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Figure 1. TwoSquared results: TwoSquared takes a pair of 2D images representing the initial and final states of an object as input and
generates texture-consistent, geometry-consistent 4D continuous sequences. It is designed to be robust to varying input quality, operating
without the need for predefined templates or object-class priors. This adaptability enables greater flexibility in processing diverse images
while maintaining structural integrity and visual coherence throughout the generated sequences. As demonstrated, our approach effectively
handles humans, objects, and inanimate objects. The code is available at https://sangluisme.github.io/TwoSquared/.

Abstract

Recovering a 4D motion from sparse visual information

(such as two temporal frames of a subject) is a significant

challenge. While humans are able to hallucinate the miss-

ing information in a plausible way, generative AI struggles

due to a lack of high-quality training data and heavy com-

puting requirements. To overcome these limitations, we pro-

pose TwoSquared, a method that obtains a 4D plausible se-

quence from just two 2D RGB images corresponding to the

beginning and the end of the action. We propose to solve the

problem in two steps: 1) first, obtaining a 3D reconstruction

of the initial and final status, and 2) model the intermedi-

ate sequence as a physically plausible deformation. Our

method does not require templates or class-specific prior

knowledge, and can operate with arbitrary in-the-wild ex-

amples. We demonstrate our capabilities in a number of

different objects, diverse in terms of nature, class, and de-

formation, surpassing video-based alternatives, which can-

not achieve the same level of consistency.

→ These authors contributed equally.

1. Introduction

As humans, we naturally reason about our surrounding
world as a 4D space, where 3D objects evolve over time,
moving and deforming their shape following physical laws.
Modeling and analyzing such 4D representations is a crucial
step for Spatial AI, and so crucial for a number of fields such
as character animation [15], virtual reality (VR) [1, 42],
robotics, and autonomous systems [54]. Most of the ex-
isting 4D generation methods heavily rely on highly con-
trolled input data, such as synchronized multi-view video
recordings [31, 37, 60]. However, deploying such systems
is demanding, significantly restricted in terms of capturing
volume, and often economically out of reach of labs. Re-
lying on lightweight settings is appealing, but it also opens
up to growing levels of uncertainty, making it difficult to
provide texture and geometry consistency throughout the
4D sequence and to model deformations that preserve struc-
tural integrity. Such attributes are often enforced by relying
on category-specific templates [19, 67, 69] or object-class-
specific prior knowledge [8, 65], constraining the methods’
applicative domains only to popular and well-studied ob-
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jects. It is worth mentioning that recent developments in
deep learning architectures and data availability have also
opened up generalistic approaches [27, 58, 59], which hal-
lucinate 3D assets even from a single image of disparate
objects. Despite these advancements, synthesizing tempo-
rally coherent moving objects remains an open challenge,
and direct synthesis of video [2, 7] produces visually im-
pressive results, but with fundamental inaccuracies due to a
lack of explicit physical consistency. In this work, we tackle
the ambitious goal of recovering the 4D dynamic of an ob-
ject observed from the most generic setting possible: two
2D RGB images of the initial and final state. Tackling this
problem, we found two sources of ambiguity: those com-
ing from the unknown geometry of the object, and those
related to the movement between two different static obser-
vations. We advocate treating the two separately, and we de-
velop this intuition in TwoSquared. Our novel method starts
solely from two single RGB images and combines 3D Gen-
erative AI with a generic physically inspired deformation
module. Given the two images, we rely on a state-of-the-art
generative AI module to obtain the 3D geometry of the ini-
tial and final state. Then, we run a physically-inspired opti-
mization that interpolates between the two, promoting con-
sistency along all the deformation, which is continuous and
can be sampled at an arbitrary framerate. Our approach is
generic and does not need any template or class-based prior.
Compared to state-of-the-art 4D generation methods that
rely on temporal input data (e.g., full video sequences) and
employ cross-attention mechanisms across temporal, spa-
tial, and multi-view dimensions [63], we obtain more plau-
sible sequences while being significantly cheaper in terms
of computation. In summary:
1. We propose TwoSquared, the first method to solve for

4D generation starting only from a pair of 2D frames as

input.
2. TwoSquared achieves physically plausible deformations,

while maintaining texture consistency throughout the 4D
sequence, being lightweight and class-agnostic;

3. We demonstrate superior performance over state-of-the-
art methods, opening up new applications. The release
of our code will provide a useful tool to recover a 4D
sequence from sparse observations, as well as ease its
extension by future work.

