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ABSTRACT

Natural agents interact with their environment through noisy and continuous sen-
sorimotor loops. Stochastic optimal control provides a principled framework for
this problem, but existing analytical solutions are restricted to linear dynamics
with Gaussian observations and additive noise. They cannot address scenarios
with multiplicative noise in control or observations, and with internal noise affect-
ing estimation — features central to biological and robotic systems. We provide
a provably convergent algorithm that computes fixed-point controllerfilter solu-
tions for linear dynamics with quadratic costs under multiplicative and internal
noise. Our method overcomes the limitations of prior analytical approaches and
improves the efficiency of state-of-the-art gradient-based methods by more than
three orders of magnitude in realistic tasks. Importantly, it also optimizes inter-
nal dynamics, relaxing the classical assumption that internal models must match
external dynamics. Allowing such model mismatch yields substantially better
performance under internal noise. In sum, we provide the first full solution to
stochastic optimal linear control with multiplicative and internal noise, covering
both matched and mismatched internal models.

1 INTRODUCTION

Understanding the computational mechanisms that govern the sensorimotor system in humans and
other animals is a long-standing goal in systems and computational neuroscience (Wolpert et al.,
1995} Shadmehr & Krakauer, 2008; Franklin & Wolpert, 2011} [Todorov, 2004). Yet, developing
formal and mathematically tractable models that accurately capture these mechanisms remains an
open problem, with far-reaching implications for fields such as artificial intelligence and robotics.
In this context, stochastic optimal control theory provides a powerful mathematical framework for
explaining behavior in terms of optimality principles, accounting for uncertainty and variability
inherent in biological systems (Todorov & Jordanl [2002; Todorov, 2005} |Straub & Rothkopfl, 2022;
Schultheis et al., 2021} |Faisal et al., 2008). The pivotal work in[Todorov|(2005) extended the classic
Linear-Quadratic-Additive-Gaussian — LQAG — framework (usually referred to as Linear-Quadratic-
Gaussian — LQG — problem (Davis}, [2013))) to incorporate a more biologically realistic noise model
of the sensorimotor system. This includes control-dependent noise (Schmidt et al., |1979; [Todorov),
2002), signal-dependent sensory feedback noise (Todorov & Jordan|, 2002} Harris & Wolpert,|1998),
and internal neural noise (Faisal et al., 2008 Moreno-Bote et al., 2014; \Churchland et al., [2006)) —
all of which are essential for reproducing key signatures of human motor behavior (Todorov, |2005;
Flash & Hoganl 1985} Harris & Wolpert, 1998} [Todorov, 2002 [Schmidt et al.l [1979).

However, explaining behavior through optimal control requires first obtaining optimal solutions
to the underlying problem (Todorov, 2005} [Schultheis et al., [2021)). In this work, we derive an
algorithm that fully solves the stochastic control problem of Todorov| (2005)); our algorithm exploits
coordinate descent, and we prove its monotonic improvement and convergence to a critical point
(Sec. [B). This overcomes prior analytical limitations and, unlike the state-of-the-art numerical
methods, yields an analytically-derived algorithm for the full problem with speedups of more than
three orders of magnitude in realistic tasks (see Prior Work below). Our framework thus provides
both a conceptual advance and a major efficiency gain over existing approaches.

A further limitation of current theoretical work on stochastic optimal control is the reliance on two
assumptions: (1) a strict separation between estimation and control, and (2) the matched-dynamics
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assumption, i.e., that the internal model used for estimation and control perfectly matches the dy-
namics of the external environment. These limitations underlie both [Todorov| (2005) and [Damiani
et al.| (2024), where noisy sensory feedback is first processed by a Kalman filter to produce a state
estimate — based on the same forward model of the environment — which then guides linear control
actions. Within the classical LQAG problem, this methodology is mathematically justified by the
separation principle (Davis,|2013)). However, once multiplicative and internal noise are included, the
separation principle no longer holds, making estimation and control inherently coupled (Todorov,
2005). Moreover, the assumption that the agent’s internal model exactly matches the external dy-
namics strongly limits the realism of this approach, overlooking a substantial body of research em-
phasizing the role of internal models in motor control (Wolpert et al.| [1995} |[Shadmehr et al., |2010;
Kording & Wolpert, 2004; Kawato, |1999;|Golub et al., 2015).

Our second main contribution is to relax these assumptions by considering the more general case
where the internal dynamics — used by the agent to process sensory stimuli and generate motor
outputs — need not match the dynamics of the external world and must themselves be optimized
(Sec. @). We refer to the classical case as Model Match (M-Match), and to our extension as Model
Mismatch (M-Mis). We extend the algorithm developed for the M-Match case (Sec. [3;21) to this
scenario, providing an analytical solution for mismatched internal models. In Sec. we demon-
strate that this additional flexibility leads to improved performance relative to M-Match, particularly
in the presence of internal noise. Finally, we illustrate the generality of our framework by applying
it to the steering of linear neural populations, which connects directly to computational principles
underlying reservoir computing (Jaeger & Haas| 2004} Maass et al., 2002) and, more broadly, to
recurrent neural network models that generate task-relevant outputs (Sussillo & Abbott, 2009).

Prior Work The seminal study of [Todorov| (2005) provided the first analytically-derived algo-
rithm for optimal linear control under multiplicative and internal noise. However, |Damiani et al.
(2024) demonstrated that this solution fails to yield truly optimal results in the presence of internal
noise, due to the incorrect assumption of unbiased estimators and its connection with the orthog-
onality principle (Appendix [A.I). To address this limitation, [Damiani et al| (2024) introduced a
numerical gradient-based algorithm that achieves optimal performance, albeit at high computational
cost, making it impractical for inverse optimal control applications. They also proposed an analyti-
cal counterpart, the FPOMP algorithm, which solves the problem in the one-dimensional case and,
in higher dimensions, only under additive noise, due to the increased mathematical complexity of
the full setting. Consequently, no previous work provides a general analytical solution or formal
convergence guarantees.

2 STOCHASTIC LINEAR OPTIMAL CONTROL: PROBLEM FORMULATION

We first review the standard Linear-Quadratic-Additive-Gaussian (LQAG) problem, then extend the
noise model, following [Todorov| (2005)), to include multiplicative observation, control noise, and
internal noise, yielding the Linear-Quadratic-Multiplicative-Internal (LQMI) formulation. In both
LQAG and LQMI, internal and state dynamics are matched; the more general mismatched case is
treated in Sec.

2.1 STOCHASTIC OPTIMAL CONTROL UNDER MULTIPLICATIVE AND INTERNAL NOISE

In the standard LQAG formulation, an agent receives noisy observations 4, € R (t = 0,1,...,T)
from a state variable x; € R™,

Yy = Hxy + wy (D
where H € R¥*™ is the observation matrix and w; € R¥ is a zero-mean noise with covariance 3.
The control problem consists in finding the optimal control signal us(y;—1, ..., yo) € RP that steers
the stochastic linear dynamical system

Typ1 = Az + Buy + & (2)
so as to minimize the expected cumulative quadratic cost
T
C = ZE [xtTtht + utTRtut] . 3)
t=0
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The dynamics of the state variable, Eq. [2] is assumed to be linear in state and control with matrices
A € R™™ and B € R™*? and corrupted by zero-mean noise & € R™ with covariance X.
All noises are uncorrelated in time and are not required to be Gaussian. We observe that time-
dependent matrices in the dynamics or noise can be trivially incorporated. The initial condition of
the dynamics is xg, usually drawn from a Gaussian distribution. The control signal w;(y;—1, ---, Yo)
at time ¢ is allowed to depend only on previous observations, but not on the state nor on future
observations to enforce partial observability and causality, respectively. The expectation in Eq. [3]is
over the realizations of the noise and the initial conditions. Each term in the sum is the expected
instantaneous cost at time ¢. The total expected cost C' penalizes large control signals — reflecting
energetic or metabolic constraints — as well as deviations from desired trajectories or targets, through
the symmetric positive semidefinite matrices R, € RP*P, R, > 0, and Q; € R™*™, Q; > 0,
respectively.

The LQAG problem admits an analytical solution (Davis,[2013)), which is the combination of a linear
Kalman filter, providing optimal estimates Z; = z; of the partially observable state x;, and a linear
feedback controller defined by u; = L;z2;, which are computed independently, without mathematical
dependence between control and filter gains — the so-called separation principle (Davis|, [2013). The
internal variable becomes a state estimate evolving according to

Zt+1 — AZt + But —+ Kt(yt — HZt) y (4)
where K; € R™*F is the Kalman gain at time ¢. Solving the optimal control problem therefore
consists in computing both the optimal filter and control gains, respectively K; and L; € RP*™,

under the constraint that the internal dynamics follows the same forward dynamics as the state
variable (matrices A and B; see Appendix for the well-known solutions).

While the analytical tractability of the LQAG framework is a key advantage, it comes at the expense
of reduced biological realism. In particular, the noise model does not account for multiplicative
noise, also neglecting internal sources of variability (Faisal et al., |2008; Moreno-Bote et al., 2014;
Churchland et al., [2006; Franklin & Wolpert, [2011)). To consider a more general and realistic noise
model, following Todorov| (2005), we first introduce multiplicative noise — both control-dependent
and observational — into the system and observation dynamics in Eqs. [[|2] This leads to the modified
equations

$t+1 = A{Et + But + gt + Z’L Eiciut (5)

ye=Hai+w+ )y piDixy . (6)

In this framework, executing a control input u; adds noise whose magnitude scales with the input
itself, Eq. [5] Conversely, sensing the partially observable state x; introduces sensory noise whose
magnitude scales with the state itself, Eq. @ The matrices C; € R™*P and D; € R¥*™ define
fixed gain patterns for the multiplicative noise components, while ¢, € R® and p; € R? represent
zero-mean noise vectors, each with identity covariance, . = I.x. and X, = I3x4. As in the
LQAG problem, control and observation noises are assumed to be mutually independent, and also
independent from both the additive and multiplicative noise components.

