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Abstract

NMR-based structure elucidation models are often accurate yet opaque: they rarely1

indicate which specific measurements drove a call or what to acquire next. We2

introduce Counterfactual NMR, a causal audit that asks: What minimal, chemically3

plausible edit to the spectrum would flip this prediction? Edits are single-peak4

interventions constrained to expert ppm windows for 1H/13C (e.g., carbonyl 13C5

190–220 ppm); a fast search selects the smallest change that maximally increases6

a target probability. Effects are quantified by per-sample treatment τ̂ , cohort Av-7

erage Treatment Effect (ATE) with 95% CIs, and lift versus a window-matched8

randomized baseline to separate specificity from generic sensitivity; mechanistic9

ablations (1H-only/13C-only/both) test alignment with textbook chemistry. On10

near-boundary cohorts (0.35<p<0.65), minimal 13C interventions produce large,11

precise shifts—e.g., ketone ATE 0.336 (95% CI [0.315, 0.357], flip 0.684) and al-12

cohol ATE 0.272 (95% CI [0.261, 0.283], flip 0.800)—with targeted effects 2–4×13

stronger than random edits under the same constraints. Ablations confirm chem-14

istry (carbonyl/ketone are 13C-driven; alcohol shows balanced 1H/13C+synergy);15

edits remain sparse and realistic. Counterfactual NMR turns interpretability into16

actionable recourse, enabling trustworthy auditing, targeted data curation, and17

principled next-experiment selection in functional group prediction workflows.18

1 Introduction19

Automated and semi-automated structure elucidation (ASE/CASE) systems map NMR spectra to20

molecular structures or substructures and are increasingly capable in routine settings. Yet practitioners21

face three persistent pain points: (i) models are opaque about which specific measurements drive a22

call; (ii) failures under distribution shift (solvent/field changes, impurities, unusual motifs) are hard23

to diagnose; and (iii) experiment planning remains heuristic—chemists still ask, “Which additional24

measurement would most change or confirm this prediction?” Even with widely adopted 1D/2D25

experiments (1H, 13C, HSQC, HMBC) central to connectivity inference, current ML explanations26

largely remain correlational and non-actionable [4, 3, 2].27

Most popular interpretability tools (feature importances, saliency, SHAP) summarize correlations28

but do not answer the experimentalist’s question: What minimal, chemically plausible change to the29

spectrum would flip this decision? They are not linked to an intervention a spectroscopist could realize30

by acquiring a different experiment or by recognizing/adding a peak in a known ppm window (e.g.,31

carbonyl 13C ∼190–220 ppm; aromatic 13C ∼110–150 ppm; aromatic 1H ∼6–8.5 ppm), limiting trust,32

slowing root-cause analysis under shift, and offering little guidance for principled next-experiment33

selection [6, 1].34
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We introduce Counterfactual NMR, a causal audit and benchmark that makes NMR interpretability35

actionable for ASE. We define chemistry-constrained spectral edit operators—add/shift/attenuate36

peaks strictly within expert ppm windows for 1H/13C—so counterfactuals are both minimal and37

plausible. We pair these operators with a fast search for one-edit counterfactuals and report practice-38

oriented causal estimands (per-sample effect, cohort ATE with CIs, and lift vs. randomized edits)39

that separate specificity from generic sensitivity. We add mechanistic alignment checks via channel40

ablations (1H-only vs. 13C-only vs. both) anchored to textbook shift regions (e.g., carbonyl 13C41

∼190–220 ppm), making the inferred “causal evidence” falsifiable against chemistry.42

On open NMR data in the style of NMRShiftDB2 [5], single-peak, chemically valid 13C interventions43

induce large, reliable probability shifts on near-boundary cases for carbonyl-bearing classes and44

meaningful shifts for aromatics, indicating that models move with chemically correct evidence rather45

than spurious cues. Because edits are minimal and windows enforced, effects are interpretable as46

decision-relevant evidence, not artifacts of rescaling.47

Contributions. (1) Counterfactual, chemistry-constrained spectral interventions for NMR with48

efficient minimal-edit search. (2) Causal estimands (ATE with CIs; lift vs. randomized edits) that49

quantify decision-relevant effect sizes and isolate specificity. (3) Mechanistic alignment via 1H/13C50

ablations tied to established regions. (4) A benchmark and code for drop-in auditing within ASE,51

supporting trustworthy deployment, targeted curation, and principled next-experiment choices.52

