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ABSTRACT

Natural agents interact with their environment through noisy and continuous sen-
sorimotor loops. Stochastic optimal control provides a principled framework for
this problem, but existing analytical solutions are restricted to linear dynamics
with Gaussian observations and additive noise. They cannot address scenarios
with multiplicative noise in control or observations, and with internal noise affect-
ing estimation — features central to biological and robotic systems. We provide
a provably convergent algorithm that computes fixed-point controller—filter solu-
tions for linear dynamics with quadratic costs under multiplicative and internal
noise. Our method overcomes the limitations of prior analytical approaches and
improves the efficiency of state-of-the-art gradient-based methods by more than
three orders of magnitude in realistic tasks. Importantly, it also optimizes inter-
nal dynamics, relaxing the classical assumption that internal models must match
external dynamics. Allowing such model mismatch yields substantially better
performance under internal noise. In sum, we provide the first full solution to
stochastic optimal linear control under multiplicative and internal noise, covering
both matched and mismatched internal models.

1 INTRODUCTION

Understanding the computational mechanisms that govern the sensorimotor system in humans and
other animals is a long-standing goal in systems and computational neuroscience (Wolpert et al.,
1995; Shadmehr & Krakauer, 2008; Franklin & Wolpert, 2011} [Todorov, 2004). Yet, developing
formal and mathematically tractable models that accurately capture these mechanisms remains an
open problem, with far-reaching implications for fields such as artificial intelligence and robotics.
In this context, stochastic optimal control theory provides a powerful mathematical framework for
explaining behavior in terms of optimality principles, accounting for uncertainty and variability in-
herent in biological systems (Todorov & Jordan, 2002} Todorovl [2005; [Straub & Rothkopf, 2022
Schultheis et al., 2021} |[Faisal et al., |2008). The seminal work in(Todorov|(2005)) extended the classic
Linear-Quadratic-Additive-Gaussian — LQAG — framework (usually referred to as Linear-Quadratic-
Gaussian — LQG — problem (Davis| 2013))) to incorporate a more biologically realistic noise model
of the sensorimotor system. This includes control-dependent noise (Schmidt et al., |1979; [Todorov},
2002)), signal-dependent sensory feedback noise (Todorov & Jordan, [2002; Harris & Wolpert,|1998)),
and internal neural noise (Faisal et al., 2008; Moreno-Bote et al., [2014; |Churchland et al., 2006) —
all of which are essential for reproducing key signatures of human motor behavior (Todorov, |2005;
Flash & Hogan, [1985; |[Harris & Wolpert, |1998; [Todorov, |2002; |Schmidt et al., |1979). However, ex-
plaining behavior through optimal control requires first obtaining optimal solutions to the underlying
problem (Todorov, [2005} |[Schultheis et al., [2021]).

The study of [Todorov|(2005) provided the first analytically-derived algorithm for optimal linear con-
trol under multiplicative and internal noise. Despite its wide applicability (Schultheis et al., 2021}
Straub & Rothkopf] 2022;|Sensinger & Dosen, 2020; Liu & Todorov, [2007; [Izawa et al., 2008} Take1
et al.,[2021;|Shanechi et al.| 2013)), [Damiani et al.|(2024)) demonstrated that this solution fails to yield
truly optimal results in the presence of internal noise, due to the incorrect assumption of unbiased
estimators and its connection with the orthogonality principle (Appendix [A.T). More recent theoret-
ical work has continued to assume unbiased estimation in extended applications, including iterative
LQG (iLQG) and differential dynamic programming (DDP) (Li & Todorov} 2007). To address this
limitation, Damiani et al.|(2024) introduced a numerical gradient-based algorithm that achieves op-
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timal performance, in terms of cost-minimization, under multiplicative and internal noise, albeit
at high computational cost, making it impractical for inverse optimal control applications. They
also proposed an analytical counterpart, the FPOMP algorithm, which solves the problem in the
one-dimensional case and, in higher dimensions, only under additive noise, due to the increased
mathematical complexity of the full setting. Consequently, no previous work provides a general
analytical solution or formal convergence guarantees.

In this work, we derive an algorithm that fully solves the stochastic control problem of [Todorov
(2005)); our algorithm exploits coordinate descent, and we prove its monotonic improvement and
convergence to a critical point (Appendix [A.Z). This overcomes prior analytical limitations and,
unlike the state-of-the-art numerical methods, yields an analytically-derived algorithm for the full
problem with speedups of more than three orders of magnitude in realistic tasks. Our framework
thus provides both a conceptual advance and a major efficiency gain over existing approaches.

A further limitation of current theoretical work on stochastic optimal control is the reliance on
two core assumptions: (1) a strict separation between estimation and control, and (2) the matched-
dynamics assumption, i.e., that the internal model used for estimation and control perfectly matches
the dynamics of the external environment. These limitations underlie both Todorov| (2005) and
Damiani et al.| (2024), where noisy sensory feedback is first processed by a Kalman filter to produce
a state estimate — based on the same forward model of the environment — which then guides linear
control actions. Within the classical LQAG problem, this methodology is mathematically justified
by the separation principle (Davis| 2013). However, once multiplicative and internal noise are in-
cluded, the separation principle no longer holds, making estimation and control inherently coupled
(Todorov}, |2005). Moreover, the assumption that the agent’s internal model exactly matches the
external dynamics strongly limits the realism of this approach, overlooking a substantial body of
research emphasizing the role of internal models in motor control (Wolpert et al., |1995; Shadmehr
et al.,[2010; [Kording & Wolpert, 2004} [Kawatol [1999; |Golub et al., [2015)).

Our second main contribution is to relax these assumptions by considering the more general case
where the internal dynamics — used by the agent to process sensory stimuli and generate motor out-
puts — need not match the dynamics of the external world and must themselves be optimized (Sec.
[@). We refer to the classical case as Model Match (M-Match), and to our extension as Model Mis-
match (M-Mis). We extend the algorithm developed for the M-Match case (Appendix [A.2.2) to this
scenario, providing an analytical solution for mismatched internal models. In Sec. 5] we demon-
strate that this additional flexibility leads to improved solutions relative to M-Match, particularly in
the presence of internal noise. Finally, we illustrate the generality of our framework by applying
it to the steering of linear neural populations, which connects directly to computational principles
underlying reservoir computing (Jaeger & Haas| 2004} Maass et al., 2002) and, more broadly, to
recurrent neural network models that generate task-relevant outputs (Sussillo & Abbott, 2009).

2  STOCHASTIC LINEAR OPTIMAL CONTROL: PROBLEM FORMULATION

We first review the standard Linear-Quadratic-Additive-Gaussian (LQAG) problem, then extend the
noise model, following Todorov| (2005)), to include multiplicative observation, control noise, and
internal noise, yielding the Linear-Quadratic-Multiplicative-Internal (LQMI) formulation. In both
LQAG and LQMI, internal and state dynamics are matched; the more general mismatched case is
discussed in Sec.

2.1 STOCHASTIC OPTIMAL CONTROL UNDER MULTIPLICATIVE AND INTERNAL NOISE

In the standard LQAG formulation, an agent receives noisy observations y; € R¥ (t = 0,1,...,T)
from a state variable x; € R™,

Yy = Hry + wy (D

where H € R¥*™ is the observation matrix and w; € R” is a zero-mean noise with covariance ¥,,.
The control problem consists in finding the optimal control signal u;(y;—1, ..., yo) € RP that steers
the stochastic linear dynamical system

Ty = Axy + Bug + &, 2
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0 as to minimize the expected cumulative quadratic cost

T
C = Z]E [J;;erxt + u:Rtut] . 3)
t=0
The dynamics of the state variable, Eq. [2] is assumed to be linear in state and control with matrices
A € R™™ and B € R™*P and corrupted by zero-mean noise & € R™ with covariance X.
All noises are uncorrelated in time and are not required to be Gaussian. We observe that time-
dependent matrices in the dynamics or noise can be trivially incorporated. The initial condition of
the dynamics is xg, usually drawn from a Gaussian distribution. The control signal w;(y:—1, -.-, Yo)
at time t is allowed to depend only on previous observations, but not on the state nor on future
observations to enforce partial observability and causality, respectively. The expectation in Eq. [3]is
over the realizations of the noise and the initial conditions. Each term in the sum is the expected
instantaneous cost at time ¢. The total expected cost C' penalizes large control signals — reflecting
energetic or metabolic constraints — as well as deviations from desired trajectories or targets, through
the symmetric positive semidefinite matrices R, € RP*P, R, > 0, and Q; € R™*™, Q; > 0,
respectively.

The LQAG problem admits an analytical solution (Davis}|2013)), which is the combination of a linear
Kalman filter, providing optimal estimates Z; = z; of the partially observable state x;, and a linear
feedback controller defined by u; = L;z;, which are computed independently, without mathematical
dependence between control and filter gains — the so-called separation principle (Davis, [2013). We
return to this point in Appendix where we empirically examine the consequences of relying
on this principle. The internal variable becomes a state estimate evolving according to

zi41 = Azp + Buy + Ky (ye — Hz) 4

where K; € R™** is the Kalman gain at time ¢. Solving the optimal control problem therefore
consists in computing both the optimal filter and control gains, respectively K; and L; € RP*™ un-
der the constraint that the internal dynamics follow the same forward dynamics as the state variable
(matrices A and B; see Appendix for the well-known solutions).

While the analytical tractability of the LQAG framework is a key advantage, it comes at the expense
of reduced biological realism. In particular, the noise model does not account for multiplicative
noise, also neglecting internal sources of variability (Faisal et al., |2008; Moreno-Bote et al., 2014;
Churchland et al., [2006; Franklin & Wolpert, 2011). To consider a more general and realistic noise
model, following [Todorov| (2005)), we first introduce multiplicative noise — both control-dependent
and observational — into the system and observation dynamics in Egs. This leads to the modified
equations

Tep1 = Axe + Bug + & + Zl eiCiuy )
Yo = Hoy +wi + Zz P, Dy . 6)

In this framework, executing a control input u; adds noise whose magnitude scales with the input
itself (Sutton & Sykes, (1967 [Schmidt et al.l [1979; Harris & Wolpert, |1998)), Eq. E} Conversely,
sensing the partially observable state z; introduces sensory noise whose magnitude scales with the
state itself (Burbeck & Yap, |1990; Whitaker & Latham, |1997)), Eq. @ The matrices C; € R™*P
and D; € R¥*™ define fixed gain patterns for the multiplicative noise components, while ¢; € R¢
and p; € R4 represent zero-mean noise vectors, each with identity covariance, ¥. = I.x. and
Y, = Igxq4. As in the LQAG problem, control and observation noises are assumed to be mutually
independent, and also independent from both the additive and multiplicative noise components.
Finding the optimal control signal ws(y;—1, ..., yo) that minimizes the cost in Eq. [3| with system
and observation dynamics given by Egs. [5llf] is a challenging problem with no known solutions,
even in the case of Gaussian noise. In particular, no sufficient statistic, analogous to Z; = z, is
known that would allow for a Kalman filter-like recursion. Following [Todorov]| (2005)), we assume
that the control signal u; can only linearly depend on the estimate z; € R™, that is, uy = L;z¢, with
Ly € RPX™ "and that the state estimate obeys the matched dynamical equation

Zi41 = Az + Buy + Ke(ye — Hze) + ¢, ue = L2y, )

with the same terminology as in Eq. 4] but where we have introduced an internal additive noise term
n; € R™, with zero mean and covariance YJ,,. The internal noise may represent internal neural vari-
ability (Faisal et al., 2008; [IMoreno-Bote et al.,|2014; |(Churchland et al., 2006} [Franklin & Wolpert,
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or flaws in the filtering process itself, and it is introduced here to obtain a more realistic and
general model 2005)). Taken together, incorporating multiplicative and internal noise with
the assumptions of a linear Kalman filter for state estimation and a linear control policy based on an
internal estimate whose forward dynamics match those of the state (matrices A and B) gives rise to
the more general Linear—Quadratic—Multiplicative—Internal (LQMI) problem. Solving this problem
involves determining the optimal control gains Lg . 7 and filter gains Ky . 7 that minimize the
quadratic cost function in Eq. [3]under the system, observation and estimate dynamics in Eqs. [5]6][7]

3  SOLVING THE LQMI PROBLEM

We derive an algorithm that is guaranteed to converge to a critical point of the cost function in Eq. 3]
under the dynamics in Egs. [5} [] and [7] Importantly, this guarantee holds even though the problem
is non-convex: indeed, the global LQAG problem in the fully observable setting — which is a special
case of our LQMI formulation — is itself non-convex (Fazel et all 2018). Our algorithm yields
improved pairs of control and filter gains, fully solving the LQMI problem. Complete derivations
and pseudocode appear in Appendices[A.2]and[A-3.1]- Algorithm[I] Below, we summarize the main
ideas and corresponding equations.

Assuming a linear control signal u; = L;z;, we first rewrite the cost function in Eq. E] as
C = S (tr(QuS#*) + tr(L R,LyS7*)), where we introduce the 2nd-order moment matri-
ces SP¢ = [dadzpi(z,2)za’, S7* = [drdzpi(z,2)zz", and SF* = [dxdzp(x, 2)xz ", with
pt(x, z) being the joint distribution of z and z at time ¢ generated by previous control and filter gains
and averaging over noises and initial conditions following the distribution py(z, z). To find the con-
ditions for extrema on the control Lo . 7 and filter Ky . 7 gains we add Lagrange multipliers and
define the new objective
T T+1
Ce=> (tr(QuSy™) + tr(L RiLiSF*)) — Y (tr(MGy®) + tr(G7) + tr(IhGY7)) , (8)
t=0 t=1
where A4, ©; and T'; are R™*™ matrices of Lagrange multipliers (see Eqs. in Appendix EZ[)
The constraints Gy* = G7* = G7* = 0 are given by the temporal evolution of the 2nd-order
moment matrices S7*, S7* and S77, respectively, between two consecutive time steps ¢ and ¢ + 1,
obtained from Eqs. Bl6l[7] (see Appendices[A2] and%for details). A crucial step in solving the
LQMI problem is to observe that the total cost in Eq. [3|admits the decomposition

C = C<t + Ct (9)

for any ¢, where C; = Zf;lo tr(Q, S + LT R, L,;S%) and the cost-to-go from time ¢ onward is
defined as Cy = tr(A+ST* + Q:SF* + T'1SP#) + 7¢. Thus, C; depends on the Lagrange multipliers
(given by Eqs.[I6) and on the additional scalar parameter ~; (following Eq. [T9). Given this structure,
and since L, affects only the expected cost from time ¢ onward, we can locally optimize L, at each
time step — as shown in Appendix [A2]—- as

L; = argmin C; = Efl (Ftsfz(stzz)_l + Jt) ) (10)
Ly

(with matrices E;, F} and J; defined in Appendix [A:2.6) while keeping the rest of gains fixed, i.e.,
Lo,...1—1,4+1,...,7 and Ko 7 are held constant.