2. Related Works
2.1. Single Image to 3D Generation

Generating high quality 3D representations (e.g.
meshes [23, 26, 55, 57], NeRF [13, 29, 30],
3DGS [18, 48, 68]) is a popular research direction.
Early works [38, 44, 49, 56] attempted to distill prior
knowledge from 2D image diffusion models [35, 39] to
create 3D models from text or images via Score Distillation

Sampling [36]. Despite their compelling results, these
methods suffer from two main limitations: efficiency
and consistency, due to per-instance optimization and
single-view ambiguity [26]. To improve the efficiency,
recent works [24–26, 45] separated the generation process
into multi-view generation and 3D reconstruction. To
generate consistent multi-view images, pretrained 2D
image diffusion models are finetuned using large 3D object
datasets [9, 10]. Despite the visual appealing results, the
reconstructed meshes often fail to meet the requirements
for downstream tasks (e.g. shape animation). To guarantee
high-quality mesh generation, the most recent meth-
ods [27, 50, 61, 66] discard the use of pre-trained 2D image
diffusion models but train a 3D shape generation model
from scratch, resulting in detailed geometry generation. In
our work, we will rely on the most recent single-image to
mesh generation method [50].

2.2. 4D Generation

To generate 4D assets, it is common to rely on prede-
fined templates, such as parametric models of human bod-
ies [8, 33, 34], faces, or animals [19, 69]. Templates pro-
vide robust priors on objects’ shape and deformation, but
they also restrict the applicability, as there are no such de-
formable templates for the majority of the classes. Instead,
an object’s motion can also be inferred from videos. Meth-
ods such as [20, 21, 62, 67] take a video as input, generating
a 3D shape for every frame, which are then combined into
4D sequences. Such input is often unavailable, and gener-
ating a 3D shape for every frame accumulates inconsisten-
cies along the sequence. To overcome these inconsistencies,
V2M4 [6] first generates 3D meshes for each frame using
a 3D generation backbone, then tracks camera motion us-
ing dense stereo priors to re-pose and align the meshes with
the input video, and applies pairwise registration to enforce
consistency across meshes. However, this process requires
high computational power. Another option is also to di-
rectly rely on 3D input in the form of point clouds [5, 51].
While such methods can successfully reconstruct dynamic
4D shapes, they require access to point clouds or meshes
of the same object for the entire sequence. Additionally,
[5] is limited to interpolating only within the set of trained
objects. Some methods, such as [41], work using only 3D
keyframes. While improving robustness in dynamic scenes,
it relies on having access to clean or pre-registered training
3D data. Since our approach starts only from RGB images,
we cannot assume this. Finally, generating 4D sequences
from 2D inputs has also been investigated [22, 47] lever-
aging diffusion models or text prompts to generate image
sequences, which are then used to obtain 4D outputs. Con-
sequently, their results are limited by the backbone diffusion
or language models, are hardly controllable, and are mostly
achieved on synthetic images.



Figure 2. Pipeline of TwoSquared: TwoSquared processes two input images through an image-to-3D generation block, producing two
3D meshes. We then extract per-vertex features and compute a cosine similarity map, which is refined using a functional map module
and a closed-loop check module to obtain point-to-point correspondences. These registered points are then fed into our shape deformation
module, where we model the trajectory of the deformed point cloud. During the inference time, we can directly infer the generated textured
mesh from I0 to obtain the 4D sequence.