2 Method53

Setup and interventional semantics. Let Z denote the latent molecular structure, X the observed54

spectrum (peak list or binned vector over 1H/13C), and Ŷ = h(X) a learned predictor (substructure55

logits or ASE outputs). We assume X = f(Z) + ϵ for NMR physics f and noise ϵ, and probe h56

by applying explicit, chemistry-constrained interventions to X . An edited spectrum is x′ = x⊕∆,57

where ∆ is a domain-valid spectral edit (defined below). For a target label t, let pt(x) = P (Ŷt =58

1 | X = x). The per-sample counterfactual effect is τ̂ ti = pt(x
′
i) − pt(xi). Over a cohort D,59

the (C)ATE is ÂTE
t
= 1

|D|
∑

i∈D τ̂ ti . To assess specificity (i.e., causal signal beyond generic60

sensitivity), we compute a paired randomized baseline using the same windows and edit budget but61

random locations and report Lift = ÂTEtargeted − ÂTErandom. When D contains near-boundary cases62

(0.35 < pt(x) < 0.65), the estimand is a CATE.63

Chemistry-constrained edit operator. We use a single actionable operator that adds one peak64

at ppm δ with bounded normalized amplitude a inside expert windows Wt for the target: x′ =65

x⊕∆(δ, a) with δ ∈ Wt and a ∈ [0, amax]. Examples include ketone 13C 190–220 ppm; aromatic66
13C 110–150 ppm and 1H 6.0–8.5 ppm; aldehyde 1H 9.0–10.5 ppm. We set amax = 0.8 on the67

max-normalized scale. This “add-one-peak” operator maximizes interpretability and identifiability;68

shift and attenuate variants are retained as extensions.69

Minimal-edit search. For target t and spectrum x, candidates are evaluated on a fixed ppm grid70

within Wt and we select71

∆⋆ = arg max
∆∈Ct

(
pt(x⊕∆)− pt(x)

)
− λ∥x− (x⊕∆)∥1 − γ 1{#edits > 1},

with λ = 0.1 and a large γ enforcing max_edits=1. We use a greedy selection (beam-k optional),72

and log proximity (ℓ1 change), sparsity (edit count), and rule-consistency diagnostics.73

Cohorts, randomized baseline, and inference. We evaluate on near-boundary cases (0.35 <74

pt(x) < 0.65), where recourse is most decision-relevant. For each case, we generate K random edits75

(same windows, amplitude, and edit budget) to obtain a paired randomized effect on the exact same76

spectrum. We report ATE with 95% CIs (nonparametric bootstrap or t-interval when appropriate)77

and Lift. Significance for ATE lift uses a paired t-test or a paired permutation test (recommended78

for small n). Flip-rate lift (at threshold 0.5) uses McNemar’s test on paired decisions (targeted vs.79

random).80

Data, representation, and predictor. We use an open NMR set with SMILES and81
1H/13C peak lists (1849 molecules in our split). Substructure labels are derived82
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Table 1: Counterfactual effects on near-boundary cohorts. Edit budget: one peak, domain windows;
proximity penalized. Lift compares targeted vs randomized edits within the same windows/budget.

Label n ATE ↑ 95% CI Flip ↑ ATErand Fliprand ATE Lift (p) Flip Lift (p)

Ketone 19 0.336 [0.315, 0.357] 0.684 0.018 0.105 +0.318 (< 10−6) +0.579 (3×10−4)
Aromatic 11 0.382 [0.341, 0.423] 0.273 0.085 0.091 +0.298 (3.5×10−9) +0.182 (0.269)
Methyl 45 0.351 [0.337, 0.365] 0.467 0.117 0.244 +0.234 (1.5×10−20) +0.222 (0.0277)

Carbonyl 50 0.414 [0.398, 0.431] 0.500 0.057 0.140 +0.357 (1.7×10−37) +0.360 (1.1×10−4)
Ester 33 0.315 [0.300, 0.330] 0.576 0.097 0.273 +0.219 (1.4×10−17) +0.303 (0.0128)
Amide 17 0.309 [0.289, 0.330] 0.647 0.101 0.294 +0.208 (1.0×10−8) +0.353 (0.0393)
Methoxy 32 0.442 [0.413, 0.472] 0.375 0.138 0.250 +0.304 (7.8×10−14) +0.125 (0.281)

Halogen 50 0.041 [0.032, 0.050] 0.240 0.001 0.080 +0.040 (5.7×10−9) +0.160 (0.0291)
Alcohol 20 0.272 [0.261, 0.283] 0.800 0.069 0.300 +0.203 (8.7×10−13) +0.500 (0.0015)

Proximity (avg): ketone 0.80; aromatic 0.76; methyl 0.80; carbonyl 0.80; ester 0.80; amide 0.80; methoxy 0.75; halogen 0.51; alcohol 0.80.
Rule-consistency, intensity realism, mutual exclusivity: 1.00 for all labels.