For each local subproblem (i.e., optimizing L, with all other gains held fixed), a global minimum
for L, exists because C} is convex. As shown in Appendix@ starting from a set of gains L(™ =
L((f')”’T and K(") = Ké") -+ we can update the control gains by optimizing L; sequentially from
t = 0 to T using Eq. This yields the new set of gains L1 after which the Lagrange
multipliers are recomputed backward in time using Egs. [I6] Because of the local optimization, we
obtain that the cost is non-increasing, that is, C(L("*1 K(™) < C(L™, K(™). A full forward
pass that sequentially optimizes the control gains, followed by a full backward pass of the multipliers
is referred to as control pass. An analogous procedure can be applied to optimize K, (Eq. [26]in
Appendix [A.2), defining the corresponding filter pass.

In conclusion, starting from arbitrary L and K(© and distribution of initial conditions po(z, 2),
we can alternate the control and filter passes, so that C(L() K©) > (LM K©) >
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c(ILM KWy > .. >cLrt) KMy > o) K+Y) > > Cpin > 0. Since the
series is non-negative, it converges to a total cost no higher than the initial one with optimal filters
L* = L(*°) and K* = K (), In summary, in our coordinate descent algorithm, each block update
solves a convex quadratic subproblem exactly, which guarantees that the total cost decreases mono-
tonically and therefore converges. Because the converged solution is also a stationary point of the
Lagrangian, Eq. [§] it corresponds to a fixed point of the original cost function (see Appendix [A.2).
Following this reasoning, we prove

Theorem 1. Starting with arbitrary L(©) and K° and distribution of initial conditions pq (z,2), the
coordinate descent algorithm defined by iterating in alternation control and filter passes converges
to an improved pair of control and filter gains L* and K*. The improved pair corresponds to a
critical point of the cost function in Eq.

We first remark that the Lagrange equations may admit multiple solutions. In practice, our algorithm
converges to different critical points depending on the initialization, but when initializing the control
and filter matrices trying to impose the orthogonality principle and then freely running the algorithm,
the best critical point is found, empirically. Secondly, it is worth mentioning that in the derivation of
our algorithm we do not assume the orthogonality principle (OP: S7* = S7* for all ¢, equivalent to
E[(z¢ — 2¢)2,'] = 0), which is shown (Sec. and Appendix to be violated in the general case
(specifically, whenever there is internal noise). Thirdly, we have not assumed any parametric form
for initial distribution po(z, z). Finally, as shown in Eqs. and[32] only the first and second
noise moments enter the moment propagation and optimality conditions. No further assumptions are
required beyond finite second moments, so the method applies to any noise distribution with finite
covariance. In AppendifA-4.8|we validate this empirically using non-Gaussian noise.

3.1 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT AT ZERO INTERNAL NOISE

Theorem 2. Take initial condition po(x, z) such that S§* = S§*. A solution to the Lagrange

equations[I3|[T4IT3][16|is given by the orthogonality principle Sf* = S{* fort = 1,..., T, iff internal
noise is zero, that is, >, = 0. The solution corresponds to a critical point of the cost in Eq.

See the proof in Appendix [A.2.7] We note that OP is implied by the unbiasedness condition (Ap-
pendix [A.T)), but not vice versa. While unbiasedness was empirically shown to be violated in[Dami-|
(2024), we have now formally demonstrated that only the weaker OP condition is required
to obtain a critical point of the cost. In Appendix[A.2.8] we further show that, without multiplicative
or internal noise, enforcing OP recovers the classical LQAG solution.

4 OPTIMAL CONTROL WITH MODEL MISMATCH

We have shown that an analytical solution to the LQMI control problem can be derived requiring
only standard assumptions: linear Kalman filtering for estimation and linear control laws. However,
a central assumption remains unaddressed. By optimizing estimation and control gains (Ko . 7
and Lo, .. ) one implicitly assumes i) that the agent’s internal model exactly matches the true dy-
namics, and ii) that optimal behavior emerges from optimizing estimation and control as a partially
decoupled process. This formalization weakens the notion of partial observability by presuming full
access to the external world’s dynamics. Although such knowledge could, in principle, be learned,
it imposes strong constraints on the agent’s internal strategy, leaving little room for internal compu-
tations that are structurally independent from the environment.

This perspective also risks underestimating the role of internal representations, which are central
to many motor control studies (Wolpert et al.| [1995], [Kawatol [1999} [Shadmehr & Krakauer, 2008}
[Franklin & Wolpert, 2011} [Golub et al.,[2013;2015). Beyond these classical formulations, a broader
neuroscience literature has shown that internal models need not faithfully match the external dynam-
ics. Frameworks such as optimal feedback control and forward-model learning posit that internal
dynamics may be simplified, biased, or task-dependent (Kawato| [1999} [Wolpert & Ghahramanil,
2000}, [Shadmehr & Holcombl, [1997} [Scotd, 2004). Empirical work further demonstrates that neural
population activity often reflects internally generated dynamics optimized for control or prediction

rather than a veridical copy of the physical plant (Churchland et all, 2012} [Gallego et all, 2017).
These ideas align with the conceptual motivation behind our Model-Mismatch framework, intro-
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duced next, where the internal model is optimized jointly with control rather than constrained to
follow the true system dynamics.

Allowing internal models to differ from the laws governing the external world extends the flexibil-
ity of the stochastic optimal control framework, opening the door to a richer class of biologically
plausible computations. In addition, this flexibility may lead to improved solutions in terms of cost
minimization, particularly when internal representations are affected by noise (Hazon et al., 2022}
Panzeri et al., [2022; [Moreno-Bote et al.l [2014).

We then consider a more general control problem where the internal dynamics are also optimized
and may become mismatched with the actual forward dynamics of the state variables. We formalize
the new Model Mismatch (M-Mis) framework over an even more general LQMI problem than the
one described in Sec. [2] allowing fully generalized multiplicative noise: both the state and the
internal dynamics may be affected by noise that depends on the state and on the internal variable.
We define the control problem as

Tpy1 = Axy + BLiz +nf .y = Hey +nf 200 = Wiz + Poye + 1 (1m)
ng =€ + Zr N USx: + Zlftc‘/thzt , ced{xy, 2},

where notation follows Egs. [3}{7} with appropriate matrix dimensions and noises with covariances
E[efef] = Yeeder, and 1.i.d. one-dimensional noises 7{ and & with unit variance. We introduce
additive and multiplicative noises n; in the dynamics, observation and internal dynamics z;. Sums
over r and [ can be c-dependent. We consider control-dependent noise, where the control is given by
u; = Lz, rather than modeling the multiplicative noise as directly proportional to z;. P, € R™*™
is a pseudo-filter matrix that takes the observation y; and inputs it to the dynamics of the internal
variable z;, which follows a linear system with time-dependent forward dynamics W; € R™*",

Importantly, in the M-Mis framework, the internal variable z; integrates both control and estimation
signals, unlike in the Model Match case where z; is constrained to represent a state estimate. In the
former, since W; need not match the external dynamics, z; can evolve independently of x; and en-
code dynamics optimized for control rather than estimation. The internal variable z; has dimension
n, while the control signal u; = L;z; is again p-dimensional, with L; € RP*™. The problem con-
sists in optimizing the time-dependent, forward dynamics Wy . 7, pseudo-filter Py . 7 and control
Ly,....r matrices so as to minimize the cost in Eq. 3} with initial condition py(x, z). Using the same
procedure as in the Model Match approach (Sec. [3) — since the two problems share the same under-
lying mathematical structure — we derive a coordinate-descent algorithm guaranteed to converge to
a critical point of the cost (Appendix [A.2.9} pseudocode in Appendix [A.3.2] Algorithm ).

5 EXPERIMENTS

5.1 COMPARISON WITH CURRENT NUMERICAL AND ANALYTICAL METHODS

To compare against the current state-of-the-art numerical approach for LQMI cost minimization —
the gradient- descent (GD) method of [Damiani et al|(2024) — we apply our algorithm to the same
single-joint reaching task used in [Todorov| (2005) and Damiani et al.| (2024) (problem details in
Appendix . Our M-Match algorithm (Algorithm [I)) converges to a critical point of the cost
function (Fig. [Ip) and recovers the same optimal control and filter gains as the GD approach (control
gains shown in Fig. [Tp), while achieving a substantial computational speedup. On a standard laptop,
our algorithm (Algorithm|[T)) converges in approximately 6 seconds, compared to more than 5 hours
for the GD method, and achieves the same expected cost, C' = 0.32. In Appendix [A:4.2] we
further evaluate computational scaling on increasingly high-dimensional systems (up to 100 state
dimensions), demonstrating both robustness and a growing advantage over GD. In the largest setting
tested, runtime decreases from more than two days to only 2.7 seconds. Moreover, we confirm
the findings of [Damiani et al.| (2024)), showing that the suboptimal (see the discussions in Sec. |I|
and Appendix [A.1) solutions obtained with the algorithm of [Todorov| (2005) diverge substantially
once internal noise is present, yielding much larger (in absolute value) control gains (Fig. [Tk) and
significantly worse performance, with an expected cost of C' = 0.50.
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5.2 OPTIMAL CONTROL IN MULTIDIMENSIONAL MOTOR TASKS

We then apply the Model Match (M-Match), Model Mismatch (M-Mis), and (Todorovl [2005)) (TOD)
approaches to two additional motor-control tasks.

3D Reaching Task We first examine a 3D reaching task — a multidimensional extension of the
classic single-joint paradigm of the previous Section — with a 6-dimensional state including posi-
tions and velocities (m = n = p = k = 6; see Appendix for details). The coordinate-
descent algorithm for the M-Mis framework (Algorithm J2)) converges reliably across a wide range
of internal-noise levels o, (Fig. Ep), achieving substantially lower cost as internal noise increases
(Fig. ) when compared to the M-Match and TOD solutions. In Fig. , W, = A+ BL, — P.H
(with P, corresponding to K, in Eq. [7) denotes the forward dynamics required for M-Mis to reduce
to the classical M-Match case. Indeed, setting W; = W, recovers the Kalman filter update for z;
in Eq. |'1;1'|, so that z; acts as a standard state estimate of x;. As internal noise increases, however,
the optimal W, deviates progressively from WW; (Fig. , indicating that internal representations no
longer attempt to mirror the external dynamics. Instead, z; becomes an abstract internal variable
that integrates sensory feedback and past information in a way that supports robust control rather
than faithful state estimation. Consequently, the internal variable z; can no longer be interpreted as
an estimate of the state x;; instead, it becomes a more abstract representation that integrates sensory
feedback and past information to support optimal control (Fig. [Tg), yet drastically reducing the cost
- Fig. [Te. Appendix [A:4.3]provides additional analyses illustrating how sensory weighting, control
readouts, and internal dynamics adapt to internal fluctuations in the M-Mis framework. To further
illustrate the conceptual shift, Appendix [A:4.4] outlines example behavioral and neural predictions
that distinguish the Model Mismatch and Model Match approaches.

(a) 0.50

0.45

Lt
25 50 75 100 0 25 50 75 100
t t t

w— M-Mis 1.0
> M-Mis

w2 M-Match
2 M-Match

10° 10" 10° 0
Iteration

Figure 1: Comparison With Current Methods and Cost Reduction via Model Mismatch. (a) Expected
accumulated cost C' (Eq.[3), during joint optimization of control and filter gains using Algorithm I}
(b) Optimal control gains L; obtained with the M-Match algorithm — Algorithmm— (red, left) and
with the numerical gradient-descent approach of [Damiani et al|(2024) (green, right). Here, L;
denotes the i-th component of the 4-dimensional control-gain vector at time ¢. (c¢) Same as (b),
but for the solutions obtained using the algorithm of (d) Convergence of the Model
Mismatch algorithm — Algorithm [2| - for different internal noise levels o,,. (e) Expected cost for
TOD (blue), Model Match (red), and Model Mismatch (purple). (f) Time-averaged
norm of W; — W;. (g) Second component of x; and z; (mean £ SEM, o,, = 0.1) for M-Mis (left)
and M-Match (right).

Application to a Redundant Arm-Control Task We next evaluate our algorithms on a more re-
alistic and structurally complex motor-control problem: a 3-DOF planar arm performing a reaching
movement around a stable reference posture. The arm is actuated by nine muscle-like control chan-
nels that map linearly onto three joint torques through a matrix S (the full model and parameter
choices are reported in Appendix [A:4.3). This actuation redundancy (9 controls for 3 torques) is a
hallmark of biological musculo-skeletal systems and is widely studied in robotics and computational
motor control to analyze coordination under redundancy (Tahara et al.,[2009).