3. Method
Motivation and overview. We aim to obtain a 4D se-
quence of meshes starting solely from two RGB images
depicting its initial and final state. We desire a deforma-
tion that is consistent, geometrically coherent, and phys-
ically plausible, while as general as possible. As illus-
trated in Fig. 2, TwoSquared consists of three components:
a 3D Generation block, which recovers the 3D shapes from
the two input images; a Vertex Registration block, which
recovers correspondences between the two shapes; and a
Shape Deformation block, which recovers the 4D deforma-
tion while ensuring smoothness and realism. We remark
that our output deformation is continuous, and hence can be
sampled at an arbitrary frame rate.

3.1. 3D Generation Block
Given the two frames I = {Ii}, i → {0, 1} as input, the
first step is recovering 3D meshes S = {Si}, i → {0, 1} out
of them. Our method is not tied to any specific approach,
and we decided to adopt Hunyuan3D [50] as our 3D gener-
ation block, since it is among the most recent and perform-
ing image-to-3D generative AI methods. We found that
Hunyuan3D can provide realistic geometries for a disparate
class of objects, making it a good fit for our generality pur-
pose. Alongside the detailed geometry, the method also
generates high-resolution texture maps using its texture-
painting module. In our pipeline, by feeding the network
with a pair of keyframe images I = {Ii}, i → {0, 1}, we
obtain 3D meshes S = {Si}, i → {0, 1} of keyframes.

3.2. Vertex Registration Block
Mesh Downsampling. Our next step is recovering a
sparse set of correspondence between S0 and S1, which
serves as a global guidance on how the semantic parts of
the first shape should deform to match the second one. Note
that we cannot rely on the assumption that the two shapes

are geometrically consistent with each other. Since we re-
cover the geometry using generative AI starting from par-
tial observations, the backbone can hallucinate different lo-
cal geometries for the two, especially on the unseen parts.
Hence, before running the Registration Block, our idea is
to downsample the shapes to ↑ 4000 vertices. This step
makes it simpler to characterize the semantics of local ge-
ometry, and we observed in our experiments that it helps to
have good-quality correspondence.
Semantic correspondence. Then, we render N =
100 depth and normal images and follow the pipeline of
Diff3F [11] to obtain the diffusion features for the mesh ver-
tices, unprojecting the per-pixel features to the 3D meshes.
For each mesh i with vi vertices, we obtain a feature matrix
with dimension Fi → Rvi→f , where f = 2048 is the feature
dimension. After that, for mesh Si and Sj , we compute the
cosine similarity matrix Mij → Rvi→vj from their feature
matrices Fi,Fj .

Thus, we can obtain point-to-point correspondences
through Mij . However, the correspondences obtained di-
rectly from Mij are noisy and inaccurate, since they only
consider the information of each point, leading to errors
such as multiple points in Si being assigned the same point
in Sj . To solve this problem, we treat Mij as a func-
tional map [32] between Si and Sj , then perform a smooth
discrete optimization algorithm [28] to refine the point-to-
point correspondences. We compute the point-to-point cor-
respondences in both directions, i.e., from shape i to shape
j, denoted as Mij , and shape j to shape i, denoted as Mji,
then we perform a close-loop check, that is, a vertex in
shape i mapped to j using Mij and mapped back using Mji

should end up in the same vertex. For x in shape i, we
compute the mis-mapped distance as

Dj
i = ↓xi ↔Mji(Mij(xi))↓ , . (1)

We only select the correspondences that are mapped close



enough, i.e., Dj
i < ωd, where ωd is the distance threshold to

filter out mismatched vertices. To increase the robustness,
if after the bidirectional check, fewer than 1000 points are
left, we initialize point-to-point correspondences of mesh
pairs using nearest neighbor search and perform the smooth
discrete optimization algorithm again.

3.3. Shape Deformation Block
Overview. At the core of our method is the modeling of
the continuous deformation between the two shapes. After
the 3D generation and registration block, two shapes gen-
erated from images and a set of noisy correspondences for
(part of) the vertices are given. Now we need to model the
deformed intermediate shapes between the pair. We solve
this problem by modeling a point trajectory using a Veloc-
ity Net V : R3 ↗ [0, T ] ↘ R3.

