

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMAL CONTROL UNDER MULTIPLICATIVE AND IN- TERNAL NOISE WITH MODEL MISMATCH

Anonymous authors

Paper under double-blind review

ABSTRACT

Natural agents interact with their environment through noisy and continuous sensorimotor loops. Stochastic optimal control provides a principled framework for this problem, but existing analytical solutions are restricted to linear dynamics with Gaussian observations and additive noise. They cannot address scenarios with multiplicative noise in control or observations, and with internal noise affecting estimation – features central to biological and robotic systems. We provide a provably convergent algorithm that computes fixed-point controller–filter solutions for linear dynamics with quadratic costs under multiplicative and internal noise. Our method overcomes the limitations of prior analytical approaches and improves the efficiency of state-of-the-art gradient-based methods by more than three orders of magnitude in realistic tasks. Importantly, it also optimizes internal dynamics, relaxing the classical assumption that internal models must match external dynamics. Allowing such model mismatch yields substantially better performance under internal noise. In sum, we provide the first full solution to stochastic optimal linear control under multiplicative and internal noise, covering both matched and mismatched internal models.

1 INTRODUCTION

Understanding the computational mechanisms that govern the sensorimotor system in humans and other animals is a long-standing goal in systems and computational neuroscience (Wolpert et al., 1995; Shadmehr & Krakauer, 2008; Franklin & Wolpert, 2011; Todorov, 2004). Yet, developing formal and mathematically tractable models that accurately capture these mechanisms remains an open problem, with far-reaching implications for fields such as artificial intelligence and robotics. In this context, stochastic optimal control theory provides a powerful mathematical framework for explaining behavior in terms of optimality principles, accounting for uncertainty and variability inherent in biological systems (Todorov & Jordan, 2002; Todorov, 2005; Straub & Rothkopf, 2022; Schultheis et al., 2021; Faisal et al., 2008). The seminal work in Todorov (2005) extended the classic Linear-Quadratic-Additive-Gaussian – LQAG – framework (usually referred to as Linear-Quadratic-Gaussian – LQG – problem (Davis, 2013)) to incorporate a more biologically realistic noise model of the sensorimotor system. This includes control-dependent noise (Schmidt et al., 1979; Todorov, 2002), signal-dependent sensory feedback noise (Todorov & Jordan, 2002; Harris & Wolpert, 1998), and internal neural noise (Faisal et al., 2008; Moreno-Bote et al., 2014; Churchland et al., 2006) – all of which are essential for reproducing key signatures of human motor behavior (Todorov, 2005; Flash & Hogan, 1985; Harris & Wolpert, 1998; Todorov, 2002; Schmidt et al., 1979). However, explaining behavior through optimal control requires first obtaining optimal solutions to the underlying problem (Todorov, 2005; Schultheis et al., 2021).

The study of Todorov (2005) provided the first analytically-derived algorithm for optimal linear control under multiplicative and internal noise. Despite its wide applicability (Schultheis et al., 2021; Straub & Rothkopf, 2022; Sensinger & Dosen, 2020; Liu & Todorov, 2007; Izawa et al., 2008; Takei et al., 2021; Shanechi et al., 2013), Damiani et al. (2024) demonstrated that this solution fails to yield truly optimal results in the presence of internal noise, due to the incorrect assumption of unbiased estimators and its connection with the orthogonality principle (Appendix A.1). More recent theoretical work has continued to assume unbiased estimation in extended applications, including iterative LQG (iLQG) and differential dynamic programming (DDP) (Li & Todorov, 2007). To address this limitation, Damiani et al. (2024) introduced a numerical gradient-based algorithm that achieves op-

054 timal performance, in terms of cost-minimization, under multiplicative and internal noise, albeit
 055 at high computational cost, making it impractical for inverse optimal control applications. They
 056 also proposed an analytical counterpart, the FPOMP algorithm, which solves the problem in the
 057 one-dimensional case and, in higher dimensions, only under additive noise, due to the increased
 058 mathematical complexity of the full setting. Consequently, no previous work provides a general
 059 analytical solution or formal convergence guarantees.

060 In this work, we derive an algorithm that fully solves the stochastic control problem of Todorov
 061 (2005); our algorithm exploits coordinate descent, and we prove its monotonic improvement and
 062 convergence to a critical point (Appendix A.2). This overcomes prior analytical limitations and,
 063 unlike the state-of-the-art numerical methods, yields an analytically-derived algorithm for the full
 064 problem with speedups of more than three orders of magnitude in realistic tasks. Our framework
 065 thus provides both a conceptual advance and a major efficiency gain over existing approaches.

066 A further limitation of current theoretical work on stochastic optimal control is the reliance on
 067 two core assumptions: (1) a strict separation between estimation and control, and (2) the matched-
 068 dynamics assumption, i.e., that the internal model used for estimation and control perfectly matches
 069 the dynamics of the external environment. These limitations underlie both Todorov (2005) and
 070 Damiani et al. (2024), where noisy sensory feedback is first processed by a Kalman filter to produce
 071 a state estimate – based on the same forward model of the environment – which then guides linear
 072 control actions. Within the classical LQAG problem, this methodology is mathematically justified
 073 by the separation principle (Davis, 2013). However, once multiplicative and internal noise are in-
 074 cluded, the separation principle no longer holds, making estimation and control inherently coupled
 075 (Todorov, 2005). Moreover, the assumption that the agent’s internal model exactly matches the
 076 external dynamics strongly limits the realism of this approach, overlooking a substantial body of
 077 research emphasizing the role of internal models in motor control (Wolpert et al., 1995; Shadmehr
 078 et al., 2010; Kording & Wolpert, 2004; Kawato, 1999; Golub et al., 2015).

079 Our second main contribution is to relax these assumptions by considering the more general case
 080 where the internal dynamics – used by the agent to process sensory stimuli and generate motor out-
 081 puts – need not match the dynamics of the external world and must themselves be optimized (Sec.
 082 4). We refer to the classical case as Model Match (M-Match), and to our extension as Model Mis-
 083 match (M-Mis). We extend the algorithm developed for the M-Match case (Appendix A.2.2) to this
 084 scenario, providing an analytical solution for mismatched internal models. In Sec. 5, we demon-
 085 strate that this additional flexibility leads to improved solutions relative to M-Match, particularly in
 086 the presence of internal noise. Finally, we illustrate the generality of our framework by applying
 087 it to the steering of linear neural populations, which connects directly to computational principles
 088 underlying reservoir computing (Jaeger & Haas, 2004; Maass et al., 2002) and, more broadly, to
 089 recurrent neural network models that generate task-relevant outputs (Sussillo & Abbott, 2009).

090 2 STOCHASTIC LINEAR OPTIMAL CONTROL: PROBLEM FORMULATION

092 We first review the standard Linear-Quadratic-Additive-Gaussian (LQAG) problem, then extend the
 093 noise model, following Todorov (2005), to include multiplicative observation, control noise, and
 094 internal noise, yielding the Linear-Quadratic-Multiplicative-Internal (LQMI) formulation. In both
 095 LQAG and LQMI, internal and state dynamics are matched; the more general mismatched case is
 096 discussed in Sec. 4.

098 2.1 STOCHASTIC OPTIMAL CONTROL UNDER MULTIPLICATIVE AND INTERNAL NOISE

100 In the standard LQAG formulation, an agent receives noisy observations $y_t \in \mathbb{R}^k$ ($t = 0, 1, \dots, T$)
 101 from a state variable $x_t \in \mathbb{R}^m$,

$$102 \quad y_t = Hx_t + \omega_t, \quad (1)$$

104 where $H \in \mathbb{R}^{k \times m}$ is the observation matrix and $\omega_t \in \mathbb{R}^k$ is a zero-mean noise with covariance Σ_ω .
 105 The control problem consists in finding the optimal control signal $u_t(y_{t-1}, \dots, y_0) \in \mathbb{R}^p$ that steers
 106 the stochastic linear dynamical system

$$107 \quad x_{t+1} = Ax_t + Bu_t + \xi_t, \quad (2)$$

108 so as to minimize the expected cumulative quadratic cost
 109

$$110 \quad C = \sum_{t=0}^T \mathbb{E} [x_t^\top Q_t x_t + u_t^\top R_t u_t] . \quad (3)$$

112 The dynamics of the state variable, Eq. 2, is assumed to be linear in state and control with matrices
 113 $A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{m \times p}$ and corrupted by zero-mean noise $\xi_t \in \mathbb{R}^m$ with covariance Σ_ξ .
 114 All noises are uncorrelated in time and are not required to be Gaussian. We observe that time-
 115 dependent matrices in the dynamics or noise can be trivially incorporated. The initial condition of
 116 the dynamics is x_0 , usually drawn from a Gaussian distribution. The control signal $u_t(y_{t-1}, \dots, y_0)$
 117 at time t is allowed to depend only on previous observations, but not on the state nor on future
 118 observations to enforce partial observability and causality, respectively. The expectation in Eq. 3 is
 119 over the realizations of the noise and the initial conditions. Each term in the sum is the expected
 120 instantaneous cost at time t . The total expected cost C penalizes large control signals – reflecting
 121 energetic or metabolic constraints – as well as deviations from desired trajectories or targets, through
 122 the symmetric positive semidefinite matrices $R_t \in \mathbb{R}^{p \times p}$, $R_t \geq 0$, and $Q_t \in \mathbb{R}^{m \times m}$, $Q_t \geq 0$,
 123 respectively.

124 The LQAG problem admits an analytical solution (Davis, 2013), which is the combination of a linear
 125 Kalman filter, providing optimal estimates $\hat{x}_t \equiv z_t$ of the partially observable state x_t , and a linear
 126 feedback controller defined by $u_t = L_t z_t$, which are computed independently, without mathematical
 127 dependence between control and filter gains – the so-called separation principle (Davis, 2013). **We**
 128 **return to this point in Appendix A.4.7, where we empirically examine the consequences of relying**
 129 **on this principle.** The internal variable becomes a state estimate evolving according to

$$130 \quad z_{t+1} = Az_t + Bu_t + K_t(y_t - Hz_t) , \quad (4)$$

131 where $K_t \in \mathbb{R}^{m \times k}$ is the Kalman gain at time t . Solving the optimal control problem therefore
 132 consists in computing both the optimal filter and control gains, respectively K_t and $L_t \in \mathbb{R}^{p \times m}$, un-
 133 der the constraint that the internal dynamics follow the same forward dynamics as the state variable
 134 (matrices A and B ; see Appendix A.2.3 for the well-known solutions).

135 While the analytical tractability of the LQAG framework is a key advantage, it comes at the expense
 136 of reduced biological realism. In particular, the noise model does not account for multiplicative
 137 noise, also neglecting internal sources of variability (Faisal et al., 2008; Moreno-Bote et al., 2014;
 138 Churchland et al., 2006; Franklin & Wolpert, 2011). To consider a more general and realistic noise
 139 model, following Todorov (2005), we first introduce multiplicative noise – both control-dependent
 140 and observational – into the system and observation dynamics in Eqs. 1,2. This leads to the modified
 141 equations

$$142 \quad x_{t+1} = Ax_t + Bu_t + \xi_t + \sum_i \varepsilon_t^i C_i u_t \quad (5)$$

$$143 \quad y_t = Hx_t + \omega_t + \sum_i \rho_t^i D_i x_t . \quad (6)$$

145 In this framework, executing a control input u_t adds noise whose magnitude scales with the input
 146 itself (Sutton & Sykes, 1967; Schmidt et al., 1979; Harris & Wolpert, 1998), Eq. 5. Conversely,
 147 sensing the partially observable state x_t introduces sensory noise whose magnitude scales with the
 148 state itself (Burbeck & Yap, 1990; Whitaker & Latham, 1997), Eq. 6. The matrices $C_i \in \mathbb{R}^{m \times p}$
 149 and $D_i \in \mathbb{R}^{k \times m}$ define fixed gain patterns for the multiplicative noise components, while $\varepsilon_t \in \mathbb{R}^c$
 150 and $\rho_t \in \mathbb{R}^d$ represent zero-mean noise vectors, each with identity covariance, $\Sigma_\varepsilon = \mathbb{I}_{c \times c}$ and
 151 $\Sigma_\rho = \mathbb{I}_{d \times d}$. As in the LQAG problem, control and observation noises are assumed to be mutually
 152 independent, and also independent from both the additive and multiplicative noise components.
 153 Finding the optimal control signal $u_t(y_{t-1}, \dots, y_0)$ that minimizes the cost in Eq. 3 with system
 154 and observation dynamics given by Eqs. 5,6 is a challenging problem with no known solutions,
 155 even in the case of Gaussian noise. In particular, no sufficient statistic, analogous to $\hat{x}_t \equiv z_t$, is
 156 known that would allow for a Kalman filter-like recursion. Following Todorov (2005), we assume
 157 that the control signal u_t can only linearly depend on the estimate $z_t \in \mathbb{R}^m$, that is, $u_t = L_t z_t$, with
 158 $L_t \in \mathbb{R}^{p \times m}$, and that the state estimate obeys the *matched* dynamical equation

$$159 \quad z_{t+1} = Az_t + Bu_t + K_t(y_t - Hz_t) + \eta_t , \quad u_t = L_t z_t , \quad (7)$$

160 with the same terminology as in Eq. 4, but where we have introduced an internal additive noise term
 161 $\eta_t \in \mathbb{R}^m$, with zero mean and covariance Σ_η . The internal noise may represent internal neural vari-
 162 ability (Faisal et al., 2008; Moreno-Bote et al., 2014; Churchland et al., 2006; Franklin & Wolpert,

162 2011) or flaws in the filtering process itself, and it is introduced here to obtain a more realistic and
 163 general model (Todorov, 2005). Taken together, incorporating multiplicative and internal noise with
 164 the assumptions of a linear Kalman filter for state estimation and a linear control policy based on an
 165 internal estimate whose forward dynamics match those of the state (matrices A and B) gives rise to
 166 the more general Linear–Quadratic–Multiplicative–Internal (LQMI) problem. Solving this problem
 167 involves determining the optimal control gains $L_{0,\dots,T}$ and filter gains $K_{0,\dots,T}$ that minimize the
 168 quadratic cost function in Eq. 3 under the system, observation and estimate dynamics in Eqs. 5,6,7.
 169

170 3 SOLVING THE LQMI PROBLEM

172 We derive an algorithm that is guaranteed to converge to a critical point of the cost function in Eq. 3,
 173 under the dynamics in Eqs. 5, 6, and 7. Importantly, this guarantee holds even though the problem
 174 is non-convex: indeed, the global LQAG problem in the fully observable setting – which is a special
 175 case of our LQMI formulation – is itself non-convex (Fazel et al., 2018). Our algorithm yields
 176 improved pairs of control and filter gains, fully solving the LQMI problem. Complete derivations
 177 and pseudocode appear in Appendices A.2 and A.3.1 – Algorithm 1. Below, we summarize the main
 178 ideas and corresponding equations.

179 Assuming a linear control signal $u_t = L_t z_t$, we first rewrite the cost function in Eq. 3 as
 180 $C = \sum_{t=0}^T (\text{tr}(Q_t S_t^{xx}) + \text{tr}(L_t^\top R_t L_t S_t^{zz}))$, where we introduce the 2nd-order moment
 181 matrices $S_t^{xx} = \int dx dz p_t(x, z) xx^\top$, $S_t^{zz} = \int dx dz p_t(x, z) zz^\top$, and $S_t^{xz} = \int dx dz p_t(x, z) xz^\top$, with
 182 $p_t(x, z)$ being the joint distribution of x and z at time t generated by previous control and filter gains
 183 and averaging over noises and initial conditions following the distribution $p_0(x, z)$. To find the
 184 conditions for extrema on the control $L_{0,\dots,T}$ and filter $K_{0,\dots,T}$ gains we add Lagrange multipliers and
 185 define the new objective

$$186 \quad C_L = \sum_{t=0}^T (\text{tr}(Q_t S_t^{xx}) + \text{tr}(L_t^\top R_t L_t S_t^{zz})) - \sum_{t=1}^{T+1} (\text{tr}(\Lambda_t G_t^{xx}) + \text{tr}(\Omega_t G_t^{zz}) + \text{tr}(\Gamma_t G_t^{xz})) , \quad (8)$$

189 where Λ_t , Ω_t and Γ_t are $\mathbb{R}^{m \times m}$ matrices of Lagrange multipliers (see Eqs. 16 in Appendix A.2).
 190 The constraints $G_t^{xx} = G_t^{zz} = G_t^{xz} = 0$ are given by the temporal evolution of the 2nd-order
 191 moment matrices S_t^{xx} , S_t^{zz} and S_t^{xz} , respectively, between two consecutive time steps t and $t+1$,
 192 obtained from Eqs. 5,6,7 (see Appendices A.2 and A.2.4 for details). A crucial step in solving the
 193 LQMI problem is to observe that the total cost in Eq. 3 admits the decomposition

$$194 \quad C = C_{<t} + C_t \quad (9)$$

196 for any t , where $C_{<t} = \sum_{\tau=0}^{t-1} \text{tr}(Q_\tau S_\tau^{xx} + L_\tau^\top R_\tau L_\tau S_\tau^{zz})$ and the cost-to-go from time t onward is
 197 defined as $C_t = \text{tr}(\Lambda_t S_t^{xx} + \Omega_t S_t^{zz} + \Gamma_t S_t^{xz}) + \gamma_t$. Thus, C_t depends on the Lagrange multipliers
 198 (given by Eqs. 16) and on the additional scalar parameter γ_t (following Eq. 19). Given this structure,
 199 and since L_t affects only the expected cost from time t onward, we can locally optimize L_t at each
 200 time step – as shown in Appendix A.2 – as

$$201 \quad L_t^* = \arg \min_{L_t} C_t = E_t^{-1} (F_t S_t^{xz} (S_t^{zz})^{-1} + J_t) , \quad (10)$$

203 (with matrices E_t , F_t and J_t defined in Appendix A.2.6) while keeping the rest of gains fixed, i.e.,
 204 $L_{0,\dots,t-1,t+1,\dots,T}$ and $K_{0,\dots,T}$ are held constant.

205 For each local subproblem (i.e., optimizing L_t with all other gains held fixed), a global minimum
 206 for L_t exists because C_t is convex. As shown in Appendix A.2, starting from a set of gains $L^{(n)} \equiv$
 207 $L_{0,\dots,T}^{(n)}$ and $K^{(n)} \equiv K_{0,\dots,T}^{(n)}$, we can update the control gains by optimizing L_t sequentially from
 208 $t = 0$ to T using Eq. 10. This yields the new set of gains $L^{(n+1)}$, after which the Lagrange
 209 multipliers are recomputed backward in time using Eqs. 16. Because of the local optimization, we
 210 obtain that the cost is non-increasing, that is, $C(L^{(n+1)}, K^{(n)}) \leq C(L^{(n)}, K^{(n)})$. A full forward
 211 pass that sequentially optimizes the control gains, followed by a full backward pass of the multipliers
 212 is referred to as *control pass*. An analogous procedure can be applied to optimize K_t (Eq. 26 in
 213 Appendix A.2), defining the corresponding *filter pass*.

214 In conclusion, starting from arbitrary $L^{(0)}$ and $K^{(0)}$ and distribution of initial conditions $p_0(x, z)$,
 215 we can alternate the control and filter passes, so that $C(L^{(0)}, K^{(0)}) \geq C(L^{(1)}, K^{(0)}) \geq$

216 $C(L^{(1)}, K^{(1)}) \geq \dots \geq C(L^{(n+1)}, K^{(n)}) \geq C(L^{(n+1)}, K^{(n+1)}) \geq \dots \geq C_{min} \geq 0$. Since the
 217 series is non-negative, it converges to a total cost no higher than the initial one with optimal filters
 218 $L^* = L^{(\infty)}$ and $K^* = K^{(\infty)}$. In summary, in our *coordinate descent* algorithm, each block update
 219 solves a convex quadratic subproblem exactly, which guarantees that the total cost decreases mono-
 220 tonically and therefore converges. Because the converged solution is also a stationary point of the
 221 Lagrangian, Eq. 8, it corresponds to a fixed point of the original cost function (see Appendix A.2).
 222 Following this reasoning, we prove

223 **Theorem 1.** *Starting with arbitrary $L^{(0)}$ and K^0 and distribution of initial conditions $p_0(x, z)$, the
 224 coordinate descent algorithm defined by iterating in alternation control and filter passes converges
 225 to an improved pair of control and filter gains L^* and K^* . The improved pair corresponds to a
 226 critical point of the cost function in Eq. 3.*

227 We first remark that the Lagrange equations may admit multiple solutions. In practice, our algorithm
 228 converges to different critical points depending on the initialization, but when initializing the control
 229 and filter matrices trying to impose the orthogonality principle and then freely running the algorithm,
 230 the best critical point is found, empirically. Secondly, it is worth mentioning that in the derivation of
 231 our algorithm we do not assume the orthogonality principle (OP: $S_t^{xz} = S_t^{zz}$ for all t , equivalent to
 232 $\mathbb{E}[(x_t - z_t)z_t^\top] = 0$), which is shown (Sec. 3.1 and Appendix A.1) to be violated in the general case
 233 (specifically, whenever there is internal noise). Thirdly, we have not assumed any parametric form
 234 for initial distribution $p_0(x, z)$. Finally, as shown in Eqs. 16, 23, 26, and 32, only the first and second
 235 noise moments enter the moment propagation and optimality conditions. No further assumptions are
 236 required beyond finite second moments, so the method applies to any noise distribution with finite
 237 covariance. In Appendix A.4.8 we validate this empirically using non-Gaussian noise.