As in the previous 3D reaching task, the M-Mis framework yields substantially more robust perfor-
mance across internal-noise levels, consistently achieving lower cost than both M-Match and TOD

(Todorov} [2003)) (Fig. 2h, purple curve).
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Because musculo-skeletal systems admit multiple muscle activation patterns that produce identical
torques, a standard approach for understanding coordination is through muscle synergies, i.e., low-
dimensional patterns of co-activation (d”Avella & Bizzil 2005}, [Tresch et al, 2006} [Valero-Cuevas|
et al} 2009} [Kutch & Valero-Cuevas|, 2012} [Todorov & Jordan, 2002). Synergy analyses show
that biological motor systems concentrate control effort along task-relevant directions, in line with
the “minimal intervention principle” (Valero-Cuevas et al 2009} [Safavynia & Ting, 2012). Our
solutions exhibit the same structure. We decompose the control signal wu; using the standard pseu-
doinverse projection: u;*" ™" = STSu, and u!™! = (I — STS)u,, where ST is the pseudoinverse
of S, yielding components in the torque-producing and muscle null spaces (with Su!! = 0 by
construction). Computing the projected effort E[|u}"|?] for proj € {torque, null} shows that vir-
tually all control effort lies in the torque-producing subspace, with negligible activation in the null
space (Fig. [2p; identical results for M-Mis, not shown). Thus, redundancy is resolved by selecting
minimal-effort torque-producing patterns rather than co-activating muscles along null directions —
consistent with empirical observations in human and animal motor control (Valero-Cuevas et al.,

[2009) and widely used strategies in robotics (Dietrich et al., 2015)).
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Figure 2: Task-Aligned Control Under Model Match and Model Mismatch.(a) Expected cost for the
algorithm from [Todorov| (TOD, blue), Model-Match (M-Match, red) and Model-Mismatch
(M-Mis, purple), averaged over 500 Monte-Carlo trials (shaded areas show the standard error
of the mean). (b) Squared magnitude of the time-dependent control signal projected onto the
torque-producing subspace and onto the muscle null-space, with proj € {torque,null} defined
as u;”" " = St Sy, and u' = (I — STS)u,. Curves are averaged over 500 trials (standard error
mean shading barely visible) for o, = 0.23 in the M-Match solution (M-Mis shows similar trends;
not shown). (c¢) Time-averaged logarithm of the pseudodeterminant of the control gain matrices
K; in the M-Match framework as a function of internal noise. The log of the pseudodeterminant
is computed as the sum of the logarithms of all singular values of K; above a numerical tolerance
(10~1'2). (d) First (left panel) and fifth (right panel) component of the vectors z; and z; for a repre-
sentative trial of the M-Match solution with o, = 0.23 (temporal window between 1-2 s shown for
clarity). (e) Alignment between the state x; and the internal state z;, averaged over time and over
500 trials, in the Model-Match framework (left panel) and in the Model-Mismatch framework (right
panel). Circles indicate alignment between the full vectors; squares indicate alignment restricted to
cost-irrelevant dimensions (the last three components, i.e. the angular velocities, which are weakly
penalized by the cost J;); and diamonds indicate alignment restricted to cost-relevant dimensions
(the first three components, i.e. joint angles).

The performance gap between the M-Match and M-Mis frameworks in Fig. Zh stems from fun-
damentally different internal computations. In the M-Match case, the internal dynamics tend to
channel variability into cost-irrelevant and unobserved state dimensions, thereby stabilizing the con-
trol output (in this task only joint angles are penalized and observed, as defined by () and H) — see
Appendix [A4.3] for additional analyses. In parallel, sensory feedback gains increase with internal-
noise magnitude (Fig. 2k shows the time-averaged log-pseudodeterminant of K, i.e. the sum of the
logarithms of its non-zero singular values), allowing the system to compensate for internal fluctua-
tions while maintaining accurate estimates of the cost-relevant state components. Consequently, on
individual trials, the first three components of z; reliably track the corresponding components of the
physical state (Fig. 2l, left panel), whereas the remaining components diverge and decouple from
x; (Fig. 2, right panel). This strategy remains stable across noise levels (see Appendix [A:4.3). In
the M-Mis framework, by contrast, the internal dynamics are no longer constrained to implement a
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Kalman-like recursion. Instead, they reorganize to stabilize the entire control loop, producing inter-
nal representations that no longer track x; (consistent with Figs. [Tf-g), but instead adapt to noise in a
way that supports robust control (see Appendix[A.4.3)). Fig. 2k illustrates this difference: we plot the
alignment (absolute cosine similarity) between z; and z; across state dimensions. In M-Match, the
observed—and cost-relevant components remain strongly aligned with z;, while the cost-irrelevant
ones progressively decouple as internal noise grows. In M-Mis, all components show uniformly low
alignment with z,, indicating that the internal variable encodes representations optimized for control
rather than for state estimation.

Taken together, these results show that our algorithm scales naturally to high-dimensional, redun-
dant biomechanical systems and yields clear, testable predictions. In M-Match, internal noise drives
a noise-suppression strategy that channels variability into unobserved, cost-irrelevant dimensions;
in M-Mis, synergies remain stable while internal dynamics reorganize to preserve output stability.
These contrasting computations lead to experimentally accessible signatures — such as EMG pat-
terns, muscle-synergy adaptation, alignment or misalignment between neural and behavioral sub-
spaces, and noise-dependent changes in sensory weighting — that can be directly probed in human
motor control and robotics.

5.3 NEURAL POPULATION STEERING VIA MODEL MISMATCH CONTROL

Finally, we apply our framework to a neural population—steering task, where an unstable recurrent
network is driven toward a target state via optimized linear readouts from another population —
a setting reminiscent of biologically inspired machine-learning approaches (Jaecger & Haas| 2004}
[Maass et al.l 2002} [Sussillo & Abbott, 2009). This task connects to recent work using optimal
control to study neural population dynamics (Costa et al Kao et al, 2021}, [Slijkhuis et al
2023} [Athalye et all 2023). Classical approaches (Todorovl, 2005} |[Damiani et al., 2024) require the
internal variable z; to behave as a Kalman filter estimate of z; by enforcing the structural constraint
W, = A+ BL, — P,H in Eq. [T]] so that z; follows Eq. In contrast, the Model Mismatch
framework removes this constraint by allowing W, to be freely optimized, enabling z; and z; to
represent distinct neural populations with independent connectivity matrices W and A (Fig. [3p).
The M-Mis algorithm also supports partial optimization; for instance, W and P can be fixed (e.g.,
random or biologically plausible) while optimizing only L;. Such configurations are incompatible
with the Model Match framework, which ties z;’s connectivity to z; and forces W; to vary over
time, making it unsuitable for simulating interactions between distinct neural populations.
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Figure 3: Model Mismatch for Neural Population Steering. (a) Sketch of the neural population
steering task. (b) Average (over noise realizations) norm of x;, z;, and of the control signal u; =
L,z with error bars (standard error of the mean). (c) Distribution of the control signal over time
and realizations with Gaussian fit (left), and average control magnitude (over time and realizations)
received by each unit as a function of its initial absolute activity (right). (d) Activity of two units
from the population vector z; in a single trial. (e) Heatmaps of the matrices L; at two time points:
early (left) and mid-trial (right).

We consider two populations of Ny = 100 linear neurons, each with sparse, time-invariant ran-
dom connectivity (Appendix [A4.6]for details). The activity of the population z; is read out through
a time-varying matrix L, optimized to steer the population z; toward a target while minimizing
control effort (Fig. [Bh). The population z; receives inputs from x, through sparse random pro-
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jections. The Gaussian-distributed recurrent and feedforward matrices (A, W, P) follow standard
assumptions from dynamical mean-field theory (Sompolinsky et al.,[1988]; [Rajan et al.} 2010).

We optimize only the readout weights Ly . 7 keeping all other parameters fixed. As a result, z; is
reliably steered toward the target (Fig. [3p) through a distributed control strategy: all units in the
population receive, on average, similar amounts of control (Fig. Bk). Despite this overall uniform
drive, the control selectively targets the units initially farthest from the target (zero in this coordinate
frame), as shown in Fig. Bd. This selective modulation likely reflects the interplay between the
recurrent dynamics of x and the structure of Lo . . Early in the trial, L; is highly structured
and low-rank (Mastrogiuseppe & Ostojicl [2018)), strongly pulling activity toward the target; after
a transient (¢ > t), L; becomes sparse and high-rank, stabilizing the system around the target
despite intrinsic instability and noise (Fig. [Be). This mirrors strategies observed when controlling
recurrent networks with reinforcement learning (Mastrogiuseppe & Moreno-Bote, [2024).

The Model Mismatch framework therefore extends stochastic control beyond the standard
agent—environment formulation and provides a tool for studying also neural computation. In this
simplified setting, z; can be viewed as a premotor population driving a downstream motor pop-
ulation x4, consistent with experimental findings where premotor activity initializes motor cortex
before movement (Kao et al 2021}, [Cogiaco et al. [2021). While not intended as a detailed bio-
logical model, this example illustrates how the framework captures computational strategies — such
as low-to-high rank transitions, selective modulation, and stabilization of unstable dynamics — that
classical Model Match approaches cannot represent.

6 CONCLUSIONS

We have introduced a convergent iterative algorithm (Sec. [3) that fully solves stochastic optimal
control problems under a general noise model with both multiplicative and internal noise, assuming
linear control with a quadratic cost — the so-called LQMI problem. This goes beyond previous
analytical approaches, which remained incomplete (Todorov} [2003; [Damiani et al., [2024). Our
algorithm also outperforms existing state-of-the-art gradient-based methods (Damiani et al., [2024)
by more than three orders of magnitude in efficiency on realistic tasks, making it particularly well
suited for inverse optimal control.

Moreover, the Model Mismatch framework relaxes two central assumptions in stochastic control:
(1) the partial decoupling of estimation and control, and (2) the requirement that internal forward
dynamics match the actual state dynamics. By allowing internal dynamics — used to generate con-
trol signals — to be optimized jointly with control and pseudo-filter gains, our framework broadens
the solution space. Notably, we find that mismatched forward dynamics can outperform matched
dynamics in the presence of internal noise. This suggests that internal representations need not faith-
fully track the state variable; instead, mixed representations of estimation and control signals can
provide superior performance. Furthermore, the Model Mismatch framework extends the applica-
bility of stochastic optimal control to the control of neural populations.

Overall, our work expands stochastic optimal control to a more general and realistic setting, with
direct applications to neuroscience and robotics, while preserving analytical tractability and inter-
pretability.

Limitations and Future Work We assume linear dynamics, linear control, and a quadratic cost,
which yield closed-form second-order moments and analytical tractability but might not capture all
problems of interest. Nevertheless, the framework accommodates time-varying dynamics, which
can approximate nonlinearities. Another promising research direction is to combine our solutions
with iLQG and DDP methods (Li & Todorov}, 2007} [Tassa et al.}, [2014}; [Van Den Berg et al.| 2016}
[Ciao & Shoemaker, [1991)), which approximate optimal control in nonlinear systems under partial
observability by locally linearizing the dynamics and using quadratic approximations to the value
function. A potential advantage of our approach is that, by using the Model-Mismatch framework,
we do not need to assume a model-matched extended Kalman filter — as is typically done in iLQG
and DDP — and we can also avoid the unbiased-estimator assumption. Another relevant direction is
that the Model Mismatch framework allows internal dimensionality to be freely chosen — a promis-
ing but unexplored direction that could support nonlinear strategies via linear representations

& Mezidl, 2018}, [Brunton et al.,[2016).
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A APPENDIX

A.1 UNBIASEDNESS AND ORTHOGONALITY: CLARIFICATIONS AND IMPLICATIONS

Here we briefly review related work on stochastic optimal control in the presence of multiplicative
and internal noise (LQMI problem, Sec. . The influential work of [Todorov|(2005)) introduced an
iterative algorithm that alternates between optimizing the control and filter gains until convergence.
A key assumption in this derivation is unbiased estimation, i.e., E[x; | z:] = 2, used to constrain
the control policy to depend solely on the internal estimate z;, in line with the problem’s partial
observability.

However, |Damiani et al.| (2024) empirically showed that this unbiasedness condition is generally
violated, with the discrepancy growing as internal noise increases. They also proposed an alternative
numerical algorithm that avoids assuming unbiasedness and empirically outperforms the original
approach under internal noise.

The reason the method in [Todorov| (2005) still performs optimally when internal noise is absent is
that unbiasedness implies the orthogonality principle (Davis, |2013; [Damiani et al., |2024), which
characterizes the optimal estimator in that specific case. Importantly, orthogonality does not imply
unbiasedness, so the converse does not hold. Thus, the success of[Todorov|(2005) in the zero internal
noise regime stems from its implicit reliance on orthogonality, which breaks down otherwise.

In Appendix we provide a formal proof that the orthogonality principle corresponds to a
critical point of the cost function in Eq. [3|only in the absence of internal noise, extending and math-
ematically validating the empirical observations in |Damiani et al.| (2024)). Moreover, in Appendix
we demonstrate that the orthogonality principle actually leads to the global optimum for the
classic LQAG problem.

A.2  SOLVING THE LQMI PROBLEM: FULL DERIVATIONS

Here we provide an algorithm guaranteed to converge to a critical point of the cost function in Eq.
[l under the dynamics in Egs. As shown in prior work (Fazel et al}[2018), the global LQAG
problem is non-convex even in the fully observable, noise-free setting. This implies that the more
general problem considered here - featuring multiplicative and internal noise - is also non-convex.
The algorithm yields improved pairs of control and filter gains, fully solving the LQMI problem.
The pseudocode is shown in Appendix[A.3.1]

A.2.1 FIXED-POINT EQUATIONS OF THE COST FUNCTION

Assuming a linear control u; = L;z;, we first rewrite the cost function in Eq. E] as C =
S, (t0(QeSF®) + tr(L) RyLyS77)), where we introduce the 2nd-order moment matrices S{* =
[dxdzp(z, 2)xx ", S7* = [dxdzp(w,2)zz", and SF* = [ dadzpi(z, z)zz ", with p(z, 2) be-
ing the joint distribution of x and z at time ¢ generated by previous control and filter gains and
averaging over noises and initial conditions following po(z, z). To find the conditions for extrema
on the control L .. 7 and filter K¢ 7 gains we add Lagrange multipliers and define the new ob-
jective

T T+1
Ce =Y (r(QeSy™) +tr(L Ry LiS7*)) = > (tr(AGTY) + tr(G77) + tr(T4GY?)) |, (12)
t=0 t=1

where A¢, € and I'y are R""*" matrices of Lagrange multipliers. The constraints G¥* = G§* =
G¢# = 0 are given by the temporal evolution of the 2nd-order moment matrices S7*, S7* and S7~,
respectively, between two consecutive time steps ¢ and ¢+ 1, obtained from Eqgs. [5||6ll7|(see Appendix

[AZ24]for details), as
Gy = Sff — ASFTAT — ASP*L) BT — BL,(Sf*)" AT — BL,S{*L/ BT — £¢°
=87 - K HSF"HTK,] — K HSP* M, — My(SP*)THT K" — My S;*M," — $7*
v =8P — ASPPHTK, — BL,S;*M," — AS?*M,” — BL,(Sf*)"H' K, , (13)

where we have introduced the short-hand notation My = A + BL; — K;H, showing up repeti-
tively, and the noise matrices £y = X¢ + >, C;L;SF*L) C;' and 7% = ¥, + K4S K, +
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K¢ (3, DiS#*D;) K. Since the cost function is defined in terms of quadratic terms in z and z
and the temporal evolution of moments is closed at 2nd-order, the 2nd-order moments matrices are
sufficient statistics of the problem (i.e., p;(x, z) does not need to be explicitly known), and only the
constraints in their temporal evolution suffice.