3.3.1 Problem Formulation.

Given two point clouds P0, P1 ≃ R3 sampled from two
shapes S0 and S1, we would like to find the suitable path
that not only moves P0 to P1, but also meets some physi-
cal condition, because the deformation between two shapes
needs to be physically plausible and geometrically tempo-
ral consistent, i.e., the structural and spatial properties of
the surfaces are preserved and the deformation is smooth.
For point x → !i ≃ Pi, i → {0, 1}, where !i is the point
domain and ! = !0 ↗!1, we want to recover its trajectory
X(t) with minimum kinematic energy [4]. The problem can
be formulated as

min
X(t)

∫ T

0

∫

!

1

2

∥∥∥∥
dX(t)

dt

∥∥∥∥
2

dxdt , (2)

s.t.
∫

!0

X(0)dx = P0,

∫

!1

X(T )dx = P1 . (3)

Instead of directly modeling the trajectory function, we
model the velocity function, i.e., we estimate V : R3↗R ↘
R3, such that

V(x, t) = dX(t)

dt
, (4)

and we could rewrite Eq. (2) using a velocity formulation:

Lv =

∫ T

0

∫

!
↓V(x, t)↓2f dxdt , (5)

where ↓·↓f is a defined norm on functional space.
Remark. One might wonder why formulating the prob-
lem as an optimal transport modeled as a velocity field be-
tween points instead of relying on mesh deformation. We
observe that points as input give more flexibility to infer
on different resolution data and free us from dealing with
self-intersection when modeling the deformation. and in-
consistencies in local resolutions. The use of an explicit and

extrinsic velocity field makes the formulation of physically
plausible properties simpler, as we are going to show in the
next section. Finally, learning a continuous velocity field
enables us to optimize our modules on low-resolution point
clouds, where we downsampled in the vertex-registration
block. This is efficient and adaptable to the available re-
sources, while it does not limit our inference, which can
still operate on an arbitrarily high-resolution mesh, as we
will show in the following section.

3.3.2 Physical Plausible Velocity Field

We need not only to solve the optimal path problem but also
to ensure the path is physically realistic in the 3D world. To
further control our path, we add physics-based constraints
to our velocity field.
Divergence-free loss and smoothness loss. To ensure a
smooth velocity field, i.e., recover a smooth trajectory X(t),
we follow [40] to use the Fobius norm on ↓V↓f as a func-
tional space norm in Eq. (4). To deal with iso-metric defor-
mation, we also add a divergence-free loss [40] Ld to ensure
the velocity field is volume-perserving:

Lv =

∫

!
↓(↔ε”+ ϑI)V(x, t)↓l2 dx,

Ldiv =

∫

!
|⇐ · V(x, t)|dx .

(6)

Distortion loss. As our training data is a set of points, un-
like mesh data, one can use constraints such as As-Rigid-
As-Possible (ARAP) [46] on neighboring vertices to en-
force rigid movement. To reduce the distortion at each indi-
vidual point, we follow [41] to incorporate distortion loss,
for D = 1

2 (⇐V + (⇐V)↑)

Ld =

∫

!

∥∥∥∥
1

6
Tr(D)2 ↔ 1

2
Tr(D ·D)2

∥∥∥∥
F

dx . (7)

Overlapping loss. To measure how good the point cloud
P0 is moved by our velocity field V at time T , that is,
our velocity field satisfies Eq. (3), we add one overlapping
penalty:

Lo = dist(

∫ T

0

∫

!0

V(x, t)dxdt↔ P1) . (8)

The loss requires that after P0 is moved by the velocity field,
it overlaps with P1. We use the Chamfer distance as the
overlapping metric in our case.
Normal loss. As we sample points from meshes, we can
also rely on well-behaved normals. We denote the normal
of a point x as n(x). At each time step, the point is moved
by:

x↓ = x+ V(x, t)”t . (9)



The local deformation near the vertex x can be approxi-
mated by the deformation gradient [16]:

F(x, t) = I+⇐V(x, t) . (10)

The normal can also be updated from x to x↓:

n↓ = F↔↑n . (11)

