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ABSTRACT

General-purpose language models (LMs) are aligned to diverse user intents, but
fall short when it comes to specific applications. While finetuning is the default
method for customized alignment, human annotations are often unavailable in
various customization scenarios. Based on the observation that one of the main
issues of LM customization is constraint adherence, we investigate the feasibility
of using constraints as a bridge from general LMs to customized ones. We investi-
gate common constraints in NLP tasks, categorize them into three classes based
on the types of their arguments, and propose a unified and efficient framework,
ACT (Aligning to ConsTraints), for customizing LMs without human annotation.
Specifically, ACT uses automatic constraint verifiers, which are typically easy
to implement in practice, to compute constraint satisfaction rate (CSR) of each
response. It samples multiple responses for each prompt and collects preference
labels based on their CSR. Subsequently, ACT adapts the LM to the target task
through a ranking-based learning process. Experiments on fine-grained entity
typing, abstractive summarization, and temporal question answering demonstrate
that ACT is capable of enhancing LMs’ ability to adhere to different classes of
constraints, thereby improving task performance comparable to or approaching
that of finetuning with labeled data.

1 INTRODUCTION

General languages models (LMs) are aligned to diverse user instructions, but fall short when it
comes to specific applications (Raffel et al., 2020; Ling et al., 2023; Saha et al., 2023). Customized
alignment, which enables users to improve the task-specific capabilities of LMs, is therefore in high
demand (Zhang et al., 2024; Lin et al., 2024; Zhou et al., 2024). To fullfil this goal, finetuning is
the default method in LM services, such as GPT-41 and Gemini2 finetuning APIs, which typically
requires exhaustive human-annotated data. However, human annotations are often unavailable in
various customization scenarios. Users have distinct purposes necessitating distinct annotations, but
it is impractical to collect human annotations everytime due to budget limitation.

Recent research finds that the unsatisfactory adherence to task constraints is one of the main reasons
for the failure of general LMs in downstream applications (Sun et al., 2023; Qin et al., 2024; Jiang
et al., 2023; Abdin et al., 2023; Zhou et al., 2023b). Based on this observation, we investigate
the feasibility of leveraging constraints to bridge the gap between general LMs and customized
usages. Downstream applications typically contain explicit or implicit task constraints. For example,
the fine-grained entity typing task has a label option list to define its decision space and a label
hierarchy to describe the relation of sub-decisions (Fig. 1). These constraints contain informative
task knowledge and can be automatically verified. On one hand, constraints produces informative
supervision signals. They can help approximate the solution space, identify prediction errors, and
guide the model toward the correct answer (Chang et al., 2007; Wang et al., 2023; Ning et al., 2018;
Wang et al., 2020a). On the other hand, constraints enables efficient data collection. Assessing LM
response quality with automatic constraint verifiers requires no human effort during annotation.

1https://platform.openai.com/docs/guides/fine-tuning
2https://ai.google.dev/docs/model_tuning_guidance
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Figure 1: An example of fine-grained entity typing
with label option and label hierarchy constraints.
A feasible response must satisfy both constraints.

In this paper, we investigate common constraints
in NLP tasks, categorize them into three classes
based on the types of their arguments, and pro-
pose a unified and efficient LM customization
framework, ACT (Aligning to ConsTraints),
using automatic constraint verifiers to provide
supervision signals for adapting models to
downstream tasks (§3). As shown in Fig. 2,
ACT starts from selecting constraints that
can provide essential knowledge about user
intents while at the same time automatically
verifiable. Then, the constraint verifiers can
efficiently measure constraint satisfaction rate
(CSR) of model responses. These verifiers are
typically easy to implement and are applicable
to all instances governed by the corresponding
constraints. With their assistance, ACT gathers
supervision signals for LM adaptation based on
unlabeled instances. It samples multiple responses for each unlabeled instance and automatically
assigns relative preferences to them based on their CSR. Through a ranking-based learning process
(Yuan et al., 2023; Liu et al., 2022), ACT integrates the knowledge revealed by the constraints into
the LM.

We verify the effectiveness of our method on tasks with each class of constraints (§4), including
fine-grained entity typing (Ling & Weld, 2012), abstractive text summarization (Narayan et al., 2018),
and temporal question answering (Ning et al., 2020). Experimental results show that our method,
even with little or no labeled data, can significantly enhance model capabilities on downstream tasks,
achieving comparable performance to finetuning with the same amount of labeled data.

Our contributions are three-fold. First, we identify that downstream tasks often contain informative
and auto-verifiable constraints. In this context, we formally define three classes of constraints that
are beneficial to LM customization. Second, we propose ACT, a unified and efficient framework for
customizing LMs, leveraging automatic constraint verifiers to produce supervision signals. Third,
experimental results on various tasks and constraints demonstrate the effectiveness of our method
across all classes of constraints.