For convenience, we define the Lagrange multipliers at time 7 + 1 to be all equal to zero,
Ari1 = Qpyq = Tpyq = 0 (hereafter 0 meaning a matrix of zeros of consistent dimensions), so
the constraints at that time are irrelevant. The introduction of Lagrange multipliers enables to take
derivatives with respect the control and filter gains to find the fixed point conditions 9C¢/OL; = 0
and 0C /0K, = 0 for extrema without the need to propagate derivatives over the terms in the sum
of the cost. The fixed point equations take the form

L= E; N (FSP (S~ + ) (14)
Ky = (San + Qi TenSen ) Sl (15)

with matrices defined in Appendix [A.2.6]— note that these equations express the control and filter
gains as a function of themselves, and therefore they are implicit.

From the conditions 9C/9SF* = 0C/0SF* = 0C/0SF* = 0, the Lagrange multipliers them-
selves obey the set of equations

A=Qi+ATA A+ HTK;rﬂiH»thH + HTKtTFHMl + Z D;FK;—QHthDi
Q=L RLy+ L] B"Ay 1 BLy + M,"Qu y My + M, T4y BL; + Zi LICI A1 Oy
Iy =L B A1 A+ M Quu Ky H + M Ty A+ LI BTT K, H . (16)

These equations can be solved backwards given control and filter gains, and using the boundary
conditions Aryy = Qryy = 'y = 0. However, the full solution to Eqs. [T4[T5][16] would require
simultaneously determining gains and multipliers. We bypass this by deriving an iterative algorithm
to find fixed point solutions, as described in the next section.

It is worth mentioning that in the derivation of Eqgs. [I4][15][16] and main algorithm described below
we have not assumed the orthogonality principle (OP: S¥* = S7* for all ¢, equivalent to E[(z; —
2t)zy | = 0), which is shown (Sec. [3.1| see also Appendix to be violated in the general case
(specifically, whenever there is internal noise). Secondly, we have not assumed any specific initial
distribution pg(x, z). Also, note that we have not assumed Gaussian noises nor Gaussian distribution
on zx or z. Further, our algorithm is guaranteed to converge to a fixed-point pair of control and filter
gains, and reduce the cost at every step (Sec. [A.2.2). The algorithm in[Todorov| (2005)) can actually
increase the cost in the first iteration step because not for any arbitrary initial filter gain OP is
obeyed. Finally, the model described in Egs. could be readily extended to the case where 1)
the internal noise is multiplicative in Eq. [/} ii) when there is x-dependent multiplicative noise in
the state dynamics, Eq. [ and iii) when there is z-dependent multiplicative noise in the feedback
dynamics, Eq. [6| However, we refrain from doing so to avoid clutter and because a more general
framework (Model Mismatch) is introduced in Sec.

A.2.2 COORDINATE-DESCENT ALGORITHM FOR JOINT CONTROL AND FILTER
OPTIMIZATION

Here we derive the main algorithm of the paper, a coordinate-descent iterative algorithm that gives
a pair of improved, fixed-point control and filter gains. We first start by showing the connection
between the Lagrange multipliers and the cost-to-go incurred by starting at fixed x and z.

We define the cost-to-go starting at « and z from time ¢ (¢t = 0,...,T) up to time T as Ci(z, z) =
tr(Quaa” + L RiLizz") + ZZ:t-i—l E [xIQTxT + uIRTu,.], where the expectation is over the
noises with initial conditions fixed at  and z at time ¢, and for specific control and filter gains
from time ¢ onward. This definition is consistent with our definition of cost in Eq. [3} as C' =

[ po(z, 2)Co(z, 2), where po(z, z) is the distribution of initial conditions over x and z. The cost-to-
go obeys the Bellman equation

Ct(!EwZ) = tr(QtMCT + LtTRtLtZZT) + /dl”/dzlctﬂ(ﬂﬂ'aZ’)px,t+1($/\$aZ)Pz,t+1(2/|$72) ,
(17)
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where the transition probability densities p, ¢+1(2’|x, z) and p, ++1(2'|x, 2) are defined by equations
5H67| with w; = Lyz¢, with means E[z'|z, 2] = Ax + BLiz and E[2/|z, 2] = KiHx + M;z, and
conditional 2nd-order moments given by Egs. 33]

The Bellman equation[T7)can be solved backwards: noticing that the boundary condition is the final
cost-to-go Cr(x, z) = tr(Qrax " + Ly RrLrzz") and that the 2nd-order moments are closed (that
is, no higher nor lower moments appear when propagating backwards the cost-to-go using Eq. [I7),
we find that the solution is given by

Ci(z,2) = tr(AtacscT +Quzz | + thzT) + 7, (18)

where it can be seen that the coefficients A, {2, and Iy are actually the Lagrange multipliers com-
puted in Egs. [I6] with the same boundary conditions (see Appendix [A.2.3), and where ; can be
recursively calculated as

Ye = tr(App1Xe + Q1 KoK + Q1 X)) + vesn (19)

with boundary condition vz = 0. Egs. [I8][T9|correctly captures the cost-to-go expression at time 7',
and it can be checked that recursively solve Eq. [T7] From the definition of the Lagrange multipliers
in Egs. one can see that e.g. higher noise levels or control costs enlarge the corresponding
cost-to-go in Eq. [T8] and these effects accumulate backwards, as expected.

While Eqs. [I8][T9] express the exact cost-to-go given control and filter gains if the exact world
state = is known, partial observability dictates that our choices of control and filter gains cannot
depend on z. Indeed, our assumptions that the filter depends only on time and that the control law
depends linearly on the current state estimate z;, that is, u; = L;z;, have already been used in our
derivation and problem formalization, and they are subject to partial observability. Because of this,
we integrate over the (generally unknown) joint probability density p;(x, z) given control and filter
gains and initial condition py(z, z) to define the averaged cost-to-go as

C; = /dxdz pi(x, 2)Ci(, 2) = tr(AeSF* + U S7F2 +T4SF2) + v (20)

We can express the total cost in Eq. B]as C' = Cj, and therefore
C=Cy+Cy 2L

with Oy = Zi;lo tr(Q, S + LT R, L,S??) is valid for all . In Eq. C is the only term
depending on L;, as C~; does not depend on it. Therefore, we locally optimize L; as

L} = argmin Cy , (22)
Ly

while keeping the rest of gains fixed, that is, Lo, . ;—1,+1,..,7 and Ko . 7 are held constant. A
global minimum always exists because C; is non-negative. After noting that in C; (Eq. 20) only
the Lagrange multipliers depend on L; (see Eqs. [I6), while the 2nd-order moments at time ¢ only
depend on previous L. with 7 < ¢ (see Egs. 32)), the minimization results in

Ly = E;' (FSP(SF) ™+ ) (23)
with matrices identical to those in Eq. [[4)and Appendix [A.2.6] and whenever matrix inverses exist.

If Ly,.... 7 and Ky, 7 are the values of the control and filter gains before the optimization in Eq. @
clearly the cost is non-increasing after the optimization,

C(L07 ey Lt—17 L;7 Lt+17 ey LT) < C(L07 ey Lt—17 Lta Lt+17 Hs] LT) . (24)
Note that after the optimization, the total cost in Eq. 21]becomes
C=C,+ tr(Qtsz + LITR,&LIS?Z) + tI‘(At_;,_l Sf_f’l* + Qt+1StZ_iz_’1* + Ft+1Sf_i71*) + Y1, (25)

where the new 2nd-order moments at time ¢ + 1, S} "1, are computed from the moments at the
previous time ¢ using Eqgs. @ with the optimal L] and noticing that the Lagrange multipliers from
ab,*

t + 1 onward have not changed. Redefining L} as L, and the S}, as Sft,, ab € {zw, 2z, 22},
we can now proceed to optimize L;; using the same procedure as above (changing ¢ to ¢ 4 1) to
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minimize again the total cost C(Lo, ..., L¢, Ly, ..., L7) < C(Lo, ..., L¢, Li41, ..., L) fixing all
the gains except Ly 1, and consecutively for all ¢ up to 7.

Therefore, starting from a set of gains L(™ = L , and K™ = K{" . we can optimize L, in

order from ¢ = 0 up to time 7" following the above steps to get a new set of control gains L("*+1), and
clearly we have C(L("+t1) K"y < C(L(™, K(™). After this, the Lagrange multipliers in Eq.
are recomputed backwards with the updated values of the control gains, L("+1)_ In this way, we can
express again the cost as in Eq. [21] but with updated values of control gains and multipliers. This
represents a full forward pass to sequentially optimize control gains followed by a full backward
pass of the multipliers, and we refer to this process as control pass.

We can proceed similarly for the filter gains by repeating the above steps but for K; instead of L;.
We optimize K; by keeping fixed the remaining filter gains and all control gains by minimizing the
cost C' in Eq. 21] resulting in

Kt* = argmin C} = (SAH + Q;_llrt+1SLH) SITI}{ , (26)

K
with matrices as in Eq. E] and Appendix: 2.0l After updating the cost C' with the new K,
we obtain an equation analogous to Eq. having a new ~;4; term. This leads to a non-

increasing cost change when going from the old K; to the optimized K}, C (Ko, ..., K}, ..., K1) <
C(Ko, ..., Ky, ..., K1). Therefore, starting from a set of gains L("+1) and K™ we optimize K, in
order for t = 0, ..., T to get a new set of filter gains K ("*+1), which will obey C(L("+1) | K(n+1)) <
C(L™+Y K ™). After this, the Lagrange multipliers are updated. This represents a filter pass: full
forward pass to sequentially optimize filter gains followed by a full backwards pass to recompute
the multipliers. Starting from arbitrary L(®) and K (®) and distribution of initial conditions po(z, z),
we can alternate now the control and filter passes, so that C'(L(®), K(©) > (LM K©) >
C(LW, KWy > .. > @t KMy > c(L+), Kty > > Cpin > 0. Since the
series is non-negative, it converges to a total cost no higher than the initial one with optimal filters
L* = L(>) and K* = K(°°)_ In summary, each block update solves a convex quadratic subproblem
exactly, which guarantees that the total cost decreases monotonically and therefore converges. The
converged pair of control and filter gains obey the Lagrange Eqs. B2J[T4]T5|[T6 because Eqs. 23]26]
after convergence, are identical to the fixed point Egs. Therefore, the converged pair corre-
sponds a to a fixed point solution of the Lagrangian in% and hence, they must be a critical
point of the cost function in Eq. [3] We have thus proven the following

Theorem Starting with arbitrary L\®) and K° and distribution of initial conditions pq (z,2), the
coordinate descent algorithm defined by iterating in alternation control and filter passes converges
to an improved pair of control and filter gains L* and K*. The improved pair corresponds to a
critical point of the cost function in Eq. 3}

As shown in Egs. [T6] 23] 26} and [32] only the first and second noise moments enter the moment
propagation and optimality conditions. No further assumptions are required beyond finite second
moments, so the method applies to any noise distribution with finite covariance. In Sec.[A:4.8 we
validate this empirically using non-Gaussian noise (Student-¢ for heavy tails and Beta distributions
for skewness). We also note that the Lagrange equations may admit multiple solutions. In practice,
our algorithm converges to different critical points depending on the initialization, but when ini-
tializing the control and filter matrices trying to impose the orthogonality principle and then freely
running the algorithm, the best critical point is found, empirically.

A.2.3 SOLUTIONS OF THE CLASSIC LQAG PROBLEM

The optimal Ly ... 7 and Ky . 7, for the classic LQAG problem — defined in Sec. @— are given
by (Doya, [2007; Davis|, |2013}; [Todorov, [2005)

Li= (2R, +B"S;,1B)"'B"S; ;1A (27)
S, =2Q,+ A" S, 1(A+ BL,) (28)
K, =ASSHT(HYSHT +5,)7 ! (29)
Si = Be + (A - K H)SEAT (30)
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A detailed derivation can be found in [Doyal (2007), Chapter 12, Sections 4 and 5. We observe that
the only differences with the Egs. in|Doyal (2007) arise from slightly different conventions: in the
standard LQAG formulation, there is a prefactor of 1/2 in front of the cost function, and the control
signal is defined as u; = —L;z;, meaning the control gain has the opposite sign compared to our
convention.

In Appendix[A.2.8] we prove that the solutions derived in Sec. [A.2]recover these classical results in
the absence of multiplicative and internal noise.

A.2.4 DERIVING THE PROPAGATION OF SECOND-ORDER MOMENTS

Here we derive the temporal evolution of the 2nd-order moment matrices. We first rewrite Eqs. [|[6l[7]
in a more compact form by inserting the observation in the state estimate variable and grouping terms
as

Tyl = A.’L’t + BLtZt + €t + Zi EiCiLtZt
241 = Myze + KeHaxy +np + Kywy + Ky ZZ piDixt (3D

The 2nd-order moments at time ¢ can be computed based on those in the previous time step ¢ by
using the appropriate averages and interactions between terms in Eqgs. [31} The result is

v o= ASFTAT + ASPFLI BT + BL(Sy*)T AT + BL,S7*L] BT + X"
2 =K HSPHTK,] + K. HSP* M, + My(SP)THT K, + MS;*M," + £7*
SfE = ASy"H'K,' + BL,SF*M," + ASy*M," + BL,(S?*)"H' K, . (32)
with M; = A+ BL; — K, H and noise covariances X¢% = $¢ + >, C;L;S7* L] C;" and £7* =
Y, + KSuK, + K (3, DiSF*D] ) K[

The conditional second-order moments at time ¢ + 1 conditioned on x and z at time ¢ are defined as
S’f’” = /dx’dz’m’x'—rpz’tﬂ(xﬂx, 2)pzi41(Z|z, 2)
sz = /dw/dZ/Z/Z/TpI’t+1 (2|2, 2)pz i1 (2|2, 2)

gfz = /dx’dz’x'z’pr,Hl(x’\x,z)pzyt+1(z’|x,z) ,

where the transition probabilities p, ¢11(2’|z, 2) and p, ;+1(2'|x, 2) are defined by equations
(with u; = Lyz), or, equivalently, by Egs. The conditional second-order moments at time ¢ + 1
are obtained simply by replacing the second-order moments on the right hand side of Eqs. [32] by
their corresponding non-averaged x and z as

See = Az AT + Az "L BT + BLiza" AT + BLyz2 L] BT 4 327

S7%, = KyHaex ' H'K, + K Hez" M, + Myza "THTK, + Myzz" M, + 5%

5¢% = Az "H'K," + BLy22"M," + Azz"M," + BLiza"TH'K," . (33)
with conditional noise covariances 7% = Ye+ >, Cilizz" L] C; and = ¥, + KiXuK, +
K, (Zl DizmTDlT) K.