239 3.1 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT AT ZERO INTERNAL NOISE

240 **Theorem 2.** *Take initial condition $p_0(x, z)$ such that $S_0^{zz} = S_0^{xz}$. A solution to the Lagrange
 241 equations 13, 14, 15, 16 is given by the orthogonality principle $S_t^{zz} = S_t^{xz}$ for $t = 1, \dots, T$, iff internal
 242 noise is zero, that is, $\Sigma_\eta = 0$. The solution corresponds to a critical point of the cost in Eq. 8*

243 See the proof in Appendix A.2.7. We note that OP is implied by the unbiasedness condition (Ap-
 244 pendix A.1), but not vice versa. While unbiasedness was empirically shown to be violated in Dam-
 245 ani et al. (2024), we have now formally demonstrated that only the weaker OP condition is required
 246 to obtain a critical point of the cost. In Appendix A.2.8, we further show that, without multiplicative
 247 or internal noise, enforcing OP recovers the classical LQAG solution.

250 4 OPTIMAL CONTROL WITH MODEL MISMATCH

251 We have shown that an analytical solution to the LQMI control problem can be derived requiring
 252 only standard assumptions: linear Kalman filtering for estimation and linear control laws. However,
 253 a central assumption remains unaddressed. By optimizing estimation and control gains ($K_{0, \dots, T}$
 254 and $L_{0, \dots, T}$) one implicitly assumes i) that the agent’s internal model exactly matches the true dy-
 255 namics, and ii) that optimal behavior emerges from optimizing estimation and control as a partially
 256 decoupled process. This formalization weakens the notion of partial observability by presuming full
 257 access to the external world’s dynamics. Although such knowledge could, in principle, be learned,
 258 it imposes strong constraints on the agent’s internal strategy, leaving little room for internal computa-
 259 tions that are structurally independent from the environment.

260 This perspective also risks underestimating the role of internal representations, which are central
 261 to many motor control studies (Wolpert et al., 1995; Kawato, 1999; Shadmehr & Krakauer, 2008;
 262 Franklin & Wolpert, 2011; Golub et al., 2013; 2015). Beyond these classical formulations, a broader
 263 neuroscience literature has shown that internal models need not faithfully match the external dy-
 264 namics. Frameworks such as optimal feedback control and forward-model learning posit that internal
 265 dynamics may be simplified, biased, or task-dependent (Kawato, 1999; Wolpert & Ghahramani,
 266 2000; Shadmehr & Holcomb, 1997; Scott, 2004). Empirical work further demonstrates that neural
 267 population activity often reflects internally generated dynamics optimized for control or prediction
 268 rather than a veridical copy of the physical plant (Churchland et al., 2012; Gallego et al., 2017).
 269 These ideas align with the conceptual motivation behind our Model-Mismatch framework, intro-

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
duced next, where the internal model is optimized jointly with control rather than constrained to follow the true system dynamics.

Allowing internal models to differ from the laws governing the external world extends the flexibility of the stochastic optimal control framework, opening the door to a richer class of biologically plausible computations. In addition, this flexibility may lead to improved solutions in terms of cost minimization, particularly when internal representations are affected by noise (Hazon et al., 2022; Panzeri et al., 2022; Moreno-Bote et al., 2014).

We then consider a more general control problem where the internal dynamics are also optimized and may become mismatched with the actual forward dynamics of the state variables. We formalize the new *Model Mismatch* (M-Mis) framework over an even more general LQMI problem than the one described in Sec. 2, allowing fully generalized multiplicative noise: both the state and the internal dynamics may be affected by noise that depends on the state and on the internal variable. We define the control problem as

$$x_{t+1} = Ax_t + BL_t z_t + n_t^x, \quad y_t = Hx_t + n_t^y, \quad z_{t+1} = W_t z_t + P_t y_t + n_t^z \quad (11)$$

$$n_t^c = \epsilon_t^c + \sum_r \eta_t^c U_r^c x_t + \sum_l \xi_t^c V_l^c L_t z_t, \quad c \in \{x, y, z\},$$

where notation follows Eqs. 5-7, with appropriate matrix dimensions and noises with covariances $\mathbb{E}[\epsilon_t^c \epsilon_t^{c'}] = \Sigma_{cc'} \delta_{cc'}$, and i.i.d. one-dimensional noises η_t^c and ξ_t^c with unit variance. We introduce additive and multiplicative noises n_t^c in the dynamics, observation and internal dynamics z_t . Sums over r and l can be c -dependent. We consider control-dependent noise, where the control is given by $u_t = L_t z_t$, rather than modeling the multiplicative noise as directly proportional to z_t . $P_t \in \mathbb{R}^{n \times m}$ is a pseudo-filter matrix that takes the observation y_t and inputs it to the dynamics of the internal variable z_t , which follows a linear system with time-dependent forward dynamics $W_t \in \mathbb{R}^{n \times n}$.

Importantly, in the M-Mis framework, the internal variable z_t integrates both control and estimation signals, unlike in the Model Match case where z_t is constrained to represent a state estimate. In the former, since W_t need not match the external dynamics, z_t can evolve independently of x_t and encode dynamics optimized for control rather than estimation. The internal variable z_t has dimension n , while the control signal $u_t = L_t z_t$ is again p -dimensional, with $L_t \in \mathbb{R}^{p \times n}$. The problem consists in optimizing the time-dependent, forward dynamics $W_{0, \dots, T}$, pseudo-filter $P_{0, \dots, T}$ and control $L_{0, \dots, T}$ matrices so as to minimize the cost in Eq. 3, with initial condition $p_0(x, z)$. Using the same procedure as in the Model Match approach (Sec. 3) – since the two problems share the same underlying mathematical structure – we derive a coordinate-descent algorithm guaranteed to converge to a critical point of the cost (Appendix A.2.9; pseudocode in Appendix A.3.2, Algorithm 2).

5 EXPERIMENTS

5.1 COMPARISON WITH CURRENT NUMERICAL AND ANALYTICAL METHODS

To compare against the current state-of-the-art numerical approach for LQMI cost minimization – the gradient- descent (GD) method of Damiani et al. (2024) – we apply our algorithm to the same single-joint reaching task used in Todorov (2005) and Damiani et al. (2024) (problem details in Appendix A.4.1). Our M-Match algorithm (Algorithm 1) converges to a critical point of the cost function (Fig. 1a) and recovers the same optimal control and filter gains as the GD approach (control gains shown in Fig. 1b), while achieving a substantial computational speedup. On a standard laptop, our algorithm (Algorithm 1) converges in approximately 6 seconds, compared to more than 5 hours for the GD method, and achieves the same expected cost, $C = 0.32$. In Appendix A.4.2, we further evaluate computational scaling on increasingly high-dimensional systems (up to 100 state dimensions), demonstrating both robustness and a growing advantage over GD. In the largest setting tested, runtime decreases from more than two days to only 2.7 seconds. Moreover, we confirm the findings of Damiani et al. (2024), showing that the suboptimal (see the discussions in Sec. 1 and Appendix A.1) solutions obtained with the algorithm of Todorov (2005) diverge substantially once internal noise is present, yielding much larger (in absolute value) control gains (Fig. 1c) and significantly worse performance, with an expected cost of $C = 0.50$.

324 5.2 OPTIMAL CONTROL IN MULTIDIMENSIONAL MOTOR TASKS
325326 We then apply the Model Match (M-Match), Model Mismatch (M-Mis), and (Todorov, 2005) (TOD)
327 approaches to two additional motor-control tasks.
328329 **3D Reaching Task** We first examine a 3D reaching task – a multidimensional extension of the
330 classic single-joint paradigm of the previous Section – with a 6-dimensional state including positions
331 and velocities ($m = n = p = k = 6$; see Appendix A.4.3 for details). The coordinate-
332 descent algorithm for the M-Mis framework (Algorithm 2) converges reliably across a wide range
333 of internal-noise levels σ_η (Fig. 1d), achieving substantially lower cost as internal noise increases
334 (Fig. 1e) when compared to the M-Match and TOD solutions. In Fig. 1f, $\tilde{W}_t = A + BL_t - P_t H$
335 (with P_t corresponding to K_t in Eq. 7) denotes the forward dynamics required for M-Mis to reduce
336 to the classical M-Match case. Indeed, setting $W_t = \tilde{W}_t$ recovers the Kalman filter update for z_t
337 in Eq. 11, so that z_t acts as a standard state estimate of x_t . As internal noise increases, however,
338 the optimal W_t deviates progressively from \tilde{W}_t (Fig. 1f), indicating that internal representations no
339 longer attempt to mirror the external dynamics. Instead, z_t becomes an abstract internal variable
340 that integrates sensory feedback and past information in a way that supports robust control rather
341 than faithful state estimation. Consequently, the internal variable z_t can no longer be interpreted as
342 an estimate of the state x_t ; instead, it becomes a more abstract representation that integrates sensory
343 feedback and past information to support optimal control (Fig. 1g), yet drastically reducing the cost
344 - Fig. 1e. Appendix A.4.3 provides additional analyses illustrating how sensory weighting, control
345 readouts, and internal dynamics adapt to internal fluctuations in the M-Mis framework. To further
346 illustrate the conceptual shift, Appendix A.4.4 outlines example behavioral and neural predictions
347 that distinguish the Model Mismatch and Model Match approaches.
348358 **Figure 1: Comparison With Current Methods and Cost Reduction via Model Mismatch.** (a) Expected
359 accumulated cost C (Eq. 3), during joint optimization of control and filter gains using Algorithm 1.
360 (b) Optimal control gains L_t obtained with the M-Match algorithm – Algorithm 1 – (red, left) and
361 with the numerical gradient-descent approach of Damiani et al. (2024) (green, right). Here, $L_{i,t}$
362 denotes the i -th component of the 4-dimensional control-gain vector at time t . (c) Same as (b),
363 but for the solutions obtained using the algorithm of Todorov (2005) (d) Convergence of the Model
364 Mismatch algorithm – Algorithm 2 – for different internal noise levels σ_η . (e) Expected cost for
365 TOD (Todorov, 2005) (blue), Model Match (red), and Model Mismatch (purple). (f) Time-averaged
366 norm of $W_t - \tilde{W}_t$. (g) Second component of x_t and z_t (mean \pm SEM, $\sigma_\eta = 0.1$) for M-Mis (left)
367 and M-Match (right).
368369 **Application to a Redundant Arm-Control Task** We next evaluate our algorithms on a more
370 realistic and structurally complex motor-control problem: a 3-DOF planar arm performing a reaching
371 movement around a stable reference posture. The arm is actuated by nine muscle-like control
372 channels that map linearly onto three joint torques through a matrix S (the full model and parameter
373 choices are reported in Appendix A.4.5). This actuation redundancy (9 controls for 3 torques) is a
374 hallmark of biological musculo-skeletal systems and is widely studied in robotics and computational
375 motor control to analyze coordination under redundancy (Tahara et al., 2009).
376377 As in the previous 3D reaching task, the M-Mis framework yields substantially more robust perfor-
378 mance across internal-noise levels, consistently achieving lower cost than both M-Match and TOD
379 (Todorov, 2005) (Fig. 2a, purple curve).
380

Because musculo-skeletal systems admit multiple muscle activation patterns that produce identical torques, a standard approach for understanding coordination is through muscle synergies, i.e., low-dimensional patterns of co-activation (d’Avella & Bizzi, 2005; Tresch et al., 2006; Valero-Cuevas et al., 2009; Kutch & Valero-Cuevas, 2012; Todorov & Jordan, 2002). Synergy analyses show that biological motor systems concentrate control effort along task-relevant directions, in line with the “minimal intervention principle” (Valero-Cuevas et al., 2009; Safavynia & Ting, 2012). Our solutions exhibit the same structure. We decompose the control signal u_t using the standard pseudoinverse projection: $u_t^{\text{torque}} = S^\dagger S u_t$ and $u_t^{\text{null}} = (I - S^\dagger S)u_t$, where S^\dagger is the pseudoinverse of S , yielding components in the torque-producing and muscle null spaces (with $S u_t^{\text{null}} = 0$ by construction). Computing the projected effort $\mathbb{E}[|u_t^{\text{proj}}|^2]$ for $\text{proj} \in \{\text{torque}, \text{null}\}$ shows that virtually all control effort lies in the torque-producing subspace, with negligible activation in the null space (Fig. 2b; identical results for M-Mis, not shown). Thus, redundancy is resolved by selecting minimal-effort torque-producing patterns rather than co-activating muscles along null directions – consistent with empirical observations in human and animal motor control (Valero-Cuevas et al., 2009) and widely used strategies in robotics (Dietrich et al., 2015).

Figure 2: *Task-Aligned Control Under Model Match and Model Mismatch.* (a) Expected cost for the algorithm from Todorov (2005) (TOD, blue), Model-Match (M-Match, red) and Model-Mismatch (M-Mis, purple), averaged over 500 Monte-Carlo trials (shaded areas show the standard error of the mean). (b) Squared magnitude of the time-dependent control signal projected onto the torque-producing subspace and onto the muscle null-space, with $\text{proj} \in \{\text{torque}, \text{null}\}$ defined as $u_t^{\text{torque}} = S^\dagger S u_t$ and $u_t^{\text{null}} = (I - S^\dagger S)u_t$. Curves are averaged over 500 trials (standard error mean shading barely visible) for $\sigma_\eta = 0.23$ in the M-Match solution (M-Mis shows similar trends; not shown). (c) Time-averaged logarithm of the pseudodeterminant of the control gain matrices K_t in the M-Match framework as a function of internal noise. The log of the pseudodeterminant is computed as the sum of the logarithms of all singular values of K_t above a numerical tolerance (10^{-12}). (d) First (left panel) and fifth (right panel) component of the vectors x_t and z_t for a representative trial of the M-Match solution with $\sigma_\eta = 0.23$ (temporal window between 1–2 s shown for clarity). (e) Alignment between the state x_t and the internal state z_t , averaged over time and over 500 trials, in the Model-Match framework (left panel) and in the Model-Mismatch framework (right panel). Circles indicate alignment between the full vectors; squares indicate alignment restricted to cost-irrelevant dimensions (the last three components, i.e. the angular velocities, which are weakly penalized by the cost Q_t); and diamonds indicate alignment restricted to cost-relevant dimensions (the first three components, i.e. joint angles).

The performance gap between the M-Match and M-Mis frameworks in Fig. 2a stems from fundamentally different internal computations. In the M-Match case, the internal dynamics tend to channel variability into cost-irrelevant and unobserved state dimensions, thereby stabilizing the control output (in this task only joint angles are penalized and observed, as defined by Q and H) – see Appendix A.4.5 for additional analyses. In parallel, sensory feedback gains increase with internal-noise magnitude (Fig. 2c shows the time-averaged log-pseudodeterminant of K_t , i.e. the sum of the logarithms of its non-zero singular values), allowing the system to compensate for internal fluctuations while maintaining accurate estimates of the cost-relevant state components. Consequently, on individual trials, the first three components of z_t reliably track the corresponding components of the physical state (Fig. 2d, left panel), whereas the remaining components diverge and decouple from x_t (Fig. 2d, right panel). This strategy remains stable across noise levels (see Appendix A.4.5). In the M-Mis framework, by contrast, the internal dynamics are no longer constrained to implement a

432 Kalman-like recursion. Instead, they reorganize to stabilize the entire control loop, producing internal representations that no longer track x_t (consistent with Figs. 1f–g), but instead adapt to noise in a way that supports robust control (see Appendix A.4.5). Fig. 2e illustrates this difference: we plot the alignment (absolute cosine similarity) between x_t and z_t across state dimensions. In M-Match, the observed—and cost-relevant components remain strongly aligned with z_t , while the cost-irrelevant ones progressively decouple as internal noise grows. In M-Mis, all components show uniformly low alignment with z_t , indicating that the internal variable encodes representations optimized for control rather than for state estimation.

440 Taken together, these results show that our algorithm scales naturally to high-dimensional, redundant biomechanical systems and yields clear, testable predictions. In M-Match, internal noise drives 441 a noise-suppression strategy that channels variability into unobserved, cost-irrelevant dimensions; 442 in M-Mis, synergies remain stable while internal dynamics reorganize to preserve output stability. 443 These contrasting computations lead to experimentally accessible signatures – such as EMG patterns, 444 muscle-synergy adaptation, alignment or misalignment between neural and behavioral sub- 445 spaces, and noise-dependent changes in sensory weighting – that can be directly probed in human 446 motor control and robotics.

448 5.3 NEURAL POPULATION STEERING VIA MODEL MISMATCH CONTROL

450 Finally, we apply our framework to a neural population-steering task, where an unstable recurrent 451 network is driven toward a target state via optimized linear readouts from another population – 452 a setting reminiscent of biologically inspired machine-learning approaches (Jaeger & Haas, 2004; 453 Maass et al., 2002; Sussillo & Abbott, 2009). This task connects to recent work using optimal 454 control to study neural population dynamics (Costa et al., 2024; Kao et al., 2021; Slijkhuis et al., 455 2023; Athalye et al., 2023). Classical approaches (Todorov, 2005; Damiani et al., 2024) require the 456 internal variable z_t to behave as a Kalman filter estimate of x_t by enforcing the structural constraint 457 $W_t = A + B L_t - P_t H$ in Eq. 11, so that z_t follows Eq. 7. In contrast, the Model Mismatch 458 framework removes this constraint by allowing W_t to be freely optimized, enabling z_t and x_t to 459 represent distinct neural populations with independent connectivity matrices W and A (Fig. 3a). 460 The M-Mis algorithm also supports partial optimization; for instance, W and P can be fixed (e.g., 461 random or biologically plausible) while optimizing only L_t . Such configurations are incompatible 462 with the Model Match framework, which ties z_t ’s connectivity to x_t and forces W_t to vary over 463 time, making it unsuitable for simulating interactions between distinct neural populations.

475 Figure 3: *Model Mismatch for Neural Population Steering*. (a) Sketch of the neural population 476 steering task. (b) Average (over noise realizations) norm of x_t , z_t , and of the control signal $u_t =$ 477 $L_t z_t$ with error bars (standard error of the mean). (c) Distribution of the control signal over time 478 and realizations with Gaussian fit (left), and average control magnitude (over time and realizations) 479 received by each unit as a function of its initial absolute activity (right). (d) Activity of two units 480 from the population vector x_t in a single trial. (e) Heatmaps of the matrices L_t at two time points: 481 early (left) and mid-trial (right).

482 We consider two populations of $N_{\text{units}} = 100$ linear neurons, each with sparse, time-invariant random 483 connectivity (Appendix A.4.6 for details). The activity of the population z_t is read out through 484 a time-varying matrix L_t , optimized to steer the population x_t toward a target while minimizing 485 control effort (Fig. 3a). The population z_t receives inputs from x_t through sparse random pro-

486 jections. The Gaussian-distributed recurrent and feedforward matrices (A , W , P) follow standard
 487 assumptions from dynamical mean-field theory (Sompolinsky et al., 1988; Rajan et al., 2010).
 488

489 We optimize only the readout weights $L_{0,\dots,T}$ keeping all other parameters fixed. As a result, x_t is
 490 reliably steered toward the target (Fig. 3b) through a distributed control strategy: all units in the x
 491 population receive, on average, similar amounts of control (Fig. 3c). Despite this overall uniform
 492 drive, the control selectively targets the units initially farthest from the target (zero in this coordinate
 493 frame), as shown in Fig. 3d. This selective modulation likely reflects the interplay between the
 494 recurrent dynamics of x and the structure of $L_{0,\dots,T}$. Early in the trial, L_1 is highly structured
 495 and low-rank (Mastrogiuseppe & Ostoic, 2018), strongly pulling activity toward the target; after
 496 a transient ($t \geq \tilde{t}$), $L_{\tilde{t},\dots,T}$ becomes sparse and high-rank, stabilizing the system around the target
 497 despite intrinsic instability and noise (Fig. 3e). This mirrors strategies observed when controlling
 498 recurrent networks with reinforcement learning (Mastrogiuseppe & Moreno-Bote, 2024).
 499

500 The Model Mismatch framework therefore extends stochastic control beyond the standard
 501 agent–environment formulation and provides a tool for studying also neural computation. In this
 502 simplified setting, z_t can be viewed as a premotor population driving a downstream motor pop-
 503 ulation x_t , consistent with experimental findings where premotor activity initializes motor cortex
 504 before movement (Kao et al., 2021; Logiaco et al., 2021). While not intended as a detailed bio-
 505 logical model, this example illustrates how the framework captures computational strategies – such
 506 as low-to-high rank transitions, selective modulation, and stabilization of unstable dynamics – that
 507 classical Model Match approaches cannot represent.
 508

509 6 CONCLUSIONS

510 We have introduced a convergent iterative algorithm (Sec. 3) that fully solves stochastic optimal
 511 control problems under a general noise model with both multiplicative and internal noise, assuming
 512 linear control with a quadratic cost – the so-called LQMI problem. This goes beyond previous
 513 analytical approaches, which remained incomplete (Todorov, 2005; Damiani et al., 2024). Our
 514 algorithm also outperforms existing state-of-the-art gradient-based methods (Damiani et al., 2024)
 515 by more than three orders of magnitude in efficiency on realistic tasks, making it particularly well
 516 suited for inverse optimal control.