2 RELATED WORK

Constraints in NLP. Constraints provide essential information about the detailed requirements of
user intents, which widely exist in various NLP tasks, such as natural language inference (Roth &
Yih, 2004; Minervini & Riedel, 2018; Li et al., 2019), information extraction (Ning et al., 2017;
Wang et al., 2020a; Lin et al., 2023), and text summarization (Dou et al., 2021; Wang et al., 2022;
Dixit et al., 2023). Constraints in these tasks range from simple fixed label options and format
requirements to complex logic dependency (Faghihi et al., 2023). Prior works have integrated these
constraints into artificial intelligent models through learning-based or inference-only methods, such
as constraint driven learning (Chang et al., 2007; Minervini & Riedel, 2018), structured inference
(Ning et al., 2017; Wang et al., 2023), and constrained decoding (Hokamp & Liu, 2017; Qin et al.,
2022). Recent work also investigated integrating constraints into LMs to improve model performance
on binary question answering (Burns et al., 2022; Jung et al., 2022) and natural language inference
(Mitchell et al., 2022). Building upon these findings, we leverage automatic constraint verifiers for
LM customization with an unified and efficient framework. Our framework makes no assumptions
about the constraint type or source.

LM Alignment and Customization. LM alignment is crucial for LMs’ capabilities in general
scenarios (Zhang et al., 2023a; Ouyang et al., 2022; Mishra et al., 2022). However, aligning to general
user instructions may not adequately improve LMs’ capabilities in downstream use cases from unique
and differentiated users. To enhance the task-specific capabilities of LMs, customization through
finetuning is necessary (Zhang et al., 2024; Ling et al., 2023). Prior work on LM finetuning has
explored various aspects, including parameter-efficient tuning (Dettmers et al., 2024), data curation
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Figure 2: Overview of ACT. ACT utilizes automatic constraint verifiers, which are typically easy
to implement in practice, to assess how well a response satisfies the constraints specified in the
instruction. It samples two or more responses (e.g., RA and RB) for each prompt. Then, it computes
the constraint satisfaction rate (CSR) of each response and assigns the preference label to each
response pair based on their CSR (e.g., RA is better than RB). The preference labels serve as
supervision signals for LM customization.

(Zhang et al., 2024), model selection (Lin et al., 2024), privacy protection (Yu et al., 2021), and safety
issues (Qi et al., 2023). Some recent work has also finetuned task-specific reward models to adapt
LMs (Wu et al., 2024). However, most of these works assume the availability of human-annotated
data. When facing the data scarcity issue, there is no unified LM finetuning method that can be
applied to various downstream tasks. Our work addresses the data issue in LM customization through
the perspective of constraint satisfaction.

3 METHOD

We seek to build a unified framework to align LMs with various constraints. As shown in Fig. 2,
the ACT framework starts from selecting proper constraints (§3.1) and implementing corresponding
constraint verifiers (§3.2). Then, it samples multiple responses for each instance in the unlabeled
task dataset (§3.3). The automatic constraint verifiers will measure the constraint satisfaction rate
of responses and provide supervision signals for model alignment (§3.4). Finally, ACT aligns the
model with constraints for adaptation (§3.5).

3.1 CONSTRAINT SELECTION

Formally, we define constraint as a function f that verifies the satisfiablity of the prompt x and the
model response y. Derived from user instructions, they verify essential requirements for fulfilling
user intents. According to the argument of f , we categorize task constraints into three classes:

• f(y) defines a constraint for a response, such as response length, response format, and
response candidate. For example, the fine-grained entity typing task requires the LM to
respond with given options.

• f(x, y) defines a constraint for a prompt-response pair. This type of constraint requires
comparing the model input and output, such as their relevance and text overlap. For example,
the abstractive summarization task expect a high relevance between the input document and
the model-generated summary.

• f({xi, yi}) defines a constraint for multiple prompt-response pairs. This type of constraint
involves comparing multiple instances, such as the logical consistency of answers to related
questions. For example, in temporal question answering, the answers to "what happens
before event A" and "what happens after event A" should have no overlap.

In ACT, constraints should possess two properties: revealing essential knowledge and being auto-
matically verifiable. Generally, constraints that more precisely approximate the user intent are more
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effective in LM alignment. ACT can combine multiple constraints from different perspectives to
achieve a more effective approximation.