Finding the optimal control signal us(y;—1, ..., yo) that minimizes the cost in Eq. [3| with system
and observation dynamics given by Eqgs. [5]]is a challenging problem with no known solutions,
even in the case of Gaussian noise. In particular, no sufficient statistic, analogous to &; = z, is
known that would allow for a Kalman filter-like recursion. Following Todorov| (2005)), we assume
that the control signal u; can only linearly depend on the estimate z; € R™, that is, u; = L;z;, with
L; € RP*™ and that the state estimate obeys the matched dynamical equation

zi41 = Az + Buy + Ki(ye — Hze) + s we = Ly (7)
with the same terminology as in Eq. |4} but where we have introduced an internal additive noise term
1; € R™, with zero mean and covariance YJ,,. The internal noise may represent internal neural vari-
ability (Faisal et al.| 2008 Moreno-Bote et al.| 2014} |Churchland et al., 2006} [Franklin & Wolpert,
2011) or flaws in the filtering process itself, and it is introduced here to obtain a more realistic and
general model (Todorov, 2005)). Taken together, incorporating multiplicative and internal noise with
the assumptions of a linear Kalman filter for state estimation and a linear control policy based on an
internal estimate whose forward dynamics match those of the state (matrices A and B) gives rise to
the more general Linear—Quadratic—Multiplicative—Internal (LQMI) problem. Solving this problem
involves determining the optimal control gains Lo . 7 and filter gains K r that minimize the
quadratic cost function in Eq. [3|under the system, observation and estimate dynamics in Eqgs.
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3  SOLVING THE LQMI PROBLEM

Here we provide an algorithm guaranteed to converge to a critical point of the cost function in Eq.
under the dynamics in Eqs. [Dl6l[7] The algorithm yields improved pairs of control and filter gains,
fully solving the LQMI problem. The pseudocode is shown in Appendix [A.3.1]

3.1 FIXED-POINT EQUATIONS OF THE COST FUNCTION

Assuming a linear control u; = L;z;, we first rewrite the cost function in Eq. E] as C =
ZtT:O (tr(Q¢SF™) + tr(L] R¢L¢SF*)), where we introduce the 2nd-order moment matrices S7* =
[ dxdzp(z, 2)xx T, S7* = [dxdzp(w,2)227, and SF* = [ dadzpi(z,z)zz ", with p,(z, 2) be-
ing the joint distribution of x and z at time ¢ generated by previous control and filter gains and
averaging over noises and initial conditions following pg(x, z). To find the conditions for extrema
on the control Ly . and filter K gains we add Lagrange multipliers and define the new ob-

. yeeey

jective
T T+1
Ce=>_ (tr(QuSy™) + tr(L RiLiSF*)) — Y (tr(MGY") + tr(G5?) + tr(ThGF7)) , (8)
t=0 t=1

where A¢, Q; and I'; are R %" matrices of Lagrange multipliers. The constraints G{* = G7* =
G¢* = 0 are given by the temporal evolution of SP*, S7* and ST?, respectively, between two
consecutive time steps ¢ and ¢ + 1, obtained from Eqgs. BJ6][7] (see Appendix[A.2.2]for details), as

T =8P — ASPTAT — ASPFLI BT — BLy(S7*)TAT — BL,S7*L; BT — %"
G = Si; — K HS"H'K] — K, HSP* M, — My(S7*)"HTK, — MySE* M, — %77
v =8P — ASPfTHTK, — BLS" M, — AS7*M," — BL,(S{*)"H'K,' , )
where we have introduced the short-hand notation My = A + BL; — K;H, showing up repeti-
tively, and the noise matrices £7* = X¢ + >, C;L;SF*L) C;' and 7% = ¥, + K43 K" +
K (ZZ D;S#eD] ) K,". Since the cost function is defined in terms of quadratic terms in x and 2
and the temporal evolution of moments is closed at 2nd-order, the 2nd-order moments matrices are

sufficient statistics of the problem (i.e., p;(x, z) does not need to be explicitly known), and only the
constraints in their temporal evolution suffice.

For convenience, we define the Lagrange multipliers at time 7 + 1 to be all equal to zero,
Ary1 = Qpy1 = Tpyq = 0 (hereafter 0 meaning a matrix of zeros of consistent dimensions), so
the constraints at that time are irrelevant. The introduction of Lagrange multipliers enables to take
derivatives with respect the control and filter gains to find the fixed point conditions 9Cz /0L = 0
and 9C /0K, = 0 for extrema without the need to propagate derivatives over the terms in the sum
of the cost. The fixed point equations take the form

Ly = E; ' (F,SP*(SE7) "+ y) (10)
Ky = (San + Qi TenSen ) Sl (11)

with matrices defined in Appendix [A.2.4] - note that these equations express the control and filter
gains as a function of themselves, and therefore they are implicit.

From the conditions 9C/9ST* = 0C/0SF* = 0C/0SF* = 0, the Lagrange multipliers them-
selves obey the set of equations

A =Qi+ ATA A+ HTK Qi K H + H' KTy 1A+ Y DIK Q1 K D;
Q= L] RiLy + L BT Ay (1 BLy + M Qu s My + M Ty 1 BLe+ Y | LI CT A1 CiLy
Ty =L BT Ay A+ M Qup K H + M Ty A+ L BT K, H . (12)

These equations can be solved backwards given control and filter gains, and using the boundary
conditions Apyq = Qpyy = Iy = 0. However, the full solution to Eqs. [TOITT]T2] would require
simultaneously determining gains and multipliers. We bypass this by deriving an iterative algorithm
to find fixed point solutions, as described in the next section.
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It is worth mentioning that in the derivation of Eqs. [I0[TT][T2] and main algorithm described below
we have not assumed the orthogonality principle (OP: S¥* = S7# for all ¢, equivalent to E[(x; —
2)2z,'] = 0), which is shown (Sec. see also Appendix to be violated in the general case
(specifically, whenever there is internal noise). Secondly, we have not assumed any specific initial
distribution pg(z, z). Also, note that we have not assumed Gaussian noises nor Gaussian distribution
on z or z. Further, our algorithm is guaranteed to converge to a fixed-point pair of control and filter
gains, and reduce the cost at every step (Sec. [3.2). The algorithm in [Todorov| (2005) can actually
increase the cost in the first iteration step because not for any arbitrary initial filter gain OP is
obeyed. Finally, the model described in Egs. could be readily extended to the case where 1)
the internal noise is multiplicative in Eq. [/] ii) when there is z-dependent multiplicative noise in
the state dynamics, Eq. [3] and iii) when there is z-dependent multiplicative noise in the feedback
dynamics, Eq. [6| However, we refrain from doing so to avoid clutter and because a more general
framework (Model Mismatch) is introduced below (Sec. [).

3.2 COORDINATE-DESCENT ALGORITHM FOR JOINT CONTROL AND FILTER OPTIMIZATION

Here we derive the main algorithm of the paper, a coordinate-descent iterative algorithm that gives
a pair of improved, fixed-point control and filter gains. We first start by showing the connection
between the Lagrange multipliers and the cost-to-go incurred by starting at fixed x and z.

We define the cost-to-go starting at  and z from time ¢ (¢t = 0,...,T) up to time T" as Cy(x, z) =
tr(thxT + L;'—RtLtzzT) + ZZ:tH E [mIQTxT + uIRTuT], where the expectation is over the
noises with initial conditions fixed at x and z at time ¢, and for specific control and filter gains
from time ¢ onward. This definition is consistent with our definition of cost in Eq. as C =
[ po(z, 2)Co(z, z), where po(z, z) is the distribution of initial conditions over x and z. The cost-to-
go obeys the Bellman equation

Ci(z,2) = tr(Qurx" + L] RiLyzz") + /dx’dz’C’tH(x', 2Nz ir1(2' 2, 2)ps 41(2 )2, 2)

(13)
where the transition probability densities p, ¢+1(2’|x, 2) and p, 1+1(2'|z, 2) are defined by equations
5l6l7| with w; = Lyz:, with means E[z'|z, 2] = Az + BL:z and E[2/ |z, 2] = K;Hx + Mz, and
conditional 2nd-order moments given by Egs. [30]

The Bellman equation [13|can be solved backwards: noticing that the boundary condition is the final
cost-to-go O (z, z) = tr(Qrxx " + Li Ry Lrzz ") and that the 2nd-order moments are closed (that
is, no higher nor lower moments appear when propagating backwards the cost-to-go using Eq. [T3),
we find that the solution is given by

Ci(z,2) = tr(AtacmT + Quzz | + thzT) + Y, (14)

where it can be seen that the coefficients Ay, {2, and T'y are actually the Lagrange multipliers com-
puted in Egs. with the same boundary conditions (see Appendix [A.2.3)), and where ~; can be
recursively calculated as

Y = tr(Ap1 Xe + U K So K + Q1) + Vet (15)

with boundary condition v = 0. Egs. [14]]15|correctly captures the cost-to-go expression at time 7',
and it can be checked that recursively solve Eq. [I3]

While Eqs. [I4]T5] express the exact cost-to-go given control and filter gains if the exact world
state = is known, partial observability dictates that our choices of control and filter gains cannot
depend on z. Indeed, our assumptions that the filter depends only on time and that the control law
depends linearly on the current state estimate z;, that is, u; = L;z;, have already been used in our
derivation and problem formalization, and they are subject to partial observability. Because of this,
we integrate over the (generally unknown) joint probability density p;(x, z) given control and filter
gains and initial condition py(z, z) to define the averaged cost-to-go as

C, = /dmdz pi(x, 2)Ce(x, 2) = tr(AeSF* + QU S7F2 + T4SF?) + v (16)

We can express the total cost in Eq. [3las C' = Cj, and therefore
C=Cc+C 17)
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with Cop = S04 tr(Q,52% + LT R, L,S7%) is valid for all t. In Eq. [17} C is the only term
depending on L;, as C'.; does not depend on it. Therefore, we locally optimize L; as

L} = argmin C} (18)

Ly

while keeping the rest of gains fixed, that is, Lo, ;—1,+1,..,7 and Ky 7 are held constant. A
global minimum always exists because C} is non-negative. After noting that in C; (Eq. [I6) only
the Lagrange multipliers depend on L; (see Egs. [I2)), while the 2nd-order moments at time ¢ only
depend on previous L, with 7 < ¢ (see Eqgs. 29), the minimization results in

Ly = B/ (F,SP(SEE) L+ ) (19)
with matrices identical to those in Eq. [[0]and Appendix[A.2.4] and whenever matrix inverses exist.

If Ly,... .7 and Ky, 7 are the values of the control and filter gains before the optimization in Eq. @
clearly the cost is non-increasing after the optimization,

C(LO? ceey Lt717 L:7 Lt+17 ceey LT) g C(LO? ceey Lt717 Lt7 Lt+17 eeey LT) . (20)
Note that after the optimization, the total cost in Eq. [[7]becomes
C = Cy +t1(QeSP" + L} T Ry L} S77) 4 tr(Ar 1 Se + Q1 Se T AT SEET) + e, (21

where the new 2nd-order moments at time ¢ + 1, .S} "1, are computed from the moments at the
previous time ¢ using Eqs. 29| with the optimal L} and noticing that the Lagrange multipliers from
t + 1 onward have not changed. Redefining L} as L; and the Sff;’l* as Sf_fil, ab € {zx, 22,22},
we can now proceed to optimize L, using the same procedure as above (changing ¢ to ¢ 4 1) to
minimize again the total cost C'(Lo, ..., Ly, L, ¢, ..., L7) < C(Lo,..., Ly, Ly11, ..., L7) fixing all
the gains except Ly 1, and consecutively for all ¢ up to 7.

..........

order from t = 0 up to time T following the above steps to get a new set of control gains L("*+1), and
clearly we have C(L("*+1) | k(")) < C(L(™, K(™)). After this, the Lagrange multipliers in Eq.
are recomputed backwards with the updated values of the control gains, L("*+1)_ In this way, we can
express again the cost as in Eq. but with updated values of control gains and multipliers. This
represents a full forward pass to sequentially optimize control gains followed by a full backward
pass of the multipliers, and we refer to this process as control pass.