517 Moreover, the Model Mismatch framework relaxes two central assumptions in stochastic control:
 518 (1) the partial decoupling of estimation and control, and (2) the requirement that internal forward
 519 dynamics match the actual state dynamics. By allowing internal dynamics – used to generate control
 520 signals – to be optimized jointly with control and pseudo-filter gains, our framework broadens
 521 the solution space. Notably, we find that mismatched forward dynamics can outperform matched
 522 dynamics in the presence of internal noise. This suggests that internal representations need not faithfully
 523 track the state variable; instead, mixed representations of estimation and control signals can
 524 provide superior performance. Furthermore, the Model Mismatch framework extends the applica-
 525 bility of stochastic optimal control to the control of neural populations.

526 Overall, our work expands stochastic optimal control to a more general and realistic setting, with
 527 direct applications to neuroscience and robotics, while preserving analytical tractability and inter-
 528 pretability.

529 **Limitations and Future Work** We assume linear dynamics, linear control, and a quadratic cost,
 530 which yield closed-form second-order moments and analytical tractability but might not capture all
 531 problems of interest. Nevertheless, the framework accommodates time-varying dynamics, which
 532 can approximate nonlinearities. **Another promising research direction is to combine our solutions**
 533 **with iLQG and DDP methods** (Li & Todorov, 2007; Tassa et al., 2014; Van Den Berg et al., 2016;
 534 Liao & Shoemaker, 1991), which approximate optimal control in nonlinear systems under partial
 535 observability by locally linearizing the dynamics and using quadratic approximations to the value
 536 function. A potential advantage of our approach is that, by using the Model-Mismatch framework,
 537 we do not need to assume a model-matched extended Kalman filter – as is typically done in iLQG
 538 and DDP – and we can also avoid the unbiased-estimator assumption. Another relevant direction is
 539 that the Model Mismatch framework allows internal dimensionality to be freely chosen – a promis-
 540 ing but unexplored direction that could support nonlinear strategies via linear representations (Korda
 & Mezić, 2018; Brunton et al., 2016).

540 REFERENCES
541

542 Vivek R Athalye, Preeya Khanna, Suraj Gowda, Amy L Orsborn, Rui M Costa, and Jose M Carmena.
543 Invariant neural dynamics drive commands to control different movements. *Current Biology*, 33
544 (14):2962–2976, 2023.

545 Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz. Koopman invariant
546 subspaces and finite linear representations of nonlinear dynamical systems for control. *PloS one*,
547 11(2):e0150171, 2016.

548 Chistina A Burbeck and Yen Lee Yap. Two mechanisms for localization? evidence for separation-
549 dependent and separation-independent processing of position information. *Vision research*, 30
550 (5):739–750, 1990.

552 Mark M Churchland, Afsheen Afshar, and Krishna V Shenoy. A central source of movement vari-
553 ability. *Neuron*, 52(6):1085–1096, 2006.

555 Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster, Paul Nuyujukian,
556 Stephen I Ryu, and Krishna V Shenoy. Neural population dynamics during reaching. *Nature*, 487
557 (7405):51–56, 2012.

558 Tiago Costa, Juan R Castineiras de Saa, and Alfonso Renart. Optimal control of spiking neural
559 networks. *bioRxiv*, pp. 2024–10, 2024.

561 Francesco Damiani, Akiyuki Anzai, Jan Drugowitsch, Gregory DeAngelis, and Rubén Moreno-
562 Bote. Stochastic optimal control and estimation with multiplicative and internal noise. *Advances
563 in Neural Information Processing Systems*, 37:123291–123327, 2024.

564 Andrea d’Avella and Emilio Bizzi. Shared and specific muscle synergies in natural motor behaviors.
565 *Proceedings of the national academy of sciences*, 102(8):3076–3081, 2005.

567 Mark Davis. *Stochastic modelling and control*. Springer Science & Business Media, 2013.

569 Alexander Dietrich, Christian Ott, and Alin Albu-Schäffer. An overview of null space projections
570 for redundant, torque-controlled robots. *The International Journal of Robotics Research*, 34(11):
571 1385–1400, 2015.

572 Kenji Doya. *Bayesian brain: Probabilistic approaches to neural coding*. MIT press, 2007.

574 A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous system. *Nature reviews
575 neuroscience*, 9(4):292–303, 2008.

576 Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradi-
577 ent methods for the linear quadratic regulator. In *International conference on machine learning*,
578 pp. 1467–1476. PMLR, 2018.

580 Tamar Flash and Neville Hogan. The coordination of arm movements: an experimentally confirmed
581 mathematical model. *Journal of neuroscience*, 5(7):1688–1703, 1985.

582 David W Franklin and Daniel M Wolpert. Computational mechanisms of sensorimotor control.
583 *Neuron*, 72(3):425–442, 2011.

585 Juan A Gallego, Matthew G Perich, Lee E Miller, and Sara A Solla. Neural manifolds for the control
586 of movement. *Neuron*, 94(5):978–984, 2017.

587 Matthew Golub, Steven Chase, and Byron Yu. Learning an internal dynamics model from control
588 demonstration. In *International Conference on Machine Learning*, pp. 606–614. PMLR, 2013.

590 Matthew D Golub, Byron M Yu, and Steven M Chase. Internal models for interpreting neural
591 population activity during sensorimotor control. *Elife*, 4:e10015, 2015.

593 Christopher M Harris and Daniel M Wolpert. Signal-dependent noise determines motor planning.
594 *Nature*, 394(6695):780–784, 1998.

594 Omer Hazon, Victor H Mince, David P Tomàs, Surya Ganguli, Mark J Schnitzer, and Pablo E
 595 Jercog. Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial
 596 representations. *Nature communications*, 13(1):4276, 2022.

597

598 Jun Izawa, Tushar Rane, Opher Donchin, and Reza Shadmehr. Motor adaptation as a process of
 599 reoptimization. *Journal of Neuroscience*, 28(11):2883–2891, 2008.

600 Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
 601 energy in wireless communication. *science*, 304(5667):78–80, 2004.

602

603 Ta-Chu Kao, Mahdieh S Sadabadi, and Guillaume Hennequin. Optimal anticipatory control as a
 604 theory of motor preparation: A thalamo-cortical circuit model. *Neuron*, 109(9):1567–1581, 2021.

605

606 Mitsuo Kawato. Internal models for motor control and trajectory planning. *Current opinion in*
 607 *neurobiology*, 9(6):718–727, 1999.

608

609 Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
 610 meets model predictive control. *Automatica*, 93:149–160, 2018.

611

612 Konrad P Kording and Daniel M Wolpert. Bayesian integration in sensorimotor learning. *Nature*,
 613 427(6971):244–247, 2004.

614

615 Jason J Kutch and Francisco J Valero-Cuevas. Challenges and new approaches to proving the exis-
 616 tence of muscle synergies of neural origin. *PLoS computational biology*, 8(5):e1002434, 2012.

617

618 Weiwei Li and Emanuel Todorov. Iterative linearization methods for approximately optimal control
 619 and estimation of non-linear stochastic system. *International Journal of Control*, 80(9):1439–
 620 1453, 2007.

621

622 L-Z Liao and Christine A Shoemaker. Convergence in unconstrained discrete-time differential dy-
 623 namic programming. *IEEE Transactions on Automatic Control*, 36(6):692–706, 1991.

624

625 Dan Liu and Emanuel Todorov. Evidence for the flexible sensorimotor strategies predicted by opti-
 626 mal feedback control. *Journal of Neuroscience*, 27(35):9354–9368, 2007.

627

628 Laureline Logiaco, LF Abbott, and Sean Escola. Thalamic control of cortical dynamics in a model
 629 of flexible motor sequencing. *Cell reports*, 35(9), 2021.

630

631 Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable
 632 states: A new framework for neural computation based on perturbations. *Neural computation*, 14
 633 (11):2531–2560, 2002.

634

635 Chiara Mastrogiovanni and Rubén Moreno-Bote. Controlled maximal variability along with reliable
 636 performance in recurrent neural networks. *Advances in Neural Information Processing Systems*,
 637 37:24569–24600, 2024.

638

639 Francesca Mastrogiovanni and Srdjan Ostojic. Linking connectivity, dynamics, and computations
 640 in low-rank recurrent neural networks. *Neuron*, 99(3):609–623, 2018.

641

642 Rubén Moreno-Bote, Jeffrey Beck, Ingmar Kanitscheider, Xaq Pitkow, Peter Latham, and Alexandre
 643 Pouget. Information-limiting correlations. *Nature neuroscience*, 17(10):1410–1417, 2014.

644

645 Stefano Panzeri, Monica Moroni, Houman Safaai, and Christopher D Harvey. The structures and
 646 functions of correlations in neural population codes. *Nature Reviews Neuroscience*, 23(9):551–
 647 567, 2022.

648

649 Kanaka Rajan, LF Abbott, and Haim Sompolinsky. Stimulus-dependent suppression of chaos in
 650 recurrent neural networks. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*,
 651 82(1):011903, 2010.

652

653 Seyed A Safavynia and Lena H Ting. Task-level feedback can explain temporal recruitment of
 654 spatially fixed muscle synergies throughout postural perturbations. *Journal of neurophysiology*,
 655 107(1):159–177, 2012.

648 Richard A Schmidt, Howard Zelaznik, Brian Hawkins, James S Frank, and John T Quinn Jr. Motor-
 649 output variability: a theory for the accuracy of rapid motor acts. *Psychological review*, 86(5):415,
 650 1979.

651

652 Matthias Schultheis, Dominik Straub, and Constantin A Rothkopf. Inverse optimal control adapted
 653 to the noise characteristics of the human sensorimotor system. *Advances in Neural Information
 654 Processing Systems*, 34:9429–9442, 2021.

655 Stephen H Scott. Optimal feedback control and the neural basis of volitional motor control. *Nature
 656 Reviews Neuroscience*, 5(7):532–545, 2004.

657

658 Jonathon W Sensinger and Strahinja Dosen. A review of sensory feedback in upper-limb prostheses
 659 from the perspective of human motor control. *Frontiers in neuroscience*, 14:345, 2020.

660 Reza Shadmehr and Henry H Holcomb. Neural correlates of motor memory consolidation. *Science*,
 661 277(5327):821–825, 1997.

662

663 Reza Shadmehr and John W Krakauer. A computational neuroanatomy for motor control. *Experi-
 664 mental brain research*, 185:359–381, 2008.

665 Reza Shadmehr, Maurice A Smith, and John W Krakauer. Error correction, sensory prediction, and
 666 adaptation in motor control. *Annual review of neuroscience*, 33(1):89–108, 2010.

667

668 Maryam M Shanechi, Ziv M Williams, Gregory W Wornell, Rollin C Hu, Marissa Powers, and
 669 Emery N Brown. A real-time brain-machine interface combining motor target and trajectory
 670 intent using an optimal feedback control design. *PloS one*, 8(4):e59049, 2013.

671 Filip S Slijkhuis, Sander W Keemink, and Pablo Lanillos. Closed-form control with spike coding
 672 networks. *IEEE Transactions on Cognitive and Developmental Systems*, 2023.

673

674 Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural networks.
 675 *Physical review letters*, 61(3):259, 1988.

676

677 Anderson Speed, Joseph Del Rosario, Navid Mikail, and Bilal Haider. Spatial attention enhances
 678 network, cellular and subthreshold responses in mouse visual cortex. *Nature communications*, 11
 679 (1):505, 2020.

680 Dominik Straub and Constantin A Rothkopf. Putting perception into action with inverse optimal
 681 control for continuous psychophysics. *Elife*, 11:e76635, 2022.

682

683 David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic neural
 684 networks. *Neuron*, 63(4):544–557, 2009.

685

686 GG Sutton and K Sykes. The variation of hand tremor with force in healthy subjects. *The Journal
 687 of physiology*, 191(3):699–711, 1967.

688

689 Kenji Tahara, Suguru Arimoto, Masahiro Sekimoto, and Zhi-Wei Luo. On control of reaching
 690 movements for musculo-skeletal redundant arm model. *Applied Bionics and Biomechanics*, 6(1):
 11–26, 2009.

691

692 Tomohiko Takei, Stephen G Lomber, Douglas J Cook, and Stephen H Scott. Transient deactivation
 693 of dorsal premotor cortex or parietal area 5 impairs feedback control of the limb in macaques.
 694 *Current Biology*, 31(7):1476–1487, 2021.

695

696 Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic program-
 697 ming. In *2014 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1168–
 1175. IEEE, 2014.

698

699 Emanuel Todorov. Cosine tuning minimizes motor errors. *Neural computation*, 14(6):1233–1260,
 2002.

700

701 Emanuel Todorov. Optimality principles in sensorimotor control. *Nature neuroscience*, 7(9):907–
 915, 2004.

702 Emanuel Todorov. Stochastic optimal control and estimation methods adapted to the noise charac-
 703 teristics of the sensorimotor system. *Neural computation*, 17(5):1084–1108, 2005.
 704

705 Emanuel Todorov and Michael I Jordan. Optimal feedback control as a theory of motor coordination.
 706 *Nature neuroscience*, 5(11):1226–1235, 2002.

707 Matthew C Tresch, Vincent CK Cheung, and Andrea d’Avella. Matrix factorization algorithms
 708 for the identification of muscle synergies: evaluation on simulated and experimental data sets.
 709 *Journal of neurophysiology*, 95(4):2199–2212, 2006.

710

711 Francisco J Valero-Cuevas, Madhusudhan Venkadesan, and Emanuel Todorov. Structured variability
 712 of muscle activations supports the minimal intervention principle of motor control. *Journal of*
 713 *neurophysiology*, 102(1):59–68, 2009.

714 Jur Van Den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under uncertainty using
 715 differential dynamic programming in belief space. In *Robotics research: The 15th international*
 716 *symposium ISRR*, pp. 473–490. Springer, 2016.

717

718 Martin Vinck, Renata Batista-Brito, Ulf Knoblich, and Jessica A Cardin. Arousal and locomotion
 719 make distinct contributions to cortical activity patterns and visual encoding. *Neuron*, 86(3):740–
 720 754, 2015.

721

722 David Whitaker and Keziah Latham. Disentangling the role of spatial scale, separation and eccen-
 723 tricity in weber’s law for position. *Vision research*, 37(5):515–524, 1997.

724

725 Daniel M Wolpert and Zoubin Ghahramani. Computational principles of movement neuroscience.
 726 *Nature neuroscience*, 3(11):1212–1217, 2000.

727

728 Daniel M Wolpert, Zoubin Ghahramani, and Michael I Jordan. An internal model for sensorimotor
 729 integration. *Science*, 269(5232):1880–1882, 1995.

730

731 Yilin Wu, Qian Zhang, and Zhiping Shen. Kalman filtering with multiplicative and additive noises.
 732 In *2016 12th World Congress on Intelligent Control and Automation (WCICA)*, pp. 483–487.
 733 IEEE, 2016.

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 UNBIASEDNESS AND ORTHOGONALITY: CLARIFICATIONS AND IMPLICATIONS**
759

760 Here we briefly review related work on stochastic optimal control in the presence of multiplicative
761 and internal noise (LQMI problem, Sec. 2.1). The influential work of Todorov (2005) introduced an
762 iterative algorithm that alternates between optimizing the control and filter gains until convergence.
763 A key assumption in this derivation is *unbiased estimation*, i.e., $\mathbb{E}[x_t | z_t] = z_t$, used to constrain
764 the control policy to depend solely on the internal estimate z_t , in line with the problem's partial
765 observability.

766 However, Damiani et al. (2024) empirically showed that this unbiasedness condition is generally
767 violated, with the discrepancy growing as internal noise increases. They also proposed an alternative
768 numerical algorithm that avoids assuming unbiasedness and empirically outperforms the original
769 approach under internal noise.

770 The reason the method in Todorov (2005) still performs optimally when internal noise is absent is
771 that unbiasedness implies the *orthogonality principle* (Davis, 2013; Damiani et al., 2024), which
772 characterizes the optimal estimator in that specific case. Importantly, orthogonality does not imply
773 unbiasedness, so the converse does not hold. Thus, the success of Todorov (2005) in the zero internal
774 noise regime stems from its implicit reliance on orthogonality, which breaks down otherwise.

775 In Appendix A.2.7, we provide a formal proof that the orthogonality principle corresponds to a
776 critical point of the cost function in Eq. 3 only in the absence of internal noise, extending and math-
777 ematically validating the empirical observations in Damiani et al. (2024). Moreover, in Appendix
778 A.2.8, we demonstrate that the orthogonality principle actually leads to the global optimum for the
779 classic LQAG problem.

780 **A.2 SOLVING THE LQMI PROBLEM: FULL DERIVATIONS**
781

782 Here we provide an algorithm guaranteed to converge to a critical point of the cost function in Eq.
783 3, under the dynamics in Eqs. 5,6,7. [As shown in prior work \(Fazel et al., 2018\), the global LQAG](#)
784 [problem is non-convex even in the fully observable, noise-free setting. This implies that the more](#)
785 [general problem considered here - featuring multiplicative and internal noise - is also non-convex.](#)
786 The algorithm yields improved pairs of control and filter gains, fully solving the LQMI problem.
787 The pseudocode is shown in Appendix A.3.1.

788 **A.2.1 FIXED-POINT EQUATIONS OF THE COST FUNCTION**
789

790 Assuming a linear control $u_t = L_t z_t$, we first rewrite the cost function in Eq. 3 as $C =$
791 $\sum_{t=0}^T (\text{tr}(Q_t S_t^{xx}) + \text{tr}(L_t^\top R_t L_t S_t^{zz}))$, where we introduce the 2nd-order moment matrices $S_t^{xx} =$
792 $\int dx dz p_t(x, z) xx^\top$, $S_t^{zz} = \int dx dz p_t(x, z) zz^\top$, and $S_t^{xz} = \int dx dz p_t(x, z) xz^\top$, with $p_t(x, z)$ be-
793 ing the joint distribution of x and z at time t generated by previous control and filter gains and
794 averaging over noises and initial conditions following $p_0(x, z)$. To find the conditions for extrema
795 on the control $L_{0,\dots,T}$ and filter $K_{0,\dots,T}$ gains we add Lagrange multipliers and define the new ob-
796 jective
797

$$798 C_{\mathcal{L}} = \sum_{t=0}^T (\text{tr}(Q_t S_t^{xx}) + \text{tr}(L_t^\top R_t L_t S_t^{zz})) - \sum_{t=1}^{T+1} (\text{tr}(\Lambda_t G_t^{xx}) + \text{tr}(\Omega_t G_t^{zz}) + \text{tr}(\Gamma_t G_t^{xz})) , \quad (12)$$

800 where Λ_t , Ω_t and Γ_t are $\mathbb{R}^{m \times m}$ matrices of Lagrange multipliers. The constraints $G_t^{xx} = G_t^{zz} =$
801 $G_t^{xz} = 0$ are given by the temporal evolution of the [2nd-order moment matrices](#) S_t^{xx} , S_t^{zz} and S_t^{xz} ,
802 respectively, between two consecutive time steps t and $t+1$, obtained from Eqs. 5,6,7 (see Appendix
803 A.2.4 for details), as

$$804 \begin{aligned} G_{t+1}^{xx} &= S_{t+1}^{xx} - AS_t^{xx}A^\top - AS_t^{xz}L_t^\top B^\top - BL_t(S_t^{xz})^\top A^\top - BL_t S_t^{zz} L_t^\top B^\top - \Sigma_t^{xx} \\ 805 G_{t+1}^{zz} &= S_{t+1}^{zz} - K_t H S_t^{xx} H^\top K_t^\top - K_t H S_t^{xz} M_t^\top - M_t (S_t^{xz})^\top H^\top K_t^\top - M_t S_t^{zz} M_t^\top - \Sigma_t^{zz} \\ 806 G_{t+1}^{xz} &= S_{t+1}^{xz} - AS_t^{xx} H^\top K_t^\top - BL_t S_t^{zz} M_t^\top - AS_t^{xz} M_t^\top - BL_t (S_t^{xz})^\top H^\top K_t^\top , \end{aligned} \quad (13)$$

807 where we have introduced the short-hand notation $M_t = A + BL_t - K_t H$, showing up repeti-
808 tively, and the noise matrices $\Sigma_t^{xx} = \Sigma_\xi + \sum_i C_i L_t S_t^{zz} L_t^\top C_i^\top$ and $\Sigma_t^{zz} = \Sigma_\eta + K_t \Sigma_\omega K_t^\top +$

810 $K_t (\sum_i D_i S_t^{xx} D_i^\top) K_t^\top$. Since the cost function is defined in terms of quadratic terms in x and z
 811 and the temporal evolution of moments is closed at 2nd-order, the 2nd-order moments matrices are
 812 sufficient statistics of the problem (i.e., $p_t(x, z)$ does not need to be explicitly known), and only the
 813 constraints in their temporal evolution suffice.