3.2 VERIFIER REALIZATION

Constraint verifiers are the realization of f , measuring how well the response satisfies the constraints.
They take the model response (and prompt) as the input, returning a constraint satisfaction rate (CSR).
A higher CSR indicates that the response adheres to the constraints better. The verifiers can be
rule-based (e.g., a function comparing words) or model-based (e.g., a relevance scorer), typically
easy to implement from scratch or adapt from existing tools. In §4, we showcase the use of Python
functions, model-based metrics, and rule engines as constraint verifiers. Note that each task may be
associated with one or more constraints. Thus, the complete constraint verifier could be a combination
of multiple sub-verifiers. The final CSR will be a weighted average of CSR from each sub-verifier,
with the weights determined by the importance of the constraints.

3.3 RESPONSE SAMPLING

While a series of LM alignment studies have mentioned response sampling, little attention has been
paid on improving the alignment effectiveness through decoding strageties. We draw inspiration from
contrastive learning to gather high-quality negative responses (Robinson et al., 2021). The key to this
step is ensuring that responses for the same unlabeled instance are distinguishable by the constraint
verifiers (i.e., true negative), while simultaneously achieving high sampling probability (i.e., hard
negative). If two responses have a close CSR, it could be challenging for even human annotators
to decide which one is better. If the response with a low CSR also has a low sampling probability,
penalizing it will not significantly benefit the model. In a nutshell, we seek to collect high-probability
responses with non-negligible CSR gaps. Therefore, we employ decoding strategies that incorporate
diversification and probability restriction, such as diverse beam search (Vijayakumar et al., 2018).
This enables the collection of informative supervision signals in the next step.

3.4 CONSTRAINT VERIFICATION

Constraint verifiers can offer approximate but essential guidance for task adaptation, making them
well-suited for the cost-efficient customization of LMs to specific tasks. ACT takes advantage
of this property of automatic constraint verifiers to provide supervision signals for LM alignment.
Specifically, the constraint verifier returns a CSR for each response or response combination. Then,
we can assign preference labels to responses for the same prompt based on their CSR. For constraints
defined over a single response or prompt-response pair, the response that has a higher CSR will be
preferred. For example, in a task with label options constraint, a response within the option list is
preferable to a response beyond it. For constraints defined over multiple prompt-response pairs, ACT
creates a response combination by picking one response for each prompt. The constraint verifier
computes the CSR for each response combination, and responses from the response combination with
a higher CSR will be preferred. For example, when asking about events occurring before or after an
event, the response combination that have no conflict (i.e., no overlap between the answers to ‘before’
and ‘after’) are preferable to those with conflicts. Then, each response will inherit the preference
label of the combination it belongs to. As a result, ACT can collect preference labels from constraint
verifiers as supervision signals to align models based on any type of constraints introduced in §3.1.

3.5 TRAINING

With the preference labels from constraint verifiers as supervision signals, ACT follows the learning
objective of Yuan et al. (2023) with CSR as the reward. It encourages the model to generate the
response with highest CSR for each prompt with

Lft = −
∑
i

logP (yi|x,y<i),

and optimizes a rank loss over all responses for the same prompt based on their relative CSR

Lrank =
∑

CSRi<CSRj

max(0, P (yi|x)− P (yj |x)).
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Since the CSR gap between each response pair may indicate fine-grained preference information,
such as the relevance score in text summarization, we can further enhance the above loss functions.
For Lft, we use CSR to reweight each datapoint. Because the quality of the best responses we sample
for different prompts may vary, this strategy amplifies the impact of responses with higher CSR while
reducing noise. For Lrank, we use the CSR gap between each pair of responses as the ranking margin.
This strategy allows the ranking loss to consider the relative preference, providing more informative
supervision signals.

To further enhance learning efficiency, we adopt parameter-efficient tuning to align the LM with
constraints. Specifically, we train LoRA modules (Hu et al., 2021) as customized adapters in a
plug-and-play manner. The learning process is cost-efficient, and users have the flexibility to choose
adapters based on constraints they need.

4 EXPERIMENT

In this section, we evaluate ACT on representative constraints for each of the three constraint
categories introduced in §3.1, including fine-grained entity typing with label option and label hierarchy
constraint (f(y); §4.1), abstractive summarization with document-summary relevance constraint
(f(x, y); §4.2), and temporal question answering (QA) with the “no temporal conflict” constraint
(f({xi, yi}); §4.3).

4.1 f(y): FINE-GRAINED ENTITY TYPING

Task and Constraint. Fine-grained entity typing seeks to select one or more applicable entity types
of different granularities for an entity in a given sentence. We select two sub-constraints defined over
the model response for this task: (1) label option, requiring all entity types to be selected from a
fixed option list; and (2) label hierarchy, requiring to select a coarse-grained type if its corresponding
fine-grained type is selected (e.g., an artist entity must be a person entity). Verifying these constraints
needs to check the model output y. We implement the constraint verifier as a rule-based Python
function, comparing the model response with the predefined label option and label hierarchy. Its
pseudo code is in Appx. §A. In addition to entity typing, we further evaluate the lexical constraints
in CommonGen (Lin et al., 2019) in Appx. §D, and compare ACT with constrained decoding, a
representative inference-time intervention approach.

