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A.4.6 NEURAL POPULATION STEERING VIA MODEL MISMATCH CONTROL: MODEL AND
PARAMETERS

In Sec. 5.3, we showed how the Model Mismatch framework can be used to model a wider range of
problems by going beyond the classical estimation–control setting. To illustrate this, we considered
a task in which an unstable neural population is stabilized and steered toward a target state by
another linear population. We model two populations of Nunits = 100 linear neurons, each with
sparse Gaussian recurrent connectivity, following standard assumptions from dynamical mean-field
theory (Sompolinsky et al., 1988; Rajan et al., 2010). Here, the matrix A represents the recurrent
connectivity of the xt population, whereas W represents the connectivity of the zt population. They
are given by

Aij ∼ N
(
0,

gA√
Nunits

)
, i, j = 1, . . . , Nunits ,

and

Wij ∼ N
(
0,

gW√
Nunits

)
, i, j = 1, . . . , Nunits .

Note that internal dynamics is fixed over time, W0,...,T = W . The activity of the second population
is linearly read out through a time-varying matrix Lt, which is optimized to steer the activity of
the first population toward a desired target state while minimizing control effort (see Fig. 3a). The
population zt receives input from xt through sparse random projections defined by

Pij ∼ N
(
0,

gP√
Nunits

)
, i, j = 1, . . . , Nunits .

Again we consider P0,...,T = P . To conform this setup to our control framework, we set m = n =
p = k = Nunits, and define

B = H = INunits

D = Σω = 0Nunits×Nunits .

The cost and noise structure of the problem are defined by the following matrices

C = σε · INunits ,

Σξ = σ2
ξ · INunits ,

Ση = σ2
η · INunits ,

Q1,...,T−1 = q<T · INunits ,

QT = qT · INunits ,

Rt = r · INunits , for t = 1, . . . , T − 1,

RT = 0 .

The initial conditions are given by:

E[x1] ∼ N
(
0, g2x1

INunits

)
,

E[z1] ∼ N
(
0, g2z1INunits

)
,

Σx1
= 0Nunits×Nunits ,

Σz1 = 0Nunits×Nunits .

As stated above, the choice of Gaussian-distributed connectivity for the recurrent matrices A, W ,
and the feedforward matrix P is grounded in principles from dynamical mean-field theory, which
describes the macroscopic behavior of large, sparsely connected networks of rate neurons (Som-
polinsky et al., 1988; Rajan et al., 2010). We set gA = 1.1 to ensure that the state dynamics in xt are
intrinsically unstable – this choice is deliberate, as our objective is to stabilize the system through
control. Since we define the desired target state as zero, using it as a reference point, the initial
condition effectively coincides with the goal. In this setting, a naturally decaying (stable) dynamics
would trivially converge to the target without requiring active control. Instead, by inducing unstable
dynamics, we create a scenario where control is essential to prevent divergence from the desired
state. The internal dynamics gain gW = 0.9 places the latent population zt in a subcritical regime,
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supporting stable internal representations of the external dynamics. Lastly, the feedforward gain
gP = 0.3 models sparse and weak inter-population connectivity. These structured random matrices
instantiate biologically inspired constraints that the Model Mismatch framework naturally accom-
modates while enabling effective control. The parameters of the problem are listed in Table 8 (std =
standard deviation).

Note that the ”dynamics noise” ξt now represents the internal noise affecting the population xt,
analogous to the role of ηt for the population zt. We also observe that the initial condition of the
population zt reflects spontaneous activity arising from internal fluctuations; accordingly, we set
gz1 = ση to match the scale of this variability.

Table 8: Parameters of the Neural Steering task

Name Description Value

T Time steps 50
r Control cost scaling 0.001
q<T Task-related cost scaling 0.001
qT Task-related cost scaling 0.1
gx1

Initial condition scaling for x1 10.0
gz1 Initial condition scaling for z1 0.2
gA Scaling of random connectivity of population xt 1.1
gW Scaling of random connectivity of population zt 0.9
gP Scaling of random connections from population xt to population zt 0.3
σξ Std of dynamics noise ξt 0.5
σε Std of multiplicative control noise εt 0.0
ση Std of additive internal noise ηt 0.2

Lastly, we note that although Sec. 5.3 highlights qualitative parallels with results from related RL-
based approaches, our method is fundamentally different. In the linear–quadratic setting we study,
the optimal solution is obtained analytically via fixed-point equations, yielding deterministic updates
and very low computational cost. RL methods—both model-free and model-based—require Monte-
Carlo roll-outs, which incur high sample complexity and high variance under multiplicative noise,
making them far less efficient for this class of problems.

A.4.7 COMPARISON WITH KALMAN FILTERING UNDER MULTIPLICATIVE NOISE

To compare our algorithm with alternative analytical approaches to stochastic optimal control, and
to demonstrate that multiplicative and internal noises break the separation principle, we evaluated an
alternative method in which the internal estimate zt is replaced with a Kalman filter that is optimal
for estimation only. This allows us to directly test whether – as expected from theory (Todorov,
2005) – estimation and control cannot be optimized independently once we move beyond the clas-
sical LQAG setting.