A.2.5 CONSISTENCY OF THE COST-TO-GO SOLUTION
The cost-to-go obeys the Bellman equation

Ci(w,z) = tr(Quza’ + L] RyLyzz") + /dfC/dZ/CtH(xlaZ/)Pa:,tﬂ(ml\xaZ)Pz,t+1(z/|$,Z) ,

(34)

identical to Eq. The transition probability densities p, 1+1(2|z, 2) and p, 141(2'|z, 2) are de-
fined by equations [3|6l7| with u; = L¢z¢, with means E[z’|z, 2] = Az + BL;z and E[2|z, 2] =
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KyHx 4+ M;z, and 2nd-order moments given by Egs. [33] These will be important to compute
averages as needed.

We propose a solution to the Bellman equation of the form
Ci(z,2) = tr(Aza " + Quzz’ + thzT) + v, (35)

identical to Eq. Our goal is to show that it is possible to find a solution with such a form, and that
the expression of the coefficients A4, £2; and I'; are actually identical to the Lagrange multipliers in
Egs. [T6] with the same boundary conditions. In addition we want to show that -y, follows Eq. [I9]
with boundary condition v = 0.

We first note that Eq. is true for t = T, because C7(z, 2) should be Cr(z, 2z) = tr(Qraz’ +
LiRrLrzz") and indeed this coincides with Eq. 35| when taking A = Qr, Qr = L RrLr,
I'r = 0 and yp = 0, which in turn are consistent with the Lagrange multiplier expression in Eq. [I6]
fort ="T.

Now, assume that Eq. [35]is true for some ¢ + 1. Let us show that then it is true for . We insert Eq.
[35]for ¢ + 1 into Eq. [34]and use the expression of the conditional 2nd-order moments in Egs. [33]to
obtain

Ci(z,z) = tr(Qurx’ + LtTRtLtzzT)
+ /dx’dz’ (tr(Apra’a’ T + Q1 2’2" + 12’2 ") + 941) Do (0], 2)pz g1 (2|2, 2)

= tr(thxT + L:RtLtZZT)

+ tr[Ay1(Aza T AT + BLyzz 'L BT + Azz LI BT + BLizaTAT 4 53%)]

+te[ Qo (K How "HTK, + Myzz "M, + Ky Haoz T M, + Myza THT K + 577
+tr[Tey1(Aze "HT K, + BLiz2 "M, + Azz" M, + BLiza THTK,7)]

+ Vi1 (36)

Grouping terms proportional to zz ", 2z " and zz " and constant, we find that the cost-to-go can be

written as Eq. [35] where the coefficients obey the Lagrange multiplier equations in Eqgs. [T6]at time
t. In addition, y; is computed using Eq.

By induction, then we have that Eq. [33]is true for all ¢ and that the coefficients are indeed the
Lagrange multipliers defined in Eqgs. [T6|and Eq. [T9]

A.2.6 FIXED-POINT EQUATIONS FOR CONTROL AND FILTER DERIVATIVES

The fixed point equations 0C/IL, = 0 and 0C, /0K, = 0 for the extrema of the Lagrangian
take the form

aC . § .
Ce {thLt +BT (AtHBLt 4+ 1M, + Ty BL, + F;lMt) +3 qTAtHciLt} 53
t 1
+BT []XtHA + Q1 K H + Ty A4 T HKtH] 572 =0, (37)
9Ce [~ N i
aT'(L - {QtHKtH + rmA} Ser T - [Qth n FHlBLt} S#EHT — Qo K, HSTHT
t

+ Qo M (SP)THT — Ty AST*H T + Ty 1 BLy(SP)THT + Oy 1 K 8,
+ QK Y DS D] =0, (38)

with symmetric matrices A, = A, + A/ and Q, = O, + Q, after using elementary properties of
the trace operator and its derivatives.

The fixed point equations can be further manipulated to express L; and K as

Ly = E; M (F,SP(SE)H + )

20



Under review as a conference paper at ICLR 2026

where
By =2R;+ B (Apy1 + Quyr +Ter + T ) B+ ZZ CI A1 Cy
Fy=-B (A1 A+ Q1 Ko H + Ty A+ T K H)
Jy==BT(Qus1 + I, ) (A-KH),
and
Ko = (San + Qi Teni Sun ) Sy
with

San = (A+ BL)(S7* = (S79)HH T,
Spr = (—A(S{® = S7%) + BL(S7* — (S¢*) ") H T,
Sum = H(SP" + 7% = 77 = (S;*))H +Su + ) DiS{*D] .
Note that the equation for L; explicitly depends on K on the right side, while the equation for K

depends on L; on the right side. This property enables the coordinate-descent algorithm described
in the paper. The above expressions coincide with Eqs. [I4][15]

A.2.7 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT IF AND ONLY IF INTERNAL
NOISE VANISHES

Theorem [2, Tuke the initial condition po(x, z) such that S§* = SF*. A solution to the Lagrange

equations is given by the orthogonality principle Sf* = S¥* fort = 1,..., T, iff internal
noise is zero, that is 3, = 0. The solution corresponds to a critical point of the cost in Eq. @

Proof. We first show that (1) assuming OP (S7% = S7* fort = 0,...,T) is true, we prove that the
satisfaction of the Lagrange equations for the multipliers, Eqs. [I6] and the equation for the fixed
point of Ly, Eq. for all ¢ implies that the Lagrange equality, Ty = —Q for all t (Q; = Q; + Qn),
is true, regardless of the value of internal noise. Next, we show that (2) OP and the Lagrange equality
imply satisfaction of the fixed point equation for K, Eq. [T3] and the 2nd-order moments equations,
Egs. if and only if internal noise is zero, ,, = 0. This will show that OP solves all Lagrange
equations iff internal noise is zero, and therefore it will correspond to a critical point of the cost
function in Eq. [§]

(1) Assume that OP holds. From the boundary condition of the Lagrange equations for the multi-
pliers we have that Ap11 = Qp41 = I'r41 = 0. Therefore, at time 7" + 1 the Lagrange equality
I'ry1 = fQTH is true. Let us prove by induction that the equality holds for all ¢. Assume that the
Lagrange equality is true for some ¢ + 1, thatis, I';; = —Qt+1 (note that I'y 1 is then symmetric).
Then, from the Lagrange multipliers Eqs. [T6] we can write

Ty =L B "App1 A+ M Q1 KeH + M Ty A+ L BT K,H
=L/B"Ay A— M T K,H+ M, T A+ L BT\ | K,H
Qy=2L/ RiLi+ L/ B" Ay 1 BL, + M, M, + M,' T, \BL, + L] B'T', 1 M,
+ Zi LICT A1 CiLy
=2L/ R Ly + L] BTA; (\BL; — M, Ty, 1M, + M, T\ BL; + L BT\, 1 M,
+ LIC MGl
where we have replaced Qt+1 by —I';4; and using that I';; ; is symmetric. Now, summing we have
D+ =20 RyLy + L] BTAy ;1 (A+ BL,) + M, Ty 1(A+ BL, — K,H — M,)
+ L/ B[, (A+BL,) + ZZ LI CT A1 CiLy
= L] [2RiLy+ BTApa(A+ BL) + BT (A+ BL) + Y cj]\mciLt} ,
(39)
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where we have realized that the last term in the first line is zero.

Now, the solution for which OP holds should satisfy all other Lagrange equations, in particular the
one for the fixed point equation for L;, Eq. [I4 As OP is assumed to be true at all times, and in
particular at time ¢, and the Lagrange equality is assumed to be true for ¢+ 1, Eq. [I4](see Sec. [A.2.6)
largely simplifies to o

Ly=FE'F,, (40)

with By = 2R; + BT (Ay11 +Tyy1)B+ 3,0 A1 Ciand Fy = —BT (Agyq + Tyy1)A. Then,
it is clear that the bracket in the last line of Eq. [39]is zero, and therefore the Lagrange equality
Iy = —€ is true. Therefore, by induction we conclude that the Lagrange equality is true for all ¢
and that Lagrange equations for the multipliers and L; are solved. Notice that the above results are
true regardless of the presence of internal noise.

(2) Still we have not used the Lagrange equation for Ky, Eq. nor the Lagrange equations for
the 2nd-order moments, Egs. [32] These equations must also be satisfied by the OP condition. First,
from OP (and the implied Lagrange equality shown in (1)) the expression for K; (see Sec.
largely simplifies to

K, =A(SF™ - SF5)H ' Syt (41)

with Sy = H(SF® — S*)H' + X, + ., D;Sf*D,.

Now, this expression of K; must solve the Lagrange equations for the 2nd-order moments. The
equation for S7¥ is trivially satisfied, but the equations for S* and S7* should be such that S7* =
S7# for all ¢ — otherwise, our OP initial assumption would be inconsistent; no other restrictions
are imposed by the Lagrange equations of the 2nd-order moments. This is only possible iff the
difference S77; — Sf¢, equals zero:

2 SEE = [—(A — K H)(S7 = SPVH T + KB+ K0y DijmDi} K +%,=0,
(42)
for all ¢ (this expression has been obtained using the 2nd-order moments in Eqgs. after several
cancellations). In this expression, the bracket equals zero after using Eq. Therefore, consistency

of OP and satisfaction of the 2nd-order moments are satisfied if and only if internal noise is zero,
¥, =0.
n

This concludes the proof, because iff >, = 0 we have a full satisfaction of all Lagrange equations
for all ¢ under the sole assumption of OP for all ¢. O

A.2.8 RECOVERY OF CLASSICAL LQAG SOLUTIONS

In this section, we demonstrate that the solutions derived in Sec. @] exactly recover the classical
analytical solutions of the standard LQAG problem (see Appendix when both multiplicative
and internal noise terms vanish. To illustrate this, we examine the solutions presented in Appendix
As empirically validated in[Damiani et al.| (2024)), the optimal solutions, when internal noise
is absent, satisfy the orthogonality principle (OP). Thus, by setting the multiplicative noise terms
to zero, we can directly verify whether these solutions converge to the classic LQAG solutions.
Additionally, this provides a proof that the orthogonality principle indeed corresponds to the global
optimum of the cost function for the standard LQAG problem.

The optimal controller derived under the orthogonality principle in Appendix is given by Eq.
[0l When both multiplicative and internal noise terms are turned off, we obtain

Ly =—[2R + BT (Ays1 + T4q1) B 7 [BT (A + Tuy1) 4] (43)

which corresponds to the optimal L; for the classic LQAG case (see solutions in Sec. [A.2.3) if
S; = (It + A;). Using Eql16/and imposing the OP (setting I'; = —2; — see Appendix D we
obtain

Ft+1 + At+1 = 2Qt + (A + BLt)T(At + Ft)A . (44)

Now we observe, as discussed in Appendix:A.2.7L that I'; is symmetric and the same holds for Ay
(by definition), therefore we can rewrite Eq. 44|as

Do 4+ A1 =2Q, + AT (A +T)(A+ BLy) . (45)
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which corresponds to the formula for S; in Sec. [A.2.3] therefore proving the equality between the
two optimal solutions.

The optimal Kalman filter derived under the OP in Appendix[A.2.7]is given by Eq. {1} corresponding
to

K= A(S7" = SP%) HT[H(SF" = S )HT + 3,71, (46)
when neither internal nor multiplicative noise is considered. We note that this solution corresponds

to the one presented in Sec. [A.2.3|when X = SF* — S7%, which is automatically satisfied when the
OP, stating S7* = S77, holds.

Therefore, the solutions derived in Appendix correspond to the globally optimal solutions of
the classic LQAG problem in the absence of multiplicative and internal noise.

A.2.9 JOINT OPTIMIZATION OF FORWARD DYNAMICS, PSEUDO-FILTER, AND CONTROL
WITH MODEL MISMATCH: FULL DERIVATIONS

Model and Moments The Model Mismatch approach is defined by the equations
Ty = Az + BLyzg +nf .y =Hzy+nf , 200 = Wiz + Py +nf 47)
ng =€ + Zr nUSx: + Zl &EVELizy, ced{x,y, 2},

identical to Egs. The goal is to optimize the forward dynamics W; € R"™*", pseudo-filter
P, € R™ ™ and control L; € RP*™ — where p is the dimensionality of the control signal u; = L;z;-
matrices so as to minimize the expected cumulative quadratic cost

C:

t

T T
E[2) Quwe + 2 L RiLez| =Y  (tv(QeSF™) + tr(Ly ReL:S7?)) ., (48)

=0 t=0

with initial condition po(z, 2).

Eqs. f7]can be put in a more compact form as

Tiy1 = A:ct + BLtZt + nf (49)

Zt+1 = WtZt + Ptth + Ptnf + ’I’Lf

ng =€ + ZT nUSx: + Zl &EVELizy, ce{x,y, 2},

from where it is more obvious that the system consists of two coupled linear dynamical systems with
free parameters Wy, P, and L; chosen so as the minimize the cost. The sums ) . and Zl can run
over different limits depending on the source c, but here we use the same symbol to avoid cluttered
notation.

Note that the Model Mismatch framework is strictly more general than the Model Match one because
one always is free to choose in Eqs. 49| P, = K; and W; = A+ BL; — K H, leading exactly to the
Model Match approach in Egs. The reverse, mapping the Model Mismatch approach into the
Model Match one, is in general not possible.