Dataset and Metric. We conduct experiments on the FIGER dataset (Ling & Weld, 2012) consisting
of 112 entity types in two granularities. We sample 1K instances, which is the smallest effective data
size used for LM alignment in prior studies (Jin et al., 2023; Zhou et al., 2023a), from the official
training set as the unlabeled data, and five additional instances as in-context examples. For evaluation,
we use the official test set. Following Ling & Weld (2012), we use macro-F1 over all instances as the
evaluation metric. For this and the following tasks, we report the average result of three runs.

Baselines. We compare ACT with both training-free constraint integration and finetuning with labeled
data. To integrate constraints into LMs, one way is prompt w/ constraints by adding verbalized
constraints in the prompt. It adds into prompts the list of entity types with “Label options: {all
types}" and the type dependency with “If an entity is any of {fine-grained types},
it must also be {coarse-grained type}." The other way is inference w/ constraints through
post-hoc correction.3 The corrector is derived from the constraint verifier, correcting prediction
errors according to the task constraints. Finetuning adopts the same instances used by ACT with
human-annotated labels.

Implementation Details. For this and the following tasks, we use Falcon-7B-Instruct (Penedo et al.,
2023) as the base model, because it is one of the few SOTA instruction-tuned LMs with Apache
2.0 license. We apply LoRA tuning in both ACT and finetuning. All models are trained using the
same prompt templates and hyper-parameters in Appx. B and C. For each unlabeled instance, ACT
collects multiple model responses through diverse beam search. Note that in this task, we consider a

3While other inference-time constraint integration approaches may also work, we do not observe significant
difference in performance.
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Figure 3: Results on fine-grained entity typing
with f(y) constraint. ACT, using supervision sig-
nals from automatic constraint verifiers, achieves
performance close to that of Finetuning on the
same amount of labeled data. Inference w/ Con-
straints is complementary to all the methods. Its
improvement over ACT is much smaller, indicat-
ing constraints have been learned effectively.

Figure 4: Average CSR of raw responses on fine-
grained entity typing. Label Option constraint
limits the candidate set of entity types. Label
Hierarchy constraint requires the answer to follow
the hierarchy between coarse- and fine-grained
entity types. A correct answer must satisfy Both
constraints. ACT achieves CSR comparable to
that of Finetuning.

binary CSR, selecting one response that satisfies all constraints and another that does not satisfies
some constraints, for training. During the training and inference for all methods, we use the same
five in-context examples.

Results. As shown in Fig. 3, ACT, with automatic feedback from constraint verifier, achieves
comparable results to finetuning with human annotation on same amount of data. Further analysis in
Fig. 4 shows that ACT achieves the same overall CSR as finetuning. These observations indicate that
feedback from automatic constraint verifiers are effective surrogate of human feedback. Moreover,
ACT can significantly improve the model’s constraint-following capability with the help of automatic
constraint verifiers. Although inference w/ constraints can further improve the performance of all
methods as a complement, the improvement on ACT and finetuning are much smaller, indicating most
of the knowledge about label constraints are already learned during training. Prompt w/ constraints
improves model CSR, but does not improve the F1 score. We attribute this to the increased prompt
length. Verbalizing the constraint adds several hundreds of tokens in the prompt, which unsurprisingly
make it more difficult to understand.

4.2 f(x, y): ABSTRACTIVE SUMMARIZATION

Task and Constraint. Abstractive summarization seeks to provide a brief summary for a given
document. An essential constraint for this task is relevance – the information in the generated
summary should be relevant to that in the given document. This constraint is necessary to achieve
better factual consistency (Zhu et al., 2021; Dixit et al., 2023) and information coverage. To verify
this constraint, we need to compare the model input x and output y. We use BERTScore-Recall
(Zhang et al., 2019) as the constraint verifier, because prior works have shown that it aligns well with
the human judgement of summary quality and outperforms other metrics in downstream applications
(Fabbri et al., 2021; Adlakha et al., 2023; Gupta et al., 2023). Note that we compute the BERTScore-
Recall between the model response and the input document as CSR, which allows ACT to collect
feedback with no human-annotated summary.