We can proceed similarly for the filter gains by repeating the above steps but for K instead of L.
We optimize K; by keeping fixed the remaining filter gains and all control gains by minimizing the
cost C'in Eq. [I7] resulting in

K} = argkmin Cy = (SAH + Q;ﬁll"tHSLH) S;I}{ , (22)

with matrices as in Eq. and Appendix [A.2.4] After updating the cost C' with the new K7,
we obtain an equation analogous to Eq. éi having a new ;41 term. This leads to a non-
increasing cost change when going from the old K} to the optimized K}, C(Ky, ..., K}, ..., K1) <
C(Ky, ..., K¢, ..., Kr). Therefore, starting from a set of gains L1 and K™ we optimize K, in
order for t = 0, ..., T to get a new set of filter gains K ("1, which will obey C(L("*+1) | K(n+1)) <
C(L™+Y | K (™). After this, the Lagrange multipliers are updated. This represents a filter pass: full
forward pass to sequentially optimize filter gains followed by a full backwards pass to recompute
the multipliers.

Starting from arbitrary L(°) and K (*) and distribution of initial conditions pq(z, z), we can alternate
now the control and filter passes, so that C(L(), K(©) > ¢(LM, k) > ¢(LM, KM) > ... >
C(LY KMy > o(L+) K1)y > > O, > 0. Since the series is non-negative, it
converges to a total cost no higher than the initial one with optimal filters L* = L(°) and K* =
K (>°) We have thus proven the first part of the following

Theorem 1. Starting with arbitrary L©) and K° and distribution of initial conditions pq (z,2), the
coordinate descent algorithm defined by iterating in alternation control and filter passes converges
to an improved pair of control and filter gains L* and K*. The improved pair corresponds to a
critical point of the cost function in Eq.
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To complete the last part of the theorem, it is clear that the converged pair of control and filter gains
obey the Lagrange Eqs. 29IOJ11][T2] because Egs. after convergence, are identical to the
fixed point Eqgs. [I0[I1] Therefore, the converged pair corresponds a to a fixed point solution of the
Lagrangian in Eq. [8] and hence, they must be a critical point of the cost function in Eq. [3]

We note that the Lagrange equations may admit multiple solutions. In practice, our algorithm con-
verges to different critical points depending on the initialization, but when initializing the control
and filter matrices trying to impose the orthogonality principle and then freely running the algorithm,
the best critical point is found, empirically.

In Appendix[A.4.T] we apply our algorithm to a 1D reaching task, modeled as a single-joint reaching
movement with a 4D state, using the same setup as in [Todorov| (2005). We compare against the
gradient descent numerical method from |Damiani et al.[(2024) and observe a substantial speedup:
our algorithm (Algorithm [I)) runs in ~ 6 seconds, compared to over 5 hours, on a standard laptop.
In Appendix we further evaluate our algorithm on increasingly high-dimensional tasks (up to
100 dimensions in the state variable) to demonstrate its scalability and the growing computational
advantage over the same gradient descent numerical method. In the very high-dimensional case, the
improvement is particularly pronounced, reducing runtime from more than 2 days to 2.7 seconds.

3.3 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT AT ZERO INTERNAL NOISE

Theorem 2. Take initial condition po(x,z) such that S§* = S¥*. A solution to the Lagrange
equations [QIOJI1|[12]is given by the orthogonality principle S7* = SF* fort = 1, ..., T, iff internal
noise is zero, that is, ¥, = 0. The solution corresponds to a critical point of the cost in Eq. @]

See the proof in Appendix We note that OP is implied by the unbiasedness condition (Ap-
pendix [A.T)), but not vice versa. While unbiasedness was empirically shown to be violated in[Dami-
ani et al. (2024), we have formally demonstrated that only the weaker OP condition is required to
obtain a critical point of the cost. In Appendix we further show that, without multiplicative
or internal noise, enforcing OP recovers the classical LQAG solution.

4  OPTIMAL CONTROL WITH MODEL MISMATCH

We have shown that an analytical solution to the LQMI control problem can be derived requiring
only standard assumptions: linear Kalman filtering for estimation and linear control laws. However,

and Lo, ... 7) one implicitly assumes i) that the agent’s internal model exactly matches the true dy-
namics, and ii) that optimal behavior emerges from optimizing estimation and control as a partially
decoupled process. This formalization weakens the notion of partial observability by presuming
full access to the external world’s dynamics. This assumption could result from learning, but it im-
poses strong constraints on the agent’s internal strategy — leaving no room for internal computations
structurally independent from the environment. This perspective also risks underestimating the role
of internal representations, which are central to many motor control studies (Wolpert et al., [1995;
Kawatol |1999; [Shadmehr & Krakauer, 2008; |[Franklin & Wolpert, 2011} |Golub et al., [2013}|2015)),
and could a priori combine estimation and control processes.

Allowing internal models to differ from the laws governing the external world extends the flexibil-
ity of the stochastic optimal control framework, opening the door to a richer class of biologically
plausible computations. In addition, this flexibility may lead to improved solutions in terms of cost
minimization, particularly when internal representations are affected by noise (Hazon et al., 2022;
Panzeri et al.l [2022; [Moreno-Bote et al.| [2014). From a mathematical standpoint, in the classical
LQAG settings, the separation principle holds: the optimal solution consists of an estimator (a lin-
ear Kalman filter) and a controller, designed independently, acting on the estimated state (Davis)}
2013)). In the more general and realistic LQMI setting, however, such a decomposition can only be
assumed, rather than derived (Todorov, [2005). The solution in this case is, thus, not guaranteed to
be optimal.

Therefore, we consider a more general control problem where the internal dynamics are also opti-
mized and may become mismatched with the actual forward dynamics of the state variables. We
formalize the new Model Mismatch framework over an even more general LQMI problem than that
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described in Sec. 2] where multiplicative noise is fully generalized: both the state and internal dy-
namics may be affected by noise that depends on both the state and the internal variable. We then
define the control problem as

Ty = Az + BLyzg +nf .y = Hry+nf , 200 = Wiz + Py + 0 (23)

ng = e + ZT nUSz: + Zz &EVELizy, ced{x,y, 2},

where notation follows Eqs. [5}{7] with appropriate matrix dimensions and noises with covariances
]E[egef/] = Yecbecr, and i.i.d. one-dimensional noises nf and & with unit variance. We introduce
additive and multiplicative noises n¢ in the dynamics, observation and internal dynamics z;. Sums
over r and [ can be c-dependent. We consider control-dependent noise, where the control is given by
uy = Lyzy, rather than modeling the multiplicative noise as directly proportional to z;. P, € R™*™
is a pseudo-filter matrix that takes the observation y; and inputs it to the dynamics of the internal
variable z;, which follows a linear system with time-dependent forward dynamics W, € R™*™.

Importantly, in the Model Mismatch framework, the internal variable z; integrates both control and
estimation signals, unlike in the Model Match case where z; = &, is constrained to represent a state
estimate. In the former, since W; need not match the external dynamics, z; can evolve independently
of x; and encode dynamics optimized for control rather than estimation. The internal variable z;
has dimension n, while the control signal u; = L;z; is again p-dimensional, with L, € RP*™,
The problem consists in optimizing the time-dependent, forward dynamics Wy . 7, pseudo-filter
Py,.... 7 and control Ly, . 7 matrices so as to minimize the cost in Eq. with initial condition
po(z, z). Following the same procedure as in the Model Match approach (Sec. , we derive a
coordinate-descent algorithm guaranteed to converge to a critical point of the cost (Appendix

see pseudocode in Appendix[A.3.2] Algorithm[2).

4.1 FROM REACHING TO NEURAL POPULATION STEERING

We apply the Model Match (M-Match), Model Mismatch (M-Mis), and previous approaches
(Todorov,, 2005) to a 3D reaching task (with a 6-dimensional state, including positions and ve-
locities, using m,n, p, k = 6; see Appendix . In Fig. Wt = A+ BL; — P,H (with P,
corresponding to K; in Eq. denotes the structure that W, must take for the Model Mismatch
formulation to reduce to the classical Model Match case. Setting W; = W, makes the update of z;
in Eq. 23]identical to the Kalman filter dynamics, so then z; serves as a standard state estimate of
Tt.

The coordinate descent algorithm (Algorithm[2) converges reliably across different levels of internal
noise o, (Fig. E}a). Compared to the solutions found under the Model Match framework (Sec. E[),
the Model Mismatch solutions yield significantly better performance as internal noise increases (Fig.
[Ib). As internal noise grows, the internal variable becomes increasingly reliant on sensory feedback:
the pseudo-filter matrices P .. r induce stronger transformations to compensate for the unreliability
of internal dynamics. In contrast, the control matrix L; induces weaker transformations (in terms
of volume scaling) to suppress internal fluctuations when generating the control signal u; = L;z;
(Fig. [Te). Notably, this modulation impacts the scaling properties of the system but not the effective
embedding dimensionality — i.e., the number of dimensions corresponding to dynamically relevant
directions (see Appendix — of the matrices involved (Fig. [T[).

Interestingly, the volume scaling of the internal dynamics (1), remains constant (Fig. [Ic). What
changes with increasing internal noise is the structure of the time-dependent forward dynamics ma-
trix W;: as internal noise grows, the optimal internal representations no longer aim to replicate the
external world, as assumed in the Model Match framework, since the difference between W; and W;
increases (Fig. [Ik). Consequently, the internal variable z, can no longer be interpreted as an estimate
of the state x;; instead, it becomes a more abstract representation that integrates sensory feedback
and past information to support optimal control (Fig. [If), yet drastically reducing the control cost

(see Fig. [Ip).

To illustrate the conceptual shift, Appendix[A.4.4]outlines example behavioral and neural predictions
that distinguish the Model Mismatch and Model Match approaches. To demonstrate generality,
Appendix [A.4.5]applies the framework to a neural steering task that the classical formulation cannot
model, where an unstable population is driven to a target state by another population providing the
control signal (Fig. [5h).
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Figure 1: Cost Reduction via Model Mismatch in 3D Reaching. (a) Convergence of the Model Mis-
match algorithm for different internal noise levels o,, (parameter details are provided in Appendix
[A:43). (b) Expected cost for TOD (Todorov, [2005) (blue), Model Match (M-Match, orange), and
Model Mismatch (M-Mis, purple). (¢) Determinant of P;, W;, and L;, averaged over time. (d) Em-
bedding dimensionality of the same matrices, averaged over time (see Appendix [A.4.3]for details).
(e) Time-averaged norm of the difference between W, and W, = A+ BL, — P,H. (f) Second com-
ponent of the state and internal variable (mean + SEM, on = 0.1) for M-Mis (left) and M-Match
(right).

5 CONCLUSIONS

We have introduced a convergent iterative algorithm (Sec. |3) that fully solves stochastic optimal
control problems under a general noise model with both multiplicative and internal noise, assuming
linear control with a quadratic cost — the so-called LQMI problem (Sec. [Z). This goes beyond
previous analytical approaches, which remained incomplete (Todorov, [2005; [Damiani et al.| 2024)).
Our algorithm also outperforms existing state-of-the-art gradient-based methods (Damiani et al.,
2024) by more than three orders of magnitude in efficiency when applied to realistic tasks (Appendix
Appendix [A.4.2), making it particularly well-suited for inverse optimal control.