The 2nd-order moments, appearing in the cost[48] obey
T = ASFTAT + BLSFFL) BT + ASF*L] BT + BLy(Sf*)TAT + ¥7
Sii, = PHSF"H' P + W,SF*W," + PLHSF*W," + W,(Sf*)"H' P, + P,S/P, + %}
vi = ASy"H' P + BL,S7*W," + AS7*W," + BLy(Sf*)"H' P, , (50)

with 5§ = S + Y, USSE7(US) T + X, ViELeSF LY (V)T e € {a,y, ).

Even though the Model Mismatch approach is more general than the Model Match one, defined
in Eqgs. it is already apparent that the equations for the second moments are simpler, more
compact and transparent. This will be a recurrent theme in all next derivations and equations, so we
will not repeat this below.
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Total Cost and Cost-to-Go Let us define the cost-to-go at time ¢ starting from x and z as
Ci(x,2) = tr(Qewx’ + LI ReLyzz ") + Zf:tﬂ E[z]Qrxr + 2] L] R;Liz; ], where the ex-
pectation is over the noises with initial conditions fixed at  and z at time ¢, and for specific P, L
and W from time ¢ onward. The cost-to-go obeys the Bellman equation

Cy(x,2) = tr(Qura ") + tr(L) RyLyzz") + /dm’dz’C’tH(x’, 2z tr1 (@ |, 2)ps 41 (22, 2)

(51
where the transition probability densities p, ;41 (2’|, z) and p, ;41 (2'|x, z) are the transition prob-
ability functions over ' and 2’ at time ¢ + 1 when starting from x and z at time ¢, as defined by
equations Using backwards induction, and following similar steps to those in Secs. [A.2.4] and
it is not difficult to show that the cost-to-go can be written for all £ (¢ = 0, ..., T) as

Cy(z,z) = tr(Ayza ") + tr(Qzz ") + tr(Texz ") + ¢ (52)
with matrices A; € R™*™, Q, € R"*™, and I'; € R™*™ and scalar ~; obeying equations
AN=Q+A" N1 A+ H' P WPH+H"P'T 1A

+ Zr(Uf)TAtHUf + ZT(Uf)TPtTQtHPth-’ + Zr(Uf)TQtHUTZ ;
Q =L/ RL; + L, B"Ay 1 BLy + W,"Qy 1 Wy + W, T4 BLy

+ Zr L (VAT A VP Ly + ZT LI (VTP PVY L + ZT L (V) Qi Vi Ly,
Ty=L/ B (A1 + AL DA+ W ( Q1 + QL )PH+W, Ty A+ L) B'T \PH ,
Yo = tr(App1 o) + tr(P Q1 Pr¥ev) + tr(Qeg1Des) + Yoy (53)

with boundary conditions Ay = Qr, Qp = L;RTLT, I'r = 0 and v = 0 (in this way the
boundary condition that Cr(z, 2) = tr(Qrzz ") + tr(LL RrLrzz ") is satisfied).

We now define the averaged cost-to-go at time ¢ as
Cy = /dajdzpt(a:, 2)Ce(x, z) = tr(AeSFT) + tr(QeS7?) + tr(TeS77) + ¢ 34

where p;(x, 2) is the joint probability density over  and z given initial condition py(z, z) and W,
L., and P; for 7 < t. We note that the total cost C' in Eq. @]can be written as

C=Cy= /da:dzpo(ac, 2)Co(x, z) = tr(AoSET) + tr(20557) + tr(ToSF?) + 70 , (55)

which it can also be expressed as
C=Cq+C (56)

with C; = Zt;:t tr(Q,S** + LI R, L,S7?). It is important to note that Eq. is valid for all ¢.

Algorithm Building an algorithm to find an improved triplet of time-dependent forward dynamics,
pseudo-filter and control matrices is slightly simpler than in the case of the Model Match approach
because W; and P, only appear in the internal variable dynamical equation and L, only appears in
the state variable dynamics. In contrast, in the Model Match approach, L, appeared both in the state
and state estimate dynamics, complicating the mathematical derivations.

Indeed, we note from Egs. @]that the coefficients A, Q;, I'; and v, depend on W, P and L. only
for 7 > t, while Sfb, ab € {xx, zz, 22}, only depend on those matrices for T < t, as it can be seen
from Egs. [50} Therefore, choosing an arbitrary ¢, in Eq. [56]only the term C; depends on W, and in
that term, Eq. @ only the coefficients Ay, Q;, I'; and ; can depend on W;. In conclusion, starting

withasetof Wy . 7, Py, v and Ly .7, we can improve the value of W} as
W} = argmin C = argmin C} , (57)
Wy Wy

while keeping the W for 7 # t and all Py 7 and Lo 7 fixed. A global minimum exists because
C} is always non-negative. Using elementary matrix operations, we find that

Wy = —P,HSF*(S77) ™t = (g1 + Q1) ' Togr (BLy + ASFZ(S7%) 1) (58)
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Note that if S§* is not invertible, then W is not well defined, and thus we can take any arbitrary
matrix. This might correspond to zy = 0. After the optimization, we must have

C* = C(Wo, .. Wi, .. W) < C(Wy, ..., Wy, .., Wr) | (59)

so that the total cost is non-increasing. After optimizing W;, using the new W, the cost can be
written as

C" = Cpy1 + Cfyy = Cappr + (A1 SEHT) + tr(Que1 ST + tr(Te1 ST + i1 (60)

where the coefficients at time ¢ + 1 do not need to be updated (as they do not depend on W;"), but
where the Sfi’l* need to be updated using Eqgs. [5S0| with the new W;".

Redefining W} as W; and the Sff:’l* as St“jil, we can now proceed to optimize Wiy; us-
ing the same procedure as above (changing t to ¢t + 1) to minimize again the total cost
C(Wo, ceey Wt, Wt*+1> ceey WT) < C(Wo, ceey Wt7 WtJrl, ceey WT) ﬁXil’lg PO,...,T5 LO,...,T and all WT
except for 7 = ¢. This procedure can be repeated consecutively fromt =Qupto 7.

After this forward pass, we would like to repeat the process for P, and L, instead of W;. But before
doing this, the value of the coefficients in Egs. [53|have to be recomputed so that Eq. [55]is true again.
The process of forward updating the W, from ¢ = 0 up to time 7" and, after this, recomputing the

coefficients using a backwards pass is called W-pass. Note that in this process, the moments have
been already recomputed. Starting from W (") = Wo(f.).,T’ P = P()(f?.,T and L(") = LE)?.)..,T’
the W-pass leads to a new set of forward dynamics matrices W ("1 such that the cost is non-
increasing, C(W "+ p() () < (W) P L") We define a P-pass as that consisting
7 instead of the Wy while keeping fixed
Wh,... 7 and Lg, . 7, and using the expression (obtained after some calculations)

Pr=— [Wi(SF)T 4 Qg1 + Q1) "' Toga (ASF" + BLy(SF*)")|HTE, (61
with By = HSF*H T+, U/ SF=(UN T+, VP LiSi* L] (VY) T +E.. Starting from W +D =
W()(n+¥’ P = PO(;,:L,).,T and L("W = Léff)”}T, the P-pass leads to a new set of pseudo-filter matrices

P(+1) guch that the cost is non-increasing, C'(W(+1), p(rt+D) 1)) < ¢(w i+ p) 1),
Finally, we define an L-pass as that consisting in following similar steps to the previous ones to
sequentially update the Lo . 7 while keeping fixed Wy, . 7 and P, . 7, and using the expression
(after some calculations)

1 = —F BT { R ASP(S7) 4+ T [RESTE(SE) W]}, @)

.....

with F; = 2R, + BT A1 B+ Y, (V) T A VE+ 3, (V) TP Qi PV + 52, (ViE) T Qe VE,
where we have defined A, = A, + A/ and Q, = Q, + Q. Starting from W+ = Wé"*_;),
Pty = Pé”ip) and L™ = L(()??_7T, the L-pass leads to a new set of control matrices L("*1)
such that the cost is non-increasing, C'(W 1 p+1) [ (n+1)) < ¢+l prtd) 1)y,
Now, alternating -, P- and L-passes from some initial arbitrary values W (%), P(®) L(0) we find
C’(W(O),P(O),L(O)) > C(W(l),P(O),L(O)) > C’(W(l),P(l),L(O)) > ..

> C’(W("'H),P("), L(m)) > C’(W("'H), p(n+1),L(n))

> oWt petD) LDy > > G >0 (63)
Since the series is non-negative, it converges to a total cost (not larger than the initial one) with op-

timal forward dynamics W* = W (), pseudo-filter P* = P(>) and control L* = L(*°) matrices.
We have thus proven the first part of the following

Theorem 3. Starting with arbitrary W, P©) and L) and distribution of initial conditions
po(x, 2), the coordinate descent algorithm defined by iterating in alternation W -, P- and L-passes
converges to an improved triplet of forward dynamics, pseudo-filter and control matrices W*, P*
and L*. The improved triplet corresponds to a critical point of the cost function in Eq.

We remark that it is straightforward to extend our algorithm to the case where any of the matrices
Wy, P, and Ly are fixed simply by not updating the corresponding matrices using the above passes,
still enjoying convergence properties.
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Lagrangian, Fixed-Point Equations, and Critical Points To complete the last part of the theo-
rem, that is, that after convergence the triplet W*, P* and L* is a critical point of the cost function
[48] we must show that they solve all fixed points equations of the Lagrangian,

T T+1
Ce=>_ (tr(QeSF™) + tr(ReS7%)) = Y (tr(MGy*) + tr(0G7?) + tr(T4GY?)) ,  (64)

t=0 t=1

where A, (), and I'; are matrices of Lagrange multipliers. The constraints G7* = G}* = G{* =0
are given by the temporal evolution of S}*, S7* and S7?, respectively, between two consecutive
time steps ¢ and ¢ + 1, and can be computed using Eqgs. [50]similarly as in Eqs. Indeed, the fixed
point equations of the Lagrangian 0C/OW; = 0 and 9C /0P, = 0 are identical to Egs.
respectively, which must be satisfied after convergence by the improved triplet W*, P* and L*.
After some work, the Lagrange equations 0C/0SF* = 0, 0C/0SF* = 0 and 0C,/0SF* = 0
can be seen to lead exactly to the coefficient Egs. [53] which, again, are satisfied by the improved
triplet. Finally, the derivatives of the Lagrangian with respect to the multipliers reduce to the second-
order moment Eqgs. 50| which are satisfied by the improved triplet. Thus, the improved triplet is a
fixed-point solution of the Lagrangian [64] and therefore a critical point of the cost function 48]

A.3 ALGORITHMS IMPLEMENTATION: PSEUDOCODES

A.3.1 PSEUDOCODE — MODEL MATCH FRAMEWORK

Algorithm 1 Model Match (M-Match) approach

Input: S§°, 557, S§%; initial guesses LE)(,).)._,T> K((JO) o3 System parameters.

.....

2: Output: Optimal gains Ly 1, K ¢
Steps:
4: for each iteration k = 1,. .., optimization steps do

M, 17, T, 7+ Egs. using L((kal% and K(gqu) (backward equations)

6: for each iterationt =0,...,7 — 1 do
Lgk) + Eq.

8: oo, S5z, 77, Egs.[32]using L and K
end for

k—1)

o and K 3’“‘1} (backward equations)

--------------------

for each iterationt =0,...,7T — 1 do
12: K" «Eq.
Tx Tz zz : k k
1, StE1, 5S¢, < Eqgs. usmg Lg ) and Kt( )
14:  end for
end for

.....

k)
T

..........

The pseudocode above implements the algorithm of Sec. [A.2.2] referred to as the Model Match
(M-Match) approach, in contrast to the Model Mismatch (M-Mis) method of Sec.
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A.3.2 PSEUDOCODE — MODEL MISMATCH FRAMEWORK

Algorithm 2 Model Mismatch (M-Mis) approach

Input: 557, S§%, S57; initial guesses L(O) Pl(??_,T, Wl(f).?.,T; system parameters.
2: Output: Optimal matrices L 7___7T,P*7___7T, Wl*

T

FRRRE}

Steps:
4: for each iteration k = 1,. .., optimization steps do
Ao, D7 eEqs usmg P(_k_”yl) W(_k__"l) dL(lf”_,l) (backward equations)
6:  for each iterationt = 0, . —1do
Pt(k) < Eq.
8: i, SEE Sff_l + Egs. using Pt(k), Wt(k_l) and Lgk_l)

end for
10 Ay 7,4, 7, Tt 1< Egs. using Pl(k) T Wl(k_lT) and Lék_il% (backward equations)
for each iterationt = 0,...,7 — 1 do

2: w® «Eq.
bR t+1,Sfj’_1 + Eqgs. usmg P( Wt(k) and Lgk_l)
14:  end for .
A1, 7, T, 7+ Egs. usmg P( ) T W( ) T and L( T (backward equations)
16:  for each iterationt =0,...,7T — 1 do

L(k) + Eq.

18: i1, SEE, SEf1 < Egs. using Pt(k), Wt(k) and L,Ek)
end for
20: end for

* k) .y k) .1« k
Py < Pl(,..).,T’ Wi 1< Wl()T’ Ly 1+ L(() : T

yeeny

The pseudocode above outlines the Model Mismatch (M-Mis) approach, introduced in Sec. ] and
detailed in Appendix While the order of optimization for P, W, and L differs from that in
Appendix [A.2.9] all variants converge to a critical point of the cost function in Eq. 48]

A.3.3 IMPLEMENTATIONS DETAILS

Here we report the algorithms’ hyper-parameters, as selected for the experiments described in Sec.

For the single-joint reaching task used to evaluate Algorithm[I]— and to compare it with the gradient-
based numerical method from [Damiani et al.| (2024) (referred to as GD) — we use the parameters
listed in Table |1l Note that, in line with Damiani et al.| (2024), the GD algorithm is implemented
using the GradientDescent() function from the Optim.jl Julia package.