Dataset and Metrics. We conduct experiments on the XSUM dataset (Narayan et al., 2018), where
each news article is paired with a human-written one-sentence summary. For training, we sample 1K
instances from the official training set. We evaluate the model performance in a zero-shot manner. For
automatic evaluation, we report ROUGE-L (Lin, 2004), BERTScore, and CSR. We further conduct
human evaluation following the protocol in Zhang et al. (2023b). We recruit annotators from
Amazon Mechanical Turk to label consistency (0 or 1), informativeness (5 point likert scale), and
coherence (5 point likert scale) for system-generated and human-written summaries. Each summary
is evaluated by three different annotators. The human evaluation instruction is in Appx. §G. Due to
the computational and annotation cost, we sample 100 articles from the official test set for evaluation.
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Method Training Data Automatic Evaluation Human Evaluation
labeled : unlabeled BERTScore ROUGE-L Consistency Informativeness Coherence

Raw Model - 42.8 10.7 0.54 2.78 2.93
Prompt w/ Cons. - 55.5 12.8 0.63 3.06 3.21

Inference w/ Cons. - 58.9 13.6 0.56 2.87 3.07
ACT 0% : 100% 65.1 15.7 0.68 3.12 3.35
ACT 10% : 90% 68.6 18.2 0.65 3.20 3.44

Finetuning 100% : 0% 68.2 18.2 0.68 3.24 3.40

Ground-Truth - - - 0.81 3.66 3.81

Table 1: Automatic and human evaluation on abstractive summarization with constraint of f(x, y)
class. We also report the ratio of human-labeled and unlabeled training data for ACT and Finetuning.
Note that Inference w/ Constraints is also applied to ACT and Finetuning, as they are complementary.

Baselines. Prompt w/ constraints emphasizes the relation between the summary and the input
document in the prompt. Inference w/ constraints adopts the constraint verifier to rerank multiple
sampled summaries, which is shown to outperform some training-based methods in prior work (Cao
& Wang, 2021). Finetuning trains the LM with human-written summaries on the same training
instances as ACT. Note that inference w/ constraints is complementary to other approaches, so we
also apply it to ACT and finetuning.

Implementation Details. For ACT, we have two variants, with and without model warmup on 100
human-labeled data. With only a small amount of labeled data, the warm-up step enables the model to
generate reasonable responses for a relatively complicated task, even though the model still achieves
relatively low performance. We use the enhanced loss function, where lft is re-weighted and lrank
has a ranking margin. More details are in Appx. §C.

Figure 5: Average CSR of relevance constraint on
model-generated summaries. ACT achieves even
higher CSR than Finetuning.

Results. As shown in Tab. 1, ACT with model
warmup achieves comparable results in compar-
ison with finetuning, and even outperforms the
latter in terms of BERTScore in automatic evalu-
ation and coherence in human evaluation. ACT
with no human-labeled data, also performs as
well as finetuning in terms of factual consistency.
Both human and automatic evaluation indicate
that aligning the model with the automatically
verifiable relevance constraint can enhance the
model performance on text summarization. Al-
though model-generated summaries still have a
gap with ground-truth summaries, it will not be difficult to scale up the size of training data for
ACT with the help of the automatic constraint verifier. We further analyze model CSR in Fig. 5.
ACT with warmup also outperforms finetuning from the perspective of constraint satisfaction. Both
ACT and finetuning significantly outperforms the base model. This observation indicates a positive
correlation between the quality of summaries and the adherence level to the summary-document
relevance constraint.

4.3 f({xi, yi}): TEMPORAL QA

Task and Constraint. Temporal question answering seeks to answer questions about the temporal
relationship of events based on a given passage. Due to the nature of time, the responses to several
interconnected questions should not have temporal conflicts. For example, the answers to "what
happens before event A" and "what happens after event A" should have no overlap. Otherwise, an
event may occur both before and after event A, leading to a time cycle. This constraint requires to
compare multiple question-answer pairs {xi, yi}. We define a rule engine in Python as the constraint
verifier, which identifies conflicts in temporal relationships among events.

5Since this experiment seeks to evaluate ACT on a specific class of constraints, we do not consider other
stronger constraints. The “no temporal conflict” constraint only provides weak approximation of the answers.
Thus, not supergisingly, further finetuning achieves better performance.
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Figure 6: Results on temporal QA with constraint
of f({xi, yi}) class. As the raw model cannot
generate reasonable answers, we use Finetuning
(warmup) as the base model. ACT can even im-
prove the performance of a finetuned model. Fur-
ther Finetuning continually train the base model
on labeled data.5

Dataset and Metrics. We conduct experiments
on the TORQUE dataset (Ning et al., 2020),
where each passage is paired with multiple tem-
poral questions. We focus on the default set
of questions which have clear logical relation-
ships asking what happens before/during/after
an event according to a given passage. We sam-
ple 1K group of questions from the official train-
ing set, leading to 3K instances in total. We
report the average macro- and micro-F1 of three
runs on the official development set.