Moreover, our framework relaxes two central assumptions in stochastic control: (1) the partial de-
coupling of estimation and control, and (2) the requirement that internal forward dynamics match
the actual state dynamics. By allowing internal dynamics — used to generate control signals — to
be optimized jointly with control and pseudo-filter gains (Sec. ), our framework broadens the solu-
tion space. Notably, we find that mismatched forward dynamics can outperform matched dynamics
in the presence of internal noise. This suggests that internal representations need not faithfully track
the state variable; instead, mixed representations of estimation and control signals can provide su-
perior performance (Fig. [2). Furthermore, the Model Mismatch framework of Sec. [ extends the
applicability of stochastic optimal control to the control of neural populations (Appendix [A.4.5)).

Overall, our work expands stochastic optimal control to a more general, powerful, and realistic
setting, with direct applications to neuroscience and robotics, while preserving analytical tractability
and interpretability.

Limitations and Future Work We assume linear dynamics, linear control, and a quadratic cost,
which yield closed-form second-order moments and analytical tractability but might not capture all
problems of interest. Nevertheless, the framework accommodates time-varying dynamics, which
can approximate nonlinearities. The Model Mismatch framework allows internal dimensionality to
be freely chosen — a promising but unexplored direction that could support nonlinear strategies via
linear representations (Korda & Mezic) |2018; |Brunton et al., [2016). The coordinate descent algo-
rithm that we have derived could handle suboptimal configurations of forward dynamics, control,
or filters (e.g., to model constraints or impairments) by fixing some of these components during the
updates.
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A APPENDIX

A.1 UNBIASEDNESS AND ORTHOGONALITY: CLARIFICATIONS AND IMPLICATIONS

Here we briefly review related work on stochastic optimal control in the presence of multiplicative
and internal noise (LQMI problem, Sec. [2.1). The influential work of [Todorov| (2005) introduced an
iterative algorithm that alternates between optimizing the control and filter gains until convergence.
A key assumption in this derivation is unbiased estimation, i.e., E[x; | z¢] = 2, used to constrain
the control policy to depend solely on the internal estimate z;, in line with the problem’s partial
observability.

However, |Damiani et al.| (2024) empirically showed that this unbiasedness condition is generally
violated, with the discrepancy growing as internal noise increases. They also proposed an alternative
numerical algorithm that avoids assuming unbiasedness and empirically outperforms the original
approach under internal noise.

The reason the method in [Todorov| (2005) still performs optimally when internal noise is absent is
that unbiasedness implies the orthogonality principle (Davis, |2013; [Damiani et al., [2024), which
characterizes the optimal estimator in that specific case. Importantly, orthogonality does not imply
unbiasedness, so the converse does not hold. Thus, the success of [Todorov|(2005) in the zero internal
noise regime stems from its implicit reliance on orthogonality, which breaks down otherwise.

In Appendix we provide a formal proof that the orthogonality principle corresponds to a
critical point of the cost function in Eq. [3]only in the absence of internal noise, extending and math-
ematically validating the empirical observations in |Damiani et al.| (2024). Moreover, in Appendix
we demonstrate that the orthogonality principle actually leads to the global optimum for the
classic LQAG problem.

A.2 MATHEMATICAL DERIVATIONS

A.2.1 SOLUTIONS OF THE CLASSIC LQAG PROBLEM

The optimal Ly, 7 and Ko . 7, for the classic LQAG problem — defined in Sec. [Zf]— are given
by (Doya, 2007} Davis}, |2013} Todorovl, 2005))

L= (2R, +B"'S,.1B)"'B"S, ., A (24)
Sy =2Q¢ + A Sp41(A + BLy) (25)
K, =ASCHT(HSCHT +%,)7 ! (26)
Y=+ (A K H)SEAT . (27)

A detailed derivation can be found in Doyal (2007), Chapter 12, Sections 4 and 5. We observe that
the only differences with the Egs. in|Doyal (2007) arise from slightly different conventions: in the
standard LQAG formulation, there is a prefactor of 1/2 in front of the cost function, and the control
signal is defined as u; = —L;z;, meaning the control gain has the opposite sign compared to our
convention.

In Appendix we prove that the solutions derived in Sec. [3| recover these classical results in
the absence of multiplicative and internal noise.

A.2.2 DERIVING THE PROPAGATION OF SECOND-ORDER MOMENTS

Here we derive the temporal evolution of the 2nd-order moment matrices. We first rewrite Eqs. [|[6l[7]
in a more compact form by inserting the observation in the state estimate variable and grouping terms
as

Tey1 = Axy + BLyzy + & + Zi siciLtzt
Zi41 = Myze + KeHaxy + 1 + Kywy + Ky ZZ piDimt (28)
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The 2nd-order moments at time ¢ can be computed based on those in the previous time step ¢ by
using the appropriate averages and interactions between terms in Eqs. [28] The result is

v = ASTAT + ASPFLI BT + BL(Sy*)T AT + BL,S*L] BT + X"

T = K HSP"HTK, + K(HSP M, + My(SP%) T M| + MS7*M," + %72

vE = ASP"H'K + BL,SF*M," + AS7*M," + BL,(S7*)"H' K, . (29)
with My = A+ BL, — K,H and noise covariances 7% = S¢ + >, C;L;S7*L] C; and ¥7* =
S, + KSO K + K (X, DiS*D] ) K[

The conditional second-order moments at time ¢ 4+ 1 conditioned on x and z at time ¢ are defined as
Sre — /dw’dz’x’x’—rpw,tﬂ(x/Ix, 2)pze41(2 |, 2)
sz = /dJ?IdZ/Z/Z/Tpa;,tH (@, 2)ps i1 (2|2, 2)
S*fz = /dx’dz’x’z’Tpx,tH(x/\x, 2)pz 412w, 2)

where the transition probabilities p, ;41 (2|z, 2) and p, 441 (2|2, z) are defined by equations
(with u; = Ly2), or, equivalently, by Egs. @ The conditional second-order moments at time ¢ + 1
are obtained simply by replacing the second-order moments on the right hand side of Eqgs. [29) by
their corresponding non-averaged x and z as

Affl =Axz" AT + AgczTL;'—BT +BLizz AT + BLtzzTL;rB—r + f)fw
572, = KyHaea ' H' K, + KyHez" M, + Myza "M, + My22" M, + 372
577 = Ava " H'K," + BLyzz" M," + Azz"M,” + BLiza"THT K . (30)

with conditional noise covariances 327 = X + Y, C;Lizz" L] O and 7 = %, + KX K, +
K, (¥, Diza" D) K.

A.2.3 CONSISTENCY OF THE COST-TO-GO SOLUTION

The cost-to-go obeys the Bellman equation

Ct(!EwZ) = tr(Qt%’CT + LtTRtLtZZT) + /dﬂf/dzlctﬂ(ﬂﬂ'aZ’)px,t+1($/\$aZ)Pz,t+1(2/|$72) ,

(€29)
identical to Eq. in the main paper. The transition probability densities p, ;+1 (2|2, z) and
P2141(2'|x, ) are defined by equations [5l0][7| with w, = L;z;, with means E[z'|z, 2] = Az + BL;z
and E[Z’|z, z] = K;Hx + M;z, and 2nd-order moments given by Egs. [30} These will be important
to compute averages as needed.

We propose a solution to the Bellman equation of the form
Ci(z,2) = tr(AtxxT + Q22 + I‘tsz) + (32)

identical to Eq. [T4]in the main paper. Our goal is to show that it is possible to find a solution with
such a form, and that the expression of the coefficients A;, ; and T'; are actually identical to the
Lagrange multipliers in Egs. [T2 with the same boundary conditions. In addition we want to show
that -y, follows Eq. [I5] with boundary condition 7 = 0.

We first note that Eq. is true for t = T, because Cr(z, 2) should be Cr(z,2) = tr(Qrzz ' +
LiRrLrzz") and indeed this coincides with Eq. [32| when taking Ay = Qr, Qr = L RrLr,
'y = 0 and yr = 0, which in turn are consistent with the Lagrange multiplier expression in Eq. [12]
fort="T.

Now, assume that Eq. [32]is true for some ¢ 4 1. Let us show that then it is true for £. We insert Eq.
[32|for ¢ + 1 into Eq. [31]and use the expression of the conditional 2nd-order moments in Egs. [30]to
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obtain

Ci(z,z) = tr(Qurx’ + LtTRtLtzzT)
+ /dxldzl (tr(Appra’a’ T + Q12’2+ To12’2" ") + 9e41) Do (0], 2)pz g1 (2|2, 2)

= tr(Qurx + L] RiLyzz")

+tr[Ay 1 (Aza T AT + BLyzz "L BT + Azz "L BT + BLizaT AT 4 £7%))]

+ e[ (K Hea THT K] 4+ Myzz" M, + KyHaz" M, + Myzz " HTK,| + 572)]
+tr[Dig1(Aze " H'K,| + BLizz"M,” + Az2" M, + BL,za"H'K,")]

+Yet1 - (33)
Grouping terms proportional to zz ", 2z " and zz " and constant, we find that the cost-to-go can be

written as Eq. [32] where the coefficients obey the Lagrange multiplier equations in Eqgs. [I2] at time
t. In addition, -y, is computed using Eq. [T3]

By induction, then we have that Eq. is true for all ¢ and that the coefficients are indeed the
Lagrange multipliers defined in Egs. [I2|and Eq. [I5]

A.2.4 FIXED-POINT EQUATIONS FOR CONTROL AND FILTER DERIVATIVES

The fixed point equations OCz/OL; = 0 and IC/OK; = 0 for the extrema of the Lagrangian
take the form

ac . - .
L = [2RtLt + BT (AtHBLt 4+ Q1 M, + Ty BL, + erMt) +Y of AmciLt] 532
t K2
+BT |:/1t+1A+Qt+1KtH+Ft+1A—|—FtT+1KtH:| Sg:z =0 R (34)
aC, - ) .
= [QtHKtH + Ft+1A] SeepT [QtHMt + I‘t+1BLt} S#HT — O K HSTHT
t

+ Qo M (SE)THT — Ty ASP*H T + T4 BLy(SP) TH T 4 Q1 K5,

+ Q1 Ky Zi D;S¥*Dl =0, (35)
with symmetric matrices A, = A, + A, and Q, = Q, + ", after using elementary properties of
the trace operator and its derivatives.

The fixed point equations can be further manipulated to express L; and K as

Ly =E; ' (BSP(S) ™ + 0y

where
Ey =2R; + BT (A1 + Q1 + To + T/ )B + Z CT A1 Gy,
Fy=-B " (M1 A+ Qi K H+ Ty A+ T K H)
Jy=—BT (1 + 1) (A— K.H) ,
and
Ky = (SAH + Q;rllFtHSLH) St
with

San = (A+BL)(S7* — (S7) ) H' |
Sem = (—A(SF* = S7%) + BL(S{* — (S{*)")) H ",
Spp = H(S% + 87% — 8§27 — (S**)YHT + %, + Zi D;S¥D] .