To the best of our knowledge, there is no Kalman filtering theory that can optimally accommo-
date control-dependent multiplicative noise in the state dynamics or internal noise in the estima-
tor dynamics. Nevertheless, we considered the Kalman-like filter proposed by Wu et al. (2016),
which is specifically designed for linear systems with additive and multiplicative measurement
noise, and thus most closely aligns with the subset of our problem where their assumptions hold.
We implemented the filtering equations of Wu et al. (2016) in the simplest setting where they ap-
ply: no control-dependent noise and no internal noise. We then used the 1-D reaching task of
Sec. A.4.1, with slightly adjusted parameters (see Table 9), and swept the magnitude of multi-
plicative sensory noise σρ. We included a small but non-zero intermediate state cost by setting
Qt = 0.0001Im , ∀t = 1, ..., T − 1, where Im is the m × m identity matrix, and we considered
process noise σξ affecting all components of the state.

For each value of σρ, we computed the estimator gains Kt using the algorithm of Wu et al. (2016)
and then optimized the controller Lt using our analytical M-Match update, and we compared with
the full solution of our M-Match algorithm, where both control and filter gains are jointly optimized.
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Our results show that when σρ = 0, the methods behave identically, as expected from classical
LQAG theory where the separation principle holds. However, as σρ increases, using the gains
Kt returned by Wu et al. (2016) leads to markedly sub-optimal control performance, even when
Lt is re-optimized using our M-Match algorithm. In contrast, the full M-Match solution achieves
substantially lower expected cost (Fig. 8).

Figure 8: Effect of Multiplicative Sensory Noise on Control Performance. Expected cost for the M-
Match solution (red) and for the Kalman-filter-based approach with re-optimized Lt (blue), plotted
as a function of sensory multiplicative noise σρ. Curves show the analytically computed expected
cost. The M-Match solution consistently achieves lower cost as σρ increases, demonstrating that a
fixed Kalman estimator becomes suboptimal when multiplicative noise is present and joint estima-
tion–control optimization is required.

These findings confirm the theoretical expectation: enforcing a fixed Kalman-filter structure (such as
that of Wu et al., 2016) degrades performance once multiplicative or internal noise is present. In such
settings, the estimator must adapt to the control law and vice-versa. Therefore, joint optimization is
essential.

Table 9: Parameters of the single-joint reaching task for the Kalman filtering test

Name Description Value

∆t time-step (s) 0.010
m mass of the hand (Kg) 1
τ1 first time constant of the second order low pass filter 0.04
τ2 second time constant of the second order low pass filter 0.04
r Auxiliary variable for control-dependent cost 0.001
wv Auxiliary variable for task-related cost 0.2
wf Auxiliary variable for task-related cost 0.01
T time steps 1000
x1 Target position 0.0
σx Target position standard deviation 0.0
σξ std of dynamics noise ξt 0.5
σω std of the sensory noise ωt 0.5
σε std of the control-dependent noise εt 0.0
σρ std of the sensory-dependent noise ρ ∈ [0.0, 5.0]
ση std of the additive internal noise ηt 0.0

A.4.8 ROBUSTNESS TO NON-GAUSSIAN NOISE

As outlined in Sec. 3, the solutions derived through our M-Match or M-Mis algorithms depend
only on 1st and 2nd order moments of the noise terms. Consequently, no distributional assumptions
beyond finite covariance are required, and the method applies to any noise source with well-defined
second moments. To validate this point empirically, we repeated the Monte-Carlo simulations of
the 1D reaching task of Appendix A.4.1 – with the same parameters as Appendix A.4.1 – using
three noise distributions for all noise terms with matched variance but strongly differing shapes.
Besides the Gaussian baseline, we tested: (i) heavy-tailed Student-t noise (ν = 5), introducing
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occasional large outliers; and (ii) skewed β(2, 5) noise, rescaled to zero mean and matched variance,
introducing substantial asymmetry and bounded support. All control, filter, and internal parameters
were kept fixed across conditions.

Figure 9: Robustness to Non-Gaussian Noise. Mean total cost (± standard error of the mean across
50, 000 Monte-Carlo trials) obtained under three noise distributions with matched variance: Gaus-
sian (baseline), heavy-tailed Student-t (ν = 5), and skewed β(2, 5). Despite strong differences in
shape, tail behavior, and symmetry, all distributions yield nearly identical expected cost, confirming
that—under linear dynamics and quadratic cost—performance depends only on second moments
and not on Gaussianity.

Because the dynamics are linear and the cost is quadratic, the expected cost should depend only
on second moments and therefore remain invariant across noise distributions. This prediction is
confirmed in Fig. 9: the mean total cost is nearly identical for all three distributions, despite their
markedly different shapes. This numerical result further supports the theoretical claim that the
framework does not require Gaussian noise, and that performance depends solely on the covariance
structure of the perturbations.

A.5 LLM USAGE

Large Language Models (LLMs) were used exclusively to assist with writing clarity – specifically
for grammar correction, wording suggestions, and improving readability. No part of the technical
content (including research ideas, mathematical derivations, proofs, analyses, experiments, or re-
sults) was generated by an LLM. The authors take full responsibility for all scientific content in the
manuscript.
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