Such a loss on the normals requires that after moving the
point cloud P0 by our velocity field V , the normals align
with those of point cloud P1 at time T , i.e., for x → !0↗

Ln =

∥∥∥∥∥

∫ T

0
F(x, t)↔↑n(x)dt↔ n(x1)

∥∥∥∥∥ , (12)

where !0⇒ ≃ ! is the points where the correspondences
are known.
Stretching loss. After we establish the normal update
equation Eq. (11), we follow the idea presented in [41] to
compute a loss to penalize the stretching. Different from
them, as they obtain the normals from the implicit surface
representation function, our normals are passed through the
deformation gradient operator F, which only works with
our normal update term Eq. (11). We define the tangent
projection operator as P = I↔ n↑n, and

Ls =

∫

!0

∥∥P↑(F↑F↔ I)P
∥∥
F
dx , (13)

where ↓·↓F is the Frobenius norm [12] of a matrix.
Matching loss. Finally, we integrate into the whole point
cloud chamfer loss Eq. (8) the set of sparse correspondences
obtained by the vertex registration block. We use them to
supervise the velocity V as well, and to provide semantic
information next to the geometrical one. The matching loss
is defined as:

Lm =

∥∥∥∥∥x0 +

∫ T

0
V(x, t)dt↔ x1

∥∥∥∥∥

2

. (14)

3.4. Training
Training. Given a pair of keyframe images I0, I1, we
first generate 3D meshes S0, S1 for each of them and the
per-vertex features. Then we compute the pairwise cor-
respondences. Then we sample k = 20, 000 points from
meshes together with estimated correspondences, obtaining
two point clouds. We refer to the ordered set of the two as
{P0, P1}. The total loss then is:

L =ϖvLv + ϖdivLdiv + ϖoLo + ϖnLn

+ ϖsLs + ϖmLm + ϖdLd ,
(15)

where ϖv , ϖdiv ϖo, ϖn, ϖs, ϖm, and ϖd are hyperparameters,
serve as weights for each loss term.

Extended to multi-pairs. If for a sequence more than
two keyframes are available, TwoSquared naturally extends,
with almost no modification to the procedure described
above. An example is shown in 1, while we point to supple-
mentary material for the minor details.
Inference. At inference time, we can input S0 vertices
into our velocity neural network to evolve the shape in a
continuous 4D mesh sequence. We highlight that such a
continuous velocity field provides tracking of points along
time, and so a 4D continuous dense correspondence for all
the intermediate shapes. Also, we are not bound by any
time discretization, and the deformation can be produced at
an arbitrary framerate. Finally, by deforming the first shape
along the whole sequence, we are able to automatically pro-
vide geometry and structure consistency.

4. Experiments
4.1. Setting

Network architecture. We use Hunyuan3D-2 [50] as the
3D generation backbone to obtain meshes of the keyframes.
Then, we pass the generated mesh pair to Diff3F [11] to
get per-vertex features. Our Velocity-Net contains only an
8-layer MLP with 256 nodes, enabling fast training and
near real-time inference. Our method is implemented us-
ing purely JAX [3].
Comparison baseline. As we are the first method to ad-
dress 4D generation for pairs of images, we propose a set
of competitive baselines in two different categories. First,
we consider the deformation as 2D image morphing. Diff-

Morpher [64] and DreamMover [43] are state-of-the-art
methods which take a source image I0 and a target image
I1 and morph them to generate an intermediate image se-
quence. Both methods leverage pre-trained text-to-image
diffusion models (Stable Diffusion [39]) and train LoRAs
[14] to fine-tune. We treat the generated image sequence
as a time-dependent 2D sequence, and we plug the inter-
mediate frames into Hunyuan3D [50], obtaining a 4D se-
quence. Second, we compare with the newest video-to-4D
reconstruction method V2M4 [6]. It is worth mentioning
that V2M4 assumes a static monocular camera sequence as
input, a much more demanding input than ours.
Validation datasets. We perform a quantitative evaluation
on the 4D-DRESS [53] dataset, composed of real-scanned
human motions equipped with a high frame rate RGB image
sequences and ground truth textured 3D mesh sequences.
We select two sequences and we pick every 5th image as
an input image to generate the deformed 4D sequences
and compare them against the ground truth intermediate
shapes. For qualitative comparison, we use a variety of im-
age sources, such as video keyframes in Consistent4D[17],
the dataset used by V2M4 [6], daily photographs, and im-
ages collected from the web, demonstrating the robustness