814 For convenience, we define the Lagrange multipliers at time $T + 1$ to be all equal to zero,
 815 $\Lambda_{T+1} = \Omega_{T+1} = \Gamma_{T+1} = 0$ (hereafter 0 meaning a matrix of zeros of consistent dimensions), so
 816 the constraints at that time are irrelevant. The introduction of Lagrange multipliers enables to take
 817 derivatives with respect the control and filter gains to find the fixed point conditions $\partial C_{\mathcal{L}} / \partial L_t = 0$
 818 and $\partial C_{\mathcal{L}} / \partial K_t = 0$ for extrema without the need to propagate derivatives over the terms in the sum
 819 of the cost. The fixed point equations take the form

$$820 \quad L_t = E_t^{-1} (F_t S_t^{xz} (S_t^{zz})^{-1} + J_t) \quad (14)$$

$$822 \quad K_t = (S_{AH} + \tilde{\Omega}_{t+1}^{-1} \Gamma_{t+1} S_{LH}) S_{HH}^{-1}, \quad (15)$$

823 with matrices defined in Appendix A.2.6 – note that these equations express the control and filter
 824 gains as a function of themselves, and therefore they are implicit.

825 From the conditions $\partial C_{\mathcal{L}} / \partial S_t^{xx} = \partial C_{\mathcal{L}} / \partial S_t^{zz} = \partial C_{\mathcal{L}} / \partial S_t^{xz} = 0$, the Lagrange multipliers them-
 826 selves obey the set of equations

$$828 \quad \begin{aligned} \Lambda_t &= Q_t + A^\top \Lambda_{t+1} A + H^\top K_t^\top \Omega_{t+1} K_t H + H^\top K_t^\top \Gamma_{t+1} A + \sum_i D_i^\top K_t^\top \Omega_{t+1} K_t D_i \\ 829 \quad \Omega_t &= L_t^\top R_t L_t + L_t^\top B^\top \Lambda_{t+1} B L_t + M_t^\top \Omega_{t+1} M_t + M_t^\top \Gamma_{t+1} B L_t + \sum_i L_t^\top C_i^\top \Lambda_{t+1} C_i L_t \\ 830 \quad \Gamma_t &= L_t^\top B^\top \tilde{\Lambda}_{t+1} A + M_t^\top \tilde{\Omega}_{t+1} K_t H + M_t^\top \Gamma_{t+1} A + L_t^\top B^\top \Gamma_{t+1}^\top K_t H. \end{aligned} \quad (16)$$

831 These equations can be solved backwards given control and filter gains, and using the boundary
 832 conditions $\Lambda_{T+1} = \Omega_{T+1} = \Gamma_{T+1} = 0$. However, the full solution to Eqs. 14,15,16 would require
 833 simultaneously determining gains and multipliers. We bypass this by deriving an iterative algorithm
 834 to find fixed point solutions, as described in the next section.

835 It is worth mentioning that in the derivation of Eqs. 14,15,16 and main algorithm described below
 836 we have not assumed the orthogonality principle (OP: $S_t^{xz} = S_t^{zz}$ for all t , equivalent to $\mathbb{E}[(x_t -$
 837 $z_t)z_t^\top] = 0$), which is shown (Sec. 3.1, see also Appendix A.1) to be violated in the general case
 838 (specifically, whenever there is internal noise). Secondly, we have not assumed any specific initial
 839 distribution $p_0(x, z)$. Also, note that we have not assumed Gaussian noises nor Gaussian distribution
 840 on x or z . Further, our algorithm is guaranteed to converge to a fixed-point pair of control and filter
 841 gains, and reduce the cost at every step (Sec. A.2.2). The algorithm in Todorov (2005) can actually
 842 increase the cost in the first iteration step because not for any arbitrary initial filter gain OP is
 843 obeyed. Finally, the model described in Eqs. 5,6,7 could be readily extended to the case where i)
 844 the internal noise is multiplicative in Eq. 7, ii) when there is x -dependent multiplicative noise in
 845 the state dynamics, Eq. 5, and iii) when there is z -dependent multiplicative noise in the feedback
 846 dynamics, Eq. 6. However, we refrain from doing so to avoid clutter and because a more general
 847 framework (Model Mismatch) is introduced in Sec. 4.

848 A.2.2 COORDINATE-DESCENT ALGORITHM FOR JOINT CONTROL AND FILTER 849 OPTIMIZATION

850 Here we derive the main algorithm of the paper, a coordinate-descent iterative algorithm that gives
 851 a pair of improved, fixed-point control and filter gains. We first start by showing the connection
 852 between the Lagrange multipliers and the cost-to-go incurred by starting at fixed x and z .

853 We define the cost-to-go starting at x and z from time t ($t = 0, \dots, T$) up to time T as $C_t(x, z) =$
 854 $\text{tr}(Q_t x x^\top + L_t^\top R_t L_t z z^\top) + \sum_{\tau=t+1}^T \mathbb{E} [x_\tau^\top Q_\tau x_\tau + u_\tau^\top R_\tau u_\tau]$, where the expectation is over the
 855 noises with initial conditions fixed at x and z at time t , and for specific control and filter gains
 856 from time t onward. This definition is consistent with our definition of cost in Eq. 3, as $C =$
 857 $\int p_0(x, z) C_0(x, z)$, where $p_0(x, z)$ is the distribution of initial conditions over x and z . The cost-to-
 858 go obeys the Bellman equation

$$862 \quad C_t(x, z) = \text{tr}(Q_t x x^\top + L_t^\top R_t L_t z z^\top) + \int dx' dz' C_{t+1}(x', z') p_{x,t+1}(x'|x, z) p_{z,t+1}(z'|x, z), \quad (17)$$

864 where the transition probability densities $p_{x,t+1}(x'|x, z)$ and $p_{z,t+1}(z'|x, z)$ are defined by equations
 865 5,6,7 with $u_t = L_t z_t$, with means $\mathbb{E}[x'|x, z] = Ax + BL_t z$ and $\mathbb{E}[z'|x, z] = K_t Hx + M_t z$, and
 866 conditional 2nd-order moments given by Eqs. 33.

867 The Bellman equation 17 can be solved backwards: noticing that the boundary condition is the final
 868 cost-to-go $C_T(x, z) = \text{tr}(Q_T x x^\top + L_T^\top R_T L_T z z^\top)$ and that the 2nd-order moments are closed (that
 869 is, no higher nor lower moments appear when propagating backwards the cost-to-go using Eq. 17),
 870 we find that the solution is given by
 871

$$872 C_t(x, z) = \text{tr}(\Lambda_t x x^\top + \Omega_t z z^\top + \Gamma_t x z^\top) + \gamma_t, \quad (18)$$

873 where it can be seen that the coefficients Λ_t , Ω_t and Γ_t are actually the Lagrange multipliers com-
 874 puted in Eqs. 16 with the same boundary conditions (see Appendix A.2.5), and where γ_t can be
 875 recursively calculated as
 876

$$877 \gamma_t = \text{tr}(\Lambda_{t+1} \Sigma_\xi + \Omega_{t+1} K_t \Sigma_\omega K_t^\top + \Omega_{t+1} \Sigma_\eta) + \gamma_{t+1}, \quad (19)$$

878 with boundary condition $\gamma_T = 0$. Eqs. 18,19 correctly captures the cost-to-go expression at time T ,
 879 and it can be checked that recursively solve Eq. 17. [From the definition of the Lagrange multipliers](#)
 880 [in Eqs. 16, one can see that e.g. higher noise levels or control costs enlarge the corresponding](#)
 881 [cost-to-go in Eq. 18, and these effects accumulate backwards, as expected.](#)
 882

883 While Eqs. 18,19 express the exact cost-to-go given control and filter gains if the exact world
 884 state x is known, partial observability dictates that our choices of control and filter gains cannot
 885 depend on x . Indeed, our assumptions that the filter depends only on time and that the control law
 886 depends linearly on the current state estimate z_t , that is, $u_t = L_t z_t$, have already been used in our
 887 derivation and problem formalization, and they are subject to partial observability. Because of this,
 888 we integrate over the (generally unknown) joint probability density $p_t(x, z)$ given control and filter
 889 gains and initial condition $p_0(x, z)$ to define the averaged cost-to-go as
 890

$$890 C_t = \int dx dz p_t(x, z) C_t(x, z) = \text{tr}(\Lambda_t S_t^{xx} + \Omega_t S_t^{zz} + \Gamma_t S_t^{xz}) + \gamma_t. \quad (20)$$

892 We can express the total cost in Eq. 3 as $C = C_0$, and therefore
 893

$$894 C = C_{<t} + C_t \quad (21)$$

895 with $C_{<t} = \sum_{\tau=0}^{t-1} \text{tr}(Q_\tau S_\tau^{xx} + L_\tau^\top R_\tau L_\tau S_\tau^{zz})$ is valid for all t . In Eq. 21, C_t is the only term
 896 depending on L_t , as $C_{<t}$ does not depend on it. Therefore, we locally optimize L_t as
 897

$$898 L_t^* = \arg \min_{L_t} C_t, \quad (22)$$

900 while keeping the rest of gains fixed, that is, $L_{0,\dots,t-1,t+1,\dots,T}$ and $K_{0,\dots,T}$ are held constant. A
 901 global minimum always exists because C_t is non-negative. After noting that in C_t (Eq. 20) only
 902 the Lagrange multipliers depend on L_t (see Eqs. 16), while the 2nd-order moments at time t only
 903 depend on previous L_τ with $\tau < t$ (see Eqs. 32), the minimization results in
 904

$$905 L_t^* = E_t^{-1} (F_t S_t^{xz} (S_t^{zz})^{-1} + J_t), \quad (23)$$

906 with matrices identical to those in Eq. 14 and Appendix A.2.6, and whenever matrix inverses exist.
 907

908 If $L_{0,\dots,T}$ and $K_{0,\dots,T}$ are the values of the control and filter gains before the optimization in Eq. 22,
 909 clearly the cost is non-increasing after the optimization,
 910

$$910 C(L_0, \dots, L_{t-1}, L_t^*, L_{t+1}, \dots, L_T) \leq C(L_0, \dots, L_{t-1}, L_t, L_{t+1}, \dots, L_T). \quad (24)$$

911 Note that after the optimization, the total cost in Eq. 21 becomes
 912

$$913 C = C_{<t} + \text{tr}(Q_t S_t^{xx} + L_t^{*\top} R_t L_t^* S_t^{zz}) + \text{tr}(\Lambda_{t+1} S_{t+1}^{xx,*} + \Omega_{t+1} S_{t+1}^{zz,*} + \Gamma_{t+1} S_{t+1}^{xz,*}) + \gamma_{t+1}, \quad (25)$$

914 where the new 2nd-order moments at time $t+1$, S_{t+1}^* , are computed from the moments at the
 915 previous time t using Eqs. 32 with the optimal L_t^* and noticing that the Lagrange multipliers from
 916 $t+1$ onward have not changed. Redefining L_t^* as L_t and the $S_{t+1}^{ab,*}$ as S_{t+1}^{ab} , $ab \in \{xx, zz, xz\}$,
 917 we can now proceed to optimize L_{t+1} using the same procedure as above (changing t to $t+1$) to
 918

918 minimize again the total cost $C(L_0, \dots, L_t, L_{t+1}^*, \dots, L_T) \leq C(L_0, \dots, L_t, L_{t+1}, \dots, L_T)$ fixing all
 919 the gains except L_{t+1} , and consecutively for all t up to T .
 920

921 Therefore, starting from a set of gains $L^{(n)} \equiv L_{0,\dots,T}^{(n)}$ and $K^{(n)} \equiv K_{0,\dots,T}^{(n)}$, we can optimize L_t in
 922 order from $t = 0$ up to time T following the above steps to get a new set of control gains $L^{(n+1)}$, and
 923 clearly we have $C(L^{(n+1)}, K^{(n)}) \leq C(L^{(n)}, K^{(n)})$. After this, the Lagrange multipliers in Eq. 16
 924 are recomputed backwards with the updated values of the control gains, $L^{(n+1)}$. In this way, we can
 925 express again the cost as in Eq. 21, but with updated values of control gains and multipliers. This
 926 represents a full forward pass to sequentially optimize control gains followed by a full backward
 927 pass of the multipliers, and we refer to this process as *control pass*.

928 We can proceed similarly for the filter gains by repeating the above steps but for K_t instead of L_t .
 929 We optimize K_t by keeping fixed the remaining filter gains and all control gains by minimizing the
 930 cost C in Eq. 21, resulting in

$$932 \quad K_t^* = \arg \min_{K_t} C_t = \left(S_{AH} + \tilde{\Omega}_{t+1}^{-1} \Gamma_{t+1} S_{LH} \right) S_{HH}^{-1}, \quad (26)$$

934 with matrices as in Eq. 15 and Appendix A.2.6. After updating the cost C with the new K_t^* ,
 935 we obtain an equation analogous to Eq. 25 having a new γ_{t+1} term. This leads to a non-
 936 increasing cost change when going from the old K_t to the optimized K_t^* , $C(K_0, \dots, K_t^*, \dots, K_T) \leq$
 937 $C(K_0, \dots, K_t, \dots, K_T)$. Therefore, starting from a set of gains $L^{(n+1)}$ and $K^{(n)}$, we optimize K_t in
 938 order for $t = 0, \dots, T$ to get a new set of filter gains $K^{(n+1)}$, which will obey $C(L^{(n+1)}, K^{(n+1)}) \leq$
 939 $C(L^{(n+1)}, K^{(n)})$. After this, the Lagrange multipliers are updated. This represents a *filter pass*: full
 940 forward pass to sequentially optimize filter gains followed by a full backwards pass to recompute
 941 the multipliers. Starting from arbitrary $L^{(0)}$ and $K^{(0)}$ and distribution of initial conditions $p_0(x, z)$,
 942 we can alternate now the control and filter passes, so that $C(L^{(0)}, K^{(0)}) \geq C(L^{(1)}, K^{(0)}) \geq$
 943 $C(L^{(1)}, K^{(1)}) \geq \dots \geq C(L^{(n+1)}, K^{(n)}) \geq C(L^{(n+1)}, K^{(n+1)}) \geq \dots \geq C_{\min} \geq 0$. Since the
 944 series is non-negative, it converges to a total cost no higher than the initial one with optimal filters
 945 $L^* = L^{(\infty)}$ and $K^* = K^{(\infty)}$. In summary, each block update solves a convex quadratic subproblem
 946 exactly, which guarantees that the total cost decreases monotonically and therefore converges. The
 947 converged pair of control and filter gains obey the Lagrange Eqs. 32, 14, 15, 16, because Eqs. 23, 26,
 948 after convergence, are identical to the fixed point Eqs. 14, 15. Therefore, the converged pair corre-
 949 sponds a to a fixed point solution of the Lagrangian in Eq. 12, and hence, they must be a critical
 950 point of the cost function in Eq. 3. We have thus proven the following

951 **Theorem 1.** Starting with arbitrary $L^{(0)}$ and K^0 and distribution of initial conditions $p_0(x, z)$, the
 952 coordinate descent algorithm defined by iterating in alternation control and filter passes converges
 953 to an improved pair of control and filter gains L^* and K^* . The improved pair corresponds to a
 954 critical point of the cost function in Eq. 3.

955 As shown in Eqs. 16, 23, 26, and 32, only the first and second noise moments enter the moment
 956 propagation and optimality conditions. No further assumptions are required beyond finite second
 957 moments, so the method applies to any noise distribution with finite covariance. In Sec. A.4.8 we
 958 validate this empirically using non-Gaussian noise (Student- t for heavy tails and Beta distributions
 959 for skewness). We also note that the Lagrange equations may admit multiple solutions. In practice,
 960 our algorithm converges to different critical points depending on the initialization, but when ini-
 961 tializing the control and filter matrices trying to impose the orthogonality principle and then freely
 962 running the algorithm, the best critical point is found, empirically.

963 A.2.3 SOLUTIONS OF THE CLASSIC LQAG PROBLEM

965 The optimal $L_{0,\dots,T}$ and $K_{0,\dots,T}$, for the classic LQAG problem — defined in Sec. 2.1 — are given
 966 by (Doya, 2007; Davis, 2013; Todorov, 2005)

$$967 \quad L_t = (2R_t + B^\top S_{t+1} B)^{-1} B^\top S_{t+1} A \quad (27)$$

$$968 \quad S_t = 2Q_t + A^\top S_{t+1} (A + B L_t) \quad (28)$$

$$970 \quad K_t = A \Sigma_t^e H^\top (H \Sigma_t^e H^\top + \Sigma_\omega)^{-1} \quad (29)$$

$$971 \quad \Sigma_{t+1}^e = \Sigma_\xi + (A - K_t H) \Sigma_t^e A^\top. \quad (30)$$

A detailed derivation can be found in Doya (2007), Chapter 12, Sections 4 and 5. We observe that the only differences with the Eqs. in Doya (2007) arise from slightly different conventions: in the standard LQAG formulation, there is a prefactor of $1/2$ in front of the cost function, and the control signal is defined as $u_t = -L_t z_t$, meaning the control gain has the opposite sign compared to our convention.

In Appendix A.2.8, we prove that the solutions derived in Sec. A.2 recover these classical results in the absence of multiplicative and internal noise.

A.2.4 DERIVING THE PROPAGATION OF SECOND-ORDER MOMENTS

Here we derive the temporal evolution of the 2nd-order moment matrices. We first rewrite Eqs. 5,6,7 in a more compact form by inserting the observation in the state estimate variable and grouping terms as

$$\begin{aligned} x_{t+1} &= Ax_t + BL_t z_t + \xi_t + \sum_i \varepsilon_t^i C_i L_t z_t \\ z_{t+1} &= M_t z_t + K_t H x_t + \eta_t + K_t \omega_t + K_t \sum_i \rho_t^i D_i x_t \end{aligned} \quad (31)$$

with $M_t = A + BL_t - K_t H$.

The 2nd-order moments at time t can be computed based on those in the previous time step t by using the appropriate averages and interactions between terms in Eqs. 31. The result is

$$\begin{aligned} S_{t+1}^{xx} &= AS_t^{xx} A^\top + AS_t^{xz} L_t^\top B^\top + BL_t (S_t^{xz})^\top A^\top + BL_t S_t^{zz} L_t^\top B^\top + \Sigma_t^{xx} \\ S_{t+1}^{zz} &= K_t H S_t^{xx} H^\top K_t^\top + K_t H S_t^{xz} M_t^\top + M_t (S_t^{xz})^\top H^\top K_t^\top + M_t S_t^{zz} M_t^\top + \Sigma_t^{zz} \\ S_{t+1}^{xz} &= AS_t^{xx} H^\top K_t^\top + BL_t S_t^{zz} M_t^\top + AS_t^{xz} M_t^\top + BL_t (S_t^{xz})^\top H^\top K_t^\top. \end{aligned} \quad (32)$$

with $M_t = A + BL_t - K_t H$ and noise covariances $\Sigma_t^{xx} = \Sigma_\xi + \sum_i C_i L_t S_t^{zz} L_t^\top C_i^\top$ and $\Sigma_t^{zz} = \Sigma_\eta + K_t \Sigma_\omega K_t^\top + K_t (\sum_i D_i S_t^{xx} D_i^\top) K_t^\top$.

The conditional second-order moments at time $t+1$ conditioned on x and z at time t are defined as

$$\begin{aligned} \hat{S}_t^{xx} &= \int dx' dz' x' x'^\top p_{x,t+1}(x'|x,z) p_{z,t+1}(z'|x,z) \\ \hat{S}_t^{zz} &= \int dx' dz' z' z'^\top p_{x,t+1}(x'|x,z) p_{z,t+1}(z'|x,z) \\ \hat{S}_t^{xz} &= \int dx' dz' x' z'^\top p_{x,t+1}(x'|x,z) p_{z,t+1}(z'|x,z), \end{aligned}$$

where the transition probabilities $p_{x,t+1}(x'|x,z)$ and $p_{z,t+1}(z'|x,z)$ are defined by equations 5,6,7 (with $u_t = L_t z_t$), or, equivalently, by Eqs. 31. The conditional second-order moments at time $t+1$ are obtained simply by replacing the second-order moments on the right hand side of Eqs. 32 by their corresponding non-averaged x and z as

$$\begin{aligned} \hat{S}_{t+1}^{xx} &= A x x^\top A^\top + A x z^\top L_t^\top B^\top + B L_t z x^\top A^\top + B L_t z z^\top L_t^\top B^\top + \hat{\Sigma}_t^{xx} \\ \hat{S}_{t+1}^{zz} &= K_t H x x^\top H^\top K_t^\top + K_t H x z^\top M_t^\top + M_t z x^\top H^\top K_t^\top + M_t z z^\top M_t^\top + \hat{\Sigma}_t^{zz} \\ \hat{S}_{t+1}^{xz} &= A x x^\top H^\top K_t^\top + B L_t z z^\top M_t^\top + A x z^\top M_t^\top + B L_t z x^\top H^\top K_t^\top. \end{aligned} \quad (33)$$

with conditional noise covariances $\hat{\Sigma}_t^{xx} = \Sigma_\xi + \sum_i C_i L_t z z^\top L_t^\top C_i^\top$ and $\hat{\Sigma}_t^{zz} = \Sigma_\eta + K_t \Sigma_\omega K_t^\top + K_t (\sum_i D_i x x^\top D_i^\top) K_t^\top$.