Table 2: Channel ablations (∆p mean per case). Carbonyl is driven entirely by 13C windowing;
ester/amide/methoxy also show strong 13C contributions with mild 1H synergy.

Label 1H-only ∆p 13C-only ∆p Both ∆p

Ketone 0.157 0.345 0.421
Aromatic 0.131 0.351 0.307
Methyl 0.098 0.337 0.372
Carbonyl 0.000 0.448 0.448
Ester 0.089 0.295 0.343
Amide 0.072 0.305 0.346
Methoxy 0.171 0.481 0.499
Halogen 0.064 0.064 0.126
Alcohol 0.162 0.274 0.390

For carbonyl, no viable 1H candidates were present; “Both” equals the 13C effect (union fallback).

from SMARTS for aromatic, carbonyl, aldehyde, ketone, ester, amide, alkene,83

alkyne, methoxy, halogen, nitro, alcohol, amine, methyl. Spectra are binned as 1H84

0–12 ppm at 0.02 ppm (600 bins) and 13C 0–220 ppm at 1.0 ppm (220 bins), concatenated and max-85

normalized per sample (dim=820), with peaks assigned to nearest bins. Unless noted, h is one-vs-rest86

logistic regression with Platt calibration (80/20 split; fixed seed).87

Mechanistic ablation. To test channel roles, we repeat the search under 1H-only, 13C-only, and both.88

If a channel has no candidates, “both” falls back to the other (union fallback). We summarize mean89

∆p per channel, a dominance ratio (13C:1H), and a synergy score defined as (both−max{H,C}).90

Defaults and reproducibility. Unless specified: a = 0.8, λ = 0.1, max_edits=1, K = 5 random91

baselines per case, 1H grid 0.1–0.2 ppm, 13C grid 0.5–1.0 ppm, calibrated probabilities enabled. All92

reported metrics are averaged over the near-boundary cohort with CIs and paired tests as above.93

3 Discussion94

We report in Table 1 the model-level causal effects of minimal, chemistry-constrained spectral edits on95

near-boundary cases (0.35 < pt(x) < 0.65). The ATE is the average change in calibrated probability96

pt after a one-peak intervention within expert ppm windows; larger ATE means the model’s decision97

is more sensitive to the targeted (chemically valid) evidence. Lift subtracts the effect of a matched98

randomized edit (same windows/budget) on the same spectrum, isolating specificity from generic99

sensitivity; p-values test whether this targeted-vs-random difference is nonzero. Flip is the fraction of100

near-boundary cases that cross the 0.5 decision threshold under the targeted edit; the corresponding101
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lift compares to random edits. The footnotes summarize proximity (smaller perturbations indicate102

more minimal edits) and feasibility checks (rule-consistency, intensity realism, mutual exclusivity).103

Table 2 ablates channels by re-running the search under 1H-only, 13C-only, and their combination.104

Here ∆p is the mean per-case probability gain; “Both” uses a union fallback when one channel has105

no viable candidates.106

Main findings (Table 1). Targeted one-peak edits yield large, precise probability shifts on ambigu-107

ous spectra for chemically anchored labels. Carbonyl shows the strongest effect (ATE 0.414, lift108

+0.357, p≪ 10−10) and high flip lift (+0.360, p=1.1×10−4), indicating that adding a carbonyl-109

region 13C signal is both highly effective and specific in moving the model’s decision. Ketone behaves110

similarly (ATE 0.336, lift +0.318, p≈ 0; flip lift +0.579, p=3×10−4), consistent with carbonyl-111

driven evidence. Ester, amide, and alcohol also exhibit substantial targeted effects and significant flip112

lifts, reflecting clear, actionable model sensitivity to their characteristic windows. Notably, aromatic113

achieves a large ATE (0.382) despite near-ceiling baseline AP; however, its flip lift is not significant114