of our method.
Training and Inferencing Time. To train our network
on an image pair, we require around 15 minutes, which
mainly involves running Hunyuan3D [50] inference (3 min-
utes per shape), computing per-vertex features (5 minutes
per shape), and the vertex registration block and then the de-
formation optimizing block (both less than 1 minute). Our
training is performed on point clouds sampled from low-
resolution meshes, which is efficient, especially for recov-
ering the correspondence, while at inference time it oper-
ates at arbitrary resolution without additional overhead. In
contrast, image-morphing-based methods have a generation
time that increases linearly with the desired frame rate. For
instance, using DiffMorpher [64] plus Hunyuan3D [50] to
obtain a deformed 4D sequence with 30 frames will need
around 60 minutes only for generating 4D meshes. Ad-
ditionally, a change in the frame rate is possible only by
retraining the whole method. The video-to-4D reconstruc-
tion method V2M4 [6] is computationally more expensive;
it needs a high-end NVIDIA GPU with at least 40 GB of
memory, and it takes approximately 50 minutes for a video
with 32 frames. Finally, V2M4 generates only one mesh
per input frame, and hence, when more frames are needed,
it linearly interpolates the generated meshes.
Metrics. To quantitatively evaluate the generated se-
quence quality and physical plausibility, we compute the
Chamfer Distance (CD), and Hausdorff Distance (HD) of
deformed mesh sequences, and we also report the surface
area standard deviation SAϱ across the sequence to evalu-
ate the distortion of generated meshes [53].

4.2. Validation

In this section, we evaluate our method on multiple datasets
to demonstrate its effectiveness and compare it against base-
line approaches. We structure the evaluation into three
parts: quantitative analysis, qualitative analysis, and abla-
tion studies for each proposed loss.
Quantitative Comparison. To quantitatively evaluate our
method, we extract five keyframes from two sequences in
the 4D-DRESS [53] dataset and generate four 4D defor-
mation sequences using different methods. We then com-
pute errors using the ground truth intermediate meshes. As
shown in Tab. 1, our method achieves lower error rates
compared to other approaches. To compare with V2M4 [6],
we provide it with all the ground truth frames as a video
input, which is the setting in which they achieve the best re-
sults. In contrast, our method uses much less data and still
achieves better geometric results, without relying on ground
truth information. As shown in Fig. 3, most methods can
generate high-quality starting and ending meshes. How-
ever, methods that require per-step mesh generation often
suffer from texture inconsistencies, suggesting that relying
on 3D generative AI for all the frames accumulates incon-

Seq. Method CD (→103) ↑ HD (→102) ↑ SAω(→10) ↑

Take19

GT image 1.503 1.998 0.201
DiffMorpher [64] 1.678 2.029 1.161
DreamMover [43] 1.683 2.033 1.116
V2M4 [6] 3.300 5.489 0.114

Ours 1.451 1.996 0.201

Take7

GT image 0.099 0.145 1.079
DiffMorpher [64] 0.110 0.710 1.228
DreamMover [43] 0.126 0.186 1.359
V2M4 [6] 12.390 13.961 0.260

Ours 0.074 0.117 0.139

Table 1. Quantitative comparison: Our method achieves the best
quantitative results compared to competitors, even when they rely
on more demanding input (video) and ground truth information.