A.2.5 CONSISTENCY OF THE COST-TO-GO SOLUTION

The cost-to-go obeys the Bellman equation

$$C_t(x, z) = \text{tr}(Q_t x x^\top + L_t^\top R_t L_t z z^\top) + \int dx' dz' C_{t+1}(x', z') p_{x,t+1}(x'|x,z) p_{z,t+1}(z'|x,z), \quad (34)$$

identical to Eq. 17. The transition probability densities $p_{x,t+1}(x'|x,z)$ and $p_{z,t+1}(z'|x,z)$ are defined by equations 5,6,7 with $u_t = L_t z_t$, with means $\mathbb{E}[x'|x,z] = Ax + BL_t z$ and $\mathbb{E}[z'|x,z] =$

1026 $K_t Hx + M_t z$, and 2nd-order moments given by Eqs. 33. These will be important to compute
 1027 averages as needed.

1028 We propose a solution to the Bellman equation of the form

$$1030 \quad C_t(x, z) = \text{tr}(\Lambda_t xx^\top + \Omega_t zz^\top + \Gamma_t xz^\top) + \gamma_t, \quad (35)$$

1032 identical to Eq. 18. Our goal is to show that it is possible to find a solution with such a form, and that
 1033 the expression of the coefficients Λ_t , Ω_t and Γ_t are actually identical to the Lagrange multipliers in
 1034 Eqs. 16 with the same boundary conditions. In addition we want to show that γ_t follows Eq. 19
 1035 with boundary condition $\gamma_T = 0$.

1036 We first note that Eq. 35 is true for $t = T$, because $C_T(x, z)$ should be $C_T(x, z) = \text{tr}(Q_T xx^\top +$
 1037 $L_T^\top R_T L_T zz^\top)$ and indeed this coincides with Eq. 35 when taking $\Lambda_T = Q_T$, $\Omega_T = L_T^\top R_T L_T$,
 1038 $\Gamma_T = 0$ and $\gamma_T = 0$, which in turn are consistent with the Lagrange multiplier expression in Eq. 16
 1039 for $t = T$.

1040 Now, assume that Eq. 35 is true for some $t + 1$. Let us show that then it is true for t . We insert Eq.
 1041 35 for $t + 1$ into Eq. 34 and use the expression of the conditional 2nd-order moments in Eqs. 33 to
 1042 obtain

$$1044 \quad C_t(x, z) = \text{tr}(Q_t xx^\top + L_t^\top R_t L_t zz^\top) \\ 1045 \quad + \int dx' dz' (\text{tr}(\Lambda_{t+1} x' x'^\top + \Omega_{t+1} z' z'^\top + \Gamma_{t+1} x' z'^\top) + \gamma_{t+1}) p_{x,t+1}(x'|x, z) p_{z,t+1}(z'|x, z) \\ 1046 \quad = \text{tr}(Q_t xx^\top + L_t^\top R_t L_t zz^\top) \\ 1047 \quad + \text{tr}[\Lambda_{t+1} (Axx^\top A^\top + BL_t z z^\top L_t^\top B^\top + Axz^\top L_t^\top B^\top + BL_t z z^\top A^\top + \hat{\Sigma}_t^{xx})] \\ 1048 \quad + \text{tr}[\Omega_{t+1} (K_t H x x^\top H^\top K_t^\top + M_t z z^\top M_t^\top + K_t H x z^\top M_t^\top + M_t z x^\top H^\top K_t^\top + \hat{\Sigma}_t^{zz})] \\ 1049 \quad + \text{tr}[\Gamma_{t+1} (A x x^\top H^\top K_t^\top + B L_t z z^\top M_t^\top + A x z^\top M_t^\top + B L_t z x^\top H^\top K_t^\top)] \\ 1050 \quad + \gamma_{t+1}. \quad (36)$$

1054 Grouping terms proportional to xx^\top , xz^\top and zz^\top and constant, we find that the cost-to-go can be
 1055 written as Eq. 35 where the coefficients obey the Lagrange multiplier equations in Eqs. 16 at time
 1056 t . In addition, γ_t is computed using Eq. 19.

1058 By induction, then we have that Eq. 35 is true for all t and that the coefficients are indeed the
 1059 Lagrange multipliers defined in Eqs. 16 and Eq. 19.

1061 A.2.6 FIXED-POINT EQUATIONS FOR CONTROL AND FILTER DERIVATIVES

1063 The fixed point equations $\partial C_{\mathcal{L}} / \partial L_t = 0$ and $\partial C_{\mathcal{L}} / \partial K_t = 0$ for the extrema of the Lagrangian 8
 1064 take the form

$$1065 \quad \frac{\partial C_{\mathcal{L}}}{\partial L_t} = \left[2R_t L_t + B^\top \left(\tilde{\Lambda}_{t+1} B L_t + \tilde{\Omega}_{t+1} M_t + \Gamma_{t+1} B L_t + \Gamma_{t+1}^\top M_t \right) + \sum_i C_i^\top \tilde{\Lambda}_{t+1} C_i L_t \right] S_t^{zz} \\ 1066 \quad + B^\top \left[\tilde{\Lambda}_{t+1} A + \tilde{\Omega}_{t+1} K_t H + \Gamma_{t+1} A + \Gamma_{t+1}^\top K_t H \right] S_t^{xz} = 0, \quad (37)$$

$$1070 \quad \frac{\partial C_{\mathcal{L}}}{\partial K_t} = \left[\tilde{\Omega}_{t+1} K_t H + \Gamma_{t+1} A \right] S_t^{xx} H^\top - \left[\tilde{\Omega}_{t+1} M_t + \Gamma_{t+1} B L_t \right] S_t^{zz} H^\top - \tilde{\Omega}_{t+1} K_t H S_t^{xz} H^\top \\ 1071 \quad + \tilde{\Omega}_{t+1} M_t (S_t^{xz})^\top H^\top - \Gamma_{t+1} A S_t^{xz} H^\top + \Gamma_{t+1} B L_t (S_t^{xz})^\top H^\top + \tilde{\Omega}_{t+1} K_t \Sigma_\omega \\ 1072 \quad + \tilde{\Omega}_{t+1} K_t \sum_i D_i S_t^{xx} D_i^\top = 0, \quad (38)$$

1075 with symmetric matrices $\tilde{\Lambda}_t = \Lambda_t + \Lambda_t^\top$ and $\tilde{\Omega}_t = \Omega_t + \Omega_t^\top$, after using elementary properties of
 1076 the trace operator and its derivatives.

1078 The fixed point equations can be further manipulated to express L_t and K_t as

1079

$$L_t = E_t^{-1} (F_t S_t^{xz} (S_t^{zz})^{-1} + J_t),$$

1080 where

$$\begin{aligned}
 1081 \quad E_t &= 2R_t + B^\top(\tilde{\Lambda}_{t+1} + \tilde{\Omega}_{t+1} + \Gamma_{t+1} + \Gamma_{t+1}^\top)B + \sum_i C_i^\top \tilde{\Lambda}_{t+1} C_i, \\
 1082 \quad F_t &= -B^\top(\tilde{\Lambda}_{t+1}A + \tilde{\Omega}_{t+1}K_t H + \Gamma_{t+1}A + \Gamma_{t+1}^\top K_t H), \\
 1083 \quad J_t &= -B^\top(\tilde{\Omega}_{t+1} + \Gamma_{t+1}^\top)(A - K_t H),
 \end{aligned}$$

1084 and

$$K_t = \left(S_{AH} + \tilde{\Omega}_{t+1}^{-1} \Gamma_{t+1} S_{LH} \right) S_{HH}^{-1}$$

1085 with

$$\begin{aligned}
 1086 \quad S_{AH} &= (A + BL_t)(S_t^{zz} - (S_t^{xz})^\top)H^\top, \\
 1087 \quad S_{LH} &= (-A(S_t^{xx} - S_t^{xz}) + BL_t(S_t^{zz} - (S_t^{xz})^\top))H^\top, \\
 1088 \quad S_{HH} &= H(S_t^{xx} + S_t^{zz} - S_t^{xz} - (S_t^{xz})^\top)H^\top + \Sigma_\omega + \sum_i D_i S_t^{xx} D_i^\top.
 \end{aligned}$$

1089 Note that the equation for L_t explicitly depends on K_t on the right side, while the equation for K_t depends on L_t on the right side. This property enables the coordinate-descent algorithm described in the paper. The above expressions coincide with Eqs. 14,15.

1090 **A.2.7 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT IF AND ONLY IF INTERNAL
1091 NOISE VANISHES**

1092 **Theorem 2.** *Take the initial condition $p_0(x, z)$ such that $S_0^{zz} = S_0^{xz}$. A solution to the Lagrange
1093 equations 13,14,15,16 is given by the orthogonality principle $S_t^{zz} = S_t^{xz}$ for $t = 1, \dots, T$, iff internal
1094 noise is zero, that is $\Sigma_\eta = 0$. The solution corresponds to a critical point of the cost in Eq. 8*

1095 *Proof.* We first show that (1) assuming OP ($S_t^{xz} = S_t^{zz}$ for $t = 0, \dots, T$) is true, we prove that the
1096 satisfaction of the Lagrange equations for the multipliers, Eqs. 16, and the equation for the fixed
1097 point of L_t , Eq. 14, for all t implies that the *Lagrange equality*, $\Gamma_t = -\tilde{\Omega}_t$ for all t ($\tilde{\Omega}_t \equiv \Omega_t + \Omega_t^\top$),
1098 is true, regardless of the value of internal noise. Next, we show that (2) OP and the Lagrange equality
1099 imply satisfaction of the fixed point equation for K_t , Eq. 15, and the 2nd-order moments equations,
1100 Eqs. A.2.4, if and only if internal noise is zero, $\Sigma_\eta = 0$. This will show that OP solves all Lagrange
1101 equations iff internal noise is zero, and therefore it will correspond to a critical point of the cost
1102 function in Eq. 8.

1103 (1) Assume that OP holds. From the boundary condition of the Lagrange equations for the multipliers
1104 we have that $\Lambda_{T+1} = \Omega_{T+1} = \Gamma_{T+1} = 0$. Therefore, at time $T + 1$ the Lagrange equality
1105 $\Gamma_{T+1} = -\tilde{\Omega}_{T+1}$ is true. Let us prove by induction that the equality holds for all t . Assume that the
1106 Lagrange equality is true for some $t + 1$, that is, $\Gamma_{t+1} = -\tilde{\Omega}_{t+1}$ (note that Γ_{t+1} is then symmetric).
1107 Then, from the Lagrange multipliers Eqs. 16 we can write

$$\begin{aligned}
 1108 \quad \Gamma_t &= L_t^\top B^\top \tilde{\Lambda}_{t+1} A + M_t^\top \tilde{\Omega}_{t+1} K_t H + M_t^\top \Gamma_{t+1} A + L_t^\top B^\top \Gamma_{t+1}^\top K_t H \\
 1109 &= L_t^\top B^\top \tilde{\Lambda}_{t+1} A - M_t^\top \Gamma_{t+1} K_t H + M_t^\top \Gamma_{t+1} A + L_t^\top B^\top \Gamma_{t+1} K_t H \\
 1110 \quad \tilde{\Omega}_t &= 2L_t^\top R_t L_t + L_t^\top B^\top \tilde{\Lambda}_{t+1} B L_t + M_t^\top \tilde{\Omega}_{t+1} M_t + M_t^\top \Gamma_{t+1} B L_t + L_t^\top B^\top \Gamma_{t+1} M_t \\
 1111 &\quad + \sum_i L_t^\top C_i^\top \tilde{\Lambda}_{t+1} C_i L_t \\
 1112 &= 2L_t^\top R_t L_t + L_t^\top B^\top \tilde{\Lambda}_{t+1} B L_t - M_t^\top \Gamma_{t+1} M_t + M_t^\top \Gamma_{t+1} B L_t + L_t^\top B^\top \Gamma_{t+1} M_t \\
 1113 &\quad + \sum_i L_t^\top C_i^\top \tilde{\Lambda}_{t+1} C_i L_t,
 \end{aligned}$$

1114 where we have replaced $\tilde{\Omega}_{t+1}$ by $-\Gamma_{t+1}$ and using that Γ_{t+1} is symmetric. Now, summing we have

$$\begin{aligned}
 1115 \quad \Gamma_t + \tilde{\Omega}_t &= 2L_t^\top R_t L_t + L_t^\top B^\top \tilde{\Lambda}_{t+1} (A + BL_t) + M_t^\top \Gamma_{t+1} (A + BL_t - K_t H - M_t) \\
 1116 &\quad + L_t^\top B^\top \Gamma_{t+1}^\top (A + BL_t) + \sum_i L_t^\top C_i^\top \tilde{\Lambda}_{t+1} C_i L_t \\
 1117 &= L_t^\top \left[2R_t L_t + B^\top \tilde{\Lambda}_{t+1} (A + BL_t) + B^\top \Gamma_{t+1}^\top (A + BL_t) + \sum_i C_i^\top \tilde{\Lambda}_{t+1} C_i L_t \right], \\
 1118 &\quad (39)
 \end{aligned}$$

1134 where we have realized that the last term in the first line is zero.
 1135

1136 Now, the solution for which OP holds should satisfy all other Lagrange equations, in particular the
 1137 one for the fixed point equation for L_t , Eq. 14. As OP is assumed to be true at all times, and in
 1138 particular at time t , and the Lagrange equality is assumed to be true for $t+1$, Eq. 14 (see Sec. A.2.6)
 1139 largely simplifies to

$$1140 \quad L_t = \bar{E}_t^{-1} \bar{F}_t, \quad (40)$$

1141 with $\bar{E}_t = 2R_t + B^\top(\tilde{\Lambda}_{t+1} + \Gamma_{t+1})B + \sum_i C_i^\top \tilde{\Lambda}_{t+1} C_i$ and $\bar{F}_t = -B^\top(\tilde{\Lambda}_{t+1} + \Gamma_{t+1})A$. Then,
 1142 it is clear that the bracket in the last line of Eq. 39 is zero, and therefore the Lagrange equality
 1143 $\Gamma_t = -\tilde{\Omega}_t$ is true. Therefore, by induction we conclude that the Lagrange equality is true for all t
 1144 and that Lagrange equations for the multipliers and L_t are solved. Notice that the above results are
 1145 true regardless of the presence of internal noise.

1146 (2) Still we have not used the Lagrange equation for K_t , Eq. 15, nor the Lagrange equations for
 1147 the 2nd-order moments, Eqs. 32. These equations must also be satisfied by the OP condition. First,
 1148 from OP (and the implied Lagrange equality shown in (1)) the expression for K_t (see Sec. A.2.6)
 1149 largely simplifies to

$$1150 \quad K_t = A(S_t^{xx} - S_t^{zz})H^\top \bar{S}_{HH}^{-1}, \quad (41)$$

1151 with $\bar{S}_{HH} = H(S_t^{xx} - S_t^{zz})H^\top + \Sigma_\omega + \sum_i D_i S_t^{xx} D_i^\top$.

1152 Now, this expression of K_t must solve the Lagrange equations for the 2nd-order moments. The
 1153 equation for S_t^{xx} is trivially satisfied, but the equations for S_t^{xz} and S_t^{zz} should be such that $S_t^{xz} =$
 1154 S_t^{zz} for all t – otherwise, our OP initial assumption would be inconsistent; no other restrictions
 1155 are imposed by the Lagrange equations of the 2nd-order moments. This is only possible iff the
 1156 difference $S_{t+1}^{zz} - S_{t+1}^{xz}$ equals zero:

$$1158 \quad S_{t+1}^{zz} - S_{t+1}^{xz} = \left[-(A - K_t H)(S_t^{xx} - S_t^{zz})H^\top + K_t \Sigma_\omega + K_t \sum_i D_i^\top S_t^{xx} D_i \right] K_t^\top + \Sigma_\eta = 0, \quad (42)$$

1159 for all t (this expression has been obtained using the 2nd-order moments in Eqs. 32 after several
 1160 cancellations). In this expression, the bracket equals zero after using Eq. 41. Therefore, consistency
 1161 of OP and satisfaction of the 2nd-order moments are satisfied if and only if internal noise is zero,
 1162 $\Sigma_\eta = 0$.

1163 This concludes the proof, because iff $\Sigma_\eta = 0$ we have a full satisfaction of all Lagrange equations
 1164 for all t under the sole assumption of OP for all t . \square

1167 A.2.8 RECOVERY OF CLASSICAL LQAG SOLUTIONS

1168 In this section, we demonstrate that the solutions derived in Sec. A.2 exactly recover the classical
 1169 analytical solutions of the standard LQAG problem (see Appendix A.2.3) when both multiplicative
 1170 and internal noise terms vanish. To illustrate this, we examine the solutions presented in Appendix
 1171 A.2.7. As empirically validated in Damiani et al. (2024), the optimal solutions, when internal noise
 1172 is absent, satisfy the orthogonality principle (OP). Thus, by setting the multiplicative noise terms
 1173 to zero, we can directly verify whether these solutions converge to the classic LQAG solutions.
 1174 Additionally, this provides a proof that the orthogonality principle indeed corresponds to the global
 1175 optimum of the cost function for the standard LQAG problem.

1176 The optimal controller derived under the orthogonality principle in Appendix A.2.7 is given by Eq.
 1177 40. When both multiplicative and internal noise terms are turned off, we obtain

$$1179 \quad L_t = -[2R_t + B^\top(\tilde{\Lambda}_{t+1} + \Gamma_{t+1})B]^{-1}[B^\top(\tilde{\Lambda}_{t+1} + \Gamma_{t+1})A], \quad (43)$$

1180 which corresponds to the optimal L_t for the classic LQAG case (see solutions in Sec. A.2.3) if
 1181 $S_t = (\Gamma_t + \tilde{\Lambda}_t)$. Using Eq. 16 and imposing the OP (setting $\Gamma_t = -\tilde{\Omega}_t$ – see Appendix A.2.7) we
 1182 obtain

$$1184 \quad \Gamma_{t+1} + \tilde{\Lambda}_{t+1} = 2Q_t + (A + BL_t)^\top(\tilde{\Lambda}_t + \Gamma_t)A. \quad (44)$$

1185 Now we observe, as discussed in Appendix A.2.7, that Γ_t is symmetric and the same holds for $\tilde{\Lambda}_t$
 1186 (by definition), therefore we can rewrite Eq. 44 as

$$1187 \quad \Gamma_{t+1} + \tilde{\Lambda}_{t+1} = 2Q_t + A^\top(\tilde{\Lambda}_t + \Gamma_t)(A + BL_t). \quad (45)$$

1188 which corresponds to the formula for S_t in Sec. A.2.3, therefore proving the equality between the
 1189 two optimal solutions.
 1190

1191 The optimal Kalman filter derived under the OP in Appendix A.2.7 is given by Eq. 41, corresponding
 1192 to
 1193

$$K_t = A(S_t^{xx} - S_t^{zz})H^\top [H(S_t^{xx} - S_t^{zz})H^\top + \Sigma_\omega]^{-1}, \quad (46)$$

1194 when neither internal nor multiplicative noise is considered. We note that this solution corresponds
 1195 to the one presented in Sec. A.2.3 when $\Sigma_t^e = S_t^{xx} - S_t^{zz}$, which is automatically satisfied when the
 1196 OP, stating $S_t^{zz} = S_t^{xz}$, holds.
 1197

1198 Therefore, the solutions derived in Appendix A.2.7 correspond to the globally optimal solutions of
 1199 the classic LQAG problem in the absence of multiplicative and internal noise.
 1200

1200 A.2.9 JOINT OPTIMIZATION OF FORWARD DYNAMICS, PSEUDO-FILTER, AND CONTROL 1201 WITH MODEL MISMATCH: FULL DERIVATIONS 1202

1203 **Model and Moments** The Model Mismatch approach is defined by the equations
 1204

$$\begin{aligned} x_{t+1} &= Ax_t + BL_t z_t + n_t^x, & y_t &= Hx_t + n_t^y, & z_{t+1} &= W_t z_t + P_t y_t + n_t^z \\ n_t^c &= \epsilon_t^c + \sum_r \eta_t^c U_r^c x_t + \sum_l \xi_t^c V_l^c L_t z_t, & c &\in \{x, y, z\}, \end{aligned} \quad (47)$$

1205 identical to Eqs. 11. The goal is to optimize the forward dynamics $W_t \in \mathbb{R}^{n \times n}$, pseudo-filter
 1206 $P_t \in \mathbb{R}^{n \times m}$ and control $L_t \in \mathbb{R}^{p \times n}$ – where p is the dimensionality of the control signal $u_t = L_t z_t$ –
 1207 matrices so as to minimize the expected cumulative quadratic cost
 1208

$$C = \sum_{t=0}^T \mathbb{E} [x_t^\top Q_t x_t + z_t^\top L_t^\top R_t L_t z_t] = \sum_{t=0}^T (\text{tr}(Q_t S_t^{xx}) + \text{tr}(L_t^\top R_t L_t S_t^{zz})), \quad (48)$$

1209 with initial condition $p_0(x, z)$.
 1210

1211 Eqs. 47 can be put in a more compact form as
 1212

$$\begin{aligned} x_{t+1} &= Ax_t + BL_t z_t + n_t^x \\ z_{t+1} &= W_t z_t + P_t H x_t + P_t n_t^y + n_t^z \\ n_t^c &= \epsilon_t^c + \sum_r \eta_t^c U_r^c x_t + \sum_l \xi_t^c V_l^c L_t z_t, & c &\in \{x, y, z\}, \end{aligned} \quad (49)$$