(small n and high baseline confidence), which is consistent with strong probability movements that115

do not always cross the 0.5 threshold. At the other extreme, halogen shows a small but statistically116

specific effect (ATE 0.041, lift +0.040), and a modest flip lift, suggesting that substantially larger or117

additional evidence is needed to decisively alter halogen calls.118

Minimality and plausibility. Across labels the edits remain sparse and small (one-peak budget;119

proximity around ∼ 0.8 for most labels), and all feasibility checks pass (1.0 for rule-consistency,120

intensity realism, and mutual exclusivity). The lower proximity reported for halogen indicates121

comparatively larger perturbations were needed to achieve any movement, matching its small ATE;122

by contrast, carbonyl/ketone/amide achieve large, specific effects with small edits, evidencing tight123

alignment between chemical windows and model reasoning.124

Mechanistic interpretation (Table 2). Channel ablations quantify which modality carries decision-125

relevant evidence. For carbonyl and ketone, 13C alone accounts for essentially all of the effect (e.g.,126

carbonyl 13C-only ∆p= 0.448; 1H-only has no viable candidates), matching textbook chemical127

shifts for carbonyl carbons. Amide and ester show the same 13C predominance with mild 1H128

synergy (Both > max{H,C}), while alcohol exhibits a more balanced contribution: 1H contributes129

meaningfully (broad 1–5 ppm signatures) and combining channels increases the effect further (Both130

0.390 > max{0.162, 0.274}). For aromatic, 13C-only exceeds 1H-only (specificity of sp2 carbons),131

and “Both” is slightly smaller than 13C-only, consistent with partial redundancy between channels132

under a one-peak budget. These patterns strengthen the claim that observed effects arise from133

chemically correct regions, not spurious shortcuts.134

Implications for ASE and experiment planning. Because the reported effects are computed on135

near-boundary spectra, they function as a triage score for what evidence is most likely to change an136

uncertain call. The large ATE and flip lifts for carbonyl-bearing hypotheses recommend prioritizing a137

quick 13C acquisition in the 190–220 ppm window for ketone/aldehyde differentials; the balanced but138

synergistic alcohol result suggests value in acquiring both channels when feasible. More broadly, the139

targeted-vs-random lift provides a principled check before investing time in additional experiments:140

if lift is small or non-significant (e.g., halogen), further edits or 2D connectivity data (HSQC/HMBC)141

may be required to affect the decision.142

4 Conclusion143

Our findings are model-level (algorithmic recourse) rather than claims about the physical Z→X144

mechanism: they reveal which measurements cause the model to change its output. Estimates are145

conditioned on the edit family (one-peak additions within expert ppm windows) and on near-boundary146

cohorts, i.e., a CATE rather than a global ATE. The binned representation omits fine multiplet structure147

and J-coupling; extending the operators and adding 2D spectra (e.g., HSQC/HMBC) is a natural148

next step. Small-n cohorts can yield wider flip-rate intervals even when ATEs are precise, so we149

emphasize paired targeted-vs-random lift and confidence intervals to guide interpretation. Overall,150

minimal, chemistry-constrained counterfactual edits move model probabilities in the right spectral151

regions, yielding large, statistically specific effects for carbonyl-derived labels and interpretable152
1H/13C roles across the board.153
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Defaults and reproducibility. Unless specified: a=0.8, λ=0.1, max_edits= 1, K=5 randomized154

edits per case, 1H grid step 0.1–0.2 ppm, 13C step 0.5–1.0 ppm, 80/20 split with fixed seed, calibrated155

probabilities. All reported metrics are averaged over the near-boundary cohort with CIs and paired156

tests as above.157

Appendix: Additional Details158

Operator variants and realism. Shift and attenuate operators are available but disabled by default159

to preserve identifiability of causes; when enabled, shifts are capped to small ∆δ within Wt, and160

attenuations are bounded so as not to create chemically impossible constellations. Mutual-exclusivity161

checks prevent contradictory edits, and intensity draws can be sampled from empirical distributions162

learned from experimental libraries.163

Window tables and grids. We maintain per-label windows for 1H and 13C (e.g., carbonyl C:164

190–220 ppm; amide C: 165–180 ppm; aromatic C: 110–150 ppm; aldehyde H: 9.0–10.5 ppm; methyl165

C: 10–40 ppm; aromatic H: 6.0–8.5 ppm). Candidate grids default to 0.1–0.2 ppm for 1H and166

0.5–1.0 ppm for 13C.167

Beam search and complexity. Beam-k search (typically k∈{3, 5}) lowers myopic failures and is168

linear in k times the number of candidate ppm bins. Vectorized scoring batches all candidates per169

case for efficient inference.170

Statistics and testing. We compute CIs via nonparametric bootstrap (1,000 resamples) unless n is171

large, and use paired t-tests or paired permutation tests for ATE lift. Flip-rate lift uses McNemar’s172

test with continuity correction. Reported p-values are two-sided.173

Implementation notes. All spectra are max-normalized per sample before edits; proximity uses174

ℓ1 on the concatenated vector. We fix random seeds for splits and baselines. If one channel lacks175

candidates, the “both” condition defaults to the available channel to avoid spurious zero effects.176

Optional multi-edit mode (up to three edits) is supported with an additional penalty term and177

consistency checks.178
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