Table 1: Hyper-parameters of the algorithms used in the single-joint reaching task (Sec. [A.4.1)

Algorithm Description value

GD (Damiani et al., 2024) Number of iterations of the GradientDescent()”” function 50000
M-Match (Algorithm Number of iterations of the estimation-control optimization 100

For the 3D reaching task, detailed in Appendix [A.4.3] and for the Redundant Arm-Control Task,
detailed in Appendix we used
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Table 2: Hyper-parameters of the algorithms used in the 3D reaching task and in the Redundant
Arm-Control Task(Appendices[A.4.3]and[A.4.5)

Algorithm Description value
TOD (Todorovl 2005) Number of iterations of the estimation-control optimization 100
M-Match (Algorithm|1)  Number of iterations of the estimation-control optimization 100
M-Mis (Algorlthm' Number of iterations of the M-Mis optimization 100

while for the neural population steering task of Appendix [A.4.6] we selected the following hyper-
parameters

Table 3: Hyper-parameters of the algorithm used in the neural population steering task (Appendix
A.4.6)

Algorithm Description value

M-Mis (Algorithm Number of iterations of the Ly, .. 7 optimization 20

A.4 EXPERIMENTAL DETAILS AND SUPPLEMENTARY RESULTS

A.4.1 SINGLE-JOINT REACHING TASK: MODEL AND PARAMETERS

In Sec. we evaluated the M-Match algorithm — Algorithm [I|— on a single-joint reaching task,
using the same problem formulation as in (Todorov, 2005 [Damiani et al.,[2024). The system features
a four-dimensional state and one-dimensional control and sensory feedback, i.e., m =4, p =k = 1.
The discrete-time dynamics is given by [Todorov| (2005),

p(t + At) = p(t) + p(t) At
p(t+ At) = p(t) + f()At/m
ft+At) = f(t)(1 = At/) + g(t) At/
gt + At) = g(t)(1 — At/7) + u(t)(1 + oce) At/ Ty
with
1 At 0 0
a_fo 1 aym 0
“lo 0 1-At/m  At/m
0 0 0 1- At/n

B=0 0 0 At/m)"
C=(0 0 0 o.At/m)"

1000
o 0 0 0
H=149 09 0 0

000 0
5, 00 0
0 0 0 0
D=109 0 0 0
0 00 0
000 0
000 0
@ur1=19 ¢ 0 0
000 0
Qr =pp' + o0 + ff"

28



Under review as a conference paper at ICLR 2026

o2 0 0 0
[0 0 0 0
=10 00 0

0 00 0
Y, =02
o2 0 0 0
Z_ocrgoo
710 0 o2 0
0 0 0 o2

with the initial conditions given by

The parameters of the problem are listed in Table 4] (std = standard deviation).

Q
8N =

SO OO
SO OoO O

=N eNoN)
N~ — OO OO

5., =

1

COOO S0 o

OO OO
OO OO

Table 4: Parameters of the single-joint reaching task

Name Description Value
At time-step (s) 0.010
m mass of the hand (K g) 1

i1 first time constant of the second order low pass filter 0.04
Ty second time constant of the second order low pass filter  0.04
r Auxiliary variable for control-dependent cost le™®
Wy Auxiliary variable for task-related cost 0.2
wy Aucxiliary variable for task-related cost 0.01
T time steps 100
1 Target position 0.15
Oz Target position standard deviation 0.0
o¢ std of dynamics noise &; 0.1
0w std of the sensory noise w; 0.1
O: std of the control-dependent noise € 0.5
op std of the sensory-dependent noise p 0.5
o std of the additive internal noise 7 0.1
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A.4.2 COMPUTATIONAL EFFICIENCY AND DIMENSIONALITY SCALING: COMPARISON WITH
PRIOR WORK

As additional evidence for computational efficiency of Algorithm [I] we present a dimensionality-
scaling study comparing computation times with the numerical algorithm in Damiani et al.| (2024),
extending the analysis up to m = 100. This complements the results in Sec. [5.I] which already
demonstrates a pronounced gap in runtime (6 s vs. 5 h).

To isolate the effect of dimensionality, we set m = k = p = nghaeq. Matrices A, B, C, and D are
drawn from zero-mean, unit-variance Gaussian distributions and rescaled to ensure spectral radius
< 1 for stability. We fix T' = 6 and 0¢ = 0, = 0, = 0. = 0, = 0.2, and vary nghaea €
{5,10,15,40,100}. We then compare the total computation time of our method (Algorithm with
the numerical approach in|Damiani et al.|(2024), initializing both with optimal gains from [Todorov
(20035) to ensure a fair comparison. All results were obtained on a MacBook Pro (Apple M1, 16 GB
RAM).

Table 5: Comparison of runtime between this work and the numerical algorithm in |Damiani et al.
(2024) as a function of the number of shared dimensions nghared-

Nshared  LThis work  GD (Damiani et al., 2024)

5 1.155s 8.4 min
10 1.25s 75.7 min
15 1.40s 6.4h

40 2.7s > 2 days
100 14s -

Here, s = seconds, min = minutes, and h = hours. These results highlight the scalability of our
method. Similar time gaps also emerge in lower-dimensional settings as trial duration 7" increases,
due to the linear growth in optimization parameters with 7.

This computational advantage is critical for applying stochastic optimal control to real-world prob-
lems, particularly in Inverse Optimal Control (Schultheis et al.l 2021; [Straub & Rothkopf, [2022),
which requires solving many control problems across parameter settings. The high cost of Damiani
et al.| (2024) renders it impractical for realistic tasks such as that in Sec. first described in
‘Todorov| (2005).

A.4.3 3D REACHING TASK: MODEL, PARAMETERS, AND ADDITIONAL ANALYSES

The first problem studied in Sec. [5.2]is defined by the following matrices:

1 0 0 At 0 O
01 0 0 At 0
A_]00 1 0 0 A
— 10 0 0 1 0 O
000 0 1 O
000 0 0 1
B=1I
C:O'E 16
H = I
D:UP'I()
25202-16
Zw— 316
Sy =07 Is

Q1,...7—1 = Osx6
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0 0 0 00 0
0 10 0 0 0 0
o o 10000

Qr=109 0 0 1 0 0
0 0 0 0 1 0
0 0 0 00 1

Ri=r-Ig fort=1,...,T—1
Rr=0,
where Ig denotes the 6 x 6 identity matrix, and Ogxg denotes the 6 x 6 zero matrix. The initial
conditions are given by:

Elzy) = (15 1.0 25 1075 10=° 107%)"

E[z1] = Ez]
Yz = Osxe
>, = Osxs

The parameters of the problem are listed in Table [f](std = standard deviation).

Table 6: Parameters of the 3D reaching task

Name Description Value
At Time step (s) 0.010

T Time steps 100

m Dimension of state x; 6

n Dimension of internal state z; (for M-Mis) 6

D Dimension of observation y; 6

k Dimension of control 6

r Control cost scaling 0.0001

o¢ Std of dynamics noise &; 0.5

0w Std of additive sensory noise w; 0.5

o, Std of multiplicative sensory noise p 0.4

O Std of multiplicative control noise €, 0.4

oy Std of additive internal noise 7; {0.0,0.1,0.3,0.4,0.5,1.0,2.0}

In this experiment, we set the control matrix to B = I and use a control signal with dimensionality
equal to the state (p = m = 6), enabling full control of the system. This choice is primarily
motivated by numerical considerations: it avoids instabilities in our Model Mismatch algorithm
related to matrix inversions that arise when B is not full-rank or poorly conditioned.

Although this means that control directly affects all state variables — including positions — this can be
interpreted as an idealized feedback mechanism. The dynamics matrix A still captures the physical
structure, with positions evolving from velocities over time. Our focus is on assessing algorithmic
performance under internal and multiplicative noise, rather than enforcing strict biomechanical real-
ism. Nonetheless, the setup remains rich enough to support meaningful behavioral predictions and
comparisons with biological control strategies.

Additional Analyses As internal noise grows, the internal variable becomes increasingly reliant
on sensory feedback: the pseudo-filter matrices I ... 7 induce stronger transformations to compen-
sate for the unreliability of internal dynamics. In contrast, the control matrix L; induces weaker
transformations (in terms of volume scaling) to suppress internal fluctuations when generating the
control signal u; = L;z; (Fig. @p).

Notably, this modulation impacts the scaling properties of the system but not the effective embedding
dimensionality — i.e., the number of dimensions corresponding to dynamically relevant directions
(see next paragraph) — of the matrices involved (Fig. ip). Interestingly, the volume scaling of the
internal dynamics (W;), remains constant (Fig. ).
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Figure 4: 3D Reaching Task: Additional Analyses. (a) Time-averaged determinants of P, W,
and L;. (b) Time-averaged embedding dimensionality of the same matrices (see next paragraph for
details).

Embedding Dimensionality In Fig. @b, we plot the embedding dimensionality of the matrices
P, W, and L. For each time step ¢, we compute the number of singular values of P;, W, and L,
that are larger than 0.01 - max,,csv {o; }, where SV denotes the set of singular values of the matrix
under consideration. We then average this count across time steps to obtain a measure of effective
dimensionality. Formally, we define:

SV inr-Count = E 0 (Ui > 0.01- mas>§/ 0j>
g€
o, €SV '

where 6(z) is the Heaviside step function. This quantity provides an estimate of the “effective”
dimensionality of the transformation induced by the matrix, relative to its dominant singular values.
This method accounts for changes in scale — such as reductions or increases in determinant magni-
tude due to varying levels of internal noise (Fig. [4h) — and thus provides a more meaningful estimate
of dimensionality across different values of o,.

A.4.4 DISTINCT NEURAL AND BEHAVIORAL SIGNATURES OF MODEL MATCH AND MODEL
MISMATCH APPROACHES

While our main focus is to introduce an analytical solution to stochastic optimal control problems
with multiplicative and internal noise, the two frameworks considered here — Model Match and
Model Mismatch — also lead to distinct, experimentally testable predictions. Below we outline
illustrative examples that highlight these differences and the importance of choosing between the
two approaches.

Divergence of internal dynamics In the 3D reaching task (Figs. [Id-g), the Model Mismatch ap-
proach exhibits qualitatively different strategies from the Model Match one. With internal noise,
optimal control (Fig[Tk) is achieved when internal dynamics diverge from external ones (Fig. [If),
leading to z; that no longer tracks x; (Fig. [Tlg). This suggests a fundamentally different way of
handling internal fluctuations. Using inverse optimal control (Schultheis et al., 2021} |Straub &
Rothkopfl [2022), behavior can be fit under both Model Match and Model Mismatch approaches, al-
lowing one to test whether neural activity aligns more closely with the inferred internal dynamics of
one framework. If it resembles M-Match’s z;, it may reflect state estimation (e.g., posterior parietal
cortex or cerebellum); if it resembles M-Mis’s z;, it may reflect control-optimized representations,
possibly in premotor or motor areas.

Noise-Dependent Control Magnitude From a behavioral perspective, in the same task as above,
the magnitude of the control signal is strongly modulated by internal noise in the Model Match ap-
proach (Fig. [5p). In contrast, the Model Mismatch approach maintains a stable temporal profile of
control magnitude across noise levels (Fig. [5h), likely due to flexible internal representations not
constrained to track the external state (Figs. [If,g). Internal fluctuations could in principle be ex-
perimentally influenced or estimated (Speed et al., [2020; |Vinck et al.| | 2015), making this prediction
possibly testable.
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Figure 5: Noise-dependent control magnitude in the two approaches. (a) Expected control mag-
nitude |u¢|, averaged over 10,000 realizations while varying internal noise o, in the Model Match
framework (shaded areas indicate the standard error of the mean). (b) Same as (a), but for the Model
Mismatch framework.

Perturbation Responses To further probe the distinction between the Model Match and Model
Mismatch approaches, we simulated the 3D reaching task from Figs. [Td-g with a transient bump of
magnitude d = 2.0 applied to the second component of z; at ¢ = 20, without reoptimizing. Both
methods successfully compensate for the perturbation (Fig. [Bh), as expected from their respective
optimal solutions. Moreover, the behavioral output does not show visible qualitative differences
across approaches (Fig. [6h). However, the internal dynamics diverge: in M-Mis, z; shows a non-
linear, non-monotonic response with a slower return to baseline (Fig. [6b), strongly modulated by
internal noise o, (Fig. @:). In contrast, M-Match displays a Kalman-like profile, where z; follows
the perturbation magnitude and decays smoothly and monotonically (Fig. [6b), largely independent
of noise (Fig. [6d). These findings suggest that M-Match and M-Mis could yield distinguishable
neural signatures following perturbations, even when behavioral outputs remain similar.
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Figure 6: Perturbation Responses in Model Match and Model Mismatch. (a) Difference in the
second component of the state (y-coordinate) between perturbed and unperturbed trials (same noise
realization), averaged over 10,000 trials for the Model Match and Model Mismatch approaches, with
o, = 0.5. (b). Difference in the second component of the internal estimate between perturbed and
unperturbed trials (same noise realization), averaged over 10,000 realizations for both approaches,
normalized to their maximum, with o;, = 0.5. (¢). Difference in the second component of the
internal estimate between perturbed and unperturbed trials (same noise realization), averaged over
10,000, for the Model Mismatch approach at different levels of internal noise. (d). Same as (c), but
for the Model Match approach. In all panels, shaded areas indicate the standard error of the mean.
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A.4.5 REDUNDANT ARM-CONTROL TASK: MODEL, PARAMETERS, AND ADDITIONAL
ANALYSES

In Sec. [5.2] we also apply our algorithms to a 3-DOF planar arm performing a reaching move-
ment around a stable reference posture. Below, we outline the full model, parameter choices, and
additional analyses.

Problem definition We use a standard linear time-invariant (LTI) approximation around a fixed
posture, as is common for moderate-amplitude reaching movements (Todorov & Jordan, 2002).

We consider a six-dimensional state (three joint angles and their angular velocities), a nine-
dimensional control (muscle-like activations), and a three-dimensional observation (only joint an-
gles are observed), i.e. m = 6, p = 9, k = 3. We denote by §; € R? the joint-angle vector and by
w; € R3 the corresponding angular velocities. The discrete-time dynamics with time step At are

Orp1 = 0 + At wy,
wiyr = (I3 = At Mo Diging) wp + At Myl S uy,

joint oint
where I3 denotes the 3 x 3 identity matrix and u; € R? is the control vector.