1213 from where it is more obvious that the system consists of two coupled linear dynamical systems with
 1214 free parameters W_t , P_t and L_t chosen so as to minimize the cost. The sums \sum_r and \sum_l can run
 1215 over different limits depending on the source c , but here we use the same symbol to avoid cluttered
 1216 notation.
 1217

1218 Note that the Model Mismatch framework is strictly more general than the Model Match one because
 1219 one always is free to choose in Eqs. 49 $P_t = K_t$ and $W_t = A + BL_t - K_t H$, leading exactly to the
 1220 Model Match approach in Eqs. 5,6,7. The reverse, mapping the Model Mismatch approach into the
 1221 Model Match one, is in general not possible.
 1222

1223 The 2nd-order moments, appearing in the cost 48, obey
 1224

$$\begin{aligned} S_{t+1}^{xx} &= AS_t^{xx} A^\top + BL_t S_t^{zz} L_t^\top B^\top + AS_t^{xz} L_t^\top B^\top + BL_t (S_t^{xz})^\top A^\top + \Sigma_t^x \\ S_{t+1}^{zz} &= P_t H S_t^{xx} H^\top P_t^\top + W_t S_t^{zz} W_t^\top + P_t H S_t^{xz} W_t^\top + W_t (S_t^{xz})^\top H^\top P_t^\top + P_t \Sigma_t^y P_t^\top + \Sigma_t^z \\ S_{t+1}^{xz} &= AS_t^{xx} H^\top P_t^\top + BL_t S_t^{zz} W_t^\top + AS_t^{xz} W_t^\top + BL_t (S_t^{xz})^\top H^\top P_t^\top, \end{aligned} \quad (50)$$

1225 with $\Sigma_t^c = \Sigma_{\epsilon^c} + \sum_r U_r^c S_t^{xx} (U_r^c)^\top + \sum_l V_l^c L_t S_t^{zz} L_t^\top (V_l^c)^\top$, $c \in \{x, y, z\}$.
 1226

1227 Even though the Model Mismatch approach is more general than the Model Match one, defined
 1228 in Eqs. 5,6,7, it is already apparent that the equations for the second moments are simpler, more
 1229 compact and transparent. This will be a recurrent theme in all next derivations and equations, so we
 1230 will not repeat this below.
 1231

Total Cost and Cost-to-Go Let us define the cost-to-go at time t starting from x and z as $C_t(x, z) = \text{tr}(Q_t xx^\top + L_t^\top R_t L_t zz^\top) + \sum_{\tau=t+1}^T \mathbb{E} [x_\tau^\top Q_\tau x_\tau + z_\tau^\top L_t^\top R_\tau L_t z_\tau]$, where the expectation is over the noises with initial conditions fixed at x and z at time t , and for specific P , L and W from time t onward. The cost-to-go obeys the Bellman equation

$$C_t(x, z) = \text{tr}(Q_t xx^\top) + \text{tr}(L_t^\top R_t L_t zz^\top) + \int dx' dz' C_{t+1}(x', z') p_{x,t+1}(x'|x, z) p_{z,t+1}(z'|x, z), \quad (51)$$

where the transition probability densities $p_{x,t+1}(x'|x, z)$ and $p_{z,t+1}(z'|x, z)$ are the transition probability functions over x' and z' at time $t+1$ when starting from x and z at time t , as defined by equations 47. Using backwards induction, and following similar steps to those in Secs. A.2.4 and A.2.5, it is not difficult to show that the cost-to-go can be written for all t ($t = 0, \dots, T$) as

$$C_t(x, z) = \text{tr}(\Lambda_t xx^\top) + \text{tr}(\Omega_t zz^\top) + \text{tr}(\Gamma_t xz^\top) + \gamma_t, \quad (52)$$

with matrices $\Lambda_t \in \mathbb{R}^{m \times m}$, $\Omega_t \in \mathbb{R}^{n \times n}$, and $\Gamma_t \in \mathbb{R}^{n \times m}$ and scalar γ_t obeying equations

$$\begin{aligned} \Lambda_t &= Q_t + A^\top \Lambda_{t+1} A + H^\top P_t^\top \Omega_{t+1} P_t H + H^\top P_t^\top \Gamma_{t+1} A \\ &\quad + \sum_r (U_r^x)^\top \Lambda_{t+1} U_r^x + \sum_r (U_r^y)^\top P_t^\top \Omega_{t+1} P_t U_r^y + \sum_r (U_r^z)^\top \Omega_{t+1} U_r^z, \\ \Omega_t &= L_t^\top R_t L_t + L_t^\top B^\top \Lambda_{t+1} B L_t + W_t^\top \Omega_{t+1} W_t + W_t^\top \Gamma_{t+1} B L_t \\ &\quad + \sum_r L_t^\top (V_r^x)^\top \Lambda_{t+1} V_r^x L_t + \sum_r L_t^\top (V_r^y)^\top P_t^\top \Omega_{t+1} P_t V_r^y L_t + \sum_r L_t^\top (V_r^z)^\top \Omega_{t+1} V_r^z L_t, \\ \Gamma_t &= L_t^\top B^\top (\Lambda_{t+1} + \Lambda_{t+1}^\top) A + W_t^\top (\Omega_{t+1} + \Omega_{t+1}^\top) P_t H + W_t^\top \Gamma_{t+1} A + L_t^\top B^\top \Gamma_{t+1}^\top P_t H, \\ \gamma_t &= \text{tr}(\Lambda_{t+1} \Sigma_{\epsilon^x}) + \text{tr}(P_t^\top \Omega_{t+1} P_t \Sigma_{\epsilon^y}) + \text{tr}(\Omega_{t+1} \Sigma_{\epsilon^z}) + \gamma_{t+1}, \end{aligned} \quad (53)$$

with boundary conditions $\Lambda_T = Q_T$, $\Omega_T = L_T^\top R_T L_T$, $\Gamma_T = 0$ and $\gamma_T = 0$ (in this way the boundary condition that $C_T(x, z) = \text{tr}(Q_T xx^\top) + \text{tr}(L_T^\top R_T L_T zz^\top)$ is satisfied).

We now define the averaged cost-to-go at time t as

$$C_t \equiv \int dx dz p_t(x, z) C_t(x, z) = \text{tr}(\Lambda_t S_t^{xx}) + \text{tr}(\Omega_t S_t^{zz}) + \text{tr}(\Gamma_t S_t^{xz}) + \gamma_t, \quad (54)$$

where $p_t(x, z)$ is the joint probability density over x and z given initial condition $p_0(x, z)$ and W_τ , L_τ , and P_τ for $\tau < t$. We note that the total cost C in Eq. 48 can be written as

$$C = C_0 \equiv \int dx dz p_0(x, z) C_0(x, z) = \text{tr}(\Lambda_0 S_0^{xx}) + \text{tr}(\Omega_0 S_0^{zz}) + \text{tr}(\Gamma_0 S_0^{xz}) + \gamma_0, \quad (55)$$

which it can also be expressed as

$$C = C_{<t} + C_t \quad (56)$$

with $C_{<t} = \sum_{\tau=0}^{t-1} \text{tr}(Q_\tau S_\tau^{xx} + L_\tau^\top R_\tau L_\tau S_\tau^{zz})$. It is important to note that Eq. 56 is valid for all t .

Algorithm Building an algorithm to find an improved triplet of time-dependent forward dynamics, pseudo-filter and control matrices is slightly simpler than in the case of the Model Match approach because W_t and P_t only appear in the internal variable dynamical equation and L_t only appears in the state variable dynamics. In contrast, in the Model Match approach, L_t appeared both in the state and state estimate dynamics, complicating the mathematical derivations.

Indeed, we note from Eqs. 53 that the coefficients Λ_t , Ω_t , Γ_t and γ_t depend on W_τ , P_τ and L_τ only for $\tau \geq t$, while S_t^{ab} , $ab \in \{xx, zz, xz\}$, only depend on those matrices for $\tau < t$, as it can be seen from Eqs. 50. Therefore, choosing an arbitrary t , in Eq. 56 only the term C_t depends on W_t , and in that term, Eq. 54, only the coefficients Λ_t , Ω_t , Γ_t and γ_t can depend on W_t . In conclusion, starting with a set of $W_{0,\dots,T}$, $P_{0,\dots,T}$ and $L_{0,\dots,T}$, we can improve the value of W_t as

$$W_t^* = \arg \min_{W_t} C = \arg \min_{W_t} C_t, \quad (57)$$

while keeping the W_τ for $\tau \neq t$ and all $P_{0,\dots,T}$ and $L_{0,\dots,T}$ fixed. A global minimum exists because C_t is always non-negative. Using elementary matrix operations, we find that

$$W_t^* = -P_t H S_t^{xz} (S_t^{zz})^{-1} - (\Omega_{t+1} + \Omega_{t+1}^\top)^{-1} \Gamma_{t+1} (B L_t + A S_t^{xz} (S_t^{zz})^{-1}). \quad (58)$$

1296 Note that if S_0^{zz} is not invertible, then W_0^* is not well defined, and thus we can take any arbitrary
 1297 matrix. This might correspond to $z_0 = 0$. After the optimization, we must have

$$1298 \quad C^* = C(W_0, \dots, W_t^*, \dots, W_T) \leq C(W_0, \dots, W_t, \dots, W_T), \quad (59)$$

1300 so that the total cost is non-increasing. After optimizing W_t , using the new W_t^* , the cost can be
 1301 written as

$$1302 \quad C^* = C_{<t+1} + C_{t+1}^* = C_{<t+1} + \text{tr}(\Lambda_{t+1} S_{t+1}^{xx,*}) + \text{tr}(\Omega_{t+1} S_{t+1}^{zz,*}) + \text{tr}(\Gamma_{t+1} S_{t+1}^{xz,*}) + \gamma_{t+1} \quad (60)$$

1303 where the coefficients at time $t+1$ do not need to be updated (as they do not depend on W_t^*), but
 1304 where the $S_{t+1}^{ab,*}$ need to be updated using Eqs. 50 with the new W_t^* .

1306 Redefining W_t^* as W_t and the $S_{t+1}^{ab,*}$ as S_{t+1}^{ab} , we can now proceed to optimize W_{t+1} us-
 1307 ing the same procedure as above (changing t to $t+1$) to minimize again the total cost
 1308 $C(W_0, \dots, W_t, W_{t+1}^*, \dots, W_T) \leq C(W_0, \dots, W_t, W_{t+1}, \dots, W_T)$ fixing $P_{0,\dots,T}$, $L_{0,\dots,T}$ and all W_τ
 1309 except for $\tau = t$. This procedure can be repeated consecutively from $t = 0$ up to T .

1310 After this forward pass, we would like to repeat the process for P_t and L_t instead of W_t . But before
 1311 doing this, the value of the coefficients in Eqs. 53 have to be recomputed so that Eq. 55 is true again.
 1312 The process of forward updating the W_t from $t = 0$ up to time T and, after this, recomputing the
 1313 coefficients using a backwards pass is called W -pass. Note that in this process, the moments have
 1314 been already recomputed. Starting from $W^{(n)} = W_{0,\dots,T}^{(n)}$, $P^{(n)} = P_{0,\dots,T}^{(n)}$ and $L^{(n)} = L_{0,\dots,T}^{(n)}$,
 1315 the W -pass leads to a new set of forward dynamics matrices $W^{(n+1)}$ such that the cost is non-
 1316 increasing, $C(W^{(n+1)}, P^{(n)}, L^{(n)}) \leq C(W^{(n)}, P^{(n)}, L^{(n)})$. We define a P -pass as that consisting
 1317 in exactly repeating the same procedure for the $P_{0,\dots,T}$ instead of the $W_{0,\dots,T}$ while keeping fixed
 1318 $W_{0,\dots,T}$ and $L_{0,\dots,T}$, and using the expression (obtained after some calculations)

$$1319 \quad P_t^* = -[W_t(S_t^{xz})^\top + (\Omega_{t+1} + \Omega_{t+1}^\top)^{-1} \Gamma_{t+1} (AS_t^{xx} + BL_t(S_t^{xz})^\top)] H^\top E_t^{-1}, \quad (61)$$

1320 with $E_t = HS_t^{xx} H^\top + \sum_l U_l^y S_t^{xx} (U_l^y)^\top + \sum_r V_l^y L_t S_t^{zz} L_t^\top (V_l^y)^\top + \Sigma_{\epsilon y}$. Starting from $W^{(n+1)} =$
 1321 $W_{0,\dots,T}^{(n+1)}$, $P^{(n)} = P_{0,\dots,T}^{(n)}$ and $L^{(n)} = L_{0,\dots,T}^{(n)}$, the P -pass leads to a new set of pseudo-filter matrices
 1322 $P^{(n+1)}$ such that the cost is non-increasing, $C(W^{(n+1)}, P^{(n+1)}, L^{(n)}) \leq C(W^{(n+1)}, P^{(n)}, L^{(n)})$.
 1323 Finally, we define an L -pass as that consisting in following similar steps to the previous ones to
 1324 sequentially update the $L_{0,\dots,T}$ while keeping fixed $W_{0,\dots,T}$ and $P_{0,\dots,T}$, and using the expression
 1325 (after some calculations)

$$1326 \quad L_t^* = -F_t^{-1} B^\top \left\{ \tilde{\Lambda}_{t+1} A S_t^{xz} (S_t^{zz})^{-1} + \Gamma_{t+1}^\top [P_t H S_t^{xz} (S_t^{zz})^{-1} + W_t] \right\}, \quad (62)$$

1327 with $F_t = 2R_t + B^\top \tilde{\Lambda}_{t+1} B + \sum_l (V_l^x)^\top \tilde{\Lambda}_{t+1} V_l^x + \sum_l (V_l^y)^\top P_t^\top \tilde{\Omega}_{t+1} P_t V_l^y + \sum_l (V_l^z)^\top \tilde{\Omega}_{t+1} V_l^x$,
 1328 where we have defined $\tilde{\Lambda}_t = \Lambda_t + \Lambda_t^\top$ and $\tilde{\Omega}_t = \Omega_t + \Omega_t^\top$. Starting from $W^{(n+1)} = W_{0,\dots,T}^{(n+1)}$,
 1329 $P^{(n+1)} = P_{0,\dots,T}^{(n+1)}$ and $L^{(n)} = L_{0,\dots,T}^{(n)}$, the L -pass leads to a new set of control matrices $L^{(n+1)}$
 1330 such that the cost is non-increasing, $C(W^{(n+1)}, P^{(n+1)}, L^{(n+1)}) \leq C(W^{(n+1)}, P^{(n+1)}, L^{(n)})$.

1331 Now, alternating W -, P - and L -passes from some initial arbitrary values $W^{(0)}, P^{(0)}, L^{(0)}$ we find

$$1332 \quad \begin{aligned} C(W^{(0)}, P^{(0)}, L^{(0)}) &\geq C(W^{(1)}, P^{(0)}, L^{(0)}) \geq C(W^{(1)}, P^{(1)}, L^{(0)}) \geq \dots \\ &\geq C(W^{(n+1)}, P^{(n)}, L^{(n)}) \geq C(W^{(n+1)}, P^{(n+1)}, L^{(n)}) \\ &\geq C(W^{(n+1)}, P^{(n+1)}, L^{(n+1)}) \geq \dots \geq C_{\min} \geq 0. \end{aligned} \quad (63)$$

1333 Since the series is non-negative, it converges to a total cost (not larger than the initial one) with
 1334 optimal forward dynamics $W^* = W^{(\infty)}$, pseudo-filter $P^* = P^{(\infty)}$ and control $L^* = L^{(\infty)}$ matrices.
 1335 We have thus proven the first part of the following

1336 **Theorem 3.** *Starting with arbitrary $W^{(0)}$, $P^{(0)}$ and $L^{(0)}$ and distribution of initial conditions
 1337 $p_0(x, z)$, the coordinate descent algorithm defined by iterating in alternation W -, P - and L -passes
 1338 converges to an improved triplet of forward dynamics, pseudo-filter and control matrices W^* , P^*
 1339 and L^* . The improved triplet corresponds to a critical point of the cost function in Eq. 48.*

1340 We remark that it is straightforward to extend our algorithm to the case where any of the matrices
 1341 W_t , P_t and L_t are fixed simply by not updating the corresponding matrices using the above passes,
 1342 still enjoying convergence properties.

1350 **Lagrangian, Fixed-Point Equations, and Critical Points** To complete the last part of the theo-
 1351 rem, that is, that after convergence the triplet W^* , P^* and L^* is a critical point of the cost function
 1352 48, we must show that they solve all fixed points equations of the Lagrangian,
 1353

$$1356 C_{\mathcal{L}} = \sum_{t=0}^T (\text{tr}(Q_t S_t^{xx}) + \text{tr}(R_t S_t^{zz})) - \sum_{t=1}^{T+1} (\text{tr}(\Lambda_t G_t^{xx}) + \text{tr}(\Omega_t G_t^{zz}) + \text{tr}(\Gamma_t G_t^{xz})) , \quad (64)$$

1361 where Λ_t , Ω_t and Γ_t are matrices of Lagrange multipliers. The constraints $G_t^{xx} = G_t^{zz} = G_t^{xz} = 0$
 1362 are given by the temporal evolution of S_t^{xx} , S_t^{zz} and S_t^{xz} , respectively, between two consecutive
 1363 time steps t and $t + 1$, and can be computed using Eqs. 50 similarly as in Eqs. 13. Indeed, the fixed
 1364 point equations of the Lagrangian $\partial C_{\mathcal{L}} / \partial W_t = 0$ and $\partial C_{\mathcal{L}} / \partial P_t = 0$ are identical to Eqs. 58,61,62,
 1365 respectively, which must be satisfied after convergence by the improved triplet W^* , P^* and L^* .
 1366 After some work, the Lagrange equations $\partial C_{\mathcal{L}} / \partial S_t^{xx} = 0$, $\partial C_{\mathcal{L}} / \partial S_t^{zz} = 0$ and $\partial C_{\mathcal{L}} / \partial S_t^{xz} = 0$
 1367 can be seen to lead exactly to the coefficient Eqs. 53, which, again, are satisfied by the improved
 1368 triplet. Finally, the derivatives of the Lagrangian with respect to the multipliers reduce to the second-
 1369 order moment Eqs. 50, which are satisfied by the improved triplet. Thus, the improved triplet is a
 1370 fixed-point solution of the Lagrangian 64 and therefore a critical point of the cost function 48.

1373 A.3 ALGORITHMS IMPLEMENTATION: PSEUDOCODES

1376 A.3.1 PSEUDOCODE – MODEL MATCH FRAMEWORK

1381 **Algorithm 1** Model Match (M-Match) approach

1382 **Input:** $S_0^{xx}, S_0^{xz}, S_0^{zz}$; initial guesses $L_{0,\dots,T}^{(0)}, K_{0,\dots,T}^{(0)}$; system parameters.
 1383 **2: Output:** Optimal gains $L_{0,\dots,T}^*, K_{0,\dots,T}^*$.
 1384 **Steps:**
 1385 4: **for** each iteration $k = 1, \dots$, optimization steps **do**
 1386 $\Lambda_{1,\dots,T}, \Omega_{1,\dots,T}, \Gamma_{1,\dots,T} \leftarrow$ Eqs. 16 using $L_{0,\dots,T}^{(k-1)}$ and $K_{0,\dots,T}^{(k-1)}$ (backward equations)
 1387 6: **for** each iteration $t = 0, \dots, T - 1$ **do**
 1388 $L_t^{(k)} \leftarrow$ Eq. 14,
 1389 8: $S_{t+1}^{xx}, S_{t+1}^{xz}, S_{t+1}^{zz} \leftarrow$ Eqs. 32 using $L_t^{(k)}$ and $K_t^{(k-1)}$
 1390 **end for**
 1391 10: $\Lambda_{1,\dots,T}, \Omega_{1,\dots,T}, \Gamma_{1,\dots,T} \leftarrow$ Eqs. 16 using $L_{0,\dots,T}^{(k)}$ and $K_{0,\dots,T}^{(k-1)}$ (backward equations)
 1392 12: **for** each iteration $t = 0, \dots, T - 1$ **do**
 1393 $K_t^{(k)} \leftarrow$ Eq. 15,
 1394 14: $S_{t+1}^{xx}, S_{t+1}^{xz}, S_{t+1}^{zz} \leftarrow$ Eqs. 32 using $L_t^{(k)}$ and $K_t^{(k)}$
 1395 **end for**
 1396 **end for**
 1397 16: $L_{0,\dots,T}^* \leftarrow L_{0,\dots,T}^{(k)}$; $K_{0,\dots,T}^* \leftarrow K_{0,\dots,T}^{(k)}$

1399
 1400
 1401
 1402
 1403 The pseudocode above implements the algorithm of Sec. A.2.2, referred to as the Model Match
 (M-Match) approach, in contrast to the Model Mismatch (M-Mis) method of Sec. 4.