Baselines. Due to the complexity of the task
and constraint, the raw model cannot generate
reasonable responses and simply integrating con-
straints into the prompt or the inference process does not make the situation better. Therefore, we
mainly compare our method with finetuning on human-annotated QA pairs.

Implementation Details. Since the base model fails to give reasonable answers, we apply model
warmup for all methods. Specifically, we use 1K labeled data to warmup the model before ACT or
further finetuning.6 Then, ACT further tunes the model on 1K unlabeled data with feedback from
the constraint verifier, while further finetuning adopts additional 1K human-labeled data. When
collecting feedback from the constraint verifier, we sample 2 responses for each instance. Then, for
all the 2k response combinations of k related questions, we use the constraint verifier to find one
with no or the least conflicts as the preferred response combination. We use the preference label of
the response combination as the preference label of each response within this combination. For all
methods, we use the same three in-context examples. More details are in Appx. B and C.

Results. As shown in Fig. 6, the base model totally fails to give reasonable responses, revealing the
difficulty of the task. ACT improves the performance of the warmuped model by 2.4 points in terms
of macro-F1 and 5.5 points in terms of micro-F1. This indicates that ACT can even improve the
performance of a finetuned model.

4.4 CONSTRAINT GENERALIZABILITY

To verify the generalizability of the learned constraint, we apply ACT to train and test the LM
on different tasks with the same type of constraint. We conduct experiments on the extractiveness
constraint, where the model response must be extracted from the input, and the relevance constraint
introduced in §4.2. For the former, we evaluate constraint transfer among entity extraction, event
trigger extraction, and slot extraction, while for the latter, we evaluate constraint transfer between text
summarization and table-to-text generation. The results consistently show that the learned constraint
knowledge is transferable across tasks.

Extractiveness Constraint. We select three tasks with this constraint: entity extraction, slot ex-
traction, and event trigger extraction. The pseudo code of constraint verifier is in Appx. §A We use
FIGER for entity extraction, MASSIVE (FitzGerald et al., 2022) for slot extraction, and ACE 2005
(Walker et al., 2006) for event trigger extraction. We sample 1K instances from each of MASSIVE
and FIGER for training and 2K instances from ACE 2005 for evaluation. The CSR shows the model
capability of following the target constraint. Prompts for all tasks adopt the same format with a
constraint “You must extract the answer from the input sentence.” During training and inference,
we use five additional in-context examples. Detailed prompts and hyper-parameters can be found in
Appx. B and C. Results in Fig. 7 show that the extractiveness constraint learned from entity extraction
and slot extraction can be transferred to event trigger extraction, resulting in an improvement in CSR
ranging from 8.9% to 17.4%, respectively. This indicates that the constraint-following capability is
transferable. Combining multiple source tasks leads to better performance.

6The warmup step helps to mitigate the “garbage in, garbage out" problem, ensuring the availability of
relatively good responses to facilitate informative feedback, particularly for complex tasks.
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Source Task CSR on Target Task (T3)

- 58.8

Slot Extraction (T1) 67.7
Entity Extraction (T2) 73.9
Both (T1+T2) 76.2

Figure 7: CSR of extractiveness constraint on
event trigger extraction (T3). Learning the con-
straint from other tasks (T1 & T2) can improve
the CSR on the target task.

Source Task Target Task R-L BS

- Summarization 13.6 58.9
Table-to-Text Summarization 15.6 62.3

- Table-to-Text 21.1 60.0
Summarization Table-to-Text 22.8 61.3

Figure 8: ROUGE-L and BERTScore on sum-
marization and table-to-text with the relevance
constraint. Learning the constraint from one task
can improve the performance on the other task.

Relevance Constraint. We further evaluate constraint transfer with the task (T1: text summarization)
and constraint (relevance) in §4.2. We pair it with another task (T2: controlled table-to-text generation)
with the same constraint. For T2, we use the ToTTo dataset (Parikh et al., 2020). The experiment
setting is the same as §4.2. Results in Fig. 8 consistently show the transferability of learned constraints.

5 DISCUSSION

In this section, we delve into several topics about the generality of ACT and outline directions for
future research.

5.1 CONSTRAINT ACCESSIBILITY

We have demonstrated in §2 that informative constraints are prevalent across various NLP tasks.
Identifying constraints for a new task demands significantly less effort than manually annotating
thousands of instances. The effort and expertise needed to define constraints and implement verifiers
in ACT are comparable to those required for designing guidelines and setting up quality control
pipelines for human annotation. In human annotation, annotators also must be aware of the task
constraints, such as label options, beforehand. Without this knowledge, collecting high-quality data
for learning purposes would be impossible. We posit that specifying constraints is a prerequisite for
tasks requiring them, as humans must first understand the task constraints before annotation begins.