Note that the equation for L; explicitly depends on K on the right side, while the equation for K
depends on L; on the right side. This property enables the coordinate-descent algorithm described
in the paper. The above expressions coincide with Eqgs. [T0]T1]
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A.2.5 ORTHOGONALITY PRINCIPLE YIELDS A CRITICAL POINT IF AND ONLY IF INTERNAL
NOISE VANISHES

Theorem [2, Tuke the initial condition po(x, z) such that S§* = SE*. A solution to the Lagrange
equations YOI IJ12|is given by the orthogonality principle S7* = S77 fort =1, ..., T, iff internal
noise is zero, that is 3, = 0. The solution corresponds to a critical point of the cost in Eq. ['§]

Proof. We first show that (1) assuming OP (S7* = S7* fort = 0, ..., T) is true, we prove that the
satisfaction of the Lagrange equations for the multlphers Egs. @ and the equation for the fixed
p01nt of L, Eq. [10| for all ¢ implies that the Lagrange equality, Ty = —Q forall ¢t (Q, = Q, + Qn),
is true, regardless of the value of internal noise. Next, we show that (2) OP and the Lagrange equahty
imply satisfaction of the fixed point equation for K, Eq. and the 2nd-order moments equations,
Eqgs. if and only if internal noise is zero, X, = 0. This will show that OP solves all Lagrange
equations iff internal noise is zero, and therefore it will correspond to a critical point of the cost
function in Eq.

(1) Assume that OP holds. From the boundary condition of the Lagrange equations for the multi-
pliers we have that Ap 1 = Qpy1 = I'pyq; = 0. Therefore, at time 7" + 1 the Lagrange equality

T'ry = —QT+1 is true. Let us prove by induction that the equality holds for all ¢. Assume that the
Lagrange equality is true for some ¢ + 1, that is, I's11 = —$;41 (note that I';4 is then symmetric).
Then, from the Lagrange multipliers Egs. [I2] we can write

Iy=L/B A1 A+ M KeH+ M, Ty A+ L BT K,H
=LB"A A— M T K,H+ M T A+ LIB'T\  K,H
Qy=2L/ RiLi + L] BT Ay (1 BL, + M, Q. M, + M, Ty \BL, + L] B'T', 1 M,
+ . LICI A GiL,
= 2L RLi+ L] B" Ay yBL, — M, Ty My, + M,/ T\, \BL, + L] BT, 1 M,
+ Zz L{CT A1 CiLy
where we have replaced Qt+1 by —I';t1 and using that I';; ; is symmetric. Now, summing we have
Ty +Q =2L RiLy + L] B"Ay 1 (A + BL) + M, T4 1 (A + BL; — K. H — M)
+ LIBTr;l(A +BL) + Y LI Cf AuiCiLy

T |2RiLi+ BTApa(A+BL) + BT (A+ BL)+ CJAHlCiLt} :
(36)

where we have realized that the last term in the first line is zero.

Now, the solution for which OP holds should satisfy all other Lagrange equations, in particular the
one for the fixed point equation for L;, Eq. [I0] As OP is assumed to be true at all times, and in
particular at time ¢, and the Lagrange equality is assumed to be true for ¢+ 1, Eq. [I0](see Sec.
largely simplifies to o

L,=E;'F,, (37)
with Et = 2Rt + BT(AtJrl + Ft+1)B + 21 CZT[\HlCi and Ft = —BT(At+1 + Ft+1)A. Then,
it is clear that the bracket in the last line of Eq. is zero, and therefore the Lagrange equality
I’y = —Qy is true. Therefore, by induction we conclude that the Lagrange equality is true for all ¢

and that Lagrange equations for the multipliers and L, are solved. Notice that the above results are
true regardless of the presence of internal noise.

(2) Still we have not used the Lagrange equation for Ky, Eq. [IT] nor the Lagrange equations for
the 2nd-order moments, Eqgs. These equations must also be satisfied by the OP condition. First,
from OP (and the implied Lagrange equality shown in (1)) the expression for K; (see Sec.
largely simplifies to

Ky =A(SF™ — S5 H " Sy, (38)

with Sprpy = H(SP* — S75)HT + %, + Y, DiS# D] .
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Now, this expression of K; must solve the Lagrange equations for the 2nd-order moments. The
equation for S7* is trivially satisfied, but the equations for S¥* and S7* should be such that S7* =
S7# for all ¢ — otherwise, our OP initial assumption would be inconsistent; no other restrictions
are imposed by the Lagrange equations of the 2nd-order moments. This is only possible iff the
difference S77, — SF¢, equals zero:

th — Sth = [_(A — K H)(SP" = SP)H T + KXo + Ky Zl D;StmDi} K/ +%,=0,
(39)
for all ¢ (this expression has been obtained using the 2nd-order moments in Egs. after several
cancellations). In this expression, the bracket equals zero after using Eq. [38] Therefore, consistency

of OP and satisfaction of the 2nd-order moments are satisfied if and only if internal noise is zero,
¥, =0.
n

This concludes the proof, because iff 3, = 0 we have a full satisfaction of all Lagrange equations
for all ¢ under the sole assumption of OP for all ¢. O

A.2.6 RECOVERY OF CLASSICAL LQAG SOLUTIONS

In this section, we demonstrate that the solutions derived in Sec. E] exactly recover the classical
analytical solutions of the standard LQAG problem (see Appendix when both multiplicative
and internal noise terms vanish. To illustrate this, we examine the solutions presented in Appendix
@} As empirically validated in|Damiani et al.|(2024), the optimal solutions, when internal noise
is absent, satisfy the orthogonality principle (OP). Thus, by setting the multiplicative noise terms
to zero, we can directly verify whether these solutions converge to the classic LQAG solutions.
Additionally, this provides a proof that the orthogonality principle indeed corresponds to the global
optimum of the cost function for the standard LQAG problem.

The optimal controller derived under the orthogonality principle in Appendix [A.2.3]is given by Eq.
When both multiplicative and internal noise terms are turned off, we obtain
Li=—[2R; + BT (Ayy1 +Tiy1) B BT (Apy1 + 1) A], (40)

which corresponds to the optimal L; for the classic LQAG case (see solutions in Sec. [A.2.T) if
S, = (T'y + A;). Using Eql12|and imposing the OP (setting T’y = —Q; — see Appendix [A.2.5) we
obtain

Ft+1 + At+1 == 2Qt + (A + BLt)T(At + Ft)A . (41)

Now we observe, as discussed in Appendix:A.Z.Sl, that I'; is symmetric and the same holds for Ay
(by definition), therefore we can rewrite Eq. 1] as

Tior + A =2Q, + AT (Ay+ 1) (A+ BL,) . (42)

which corresponds to the formula for S; in Sec. [A.2.1] therefore proving the equality between the
two optimal solutions.

The optimal Kalman filter derived under the OP in Appendix[A.2.5]is given by Eq. [38] corresponding
to

Ky= A(S" = SPP) HT[H(S7" = SF)HT +3,] 71 (43)
when neither internal nor multiplicative noise is considered. We note that this solution corresponds
to the one presented in Sec. [A.2.1|when Xf = S¥* — 57%, which is automatically satisfied when the
OP, stating S7* = 577, holds.

Therefore, the solutions derived in Appendix correspond to the globally optimal solutions of
the classic LQAG problem in the absence of multiplicative and internal noise.

A.2.7 JOINT OPTIMIZATION OF FORWARD DYNAMICS, PSEUDO-FILTER, AND CONTROL
WITH MODEL MISMATCH

Model and Moments The Model Mismatch approach is defined by the equations
Toy1 = Axy + BLyze +nf , ye = Heg+nf , ze01 = Wiz + Puys + 0 (44)
ng = e + Zr n;Urme + ZlffVchtzt , ced{zy, 2},
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identical to Egs. The goal is to optimize the forward dynamics W; € R"™*", pseudo-filter
P, € R™ ™ and control L; € RP*™ — where p is the dimensionality of the control signal u; = L;z-
matrices so as to minimize the expected cumulative quadratic cost
T T
C=3 Elz)Que+2 L{ RiLiz] = Y (tr(QuSt™) + tr(L RLS{)) . (49)
t=0 t=0

with initial condition po(z, 2).
Egs. 4] can be put in a more compact form as

Ti41 = A.’Et + BLtZt + ’I’LZ (46)

Zt+1 = WtZt + PtHl‘t + Ptnf + ’rLtZ

ng =€ + ZT nyUS T + Zl &EVEiLyzy , c€{x,y, 2},

from where it is more obvious that the system consists of two coupled linear dynamical systems with
free parameters Wy, P; and L; chosen so as the minimize the cost. The sums Zr and Zl can run
over different limits depending on the source ¢, but here we use the same symbol to avoid cluttered
notation.

Note that the Model Mismatch framework is strictly more general than the Model Match one because
one always is free to choose in Egs. Pt = K;and W, = A+ BL; — K;H, leading exactly to the
Model Match approach in Egs. The reverse, mapping the Model Mismatch approach into the
Model Match one, is in general not possible.

The 2nd-order moments, appearing in the cost[45] obey
wr = ASyTAT + BL,SPL] BT + ASPL] BT + BL,(Sf*)TAT + %7
2 = BHSH' P, + W,SF*W," + BHSP*W," + Wy(S¢*)TH' P + BXYP + %
v2 = ASP"H' P + BL,SF*W,” + AS7*W," + BL(S*)TH' P, , (47)
with ¢ = See + Y., USSFH(US) T + 3, VELSFEL] (VA T, ¢ € {z,y,z}.

Even though the Model Mismatch approach is more general than the Model Match one, defined
in Eqgs. it is already apparent that the equations for the second moments are simpler, more
compact and transparent. This will be a recurrent theme in all next derivations and equations, so we
will not repeat this below.

Total Cost and Cost-to-Go Let us define the cost-to-go at time ¢ starting from x and z as
Ci(x,2) = tr(Qera’ + LI RiLizz ") + Zf:t_H E [zl Qr2r + 2] L] R.L,z;|, where the ex-
pectation is over the noises with initial conditions fixed at x and z at time ¢, and for specific P, L
and W from time ¢ onward. The cost-to-go obeys the Bellman equation

Cy(z,2) = tr(Qura ") 4+ tr(L] RiLyzz") + /dm’dz’CtH(ac’, 2z tr1 (@ |z, 2)ps 41 (22, 2)

(48)
where the transition probability densities p, ;+1(2'|z, z) and p, ;+1(%'|x, 2) are the transition prob-
ability functions over z’ and 2’ at time ¢ + 1 when starting from z and z at time ¢, as defined by
equations 4] Using backwards induction, and following similar steps to those in Secs. [A.2.2] and
it is not difficult to show that the cost-to-go can be written for all £ (¢ = 0, ..., T) as

Cy(x,2) = tr(Ayza ") + tr(Qzz ") + tr(Tyxz ") + 4 (49)
with matrices A; € R™*™, Q, € R"*™, and I'; € R™"*™ and scalar +; obeying equations
AN=Q+A" N A+ H'P'QWPH+H"P'T 1A

+ Zr(Uf)TAtHUf + ZT(UE)TPtTQt"rlPtUTy + ZT(U{«Z)TQtHUﬁ ;
Q=L RL,+L/B" A\ 1 BLy + W,"Qu 1 W, + W, Ty, 1 BL,

+ ZT LE(VE) T A VP Ly + ZT LI (VTP PVY L + ZT L (V) T QuViLy
Iy=L/ B (App1 + AL )A+ W (Qegr + QL )PH+W, Ty A+ L) B'T \PH ,
Y = tr(App1Bee ) + tr(P Q1 P ey + tr(Qug18e:) 4+ veat (50)
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with boundary conditions Ay = Qp, Qp = L;RTLT, I'r = 0 and y7 = 0 (in this way the
boundary condition that Cr(z, 2) = tr(Qrzz ") + tr(L; R L2z ") is satisfied).