1404 A.3.2 PSEUDOCODE – MODEL MISMATCH FRAMEWORK
1405
14061407 **Algorithm 2** Model Mismatch (M-Mis) approach
1408

1409 **Input:** $S_0^{xx}, S_0^{xz}, S_0^{zz}$; initial guesses $L_{0,\dots,T}^{(0)}, P_{1,\dots,T}^{(0)}, W_{1,\dots,T}^{(0)}$; system parameters.
 1410 **2: Output:** Optimal matrices $L_{0,\dots,T}^*, P_{1,\dots,T}^*, W_{1,\dots,T}^*$.
 1411 **Steps:**
 1412 **4: for** each iteration $k = 1, \dots$, optimization steps **do**
 1413 $\Lambda_{1,\dots,T}, \Omega_{1,\dots,T}, \Gamma_{1,\dots,T} \leftarrow$ Eqs. 53 using $P_{1,\dots,T}^{(k-1)}, W_{1,\dots,T}^{(k-1)}$ and $L_{0,\dots,T}^{(k-1)}$ (backward equations)
 1414 **6: for** each iteration $t = 0, \dots, T - 1$ **do**
 1415 $P_t^{(k)} \leftarrow$ Eq. 61,
 1416 **8:** $S_{t+1}^{xx}, S_{t+1}^{xz}, S_{t+1}^{zz} \leftarrow$ Eqs. 50 using $P_t^{(k)}, W_t^{(k-1)}$ and $L_t^{(k-1)}$
 1417 **end for**
 1418 $\Lambda_{1,\dots,T}, \Omega_{1,\dots,T}, \Gamma_{1,\dots,T} \leftarrow$ Eqs. 53 using $P_{1,\dots,T}^{(k)}, W_{1,\dots,T}^{(k-1)}$ and $L_{0,\dots,T}^{(k-1)}$ (backward equations)
 1419 **for** each iteration $t = 0, \dots, T - 1$ **do**
 1420 $W_t^{(k)} \leftarrow$ Eq. 58,
 1421 $S_{t+1}^{xx}, S_{t+1}^{xz}, S_{t+1}^{zz} \leftarrow$ Eqs. 50 using $P_t^{(k)}, W_t^{(k)}$ and $L_t^{(k-1)}$
 1422 **14: end for**
 1423 $\Lambda_{1,\dots,T}, \Omega_{1,\dots,T}, \Gamma_{1,\dots,T} \leftarrow$ Eqs. 53 using $P_{1,\dots,T}^{(k)}, W_{1,\dots,T}^{(k)}$ and $L_{0,\dots,T}^{(k-1)}$ (backward equations)
 1424 **16: for** each iteration $t = 0, \dots, T - 1$ **do**
 1425 $L_t^{(k)} \leftarrow$ Eq. 62,
 1426 **18:** $S_{t+1}^{xx}, S_{t+1}^{xz}, S_{t+1}^{zz} \leftarrow$ Eqs. 50 using $P_t^{(k)}, W_t^{(k)}$ and $L_t^{(k)}$
 1427 **end for**
 1428 **20: end for**
 1429 $P_{1,\dots,T}^* \leftarrow P_{1,\dots,T}^{(k)}; W_{1,\dots,T}^* \leftarrow W_{1,\dots,T}^{(k)}; L_{0,\dots,T}^* \leftarrow L_{0,\dots,T}^{(k)}$

1431

1432

1433 The pseudocode above outlines the Model Mismatch (M-Mis) approach, introduced in Sec. 4 and
 1434 detailed in Appendix A.2.9. While the order of optimization for P , W , and L differs from that in
 1435 Appendix A.2.9, all variants converge to a critical point of the cost function in Eq. 48.

1436

1437

1438 A.3.3 IMPLEMENTATIONS DETAILS

1439

1440 Here we report the algorithms' hyper-parameters, as selected for the experiments described in Sec.
 1441 A.4.

1442 For the single-joint reaching task used to evaluate Algorithm 1 – and to compare it with the gradient-
 1443 based numerical method from Damiani et al. (2024) (referred to as GD) – we use the parameters
 1444 listed in Table 1. Note that, in line with Damiani et al. (2024), the GD algorithm is implemented
 1445 using the GradientDescent() function from the Optim.jl Julia package.

1446

1447

1448 Table 1: Hyper-parameters of the algorithms used in the single-joint reaching task (Sec. A.4.1)

1449

1450 Algorithm	1451 Description	1452 value
1453 GD (Damiani et al., 2024)	1454 Number of iterations of the "GradientDescent()" function	1455 50000
1456 M-Match (Algorithm 1)	1457 Number of iterations of the estimation-control optimization	1458 100

1459

1460

1461

1462 For the 3D reaching task, detailed in Appendix A.4.3 and for the Redundant Arm-Control Task,
 1463 detailed in Appendix A.4.5, we used

1458

1459 Table 2: Hyper-parameters of the algorithms used in the 3D reaching task and in the Redundant
1460 Arm-Control Task(Appendices A.4.3 and A.4.5)

1461 Algorithm	1462 Description	1463 value
1463 TOD (Todorov, 2005)	1464 Number of iterations of the estimation-control optimization	1465 100
1464 M-Match (Algorithm 1)	1465 Number of iterations of the estimation-control optimization	1466 100
1465 M-Mis (Algorithm 2)	1466 Number of iterations of the M-Mis optimization	1467 100

1468

1469 while for the neural population steering task of Appendix A.4.6 we selected the following hyper-
1470 parameters

1471

1472 Table 3: Hyper-parameters of the algorithm used in the neural population steering task (Appendix
1473 A.4.6)

1474 Algorithm	1475 Description	1476 value
1475 M-Mis (Algorithm 2)	1476 Number of iterations of the $L_{0,\dots,T}$ optimization	1477 20

1478

A.4 EXPERIMENTAL DETAILS AND SUPPLEMENTARY RESULTS

1479

A.4.1 SINGLE-JOINT REACHING TASK: MODEL AND PARAMETERS

1480

1481 In Sec. 5.1 we evaluated the M-Match algorithm – Algorithm 1 – on a single-joint reaching task,
1482 using the same problem formulation as in (Todorov, 2005; Damiani et al., 2024). The system features
1483 a four-dimensional state and one-dimensional control and sensory feedback, i.e., $m = 4$, $p = k = 1$.
1484 The discrete-time dynamics is given by Todorov (2005),
1485

$$\begin{aligned} p(t + \Delta t) &= p(t) + \dot{p}(t)\Delta t \\ \dot{p}(t + \Delta t) &= \ddot{p}(t) + f(t)\Delta t/m \\ f(t + \Delta t) &= f(t)(1 - \Delta t/\tau_2) + g(t)\Delta t/\tau_2 \\ g(t + \Delta t) &= g(t)(1 - \Delta t/\tau_1) + u(t)(1 + \sigma_\varepsilon \varepsilon_t)\Delta t/\tau_1 \end{aligned}$$

1491

with

$$A = \begin{pmatrix} 1 & \Delta t & 0 & 0 \\ 0 & 1 & \Delta t/m & 0 \\ 0 & 0 & 1 - \Delta t/\tau_2 & \Delta t/\tau_2 \\ 0 & 0 & 0 & 1 - \Delta t/\tau_1 \end{pmatrix}$$

$$B = (0 \ 0 \ 0 \ \Delta t/\tau_1)^\top$$

$$C = (0 \ 0 \ 0 \ \sigma_\varepsilon \Delta t/\tau_1)^\top$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} \sigma_\rho & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$Q_{1,\dots,T-1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$Q_T = \vec{p}\vec{p}^\top + \vec{v}\vec{v}^\top + \vec{f}\vec{f}^\top$$

1512 $R_{1,\dots,T-1} = \frac{r}{T-1}$
 1513
 1514 $R_T = 0$
 1515
 1516 $\vec{p} = (1 \ 0 \ 0 \ 0)$
 1517
 1518 $\vec{v} = (0 \ w_v \ 0 \ 0)$
 1519
 1520 $\vec{f} = (0 \ 0 \ w_v \ 0)$
 1521
 1522 $\Sigma_\xi = \begin{pmatrix} \sigma_\xi^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 1523
 1524
 1525
 1526 $\Sigma_\omega = \sigma_\omega^2$
 1527
 1528 $\Sigma_\eta = \begin{pmatrix} \sigma_\eta^2 & 0 & 0 & 0 \\ 0 & \sigma_\eta^2 & 0 & 0 \\ 0 & 0 & \sigma_\eta^2 & 0 \\ 0 & 0 & 0 & \sigma_\eta^2 \end{pmatrix}$
 1529
 1530
 1531
 1532

1533 with the initial conditions given by

1534 $\mathbb{E}[x_1] = (x_1 \ 0 \ 0 \ 0)^\top$
 1535
 1536 $\mathbb{E}[z_1] = \mathbb{E}[x_1]$
 1537
 1538 $\Sigma_{x_1} = \begin{pmatrix} \sigma_x^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 1539
 1540
 1541 $\Sigma_{z_1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$
 1542
 1543
 1544
 1545

1546 The parameters of the problem are listed in Table 4 (std = standard deviation).

1548
 1549 Table 4: Parameters of the single-joint reaching task

Name	Description	Value
Δt	time-step (s)	0.010
m	mass of the hand (Kg)	1
τ_1	first time constant of the second order low pass filter	0.04
τ_2	second time constant of the second order low pass filter	0.04
r	Auxiliary variable for control-dependent cost	$1e^{-5}$
w_v	Auxiliary variable for task-related cost	0.2
w_f	Auxiliary variable for task-related cost	0.01
T	time steps	100
x_1	Target position	0.15
σ_x	Target position standard deviation	0.0
σ_ξ	std of dynamics noise ξ_t	0.1
σ_ω	std of the sensory noise ω_t	0.1
σ_ε	std of the control-dependent noise ε_t	0.5
σ_ρ	std of the sensory-dependent noise ρ	0.5
σ_η	std of the additive internal noise η_t	0.1

1566 A.4.2 COMPUTATIONAL EFFICIENCY AND DIMENSIONALITY SCALING: COMPARISON WITH
1567 PRIOR WORK
1568

1569 As additional evidence for computational efficiency of Algorithm 1, we present a dimensionality-
1570 scaling study comparing computation times with the numerical algorithm in Damiani et al. (2024),
1571 extending the analysis up to $m = 100$. This complements the results in Sec. 5.1, which already
1572 demonstrates a pronounced gap in runtime (6 s vs. 5 h).

1573 To isolate the effect of dimensionality, we set $m = k = p = n_{\text{shared}}$. Matrices A, B, C , and D are
1574 drawn from zero-mean, unit-variance Gaussian distributions and rescaled to ensure spectral radius
1575 < 1 for stability. We fix $T = 6$ and $\sigma_\xi = \sigma_\omega = \sigma_\rho = \sigma_\epsilon = \sigma_\eta = 0.2$, and vary $n_{\text{shared}} \in$
1576 $\{5, 10, 15, 40, 100\}$. We then compare the total computation time of our method (Algorithm 1) with
1577 the numerical approach in Damiani et al. (2024), initializing both with optimal gains from Todorov
1578 (2005) to ensure a fair comparison. All results were obtained on a MacBook Pro (Apple M1, 16 GB
1579 RAM).

1580

1581 Table 5: Comparison of runtime between this work and the numerical algorithm in Damiani et al.
1582 (2024) as a function of the number of shared dimensions n_{shared} .

n_{shared}	This work	GD (Damiani et al., 2024)
5	1.15 s	8.4 min
10	1.25 s	75.7 min
15	1.40 s	6.4 h
40	2.7 s	> 2 days
100	14 s	–

1590

1591

1592 Here, s = seconds, min = minutes, and h = hours. These results highlight the scalability of our
1593 method. Similar time gaps also emerge in lower-dimensional settings as trial duration T increases,
1594 due to the linear growth in optimization parameters with T .

1595 This computational advantage is critical for applying stochastic optimal control to real-world prob-
1596 lems, particularly in Inverse Optimal Control (Schultheis et al., 2021; Straub & Rothkopf, 2022),
1597 which requires solving many control problems across parameter settings. The high cost of Damiani
1598 et al. (2024) renders it impractical for realistic tasks such as that in Sec. A.4.1, first described in
1599 Todorov (2005).

1600

1601 A.4.3 3D REACHING TASK: MODEL, PARAMETERS, AND ADDITIONAL ANALYSES
1602

1603 The first problem studied in Sec. 5.2 is defined by the following matrices:

$$1604 \quad A = \begin{pmatrix} 1 & 0 & 0 & \Delta t & 0 & 0 \\ 1605 & 0 & 1 & 0 & 0 & \Delta t & 0 \\ 1606 & 0 & 0 & 1 & 0 & 0 & \Delta t \\ 1607 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1608 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1609 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

1610 $B = I_6$

1611 $C = \sigma_\epsilon \cdot I_6$

1612 $H = I_6$

1613 $D = \sigma_\rho \cdot I_6$

1614 $\Sigma_\xi = \sigma_\xi^2 \cdot I_6$

1615 $\Sigma_\omega = \sigma_\omega^2 \cdot I_6$

1616 $\Sigma_\eta = \sigma_\eta^2 \cdot I_6$

1617 $Q_{1,\dots,T-1} = 0_{6 \times 6}$

$$1620 \quad Q_T = \begin{pmatrix} 10 & 0 & 0 & 0 & 0 & 0 \\ 1621 & 0 & 10 & 0 & 0 & 0 \\ 1622 & 0 & 0 & 10 & 0 & 0 \\ 1623 & 0 & 0 & 0 & 1 & 0 \\ 1624 & 0 & 0 & 0 & 0 & 1 \\ 1625 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \\ 1626 \quad R_t = r \cdot I_6 \quad \text{for } t = 1, \dots, T-1 \\ 1627 \quad R_T = 0,$$

1628 where I_6 denotes the 6×6 identity matrix, and $0_{6 \times 6}$ denotes the 6×6 zero matrix. The initial
1629 conditions are given by:

$$1630 \quad \mathbb{E}[x_1] = (1.5 \quad 1.0 \quad 2.5 \quad 10^{-5} \quad 10^{-5} \quad 10^{-5})^\top \\ 1631 \quad \mathbb{E}[z_1] = \mathbb{E}[x_1] \\ 1632 \quad \Sigma_{x_1} = 0_{6 \times 6} \\ 1633 \quad \Sigma_{z_1} = 0_{6 \times 6} \\ 1634 \\ 1635$$

1636 The parameters of the problem are listed in Table 6 (std = standard deviation).
1637
1638
1639

Table 6: Parameters of the 3D reaching task

Name	Description	Value
Δt	Time step (s)	0.010
T	Time steps	100
m	Dimension of state x_t	6
n	Dimension of internal state z_t (for M-Mis)	6
p	Dimension of observation y_t	6
k	Dimension of control u_t	6
r	Control cost scaling	0.0001
σ_ξ	Std of dynamics noise ξ_t	0.5
σ_ω	Std of additive sensory noise ω_t	0.5
σ_ρ	Std of multiplicative sensory noise ρ	0.4
σ_ε	Std of multiplicative control noise ε_t	0.4
σ_η	Std of additive internal noise η_t	{0.0, 0.1, 0.3, 0.4, 0.5, 1.0, 2.0}

1654
1655 In this experiment, we set the control matrix to $B = I_6$ and use a control signal with dimensionality
1656 equal to the state ($p = m = 6$), enabling full control of the system. This choice is primarily
1657 motivated by numerical considerations: it avoids instabilities in our Model Mismatch algorithm
1658 related to matrix inversions that arise when B is not full-rank or poorly conditioned.

1659 Although this means that control directly affects all state variables – including positions – this can be
1660 interpreted as an idealized feedback mechanism. The dynamics matrix A still captures the physical
1661 structure, with positions evolving from velocities over time. Our focus is on assessing algorithmic
1662 performance under internal and multiplicative noise, rather than enforcing strict biomechanical
1663 realism. Nonetheless, the setup remains rich enough to support meaningful behavioral predictions and
1664 comparisons with biological control strategies.

1665
1666 **Additional Analyses** As internal noise grows, the internal variable becomes increasingly reliant
1667 on sensory feedback: the pseudo-filter matrices $P_{0, \dots, T}$ induce stronger transformations to com-
1668 pensate for the unreliability of internal dynamics. In contrast, the control matrix L_t induces weaker
1669 transformations (in terms of volume scaling) to suppress internal fluctuations when generating the
1670 control signal $u_t = L_t z_t$ (Fig. 4a).

1671 Notably, this modulation impacts the scaling properties of the system but not the effective embedding
1672 dimensionality – i.e., the number of dimensions corresponding to dynamically relevant directions
1673 (see next paragraph) – of the matrices involved (Fig. 4b). Interestingly, the volume scaling of the
internal dynamics (W_t), remains constant (Fig. 4a).

Figure 4: 3D Reaching Task: Additional Analyses. **(a)** Time-averaged determinants of P_t , W_t , and L_t . **(b)** Time-averaged embedding dimensionality of the same matrices (see next paragraph for details).

Embedding Dimensionality In Fig. 4b, we plot the embedding dimensionality of the matrices P , W , and L . For each time step t , we compute the number of singular values of P_t , W_t , and L_t that are larger than $0.01 \cdot \max_{\sigma_i \in SV} \{\sigma_i\}$, where SV denotes the set of singular values of the matrix under consideration. We then average this count across time steps to obtain a measure of effective dimensionality. Formally, we define:

$$SV_{thr} \text{ Count} = \sum_{\sigma_i \in SV} \theta \left(\sigma_i \geq 0.01 \cdot \max_{\sigma_j \in SV} \sigma_j \right)$$

where $\theta(x)$ is the Heaviside step function. This quantity provides an estimate of the “effective” dimensionality of the transformation induced by the matrix, relative to its dominant singular values. This method accounts for changes in scale – such as reductions or increases in determinant magnitude due to varying levels of internal noise (Fig. 4a) – and thus provides a more meaningful estimate of dimensionality across different values of σ_η .

A.4.4 DISTINCT NEURAL AND BEHAVIORAL SIGNATURES OF MODEL MATCH AND MODEL MISMATCH APPROACHES

While our main focus is to introduce an analytical solution to stochastic optimal control problems with multiplicative and internal noise, the two frameworks considered here – Model Match and Model Mismatch – also lead to distinct, experimentally testable predictions. Below we outline illustrative examples that highlight these differences and the importance of choosing between the two approaches.

Divergence of internal dynamics In the 3D reaching task (Figs. 1d-g), the Model Mismatch approach exhibits qualitatively different strategies from the Model Match one. With internal noise, optimal control (Fig. 1e) is achieved when internal dynamics diverge from external ones (Fig. 1f), leading to z_t that no longer tracks x_t (Fig. 1g). This suggests a fundamentally different way of handling internal fluctuations. Using inverse optimal control (Schultheis et al., 2021; Straub & Rothkopf, 2022), behavior can be fit under both Model Match and Model Mismatch approaches, allowing one to test whether neural activity aligns more closely with the inferred internal dynamics of one framework. If it resembles M-Match’s z_t , it may reflect state estimation (e.g., posterior parietal cortex or cerebellum); if it resembles M-Mis’s z_t , it may reflect control-optimized representations, possibly in premotor or motor areas.

Noise-Dependent Control Magnitude From a behavioral perspective, in the same task as above, the magnitude of the control signal is strongly modulated by internal noise in the Model Match approach (Fig. 5a). In contrast, the Model Mismatch approach maintains a stable temporal profile of control magnitude across noise levels (Fig. 5a), likely due to flexible internal representations not constrained to track the external state (Figs. 1f,g). Internal fluctuations could in principle be experimentally influenced or estimated (Speed et al., 2020; Vinck et al., 2015), making this prediction possibly testable.

Figure 5: *Noise-dependent control magnitude in the two approaches.* (a) Expected control magnitude $|u_t|$, averaged over 10,000 realizations while varying internal noise σ_η in the Model Match framework (shaded areas indicate the standard error of the mean). (b) Same as (a), but for the Model Mismatch framework.

Perturbation Responses To further probe the distinction between the Model Match and Model Mismatch approaches, we simulated the 3D reaching task from Figs. 1d-g with a transient bump of magnitude $d = 2.0$ applied to the second component of x_t at $t = 20$, without reoptimizing. Both methods successfully compensate for the perturbation (Fig. 6a), as expected from their respective optimal solutions. Moreover, the behavioral output does not show visible qualitative differences across approaches (Fig. 6a). However, the internal dynamics diverge: in M-Mis, z_t shows a non-linear, non-monotonic response with a slower return to baseline (Fig. 6b), strongly modulated by internal noise σ_η (Fig. 6c). In contrast, M-Match displays a Kalman-like profile, where z_t follows the perturbation magnitude and decays smoothly and monotonically (Fig. 6b), largely independent of noise (Fig. 6d). These findings suggest that M-Match and M-Mis could yield distinguishable neural signatures following perturbations, even when behavioral outputs remain similar.

Figure 6: *Perturbation Responses in Model Match and Model Mismatch.* (a) Difference in the second component of the state (y -coordinate) between perturbed and unperturbed trials (same noise realization), averaged over 10,000 trials for the Model Match and Model Mismatch approaches, with $\sigma_\eta = 0.5$. (b) Difference in the second component of the internal estimate between perturbed and unperturbed trials (same noise realization), averaged over 10,000 realizations for both approaches, normalized to their maximum, with $\sigma_\eta = 0.5$. (c) Difference in the second component of the internal estimate between perturbed and unperturbed trials (same noise realization), averaged over 10,000, for the Model Mismatch approach at different levels of internal noise. (d) Same as (c), but for the Model Match approach. In all panels, shaded areas indicate the standard error of the mean.