Constraints are prevalent in NLP tasks, and the extensive literature on these tasks serves as a valuable
resource for identifying well-defined constraints (Roth & Yih, 2004; Minervini & Riedel, 2018; Li
et al., 2019; Wang et al., 2020b; Parikh et al., 2020). At present, our approach relies on human efforts
for constraint identification and verifier implementation. However, we envision the possibility of
modularizing this process in the future. By combining different units, such as rule checkers and
scorers, intelligent agents could potentially automate the creation of constraint verifiers, reducing
the dependency on human intervention. This modular approach could streamline the workflow and
expand the applicability of ACT to a broader range of tasks.

5.2 DISTRIBUTION OF CONSTRAINT SATISFACTION RATE

To understand the fine-grained behavior of ACT, we present the constraint satisfaction rate distribution
for entity typing and summarization in Appx. §E, following the visualization style of Hong et al.
(2024). The observation is that ACT and finetuning exhibit similar distributions, while the original
model is significantly different.

5.3 CUSTOMIZING REWARD MODELS WITH ACT

While in this paper we focus on the standard finetuning process, which is the common practice of task
adaptation for LMs, some recent studies have also adapted LMs with task-specific reward models
(Wu et al., 2024; Stiennon et al., 2020). Our work does not use reward models as the main testbed
because their training cost and stability hinder them from being widely adopted in LM services. The
standard finetuning process effectively enables us to formulate the concept of ACT and prove its
effectiveness on various tasks. Nonetheless, one can definitely customizing reward models with
ACT. In Tab. 2, the experimental results show that ACT can also customize reward models achieving
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Human Preference Constraint Preference
Reward Model Prompt Accurcy Margin Accurcy Margin

No adaptation w/o cons. 26.3 0.3 17.3 0.5
No adaptation w/ cons. 42.1 0.1 35.0 0.2

ACT w/o cons. 82.0 7.0 86.4 4.9
ACT w/ cons. 80.0 8.1 88.1 5.7

Human annotation w/o cons. 87.5 7.2 79.4 5.0
Human annotation w/ cons. 86.0 6.7 80.8 3.8

Table 2: Accuracy of response preference and average margin (between chose and rejected responses)
of different reward models. We use ground-truth human preference and constraint-based preference
as gold labels for evaluation. We evaluate reward models trained with human annotation and ACT.
For each reward model, we have two variants, with and without verbalized constraints as input.

performance close to that of training with task-specific human preference. Although ACT is not
originally proposed for adapting reward models, it can distill task constraint knowledge into reward
models when human preference is unavailable.

We conduct experiments on fine-grained entity typing (§4.1) with a widely adopted reward model7 in
the huggingface hub. We use reward models with and without ACT to score and label the preference
between human-annotated gold responses and model-generated incorrect responses. To show that
ACT can achieve task adaptation performance close to methods with high-quality human annotation,
we further train a task-specific reward model with task-specific human annotation for reference. We
use two prompt variants, one with verbalized constraints (w/ cons.) and one without (w/o cons.). The
results in Tab. 2 show that the general-purpose reward model fails on giving reliable scores for the
downstream task, achieving an accuracy below 50%. It is also sensitive to the prompt, as adding
verbalized constraints into the prompt can even lead to a 15.8 point performance drop. ACT increases
the accuracy of preference labels to more than 80% with little human annotation. This result is close
to training the reward model with task-specific human annotation.

To investigate reward models’ ability of evaluating constraint satisfaction, we use them to score and
label the preference between model responses satisfying and not satisfying constraints. ACT even
outperforms the reward model finetuned with task-specific human annotation by up to 7.3 points.
This highlights the effectiveness of ACT in incorporating prior knowledge of task constraints into
models.

5.4 ACT AS A SERVICE

ACT presents a lightweight alternative to standard finetuning. With a predefined list of constraints,
future LM services could offer APIs for LM customization based on ACT. In previous subsections,
we have demonstrated that constraints are generally accessible and transferable. This enables
service providers to store reusable constraints, constraint verifiers, and constraint-integrated adapters.
Furthermore, future efforts can automate the selection of constraints and realization of verifiers. One
potential approach involves retrieving constraints based on user instructions and then constructing
verifiers by filling in templates.

6 CONCLUSION

In this paper, we propose an unified and efficient LM customization framework, ACT, aligning
LMs to constraints for task adaptation. ACT leverages automatic constraint verifiers, which are
typically easy to implement, to provide CSR as supervision signals. ACT can effectively enhance
LMs’ capability to adhere to task-specific constraints, thereby fulfilling the user intent for downstream
application. We investigate common constraints in NLP tasks, categorize them into three classes
based on the types of their arguments, and verify the effectiveness of ACT on all classes of constraints.
Experiments on constraint transfer further shows the feasibility of tuning general constraint-following
LMs. Future work may apply ACT to train compositional constraint adapters.