We now define the averaged cost-to-go at time ¢ as
C, = /dmdzpt(ac, 2)Cy(z, z) = tr(ALST) 4+ tr(Q2:577) + tr(TeSF?) + v (51)

where p;(z, z) is the joint probability density over z and z given initial condition py(z, z) and W,
L., and P; for 7 < t. We note that the total cost C' in Eq. #5]can be written as

C=Cy= /dxdzpo(x, 2)Co(x, z) = tr(AoSFT) + tr(2055%) + tr(ToSF*) + 70 , (52)

which it can also be expressed as
C=Cq+C (53)

with C; = Zt;:}) tr(Q,S** + LI R, L,S7?). It is important to note that Eq. is valid for all ¢.

Algorithm Building an algorithm to find an improved triplet of time-dependent forward dynamics,
pseudo-filter and control matrices is slightly simpler than in the case of the Model Match approach
because W; and P; only appear in the internal variable dynamical equation and L; only appears in
the state variable dynamics. In contrast, in the Model Match approach, L; appeared both in the state
and state estimate dynamics, complicating the mathematical derivations.

Indeed, we note from Eqgs. [3_U]that the coefficients Ay, Q;, I'; and ¢ depend on W, P, and L, only
for 7 > t, while S, ab € {xz, 2z, 2z}, only depend on those matrices for 7 < ¢, as it can be seen
from Egs. Therefore, choosing an arbitrary ¢, in Eq. [53|only the term C; depends on W, and in
that term, Eq. @ only the coefficients A;, Q, I'; and ; can depend on W;. In conclusion, starting
with asetof Wy . 7, Fy,....r and Ly, . 7, we can improve the value of W; as

W} = argmin C' = argmin Cy , (54)
W W
while keeping the W, for 7 # t and all Py 7 and Lo 7 fixed. A global minimum exists because
C; is always non-negative. Using elementary matrix operations, we find that

W = —PHSF(S7%) ™" — (i1 + Q) 'Togr (BLy + ASF#(S75)7Y) (55)

Note that if S§* is not invertible, then W{} is not well defined, and thus we can take any arbitrary
matrix. This might correspond to zy = 0. After the optimization, we must have

C* = C(Wo, ... Wi, ., W) < C(Wy, oo, Wy, oo, W) | (56)

so that the total cost is non-increasing. After optimizing W, using the new W/, the cost can be
written as

C" = Cars1 + Cfyy = Capir + tr(Apr1 ST) + t0(Quin SEET) + tr(Deqn SEEY) + 1 (57)

where the coefficients at time ¢ + 1 do not need to be updated (as they do not depend on W), but
where the Sff’l* need to be updated using Eqs. 47| with the new W;".

Redefining W/} as W; and the Sfﬁ’l* as St”jil, we can now proceed to optimize Wy us-
ing the same procedure as above (changing ¢ to ¢ + 1) to minimize again the total cost
C(Wo, ceny Wt, Wt*Jrl, vy WT) < C(Wo, vy Wt7 Wt+1, ceny WT) ﬁxing PO,..‘,Ts LO,...,T and all WT
except for 7 = t. This procedure can be repeated consecutively from ¢ = 0 up to 7'.

After this forward pass, we would like to repeat the process for P, and L, instead of W;. But before
doing this, the value of the coefficients in Egs. [50]have to be recomputed so that Eq. [52]is true again.
The process of forward updating the W, from ¢t = 0 up to time 7" and, after this, recomputing the
coefficients using a backwards pass is called WW-pass. Note that in this process, the moments have

been already recomputed. Starting from W) = Wo(f) o P = P™ and L™ = LE)T,L.)...Tv

ey

the TW-pass leads to a new set of forward dynamics matrices W ("*1) such that the cost is non-
increasing, C(W ™+ p) )y < (W™, P L)) We define a P-pass as that consisting
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in exactly repeating the same procedure for the P 7 instead of the Wy 7 while keeping fixed
Who,... 7 and Lg, .. 7, and using the expression (obtamed after some calculatlons)

P == [Wi(SF) T + (Qug1 + Q1) 'Tegn (ASF™ + BL(S7*) )| HTE; Y, (58)

with By = HSF*H T+, U/ SF=(U) T+, VP LiSi* L] (V)T +X.. Starting from W +D) =
WO("HT) , P = P( ) o and LW = L(”) - the P-pass leads to a new set of pseudo-filter matrices

PO+ such that the cost is non-increasing, C/(W (1) pn+1) 1(n))y < c(Ww i+ p) (),
Finally, we define an L-pass as that consisting in following similar steps to the previous ones to

sequentially update the Lo . 7 while keeping fixed Wy, 7 and P, . 7, and using the expression
(after some calculations)
L = =F7 BT { R ASpE(S7) 7 4 0 [RHSE(SE) T Wil b, (59)

with F; = 2R+ BT A1 B+ 32, (Vi) T Aea VP + 5, (V) TP Qe BV + 32,(VA) T Qe Vi
where we have defined A, = A, + A and Q, = Q, + Q. Starting from W+ = Wo(n+T),
ptl) = PO(nHT) and LW = L(()T?.,T’ the L-pass leads to a new set of control matrices L("+1)
such that the cost is non-increasing, C/(W(+1) pr+1) 1 (n+1)) < oW+l ptd) p(n)y,

Now, alternating W -, P- and L-passes from some initial arbitrary values W (), P(0)| L(0) we find

C(W(O),P(O),L(O)) > C(W(1)7P(0),L(O)) > C(W(l),P(l),L(O)) >
> C(W(”"‘l),P("),L(m)) > C(w(n-&-l),p(n-i-l),L(n))
> oWt pet) Lty > > Cin >0 (60)

Since the series is non-negative, it converges to a total cost (not larger than the initial one) with op-
timal forward dynamics W* = W (), pseudo-filter P* = P(>) and control L* = L(°°) matrices.
We have thus proven the first part of the following

Theorem 3. Starting with arbitrary W, P©) and L) and distribution of initial conditions
po(x, 2), the coordinate descent algorithm defined by iterating in alternation W-, P- and L-passes
converges to an improved triplet of forward dynamics, pseudo-filter and control matrices W*, P*
and L*. The improved triplet corresponds to a critical point of the cost function in Eq.

We remark that it is straightforward to extend our algorithm to the case where any of the matrices
Wy, P, and L; are fixed simply by not updating the corresponding matrices using the above passes,
still enjoying convergence properties.

Lagrangian, Fixed-Point Equations, and Critical Points To complete the last part of the theo-
rem, that is, that after convergence the triplet W*, P* and L* is a critical point of the cost function
[5] we must show that they solve all fixed points equations of the Lagrangian,

T T+1
=3 (tr(QeSF) + tr(ReS77)) = Y (tr(AGFY) + tr(0G7*) + tr(T4GY?)) ,  (61)
t=0 t=1

where A, ), and I'; are matrices of Lagrange multipliers. The constraints Gi* = G}* = Gf* =0
are given by the temporal evolution of S*, S7* and S7?, respectively, between two consecutive
time steps ¢ and ¢ 4 1, and can be computed using Eqs. [47] similarly as in Eqs. [9] Indeed, the fixed
point equations of the Lagrangian dCz /OW; = 0 and C /OP; = 0 are identical to Egs.
respectively, which must be satisfied after convergence by the improved triplet W*, P* and L*.
After some work, the Lagrange equations 0C/0SF* = 0, 0C/0SF* = 0 and 0C,/0SF* = 0
can be seen to lead exactly to the coefficient Eqs. [50} which, again, are satisfied by the improved
triplet. Finally, the derivatives of the Lagrangian with respect to the multipliers reduce to the second-
order moment Eqgs. which are satisfied by the improved triplet. Thus, the improved triplet is a
fixed-point solution of the Lagrangian [61]and therefore a critical point of the cost function 5]
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A.3 ALGORITHMS IMPLEMENTATION: PSEUDOCODES

A.3.1 PSEUDOCODE — MODEL MATCH FRAMEWORK

Algorithm 1 Model Match (M-Match) approach

Input: 5§, S§7, S5%; initial guesses Lgi)“):,j7 K S?)”7T; system parameters.
2: Output: Optimal gains Lg 1, Kg 7.
Steps:
4: for each iteration k = 1, ..., optimization steps do
. (k—1) (k—1) .
A7, 1,1, 74 Egs. us1ng Ly 7 and K T (backward equations)
6. for eachiterationt =0,...,T — 1 do
L§k) <+ Eq.
8: e f+1,Sff_1 + Egs. usmg L( ) and K(k 2
end for . -
100 Ay, 7, 7, T1 7 < Egs. using Lé,_)“’T and KéfT) (backward equations)
for each iterationt = 0,...,7 — 1 do
12: KM« Eq
i1, SEE1, SEf1 < Bgs. 2 usmg L( ) and K( )
14:  end for
end for 3 3
16: Ly g Ly pi G g e Ko p

The pseudocode above implements the algorithm of Sec. [3.2] referred to as the Model Match (M-
Match) approach, in contrast to the Model Mismatch (M-Mis) method of Sec.

A.3.2 PSEUDOCODE — MODEL MISMATCH FRAMEWORK

Algorithm 2 Model Mismatch (M-Mis) approach

Input: S§°, 557, S5%; initial guesses Lé(.)_)__ T Pl(o) T Wl(o) o System parameters.

2: Output: Optimal matrices L 7, Py 0, W[ 1.
Steps:
4: for each iteration k = 1, ..., optimization steps do
Ao, Ty <—Eqs usmg P(k 1T, W(k 1 dL(k 1) ¢ (backward equations)

....................

6:  for each iterationt = 0, . —1do

P(k) + Eq.
8: SEEL, SE Sfjl + Egs. using Pt(k), Wt(kfl) and Lgkil)
end for
100 A7, T 1 %Eqs usmg P(k) T W(,k_”yl) dL(lf_”’
for each iterationt = 0,...,7 — 1 do
12: W «Eq
e t+1,Sfj1 + Eqgs. usmg P Wt(k) and L(k 1
14:  end for . . .
A1, 7, T1 7 < Egs. using Pl(,__)_,T, Wl()T and Lg_l% (backward equations)
16:  for each iterationt =0,...,7 — 1 do

Lgk) + Eq.