1782 A.4.5 REDUNDANT ARM-CONTROL TASK: MODEL, PARAMETERS, AND ADDITIONAL
1783 ANALYSES
1784

1785 In Sec. 5.2, we also apply our algorithms to a 3-DOF planar arm performing a reaching movement
1786 around a stable reference posture. Below, we outline the full model, parameter choices, and
1787 additional analyses.

1788 **Problem definition** We use a standard linear time-invariant (LTI) approximation around a fixed
1789 posture, as is common for moderate-amplitude reaching movements (Todorov & Jordan, 2002).

1790 We consider a six-dimensional state (three joint angles and their angular velocities), a nine-
1791 dimensional control (muscle-like activations), and a three-dimensional observation (only joint an-
1792 gles are observed), i.e. $m = 6$, $p = 9$, $k = 3$. We denote by $\theta_t \in \mathbb{R}^3$ the joint-angle vector and by
1793 $\omega_t \in \mathbb{R}^3$ the corresponding angular velocities. The discrete-time dynamics with time step Δt are
1794

$$\begin{aligned}\theta_{t+1} &= \theta_t + \Delta t \omega_t, \\ \omega_{t+1} &= (I_3 - \Delta t M_{\text{joint}}^{-1} D_{\text{joint}}) \omega_t + \Delta t M_{\text{joint}}^{-1} S u_t,\end{aligned}$$

1795 where I_3 denotes the 3×3 identity matrix and $u_t \in \mathbb{R}^9$ is the control vector.
1796

1797 The muscle-to-joint map $S \in \mathbb{R}^{3 \times 9}$, which linearly converts muscle activations into joint torques, is
1798

$$S = \begin{pmatrix} 1.2 & -1.0 & 0.0 & 0.8 & -0.6 & 0.0 & 0.5 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & -0.4 & 0.6 & -0.5 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & -0.3 & 0.6 \end{pmatrix}.$$

1799 To construct the muscle-to-joint actuation matrix $S \in \mathbb{R}^{3 \times 9}$, we aimed to introduce a realistic and in-
1800 terpretable form of redundancy rather than an arbitrary high-dimensional control map. The structure
1801 of S loosely mimics the organization of mono-articular and bi-articular muscles in the upper limb
1802 (e.g., Tahara et al. (2009)): each control channel acts as a simplified “muscle-like” actuator whose
1803 nonzero entries indicate which joints it spans, and whose signs emulate flexor versus extensor ac-
1804 tion. Although the exact numerical values are not intended to reproduce detailed biomechanics, the
1805 sparsity and sign patterns encode meaningful coupling across joints. This yields a redundant but
1806 structured control system in which multiple activation patterns can produce the same torque, pre-
1807 serving the essential geometric properties of musculo-skeletal redundancy while keeping the model
1808 analytically tractable.
1809

The inertia and damping matrices are

$$M_{\text{joint}} = \text{diag}(m_1, m_2, m_3), \quad D_{\text{joint}} = d_{\text{damp}} I_3,$$

1810 with $m_1 = 1.2$, $m_2 = 0.8$, $m_3 = 0.5$ and $d_{\text{damp}} = 2.0$.
1811

1812 We define the state, control, and observation variables as
1813

$$x_t = \begin{pmatrix} \theta_t \\ \omega_t \end{pmatrix} \in \mathbb{R}^6, \quad \theta_t, \omega_t \in \mathbb{R}^3, \quad u_t \in \mathbb{R}^9, \quad y_t \in \mathbb{R}^3.$$

1814 The matrices of the whole dynamical system are
1815

$$A = \begin{pmatrix} I_3 & \Delta t I_3 \\ 0_{3 \times 3} & I_3 - \Delta t M_{\text{joint}}^{-1} D_{\text{joint}} \end{pmatrix} \in \mathbb{R}^{6 \times 6},$$

$$B = \begin{pmatrix} 0_{3 \times 9} \\ \Delta t M_{\text{joint}}^{-1} S \end{pmatrix} \in \mathbb{R}^{6 \times 9},$$

1816 and the multiplicative control-noise matrix is
1817

$$C = \sigma_{\varepsilon} B.$$

1818 Only joint angles are observed, hence
1819

$$H = (I_3 \quad 0_{3 \times 3}) \in \mathbb{R}^{3 \times 6}, \quad D = \sigma_{\rho} H \in \mathbb{R}^{3 \times 6}.$$

1836 The state cost used in the optimal control problem is diagonal:
 1837
 1838 $Q_t = \text{diag}(q_\theta, q_\theta, q_\theta, q_\omega, q_\omega, q_\omega), \quad t = 1, \dots, T,$
 1839 with $q_\theta = 1.0$ and $q_\omega = 10^{-3}$. The control cost is
 1840 $R_t = r I_9, \quad r = 10^{-2}, \quad t = 1, \dots, T - 1,$
 1841 with the last control cost being zero. Additive process and sensory noises are
 1842 $\Sigma_\xi = \sigma_\xi^2 I_6, \quad \Sigma_\omega = \sigma_\omega^2 I_3,$
 1843 and internal noise is modeled as
 1844 $\Sigma_\eta = \sigma_\eta^2 I_6.$
 1845 In all simulations we use zero-mean, zero-covariance initial conditions:
 1846 $\mathbb{E}[x_1] = 0_{6 \times 1}, \quad \mathbb{E}[z_1] = 0_{6 \times 1},$
 1847 $\Sigma_{x_1} = 0_{6 \times 6}, \quad \Sigma_{z_1} = 0_{6 \times 6}.$
 1848 The parameters of the problem are listed in Table 7 (std = standard deviation).
 1849

1850
 1851
 1852 Table 7: Parameters of the Redundant arm-control task
 1853

Name	Description	Value
Δt	time-step (s)	0.010
T	time steps	300
σ_ξ	std of dynamics noise ξ_t	0.1
σ_ω	std of the sensory noise ω_t	0.1
σ_ε	std of the control-dependent noise ε_t	0.1
σ_ρ	std of the sensory-dependent noise ρ	0.1
σ_η	std of the additive internal noise η_t	$\in [0.2, 0.5]$

1863 **Additional Analyses** As described in Sec. 5.2, the M-Match solution channels internal variability
 1864 into cost-irrelevant and unobserved state dimensions, thereby stabilizing the control output (in this
 1865 task only joint angles are strongly penalized and observed, as specified by Q and H). This can be
 1866 seen by analyzing the principal components of the internal variable z_t . As internal noise increases,
 1867 the first PC of z_t (explaining more than 90% of total variance) becomes aligned with the directions
 1868 corresponding to the unobserved and cost-irrelevant components of the state (here the angular
 1869 velocities). In Fig.7a, the first PC of z_t has negligible loading on the first three (cost-relevant) dimensions
 1870 and substantial loading only on the last three (cost-irrelevant) dimensions, indicating that variability
 1871 is routed into the cost-irrelevant subspace. Notably, the first PC of z_t maintains nearly identical
 1872 direction as σ_η increases (Fig.7b, red line, where the absolute projection with first PC at low noise
 1873 level and all other first PCs at higher noise levels is computed).
 1874

1875 Conversely, in the Model Mismatch framework, the first PC of z_t substantially changes with internal
 1876 noise (Fig.7b, purple curve), reflecting a noise-adaptive internal computation unavailable to the M-
 1877 Match model.

1885 Figure 7: Redundant Arm-Control Task: Additional Analyses. (a) Components of the first principal
 1886 cost-irrelevant and unobserved state dimensions, thereby stabilizing the control output (in this
 1887 task only joint angles are strongly penalized and observed, as specified by Q and H). This can be
 1888 seen by analyzing the principal components of the internal variable z_t . As internal noise increases,
 1889 the first PC of z_t (explaining more than 90% of total variance) becomes aligned with the directions
 1890 corresponding to the unobserved and cost-irrelevant components of the state (here the angular
 1891 velocities). In Fig.7a, the first PC of z_t has negligible loading on the first three (cost-relevant) dimensions
 1892 and substantial loading only on the last three (cost-irrelevant) dimensions, indicating that variability
 1893 is routed into the cost-irrelevant subspace. Notably, the first PC of z_t maintains nearly identical
 1894 direction as σ_η increases (Fig.7b, red line, where the absolute projection with first PC at low noise
 1895 level and all other first PCs at higher noise levels is computed).
 1896

1890 **A.4.6 NEURAL POPULATION STEERING VIA MODEL MISMATCH CONTROL: MODEL AND**
 1891 **PARAMETERS**

1893 In Sec. 5.3, we showed how the Model Mismatch framework can be used to model a wider range of
 1894 problems by going beyond the classical estimation–control setting. To illustrate this, we considered
 1895 a task in which an unstable neural population is stabilized and steered toward a target state by
 1896 another linear population. We model two populations of $N_{\text{units}} = 100$ linear neurons, each with
 1897 sparse Gaussian recurrent connectivity, following standard assumptions from dynamical mean-field
 1898 theory (Sompolinsky et al., 1988; Rajan et al., 2010). Here, the matrix A represents the recurrent
 1899 connectivity of the x_t population, whereas W represents the connectivity of the z_t population. They
 1900 are given by

$$1901 \quad A_{ij} \sim \mathcal{N} \left(0, \frac{g_A}{\sqrt{N_{\text{units}}}} \right), \quad i, j = 1, \dots, N_{\text{units}},$$

1902 and

$$1904 \quad W_{ij} \sim \mathcal{N} \left(0, \frac{g_W}{\sqrt{N_{\text{units}}}} \right), \quad i, j = 1, \dots, N_{\text{units}}.$$

1906 Note that internal dynamics is fixed over time, $W_{0, \dots, T} = W$. The activity of the second population
 1907 is linearly read out through a time-varying matrix L_t , which is optimized to steer the activity of
 1908 the first population toward a desired target state while minimizing control effort (see Fig. 3a). The
 1909 population z_t receives input from x_t through sparse random projections defined by

$$1910 \quad P_{ij} \sim \mathcal{N} \left(0, \frac{g_P}{\sqrt{N_{\text{units}}}} \right), \quad i, j = 1, \dots, N_{\text{units}}.$$

1912 Again we consider $P_{0, \dots, T} = P$. To conform this setup to our control framework, we set $m = n =$
 1913 $p = k = N_{\text{units}}$, and define

$$1915 \quad B = H = I_{N_{\text{units}}}$$

$$1916 \quad D = \Sigma_{\omega} = 0_{N_{\text{units}} \times N_{\text{units}}}.$$

1918 The cost and noise structure of the problem are defined by the following matrices

$$1919 \quad C = \sigma_{\varepsilon} \cdot I_{N_{\text{units}}},$$

$$1920 \quad \Sigma_{\xi} = \sigma_{\xi}^2 \cdot I_{N_{\text{units}}},$$

$$1921 \quad \Sigma_{\eta} = \sigma_{\eta}^2 \cdot I_{N_{\text{units}}},$$

$$1923 \quad Q_{1, \dots, T-1} = q_{< T} \cdot I_{N_{\text{units}}},$$

$$1924 \quad Q_T = q_T \cdot I_{N_{\text{units}}},$$

$$1925 \quad R_t = r \cdot I_{N_{\text{units}}}, \quad \text{for } t = 1, \dots, T-1,$$

$$1926 \quad R_T = 0.$$

1928 The initial conditions are given by:

$$1930 \quad \mathbb{E}[x_1] \sim \mathcal{N} \left(0, g_{x_1}^2 I_{N_{\text{units}}} \right),$$

$$1931 \quad \mathbb{E}[z_1] \sim \mathcal{N} \left(0, g_{z_1}^2 I_{N_{\text{units}}} \right),$$

$$1933 \quad \Sigma_{x_1} = 0_{N_{\text{units}} \times N_{\text{units}}},$$

$$1934 \quad \Sigma_{z_1} = 0_{N_{\text{units}} \times N_{\text{units}}}.$$

1935 As stated above, the choice of Gaussian-distributed connectivity for the recurrent matrices A , W ,
 1936 and the feedforward matrix P is grounded in principles from dynamical mean-field theory, which
 1937 describes the macroscopic behavior of large, sparsely connected networks of rate neurons (Som-
 1938 polinsky et al., 1988; Rajan et al., 2010). We set $g_A = 1.1$ to ensure that the state dynamics in x_t are
 1939 intrinsically unstable – this choice is deliberate, as our objective is to stabilize the system through
 1940 control. Since we define the desired target state as zero, using it as a reference point, the initial
 1941 condition effectively coincides with the goal. In this setting, a naturally decaying (stable) dynamics
 1942 would trivially converge to the target without requiring active control. Instead, by inducing unstable
 1943 dynamics, we create a scenario where control is essential to prevent divergence from the desired
 state. The internal dynamics gain $g_W = 0.9$ places the latent population z_t in a subcritical regime,

1944 supporting stable internal representations of the external dynamics. Lastly, the feedforward gain
 1945 $g_P = 0.3$ models sparse and weak inter-population connectivity. These structured random matrices
 1946 instantiate biologically inspired constraints that the Model Mismatch framework naturally accom-
 1947 modates while enabling effective control. The parameters of the problem are listed in Table 8 (std =
 1948 standard deviation).

1949 Note that the "dynamics noise" ξ_t now represents the internal noise affecting the population x_t ,
 1950 analogous to the role of η_t for the population z_t . We also observe that the initial condition of the
 1951 population z_t reflects spontaneous activity arising from internal fluctuations; accordingly, we set
 1952 $g_{z_1} = \sigma_\eta$ to match the scale of this variability.
 1953

Table 8: Parameters of the Neural Steering task

Name	Description	Value
T	Time steps	50
r	Control cost scaling	0.001
$q_{<T}$	Task-related cost scaling	0.001
q_T	Task-related cost scaling	0.1
g_{x_1}	Initial condition scaling for x_1	10.0
g_{z_1}	Initial condition scaling for z_1	0.2
g_A	Scaling of random connectivity of population x_t	1.1
g_W	Scaling of random connectivity of population z_t	0.9
g_P	Scaling of random connections from population x_t to population z_t	0.3
σ_ξ	Std of dynamics noise ξ_t	0.5
σ_ε	Std of multiplicative control noise ε_t	0.0
σ_η	Std of additive internal noise η_t	0.2

1971 Lastly, we note that although Sec. 5.3 highlights qualitative parallels with results from related RL-
 1972 based approaches, our method is fundamentally different. In the linear-quadratic setting we study,
 1973 the optimal solution is obtained analytically via fixed-point equations, yielding deterministic updates
 1974 and very low computational cost. RL methods—both model-free and model-based—require Monte-
 1975 Carlo roll-outs, which incur high sample complexity and high variance under multiplicative noise,
 1976 making them far less efficient for this class of problems.
 1977

A.4.7 COMPARISON WITH KALMAN FILTERING UNDER MULTIPLICATIVE NOISE

1979 To compare our algorithm with alternative analytical approaches to stochastic optimal control, and
 1980 to demonstrate that multiplicative and internal noises break the separation principle, we evaluated an
 1981 alternative method in which the internal estimate z_t is replaced with a Kalman filter that is optimal
 1982 for estimation only. This allows us to directly test whether – as expected from theory (Todorov,
 1983 2005) – estimation and control cannot be optimized independently once we move beyond the clas-
 1984 sical LQAG setting.

1985 To the best of our knowledge, there is no Kalman filtering theory that can optimally accommo-
 1986 date control-dependent multiplicative noise in the state dynamics or internal noise in the estima-
 1987 tor dynamics. Nevertheless, we considered the Kalman-like filter proposed by Wu et al. (2016),
 1988 which is specifically designed for linear systems with additive and multiplicative measurement
 1989 noise, and thus most closely aligns with the subset of our problem where their assumptions hold.
 1990 We implemented the filtering equations of Wu et al. (2016) in the simplest setting where they apply:
 1991 no control-dependent noise and no internal noise. We then used the 1-D reaching task of
 1992 Sec. A.4.1, with slightly adjusted parameters (see Table 9), and swept the magnitude of multi-
 1993 plicative sensory noise σ_ρ . We included a small but non-zero intermediate state cost by setting
 1994 $Q_t = 0.0001I_m$, $\forall t = 1, \dots, T - 1$, where I_m is the $m \times m$ identity matrix, and we considered
 1995 process noise σ_ξ affecting all components of the state.

1996 For each value of σ_ρ , we computed the estimator gains K_t using the algorithm of Wu et al. (2016)
 1997 and then optimized the controller L_t using our analytical M-Match update, and we compared with
 the full solution of our M-Match algorithm, where both control and filter gains are jointly optimized.

1998 Our results show that when $\sigma_\rho = 0$, the methods behave identically, as expected from classical
 1999 LQAG theory where the separation principle holds. However, as σ_ρ increases, using the gains
 2000 K_t returned by Wu et al. (2016) leads to markedly sub-optimal control performance, even when
 2001 L_t is re-optimized using our M-Match algorithm. In contrast, the full M-Match solution achieves
 2002 substantially lower expected cost (Fig. 8).
 2003

2004
 2005 Figure 8: *Effect of Multiplicative Sensory Noise on Control Performance.* Expected cost for the M-
 2006 Match solution (red) and for the Kalman-filter-based approach with re-optimized L_t (blue), plotted
 2007 as a function of sensory multiplicative noise σ_ρ . Curves show the analytically computed expected
 2008 cost. The M-Match solution consistently achieves lower cost as σ_ρ increases, demonstrating that a
 2009 fixed Kalman estimator becomes suboptimal when multiplicative noise is present and joint estima-
 2010 tion-control optimization is required.
 2011

2012 These findings confirm the theoretical expectation: enforcing a fixed Kalman-filter structure (such as
 2013 that of Wu et al., 2016) degrades performance once multiplicative or internal noise is present. In such
 2014 settings, the estimator must adapt to the control law and vice-versa. Therefore, joint optimization is
 2015 essential.
 2016

2017 Table 9: Parameters of the single-joint reaching task for the Kalman filtering test
 2018

Name	Description	Value
Δt	time-step (s)	0.010
m	mass of the hand (Kg)	1
τ_1	first time constant of the second order low pass filter	0.04
τ_2	second time constant of the second order low pass filter	0.04
r	Auxiliary variable for control-dependent cost	0.001
w_v	Auxiliary variable for task-related cost	0.2
w_f	Auxiliary variable for task-related cost	0.01
T	time steps	1000
x_1	Target position	0.0
σ_x	Target position standard deviation	0.0
σ_ξ	std of dynamics noise ξ_t	0.5
σ_ω	std of the sensory noise ω_t	0.5
σ_ε	std of the control-dependent noise ε_t	0.0
σ_ρ	std of the sensory-dependent noise ρ	$\in [0.0, 5.0]$
σ_η	std of the additive internal noise η_t	0.0

A.4.8 ROBUSTNESS TO NON-GAUSSIAN NOISE

2046 As outlined in Sec. 3, the solutions derived through our M-Match or M-Mis algorithms depend
 2047 only on 1st and 2nd order moments of the noise terms. Consequently, no distributional assumptions
 2048 beyond finite covariance are required, and the method applies to any noise source with well-defined
 2049 second moments. To validate this point empirically, we repeated the Monte-Carlo simulations of
 2050 the 1D reaching task of Appendix A.4.1 – with the same parameters as Appendix A.4.1 – using
 2051 three noise distributions for all noise terms with matched variance but strongly differing shapes.
 Besides the Gaussian baseline, we tested: (i) heavy-tailed Student-t noise ($\nu = 5$), introducing

2052 occasional large outliers; and (ii) skewed $\beta(2, 5)$ noise, rescaled to zero mean and matched variance,
 2053 introducing substantial asymmetry and bounded support. All control, filter, and internal parameters
 2054 were kept fixed across conditions.

2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065 **Figure 9: Robustness to Non-Gaussian Noise.** Mean total cost (\pm standard error of the mean across
 2066 50,000 Monte-Carlo trials) obtained under three noise distributions with matched variance: Gaus-
 2067 sian (baseline), heavy-tailed Student-t ($\nu = 5$), and skewed $\beta(2, 5)$. Despite strong differences in
 2068 shape, tail behavior, and symmetry, all distributions yield nearly identical expected cost, confirming
 2069 that—under linear dynamics and quadratic cost—performance depends only on second moments
 2070 and not on Gaussianity.

2071
 2072 Because the dynamics are linear and the cost is quadratic, the expected cost should depend only
 2073 on second moments and therefore remain invariant across noise distributions. This prediction is
 2074 confirmed in Fig. 9: the mean total cost is nearly identical for all three distributions, despite their
 2075 markedly different shapes. This numerical result further supports the theoretical claim that the
 2076 framework does not require Gaussian noise, and that performance depends solely on the covariance
 2077 structure of the perturbations.

A.5 LLM USAGE

2078 Large Language Models (LLMs) were used exclusively to assist with writing clarity – specifically
 2079 for grammar correction, wording suggestions, and improving readability. No part of the technical
 2080 content (including research ideas, mathematical derivations, proofs, analyses, experiments, or re-
 2081 sults) was generated by an LLM. The authors take full responsibility for all scientific content in the
 2082 manuscript.

2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105