The muscle-to-joint map S € R3*9, which linearly converts muscle activations into joint torques, is

1.2 -10 00 08 -06 00 05 0.0 0.0
S=100 00 10 -04 06 05 00 05 00].
0.0 00 00 00 0.0 1.0 00 —-0.3 0.6

To construct the muscle-to-joint actuation matrix S € R3%9 we aimed to introduce a realistic and in-
terpretable form of redundancy rather than an arbitrary high-dimensional control map. The structure
of S loosely mimics the organization of mono-articular and bi-articular muscles in the upper limb
(e.g., Tahara et al.| (2009)): each control channel acts as a simplified “muscle-like” actuator whose
nonzero entries indicate which joints it spans, and whose signs emulate flexor versus extensor ac-
tion. Although the exact numerical values are not intended to reproduce detailed biomechanics, the
sparsity and sign patterns encode meaningful coupling across joints. This yields a redundant but
structured control system in which multiple activation patterns can produce the same torque, pre-
serving the essential geometric properties of musculo-skeletal redundancy while keeping the model
analytically tractable.

The inertia and damping matrices are

Mioing = diag(mi,ma, ms), Djoing = daampls,
withm; = 1.2, my = 0.8, m3 = 0.5 and dqamp = 2.0.
‘We define the state, control, and observation variables as
0+
Ty = <wt> S RG, O, wy € R?’, Uy € Rg, Yp € R3.
The matrices of the whole dynamical system are

A= s Atﬁ € R%*6,
O3x3 I3 — At M, ;. Dioint

joint

o O3><9 6x9
B = (AtM.l S) € R,

joint
and the multiplicative control-noise matrix is

C=o0.B.

Only joint angles are observed, hence

H = (I3 03x3) € R®*6 D =o0,H € R**S.
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The state cost used in the optimal control problem is diagonal:
Qt:dia’g(q97Q97qe7qw7qw7qw)7 tzla"'vTa
with gs = 1.0 and ¢,, = 10~3. The control cost is
Ry, =11y, r=10"2, t=1,...,T -1,

with the last control cost being zero. Additive process and sensory noises are

Se = 01, Y, = 0213,
and internal noise is modeled as

Sy = o1l
In all simulations we use zero-mean, zero-covariance initial conditions:
E[z1] = O6x1, E[z1] = O6x1,

Yz, = Osxe, Y. = Osxe-

The parameters of the problem are listed in Table[7] (std = standard deviation).

Table 7: Parameters of the Redundant arm-control task

Name Description Value
At time-step (s) 0.010

T time steps 300

o¢ std of dynamics noise &; 0.1

Ow std of the sensory noise w; 0.1

O std of the control-dependent noise €; 0.1

o, std of the sensory-dependent noise p 0.1

oy std of the additive internal noise 7 € [0.2,0.5]

Additional Analyses As described in Sec. [5.2} the M-Match solution channels internal variability
into cost-irrelevant and unobserved state dimensions, thereby stabilizing the control output (in this
task only joint angles are strongly penalized and observed, as specified by () and H). This can be
seen by analyzing the principal components of the internal variable z;. As internal noise increases,
the first PC of z; (explaining more than 90% of total variance) becomes aligned with the directions
corresponding to the unobserved and cost-irrelevant components of the state (here the angular veloc-
ities). In Fig, the first PC of z; has negligible loading on the first three (cost-relevant) dimensions
and substantial loading only on the last three (cost-irrelevant) dimensions, indicating that variability
is routed into the cost-irrelevant subspace. Notably, the first PC of z; maintains nearly identical
direction as o, increases (Fig, red line, where the absolute projection with first PC at low noise
level and all other first PCs at higher noise levels is computed).

Conversely, in the Model Mismatch framework, the first PC of z, substantially changes with internal
noise (Fig[7b, purple curve), reflecting a noise-adaptive internal computation unavailable to the M-
Match model.

L0 o o o oo
0.8 P M — Match
006 EC 0.6 M — Mis
O 04 =7
: <
n-‘O.z D '_:X(O)-;l
Do
0.0 I
2 3 4 s 6

1 020 025 030 035 040 045
Internal State dimension Iy

Figure 7: Redundant Arm-Control Task: Additional Analyses. (a) Components of the first principal
component (PC1) of the internal state z; in the M-Match solution (computed over 500 trials) for
o, = 0.33. (b) Alignment between the first principal components of z; across noise levels, computed
as the normalized absolute scalar product (i.e absolute cosine similarity) between the reference PC1
at the smallest o, and the PC1 at higher noise levels.
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A.4.6 NEURAL POPULATION STEERING VIA MODEL MISMATCH CONTROL: MODEL AND
PARAMETERS

In Sec.[5.3] we showed how the Model Mismatch framework can be used to model a wider range of
problems by going beyond the classical estimation—control setting. To illustrate this, we considered
a task in which an unstable neural population is stabilized and steered toward a target state by
another linear population. We model two populations of Ny,its = 100 linear neurons, each with
sparse Gaussian recurrent connectivity, following standard assumptions from dynamical mean-field
theory (Sompolinsky et all [1988} Rajan et al.| 2010). Here, the matrix A represents the recurrent
connectivity of the z, population, whereas W represents the connectivity of the z; population. They
are given by

A .o
AUNN<O’ \/ﬁ)) Z7J:17"',Nuni157

WUNN<Oa Iw )7 i7j:17"'>NunilS-
N, units

Note that internal dynamics is fixed over time, Wy . = W. The activity of the second population

is linearly read out through a time-varying matrix L;, which is optimized to steer the activity of

the first population toward a desired target state while minimizing control effort (see Fig. [3p). The

population z; receives input from x4 through sparse random projections defined by

gp .o
P’LNN(O7>u Z»]:]-»"'aNuis~
! \/Nunits "

Again we consider I . 7 = P. To conform this setup to our control framework, we set m = n =
p =k = Nuits, and define

B=H=1y

units

D = EW = ONuni[sXNunils .

The cost and noise structure of the problem are defined by the following matrices

C =0¢- INlmils?
_ 2

Zf - JE ’ INuniLs7
_ 2

ZT] - Un ’ INunils7

Q1,..7—1 = q<1 - INgis»

Qr =qr- IN s
Ri=r-In,., fort=1...,T—1,
Rr=0.

The initial conditions are given by:
E[xl] NN(0799231‘[Nunils) ’
]E[Zl] NN(()?gglINuniu) ’
E:El = ONunils X Nunits 1
221 = ONunitsXNuniu .

As stated above, the choice of Gaussian-distributed connectivity for the recurrent matrices A, W,
and the feedforward matrix P is grounded in principles from dynamical mean-field theory, which
describes the macroscopic behavior of large, sparsely connected networks of rate neurons (Som-
polinsky et al., 1988 Rajan et al.,2010). We set g4 = 1.1 to ensure that the state dynamics in z; are
intrinsically unstable — this choice is deliberate, as our objective is to stabilize the system through
control. Since we define the desired target state as zero, using it as a reference point, the initial
condition effectively coincides with the goal. In this setting, a naturally decaying (stable) dynamics
would trivially converge to the target without requiring active control. Instead, by inducing unstable
dynamics, we create a scenario where control is essential to prevent divergence from the desired
state. The internal dynamics gain gy = 0.9 places the latent population z; in a subcritical regime,
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supporting stable internal representations of the external dynamics. Lastly, the feedforward gain
gp = 0.3 models sparse and weak inter-population connectivity. These structured random matrices
instantiate biologically inspired constraints that the Model Mismatch framework naturally accom-
modates while enabling effective control. The parameters of the problem are listed in Table[8](std =
standard deviation).

Note that the ”dynamics noise” & now represents the internal noise affecting the population x;,
analogous to the role of 7, for the population z;. We also observe that the initial condition of the
population z; reflects spontaneous activity arising from internal fluctuations; accordingly, we set
gz, = 0y to match the scale of this variability.

Table 8: Parameters of the Neural Steering task

Name Description Value
T Time steps 50

r Control cost scaling 0.001
q<T Task-related cost scaling 0.001
qr Task-related cost scaling 0.1
[ Initial condition scaling for 10.0
Gz Initial condition scaling for z; 0.2
ga Scaling of random connectivity of population x; 1.1
gw Scaling of random connectivity of population z; 0.9
gp Scaling of random connections from population x; to population z; 0.3
o¢ Std of dynamics noise &; 0.5
O Std of multiplicative control noise ¢ 0.0
on Std of additive internal noise 7, 0.2

Lastly, we note that although Sec. [5.3] highlights qualitative parallels with results from related RL-
based approaches, our method is fundamentally different. In the linear—quadratic setting we study,
the optimal solution is obtained analytically via fixed-point equations, yielding deterministic updates
and very low computational cost. RL methods—both model-free and model-based—require Monte-
Carlo roll-outs, which incur high sample complexity and high variance under multiplicative noise,
making them far less efficient for this class of problems.

A.4.7 COMPARISON WITH KALMAN FILTERING UNDER MULTIPLICATIVE NOISE

To compare our algorithm with alternative analytical approaches to stochastic optimal control, and
to demonstrate that multiplicative and internal noises break the separation principle, we evaluated an
alternative method in which the internal estimate 2; is replaced with a Kalman filter that is optimal
for estimation only. This allows us to directly test whether — as expected from theory
2005)) — estimation and control cannot be optimized independently once we move beyond the clas-
sical LQAG setting.

To the best of our knowledge, there is no Kalman filtering theory that can optimally accommo-
date control-dependent multiplicative noise in the state dynamics or internal noise in the estima-
tor dynamics. Nevertheless, we considered the Kalman-like filter proposed by (2016),
which is specifically designed for linear systems with additive and multiplicative measurement
noise, and thus most closely aligns with the subset of our problem where their assumptions hold.
We implemented the filtering equations of in the simplest setting where they ap-
ply: no control-dependent noise and no internal noise. We then used the 1-D reaching task of
Sec. [A.4.1] with slightly adjusted parameters (see Table [J), and swept the magnitude of multi-
plicative sensory noise o,. We included a small but non-zero intermediate state cost by setting
Q: = 0.00017,, ,vt = 1,...,T — 1, where I, is the m x m identity matrix, and we considered
process noise o¢ affecting all components of the state.

For each value of o, we computed the estimator gains K using the algorithm of (2016)
and then optimized the controller L; using our analytical M-Match update, and we compared with
the full solution of our M-Match algorithm, where both control and filter gains are jointly optimized.
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Our results show that when o, = 0, the methods behave identically, as expected from classical
LQAG theory where the separation principle holds. However, as o, increases, using the gains
K; returned by leads to markedly sub-optimal control performance, even when
L, is re-optimized using our M-Match algorithm. In contrast, the full M-Match solution achieves
substantially lower expected cost (Fig. ).

225 M — Match

igg Kalman filter + optimized L

150
125
100

75

Figure 8: Effect of Multiplicative Sensory Noise on Control Performance. Expected cost for the M-
Match solution (red) and for the Kalman-filter-based approach with re-optimized L, (blue), plotted
as a function of sensory multiplicative noise o,. Curves show the analytically computed expected
cost. The M-Match solution consistently achieves lower cost as o, increases, demonstrating that a
fixed Kalman estimator becomes suboptimal when multiplicative noise is present and joint estima-
tion—control optimization is required.

These findings confirm the theoretical expectation: enforcing a fixed Kalman-filter structure (such as
that of Wu et al.,[2016) degrades performance once multiplicative or internal noise is present. In such
settings, the estimator must adapt to the control law and vice-versa. Therefore, joint optimization is
essential.

Table 9: Parameters of the single-joint reaching task for the Kalman filtering test

Name Description Value
At time-step (s) 0.010

m mass of the hand (K g) 1

51 first time constant of the second order low pass filter 0.04

Ty second time constant of the second order low pass filter  0.04

r Auxiliary variable for control-dependent cost 0.001
Wy Auxiliary variable for task-related cost 0.2

wy Auxiliary variable for task-related cost 0.01

T time steps 1000

1 Target position 0.0

Oy Target position standard deviation 0.0

o¢ std of dynamics noise &; 0.5

Ow std of the sensory noise w; 0.5

o std of the control-dependent noise £ 0.0

Op std of the sensory-dependent noise p € 0.0, 5.0]
oy std of the additive internal noise 7 0.0

A.4.8 ROBUSTNESS TO NON-GAUSSIAN NOISE

As outlined in Sec. [3] the solutions derived through our M-Match or M-Mis algorithms depend
only on 1st and 2nd order moments of the noise terms. Consequently, no distributional assumptions
beyond finite covariance are required, and the method applies to any noise source with well-defined
second moments. To validate this point empirically, we repeated the Monte-Carlo simulations of
the 1D reaching task of Appendix [A:4.1] - with the same parameters as Appendix [A-4.1] - using
three noise distributions for all noise terms with matched variance but strongly differing shapes.
Besides the Gaussian baseline, we tested: (i) heavy-tailed Student-t noise (v = 5), introducing
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occasional large outliers; and (ii) skewed 3(2, 5) noise, rescaled to zero mean and matched variance,
introducing substantial asymmetry and bounded support. All control, filter, and internal parameters
were kept fixed across conditions.

0.870
0.865
) :
0.860 E E
0'85C§aussian Student — t (v =5) B(2,5)

Noise distribution

Figure 9: Robustness to Non-Gaussian Noise. Mean total cost (& standard error of the mean across
50, 000 Monte-Carlo trials) obtained under three noise distributions with matched variance: Gaus-
sian (baseline), heavy-tailed Student-t (v = 5), and skewed 3(2,5). Despite strong differences in
shape, tail behavior, and symmetry, all distributions yield nearly identical expected cost, confirming
that—under linear dynamics and quadratic cost—performance depends only on second moments
and not on Gaussianity.

Because the dynamics are linear and the cost is quadratic, the expected cost should depend only
on second moments and therefore remain invariant across noise distributions. This prediction is
confirmed in Fig. [0} the mean total cost is nearly identical for all three distributions, despite their
markedly different shapes. This numerical result further supports the theoretical claim that the
framework does not require Gaussian noise, and that performance depends solely on the covariance
structure of the perturbations.

A.5 LLM USAGE

Large Language Models (LLMs) were used exclusively to assist with writing clarity — specifically
for grammar correction, wording suggestions, and improving readability. No part of the technical
content (including research ideas, mathematical derivations, proofs, analyses, experiments, or re-
sults) was generated by an LLM. The authors take full responsibility for all scientific content in the
manuscript.
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