1% (backward equations)

18: i1, SEE Sfj’_l + Egs. us1ng P( ) Wt(k) and Lgk)
end for
20: end for

* k . * k LT k
Py < Pl()T Wi r < Wl()T Ly  r< L( ) T

©
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The pseudocode above outlines the Model Mismatch (M-Mis) approach, introduced in Sec. [] and
detailed in Appendix While the order of optimization for P, W, and L differs from that in
Appendix all variants converge to a critical point of the cost function in Eq. @3]

A.3.3 IMPLEMENTATIONS DETAILS

Here we report the algorithms’ hyper-parameters, as selected for the experiments described in Sec.

Ad

For the single-joint reaching task used to evaluate the algorithm derived in Sec. [3] (Algorithm [I)) —
and to compare it with the gradient-based numerical method from|[Damiani et al.|(2024) (referred to
as GD) — we use the parameters listed in Table E} Note that, in line with |Damiani et al. (2024), the
GD algorithm is implemented using the GradientDescent() function from the Optim.jl Julia package.

Table 1: Hyper-parameters of the algorithms used in the single-joint reaching task (Sec. [A.4.1)

Algorithm Description value

GD (Damiani et al.,[2024) Number of iterations of the ”GradientDescent()” function 50000
M-Match (Algorithm Number of iterations of the estimation-control optimization 100

For the 3D reaching task, detailed in Sec. [A.4.3|we use

Table 2: Hyper-parameters of the algorithms used in the 3D reaching task (Sec. [A.4.3)

Algorithm Description value
TOD (Todorov} 2005) Number of iterations of the estimation-control optimization 100
M-Match (Algorlthm' Number of iterations of the estimation-control optimization 100
M-Mis (Algorlthm. Number of iterations of the M-Mis optimization 100

while for the neural population steering task of Sec. [A.4.5] we selected the following hyper-
parameters

Table 3: Hyper-parameters of the algorithm used in the neural population steering task (Sec. [A.4.5)

Algorithm Description value

M-Mis (Algorithm Number of iterations of the Ly, .. 7 optimization 20

A.4 EXPERIMENTAL DETAILS AND SUPPLEMENTARY RESULTS
A.4.1 OPTIMAL MODEL MATCH CONTROL FOR GOAL-DIRECTED BEHAVIOR

We evaluated the algorithm introduced in Sec. on a single-joint reaching task, using the same
problem formulation as in (Todorovl [2005; [Damiani et al., 2024). The system features a four-
dimensional state and one-dimensional control and sensory feedback, i.e., m =4,p =k = 1.

The discrete-time dynamics is given by [Todorov|(2005)),

p(t+ At) = p(t) + p(t) At

p(t+ At) =p(t) + f(t)At/m

ft+At) = fO)(1 = At/72) + g(t)At/T2

gt + At) = g(t)(1 — At/m) + u(t)(1 + ocer) At/
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with
1 At 0 0
A0 1 Aym 0
B 0 0 1—At/7‘2 At/TQ
0 0 0 1—At/n
B=0 0 0 At/m)"

C=(0 0 0 o.At/m)"

10 0 0
00 00
H=14 09 0 0
00 00
¥ 00 0
D=109 00 o0
0 0 0 0
00 0 0
00 0 0
Ql,u,T—l— 0 0 0 0
00 0 0
Qr=pp +v0" + ffT
T
Rl,---,T—l = T_1
Rr=0
7=(1 0 0 0
=0 w, 0 0)
f=0 0 w, 0
0 0 00
0 02 0 0
— 3
e 0 0 00
0 0 00
Zw—ai
o2 0 0 0
0 o2 0 0
— n
X 0 0 o2 0
0 0 0 0’%
with the initial conditions given by
Ez;]=(z1 0 0 0)"
E[Zl]:E[(Eﬂ
62 0 0 0
o 00 0
Zu=190 0 0 0
0 0 0 0
00 0 0
o0 o000
24=10 0 0 ol
00 0 0

The parameters of the problem are listed in Table |4|(std = standard deviation).
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Table 4: Parameters of the single-joint reaching task

Name Description Value
At time-step (s) 0.010
m mass of the hand (K g) 1

I first time constant of the second order low pass filter 0.04
Ty second time constant of the second order low pass filter  0.04
r Auxiliary variable for control-dependent cost le=?
Wy Auxiliary variable for task-related cost 0.2
wy Auxiliary variable for task-related cost 0.01
T time steps 100
1 Target position 0.15
Oy Target position standard deviation 0.0
o¢ std of dynamics noise &; 0.1
Ow std of the sensory noise w; 0.1
Oe std of the control-dependent noise & 0.5
o, std of the sensory-dependent noise p 0.5
o std of the additive internal noise 7 0.1

Fig 2h shows that Algorithm [I] consistently decreases the initial expected cost and converges to a
critical point of the cost function in Eq. [3| after approximately 100 iterations. Fig. b compares the
optimal controller obtained with Algorithm [I| (red lines, left panel) to the numerical solution pro-
posed in Damiani et al.| (2024)) (green lines, right panel), which represents the state-of-the-art for the
LQMI control problem. Both algorithms converge to the same solution, but with sensibly different
computational costs: our method completes in approximately 6 seconds, whereas the approach in
Damiani et al.|(2024) takes over 5 hours on a standard laptop.

(a) (b)

0.50 0 ~ f »
han | 2l O ) n
0.45 - _10 \ :
[©) 5 Ly, | Ly,
L 0.40 = -20 szr V. I L’Z:f
Ly, | K Ly,
0.35 I | L
_30 4,1 \ 4,
1° 10t 102 0 25 50 75 1000 25 50 75 100
Tteration t t

Figure 2: Model Match Approach Converges to the Optimal LOMI Solution.(a) Expected accumu-
lated cost C' (Eq. [3), computed via Eq. during the joint optimization of control and filter gains
using Algorithm [I] described in Sec. 2.1} (b) Optimal control gains L, obtained using the algorithm
from Sec. @] (red lines, left panel) and the numerical method from [Damiani et al|(2024) (green
lines, right panel). Here, L, ; denotes the i-th component of the 4-dimensional control gain vector
at time ¢ (note that p = 1).

A.4.2 COMPUTATIONAL EFFICIENCY AND DIMENSIONALITY SCALING: COMPARISON WITH
PRIOR WORK

As additional evidence for computational efficiency of the Algorithm of Sec. [A.3.1] we present a
dimensionality-scaling study comparing computation times with the numerical algorithm in|Damiani
et al| (2024), extending the analysis up to m = 100. This complements the results in Sec.
which already demonstrates a pronounced gap in runtime (6 s vs. 5 h).

To isolate the effect of dimensionality, we set m = k = p = nghaeq. Matrices A, B, C, and D are
drawn from zero-mean, unit-variance Gaussian distributions and rescaled to ensure spectral radius
< 1 for stability. We fix T' = 6 and 0¢ = 0o, = 0, = 0 = 0y = 0.2, and vary Nghared €
{5,10,15,40,100}. We then compare the total computation time of our method (Secs. and
with the numerical approach in [Damiani et al.| (2024), initializing both with optimal gains
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from [Todorov| (2005)) to ensure a fair comparison. All results were obtained on a MacBook Pro
(Apple M1, 16 GB RAM).

Table 5: Comparison of runtime between this work and the numerical algorithm in |Damiani et al.
(2024) as a function of the number of shared dimensions 7gpared-

Nshared  This work  GD (Damiani et al., [2024)

5 1.155s 8.4 min
10 1.25s 75.7 min
15 1.40s 6.4h

40 2.7s > 2 days
100 14s -

Here, s = seconds, min = minutes, and h = hours. These results highlight the scalability of our
method. Similar time gaps also emerge in lower-dimensional settings as trial duration 7' increases,
due to the linear growth in optimization parameters with 7.

This computational advantage is critical for applying stochastic optimal control to real-world prob-
lems, particularly in Inverse Optimal Control (Schultheis et al.l 2021; [Straub & Rothkopf, [2022),
which requires solving many control problems across parameter settings. The high cost of [Damiani
et al.| (2024) renders it impractical for realistic tasks such as that in Sec. first described in
‘Todorov| (2005).

A.4.3 3D REACHING TASK: MODEL AND PARAMETERS

The problem is defined by the following matrices:

S OO OO
SO OO O
O)—‘OODO
~
)—‘OODOO
~

™
€

1
Q

™
Il
I EN

g

n=0
Q1,....7—1 = Osxs

10 0 O
10 0
0 10
0 0
0 0
0 0

Ri=r-Ig fort=1,....,T -1
Rr=0,

Qr =

SO oo O
(NN o NN
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where I denotes the 6 x 6 identity matrix, and Ogxg denotes the 6 x 6 zero matrix. The initial
conditions are given by:

Elzy) = (1.5 1.0 25 1075 10-° 107%)"

E[z1] = Ez,]
Yz = Osxe
>, = Osxs

The parameters of the problem are listed in Table[6|(std = standard deviation).

Table 6: Parameters of the 3D reaching task

Name Description Value
At Time step (s) 0.010

T Time steps 100

m Dimension of state x; 6

n Dimension of internal state z; (for NSC) 6

P Dimension of observation y; 6

k Dimension of control u; 6

r Control cost scaling 0.0001

o¢ Std of dynamics noise &; 0.5

Ow Std of additive sensory noise wy 0.5

o, Std of multiplicative sensory noise p 0.4

O Std of multiplicative control noise € 0.4

o Std of additive internal noise 7 {0.0,0.1,0.3,0.4,0.5,1.0,2.0}

In this experiment, we set the control matrix to B = I and use a control signal with dimensionality
equal to the state (p = m = 6), enabling full control of the system. This choice is primarily
motivated by numerical considerations: it avoids instabilities in our Model Mismatch algorithm
related to matrix inversions that arise when B is not full-rank or poorly conditioned.

Although this means that control directly affects all state variables — including positions — this can be
interpreted as an idealized feedback mechanism. The dynamics matrix A still captures the physical
structure, with positions evolving from velocities over time. Our focus is on assessing algorithmic
performance under internal and multiplicative noise, rather than enforcing strict biomechanical real-
ism. Nonetheless, the setup remains rich enough to support meaningful behavioral predictions and
comparisons with biological control strategies.

Embedding Dimensionality In Fig. [Id, we plot the embedding dimensionality of the matrices
P, W, and L. For each time step ¢, we compute the number of singular values of P, W,, and L;
that are larger than 0.01 - max,,csv {o; }, where SV denotes the set of singular values of the matrix
under consideration. We then average this count across time steps to obtain a measure of effective
dimensionality. Formally, we define:

SV ipCount = Z 0 <Ui >0.01- Jnax, Uj>
o, €SV 7

where 6(z) is the Heaviside step function. This quantity provides an estimate of the “effective”
dimensionality of the transformation induced by the matrix, relative to its dominant singular values.
This method accounts for changes in scale — such as reductions or increases in determinant magni-
tude due to varying levels of internal noise (Fig. [Tk) — and thus provides a more meaningful estimate
of dimensionality across different values of o,.
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A.4.4 DISTINCT NEURAL AND BEHAVIORAL SIGNATURES OF MODEL MATCH AND MODEL
MISMATCH APPROACHES

While our main focus is to introduce an analytical solution to stochastic optimal control problems
with multiplicative and internal noise, the two frameworks considered here — Model Match and
Model Mismatch — also lead to distinct, experimentally testable predictions. Below we outline
illustrative examples that highlight these differences and the importance of choosing between the
two approaches.