7OpenAssistant/reward-model-deberta-v3-large-v2
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A CONSTRAINT VERIFIERS

We present the constraint verifiers in pseudo code of Python style.

Label Option and Hierarchy.

# OPTIONS is a fixed list of valid options
# FINE2COARSE is a map from each
# fine-grained entity type to its
# corresponding coarse-grained entity type

def label_option(answers):
for x in answers:

if x not in OPTIONS:
return 0

return 1

def label_hierarchy(answers):
for x in answers:

if x not in FINE2COARSE:
continue

if FINE2COARSE[x] not in answers:
return 0

return 1

def constraint_verifier(response):
answers = response.split(", ")
first_cons = label_option(answers)
second_cons = label_hierarchy(answers)
return min(first_cons, second_cons)

Extractiveness.

def constraint_verifier(inputx, response):
csr = int(response in inputx)
return csr

B PROMPT TEMPLATE

We follow the prompt template of Taori et al. (2023) for all experiments:

TEMPLATE

Below is an instruction that describes a task. Write a response that appropriately completes
the request.
### Instruction:
{$INSTRUCTION}

### Input:
{$INPUT}

### Response:
{$RESPONSE}

Fine-Grained Entity Typing.
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INSTRUCTION

List all entity types of an entity in a given sentence.
Options: {$OPTIONS}.
If the entity is any of {$FINETYPES}, it is also {$COARSETYPE}.

INPUT

In the sentence {$SENTENCE}, what are the types of the entity {$ENTITY}?

Abstractive Summarization.

INSTRUCTION

Please generate a one-sentence summary for the given document.

INPUT

{$DOCUMENT}

Temporal QA.

INSTRUCTION

Select the best options to answer the question according to the passage.

INPUT

Passage: {$PASSAGE}
Question: {$QUESTION}
Options: {$OPTIONS}

Constraint Transfer.

INSTRUCTION

Identify the [entity / slot / event trigger] in the given sentence.
Your response must directly indicate the target information.
You must extract the answer from the input sentence.

INPUT

Which words indicate {$TYPE} in the sentence {$SENTENCE}.

C HYPER-PARAMETERS

We use the same hyperparameters in all experiments unless otherwise specified.

Training. We train the models for 10 epochs with a batch size of 32 and a constant learning rate of
1e-5. We apply LoRA modules to the query, key, and value projectors in the attention module of
each Transformer layer. The LoRA alpha, LoRA rank, and LoRA dropout are set to 16, 64, and 0.1
respectively. Following Yuan et al. (2023), we do not adjust the coefficient between Lft and Lrank,
but simply add them. All inputs are left padded to 1,024 tokens. Note that we sampled 10% of the
collected data for validation. For constraint transfer, we enlarge the size of LoRA modules and the
learning rate to accommodate the shared constraint knowledge from different tasks. Specifically, we
set LoRA alpha to 32, LoRA rank to 64, and constant learning rate to 2e-5.
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Inference. During evaluation, we apply greedy decoding. For response sampling, we apply diverse
beam search with four beams, four beam groups, and a diversity penalty of 1.

D EXPERIMENTS ON COMMONGEN

We also compared constrained decoding and ACT on a subset of the CommonGen validation set.
Constrained decoding achieved a ROUGH-L score of 41.6, while ACT, after less than 300 training
steps, achieved a score of 42.0, further demonstrating the effectiveness of ACT. Additionally, we
observed that the constraint satisfaction rate (CSR; i.e., concept coverage in this case) for constrained
decoding is highly dependent on the beam size, whereas ACT can achieve a CSR of 92.3% without
requiring further intervention. This highlights the different advantages of ACT and constrained
decoding.

E DISTRIBUTION OF CONSTRAINT SATISFICATION RATE

Figure 9: CSR distribution of entity typing. Figure 10: CSR distribution of summarization.

F LIMITATIONS

Due to license and accessibility restrictions, we cannot verify the effectiveness of ACT across a wide
range of LMs. Despite the similarities in model structures and training processes among these LMs,
variations in their implementation details may result in slightly different performance gains when
applying ACT. Furthermore, while ACT notably reduces the cost of data collection for custom tasks,
the steps involving constraint selection and verifier realization still require human effort. Automating
these steps would contribute to further improvements. Finally, while our work demonstrates the
potential of training various constraint-following adapters and general constraint-following models,
we acknowledge that there is ample room for further exploration in this expansive area, providing
opportunities for future research.

G HUMAN EVALUATION

The interface including instructions for human evaluation is shown in Fig. 11.
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Figure 11: Human evaluation interface.
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