GT image +
Hunyuan3D [50]

DiffMorpher [64]
+ Hunyuan3D [50]

DreamMover [43]
+ Hunyuan3D [50]

V2M4 [6]

Ours

I0

I1

Figure 3. Comparison with other methods: TwoSquared gen-
erates texture-consistent, physically plausible 4D sequences, and
it is more robust than 4Deform [41] to correspondence noise. In
contrast, other methods show artifacts in the intermediate shapes.

sistencies. We also remark that previous approaches have
computational limitations, as adjusting the 4D sequence
frame rate requires regenerating morphing images and re-
generating meshes for each frame, making the process in-
efficient. V2M4 [6] often introduces large global rotations
when generating meshes across frames. We suspect this oc-
curs because, in its attempt to enforce global consistency,
the model includes a block for estimating camera extrinsics,
which mistakenly interprets human motion as pure camera
transformation.
Qualitative comparison with video-based methods. To
further stress the robustness of our method, we show quali-
tative comparisons with V2M4 [6] on long sequences, pro-
viding them with the same or more information than the
one used by us. In Fig. 4 we give only 7 key frames to
both methods. Our method outputs a physically plausible
deformation and structure, while V2M4 [6] creates strong



Input
Frames

V2M4 [6]
Textured Mesh

V2M4 [6]
Raw Mesh

Ours
Textured Mesh

Ours
Raw Mesh

Figure 4. Multi-pairs example: We present the textured meshes
(second and fourth rows) alongside their corresponding untextured
meshes (third and fifth rows) and compare them with V2M4 [6].
Our method produces both physically realistic deformations and
consistently maintains high-fidelity meshes across all frames.

artifacts between movements. Despite the assumption that
adjacent video frames are similar, V2M4 still requires such
a dense supervision signal. However, even with that, severe
artifacts can arise. In Fig. 5 V2M4 [6] takes the whole set of
ground truth frames as input, while our method takes only
7 keyframes. As shown, our method produces deforma-
tions that remain physically plausible and texture-consistent
across all frames, while also preserving finer texture and ge-
ometric details. Due to space constraints, for both cases we
report only a subset of the output here, while we include the
complete ones in the supplementary material.
Ablations. To demonstrate the contribution of the physical
constraints, we ablate the proposed losses on 4D-DRESS.
We report quantitative analysis in Tab. 2 and a qualita-
tive support in Fig. 6. The overlapping loss Lo enforces
global alignment between the deformed point cloud and
the target shape, making it beneficial in cases where cor-
respondences are sparse or entirely absent in local regions.
The normal loss Ln ensures that the surface normals of
the deformed point cloud align with those of the target. It
can be observed that the impact of Ln appears marginal in
certain cases, which we attribute to suboptimal correspon-
dence quality, since normal alignment can be enforced only
where correspondences exist. The stretching loss Ls gen-
erally enhances the overall quality of the deformation re-
sults. In most real-world scenarios, correspondences are
neither uniformly distributed nor perfectly accurate. Com-
pared to synthetic data, estimated correspondences in real-
world cases tend to exhibit significantly lower quality, of-
ten leading to missing correspondences in whole regions.

Input
Frames

V2M4 [6]
Textured Mesh

V2M4 [6]
Raw Mesh

Ours
Textured Mesh

Ours
Raw Mesh

Figure 5. Multi-pairs example: We present the textured
meshes (second and fourth rows) alongside the corresponding
untextured meshes (third and fifth rows), comparing them with
V2M4 [6]. Our method achieves comparable results using only
sparse keyframes. Our approach generates high-resolution meshes
that capture fine details in texture and surface geometry.

While the spatial continuity of the velocity field is enforced
through Eq. (5), this constraint alone is sometimes insuf-
ficient to prevent local distortions. The stretching loss Ls

complements the spatial smoothness constraint by penaliz-
ing excessive local shear and stretching. As demonstrated in
Tab. 2, omitting Ls frequently results in substantial surface
area deviation (SAϱ). This effect is further corroborated by
the visualizations in Fig. 6, where the absence of stretch-
ing loss leads to unrealistic elongation of the leg region. In
summary, both quantitative and qualitative ablation studies
confirm that each loss term contributes.