Divergence of internal dynamics In the 3D reaching task (Fig. [I), the Model Mismatch approach
exhibits qualitatively different strategies from the Model Match one. With internal noise, optimal
control (Figm)) is achieved when internal dynamics diverge from external ones (Fig. Ek:), leading
to z that no longer tracks x; (Fig. [Iff). This suggests a fundamentally different way of handling
internal fluctuations. Using inverse optimal control (Schultheis et al., 2021} |[Straub & Rothkopf],
2022), behavior can be fit under both Model Match and Model Mismatch approaches, allowing
one to test whether neural activity aligns more closely with the inferred internal dynamics of one
framework. If it resembles M-Match’s z;, it may reflect state estimation (e.g., posterior parietal
cortex or cerebellum); if it resembles M-Mis’s z;, it may reflect control-optimized representations,
possibly in premotor or motor areas.

Noise-Dependent Control Magnitude From a behavioral perspective, in the same task as above,
the magnitude of the control signal is strongly modulated by internal noise in the Model Match ap-
proach (Fig. Bp). In contrast, the Model Mismatch approach maintains a stable temporal profile of
control magnitude across noise levels (Fig. [3h), likely due to flexible internal representations not
constrained to track the external state (Fig. [1f). Internal fluctuations could in principle be exper-
imentally influenced or estimated (Speed et al., |2020; |Vinck et al., |2015), making this prediction
possibly testable.
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Figure 3: Noise-dependent control magnitude in the two approaches. (a) Expected control mag-
nitude |u;|, averaged over 10,000 realizations while varying internal noise o, in the Model Match
framework (shaded areas indicate the standard error of the mean). (b) Same as (a), but for the Model
Mismatch framework.

Perturbation Responses To further probe the distinction between the Model Match and Model
Mismatch approaches, we simulated the 3D reaching task from Fig. |I{ with a transient bump of
magnitude d = 2.0 applied to the second component of x; at ¢ = 20, without reoptimizing. Both
methods successfully compensate for the perturbation (Fig. @), as expected from their respective
optimal solutions. Moreover, the behavioral output does not show visible qualitative differences
across approaches (Fig. ). However, the internal dynamics diverge: in M-Mis, z; shows a non-
linear, non-monotonic response with a slower return to baseline (Fig. [dp), strongly modulated by
internal noise o, (Fig. ). In contrast, M-Match displays a Kalman-like profile, where z; follows
the perturbation magnitude and decays smoothly and monotonically (Fig. dp), largely independent
of noise (Fig. [@d). These findings suggest that M-Match and M-Mis could yield distinguishable
neural signatures following perturbations, even when behavioral outputs remain similar.
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Figure 4: Perturbation Responses in Model Match and Model Mismatch. (a) Difference in the
second component of the state (y-coordinate) between perturbed and unperturbed trials (same noise
realization), averaged over 10,000 trials for the Model Match and Model Mismatch approaches, with
oy = 0.5. (b). Difference in the second component of the internal estimate between perturbed and
unperturbed trials (same noise realization), averaged over 10,000 realizations for both approaches,
normalized to their maximum, with o;,, = 0.5. (c¢). Difference in the second component of the
internal estimate between perturbed and unperturbed trials (same noise realization), averaged over
10,000, for the Model Mismatch approach at different levels of internal noise. (d). Same as (¢), but
for the Model Match approach. In all panels, shaded areas indicate the standard error of the mean.

A.4.5 NEURAL POPULATION STEERING VIA MODEL MISMATCH CONTROL

We also apply our framework to a neural population steering task, where an unstable recurrent
network is driven toward a target state via optimized linear readouts from another population — a
setup reminiscent of biologically inspired machine learning methods (Jaeger & Haas| 2004} |Maass
et al., [2002; Sussillo & Abbott, [2009). This task connects to a growing body of work applying
optimal control to neural population dynamics (Costa et al., [2024; Kao et al.| 2021} [Slijkhuis et al.,
2023} |Athalye et al.| [2023)), as well as related reinforcement learning approaches (Mastrogiuseppe
& Moreno Bote, [2024).

Classical approaches (Todorov, [2005; [Damiani et al., [2024) constrain the internal variable z; to act
as a Kalman filter estimate of x¢, enforcing the structural condition W, = A + BL; — P,H in Eq.
so that the dynamics of z; match Eq. [/} In contrast, the Model Mismatch framework relaxes this
constraint by allowing W, to be freely optimized. This flexibility lets us treat z; and z; as distinct
neural populations with independent connectivity matrices W and A (Fig. [5p).

Our algorithm (Appendix [A.3.2)) also supports partial optimization: for example, one can fix W and
P (e.g., as random or biologically plausible) and optimize only L;. Such setups are incompatible
with the classic Model Match framework, which ties z;’s connectivity directly to z; and forces
W, to vary over time, making it difficult to simulate realistic interactions between distinct neural
populations.

We consider two populations of Ny = 100 linear neurons, each with sparse random connectivity.
The recurrent connectivity within the first population (z;) is given by

A .o
AUNN<0’ \/ﬁ)? 27.7:17~-~7Nunits;
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and similarly, the recurrent connectivity of the second population (z;) is drawn from

w ..
Wz] NN<Oa \/‘ng)a ) = 17~-~7Nunils .

Note that internal dynamics is fixed over time, Wy .. 7 = W. The activity of the second population
is linearly read out through a time-varying matrix L;, which is optimized to steer the activity of
the first population toward a desired target state while minimizing control effort (see Fig. [Sh). The
population z; receives input from x; through sparse random projections defined by

gp ..
RNN<O7>a lv]:17~--aNunis~
! \/Nunits '

Again we consider I . 7 = P. To conform this setup to our control framework, we set m = n =
p = k = Nuits, and define

B=H=1Iy

units

D = Ew = ONumlSXNunils .

The cost and noise structure of the problem are defined by the following matrices

C=o0. In,.
B¢ = 0% DNy
E77 = 0127 ’ IN\mils7
Q1,... 71 = q<1 - INy»
Qr = 1INy
Ri=r-In,,, fort=1,...,T-1,
Rr=0.

The initial conditions are given by:

Elz1] ~ N (0,92, INy) -
E[z1] ~ N (0,92, IN,.) »
1 = ONyuits X Nunies 5
221 = ONgnis X Nunis -

The choice of Gaussian-distributed connectivity for the recurrent matrices A, W, and the feedfor-
ward matrix P is grounded in principles from dynamical mean-field theory, which describes the
macroscopic behavior of large, sparsely connected networks of rate neurons (Sompolinsky et al.,
1988} Rajan et al., 2010). We set g4 = 1.1 to ensure that the state dynamics in z; are intrinsically
unstable — this choice is deliberate, as our objective is to stabilize the system through control. Since
we define the desired target state as zero, using it as a reference point, the initial condition effec-
tively coincides with the goal. In this setting, a naturally decaying (stable) dynamics would trivially
converge to the target without requiring active control. Instead, by inducing unstable dynamics, we
create a scenario where control is essential to prevent divergence from the desired state. The internal
dynamics gain gyr = 0.9 places the latent population z; in a subcritical regime, supporting stable
internal representations of the external dynamics. Lastly, the feedforward gain gp = 0.3 models
sparse and weak inter-population connectivity. These structured random matrices instantiate bio-
logically inspired constraints that the Model Mismatch framework naturally accommodates while
enabling effective control.

The parameters of the problem are listed in Table|/|(std = standard deviation).
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Table 7: Parameters of the Neural Steering task

Name Description Value
T Time steps 50

m Dimension of state x; 100
n Dimension of internal state z; 100
P Dimension of observation y, 100
k Dimension of control u; 100

r Control cost scaling 0.001
q<T Task-related cost scaling 0.001
qr Task-related cost scaling 0.1
Gy Initial condition scaling for z; 10.0
Gz Initial condition scaling for z; 0.2
ga Scaling of random connectivity of population x; 1.1
aw Scaling of random connectivity of population z; 0.9
gp Scaling of random connections from population z; to population z; 0.3
o¢ Std of dynamics noise &; 0.5
Oc Std of multiplicative control noise € 0.0
on Std of additive internal noise 7 0.2

Note that the “dynamics noise” & now represents the internal noise affecting the population z;,
analogous to the role of 7, for the population z;. We also observe that the initial condition of the
population z; reflects spontaneous activity arising from internal fluctuations; accordingly, we set
g, = 0y to match the scale of this variability.
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Figure 5: Model Mismatch approach for Neural Population Steering. (a) Sketch of the neural pop-
ulation steering task. (b) Average (over noise realizations) norm of x;, z;, and of the control signal
uy = L4z with error bars (standard error of the mean). (c) Distribution of the control signal over
time and realizations with Gaussian fit (left), and average control magnitude (over time and realiza-
tions) received by each unit as a function of its initial absolute activity (right). (d) Activity of two
units from the population vector x; in a single trial. (e) Heatmaps of the matrices L, at two time
points: early (left) and mid-trial (right).

We optimize only the time-varying readout weights Ly 7 using the algorithm described in Sec.
[] keeping all other parameters fixed — Fig. [Bp. By doing so, the activity x; is successfully steered
toward the target state (Fig. 5p) through a distributed control strategy: all units in the 2 population
receive, on average, a similar amount of control, regardless of their initial distance from the target
(Fig. [Bk). Despite this relatively uniform distribution, the control effectively targets the units that
require it most — namely, those starting furthest from zero, which represents the target in the current
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reference frame (Fig. [5d). This selective modulation likely arises from the interaction between the
recurrent dynamics in « and the structure of Ly . 7. At the beginning of the trial, L; is highly
structured and low-rank (Mastrogiuseppe & Ostojicl 2018)), strongly directing activity toward the
target. After the initial transient, t > ¢, L; . becomes sparse and high-rank, stabilizing the system
and maintaining x; near the target despite internal instability and noise (Fig. [5f). Interestingly,
this result parallels findings in the control of recurrent networks through reinforcement learning
(Mastrogiuseppe & Moreno Botel [2024).

The Model Mismatch framework thus extends stochastic control beyond agent—environment formu-
lations and enables the study of neural computation. For instance, in the simplified setting of this
Sections, z; can be interpreted as a premotor population driving a downstream motor population
x; toward a target — consistent with studies where premotor activity initializes motor cortex before
movement (Kao et al.|, [2021; |Logiaco et al.| 2021)). While not intended as an exhaustive biological
mapping, this example illustrates how the framework can model complex strategies such as low-
to-high rank transitions, selective modulation, and stabilization of unstable dynamics—phenomena
that classical Model Match approaches cannot accommodate.

A.5 LLM USAGE

Large Language Models (LLMs) were used solely as a general-purpose writing assistant to improve
clarity and language in some parts of this manuscript. They were not used for research ideation,
derivations, analysis, or experiments. The authors take full responsibility for the content of the

paper.
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