4.3. Applications
We aim to demonstrate the generality of TwoSquared,
which makes it suitable to work on in-the-wild images such
as frames from the web. Such robustness also enables new
applications, such as editing from hand sketches or pose
transfer from different subjects.
Motion transfer for web image pairs. Our method en-
ables the creation of dynamic 4D sequences from web im-
ages, generating smooth and realistic animations that adapt
to various styles and contexts. For example, the two input
images do not need to depict the exact same object. Hence,
we can use our method to perform pose transfer by deform-



Seq. Method CD (→102) ↑ HD (→10) ↑ SAω(→10) ↑

Take19

w/o Lo 1.462 1.998 0.201
w/o Ln 1.539 1.965 0.202
w/o Ls 1.458 2.004 0.223

Ours 1.451 1.996 0.201

Take7

w/o Lo 0.075 0.119 0.140
w/o Ln 0.074 0.119 0.137
w/o Ls 0.081 0.126 0.486

Ours 0.074 0.117 0.139

Table 2. Quantitative ablation: We show the effect of every loss
by isolating its contribution. Stratching loss provides help in lim-
iting area distortion, while the loss on normals provides a less evi-
dent impact, being bound to the correspondence quality.

w/o Lo

w/o Ln

w/o Ls

Ours

I0

I1

⇑ ⇑

⇑ ⇑ ⇑

Figure 6. Visualization of ablations: The stretching loss and
overlapping loss help the shape to remain physically plausible.
While the normal loss has little qualitative impact, it does lead
to quantitative improvements, as reported in Table 2.

ing the subject of the initial image I0 (preserving its iden-
tity) into the pose of the ending image I1. Fig. 7 shows an
example of a deformation between two horse images. Our
method creates temporally consistent 4D sequences, while
DiffMorpher [64] fails to interpolate this image pair and so
the 3D generation task. DreamMover [43] successfully de-
formed the image from I0 to I1. However, since the follow-
ing 3D generations are based on the deformed 2D images,
it results in texture blending, losing subject identity.

DreamMover [43]
+ Hunyuan3D [50]

Ours

I0

I1

⇑
Figure 7. 4D reconstruction from web images: Our method can
take a pair of images as input and generate the temporally consis-
tent 4D deformation between these two objects.

I0

I1

Ours
front

Ours
side

Ours
back

Figure 8. Daily photo example: Our method can directly take
images that are taken in daily life and generate continuous 4D se-
quences for different objects, animals, and humans. In the figure,
we demonstrate the different angles of the 4D mesh sequences to
show that our method generates high-quality meshes for each step.

4D reconstruction from photos. We also show in Fig. 8
how our approach can directly process real-world images,
which often contain inconsistencies such as variations in
brightness. These inconsistencies lead to changes in sub-
ject’s appearance across multiple photos. Image-morphing-
based 4D generation methods struggle in such cases, often
failing outright or transferring such inconsistencies onto the
generated meshes. Another challenge with real-world ob-
jects is their structural complexity. For example, fine de-
tails such as a cat’s whiskers are difficult to preserve using
image-morphing methods (see the first red circle), which
often fail to reconstruct such intricate features (see supple-
mentary material for a comparison). In contrast, our method
effectively addresses these challenges, producing 4D se-
quences that maintain both texture consistency and geomet-
ric integrity. To further demonstrate the quality of our re-
sults, Fig. 8 presents the generated meshes from multiple
angles, highlighting the high fidelity of our reconstructions.

5. Conclusion & Future work
We presented TwoSquared as the first approach that gener-
ates a complete 4D sequence of an arbitrary object from
just a pair of images, by combining the latest advances
in 3D reconstruction with physically plausible modeling
of the deformation. While we show promising results on
this new challenge, there remain significant open problems.
We address a broad class of objects (non-rigid deforma-
tion of articulated shapes), but whether our deformations
model would scale to more intricate scenarios where thou-
sands of separate deformations happen simultaneously, e.g.,
hair, is yet to be explored. Such challenges would require
highly precise tracking, which is not available at present,
and would be an exciting future direction. Ultimately,
TwoSquared opens up the interesting new challenge of 4D
reconstruction from minimal input, serving as a fundamen-
tal step to 4D AI generations.
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