
Published as a Tiny Paper at ICLR 2024

SELF-TEACHING PROMPTING FOR MULTI-INTENT
LEARNING WITH LIMITED SUPERVISION

Cheng Chen1,2 Ivor W Tsang1,2,3,4
1The Australian Artificial Intelligence Institute (AAII), University of Technology Sydney, Australia
2Centre for Frontier AI Research, A∗STAR, Singapore. 3Institute of High Performance Computing, A∗STAR, Singapore4School of Computer Science and Engineering, Nanyang Technological University, Singapore
{Cheng.chen-16@student.uts.edu.au}, {ivor tsang@cfar.a-star.edu.sg}

ABSTRACT

Multi-intent learning with limited supervision involves predicting multiple inten-
tions of utterances using only a few annotated samples. The primary motivation
for this task stems from the high costs and cumbersome processes associated with
annotating large datasets. To mitigate this, we propose utilising Large Language
Models (LLMs) for annotation assistance. Although LLMs show promise, they
struggle with response randomness, and their previous prompts is static and do
not learn from their outputs. To address this, we propose ‘self-teaching prompt-
ing’ (STP), a method that enables Large Language Models (LLMs) to iteratively
learn from their consistent samples and refine their predictions over time. Our
experiments with multi-intention datasets demonstrate that STP significantly en-
hances response accuracy.

1 INTRODUCTION

Spoken Language Understanding (SLU) (Young et al., 2013), a key function in spoken dialogue
systems, is primarily aimed at accurate intent classification (Tur & De Mori, 2011). The success
of multi-intent detection, as explored in various studies (Gangadharaiah & Narayanaswamy, 2019;
Kim et al., 2017; Qin et al., 2021; Xing & Tsang, 2022; Veličković et al., 2017), has relied on
traditional methods of obtaining clean annotations, such as crowdsourcing and manual annotation.
Nonetheless, these methods are becoming increasingly inadequate due to the exponential growth of
data samples. To mitigate this, we propose using Large Language Models (LLMs) such as ChatGPT
(Devlin et al., 2018; Touvron et al., 2023; OpenAI, 2023) for annotating unlabelled samples. How-
ever, they often produce random and inconsistent outputs. As a result, prompt-based learning has
emerged (Brown et al., 2020; Wei et al., 2021; Yao et al., 2022; Diao et al., 2023; Liu et al., 2023).
Nonetheless, these methods are limited to ’static prompting’, which does not allow LLMs to learn
from their responses, resulting in sub-optimal response accuracy. This issue is particularly detri-
mental in fields requiring high-quality annotations, such as recommendation system, medicine and
legal text mining. Subsequently, we propose a Self-Teaching Prompting(STP) approach, enabling
LLMs to iteratively improve the accuracy and consistency of responses.

2 PROBLEM STATEMENT

We define an utterance space vector as x ∈ X , and the feature space is X ⊆ Rd, where d de-
notes the utterance length. We denote the label space as Y = [k], where [k] = {1, 2, 3, . . . , k},
and k > 2 represents the size of the intents class. In our problem setting, an unsupervised distri-
bution DX = {x1, x2, . . . , xn} over the input space is given. We use ChatGPT, denoted as Gr,
for the prompting task, where r, a temperature parameter, controls the level of randomness in gen-
erating label predictions for each input sample x. We denote a clean utterance space vector as
a ∈ X , and its corresponding label as t ∈ T , where the label space T is defined as T = [k],
with [k] being the set of class labels 1, 2, 3, . . . , k. Additionally, we consider a small, clean dataset
DAT = {(a1, t1), (a2, t2), . . . , (as, ts)} over the instance and label spaces, where s represents the
total number of instances in the clean dataset. In the MixATIS dataset, s = 70, and in the MixS-
NIPS dataset, s = 400. The true label set T , defined as T = [k], where [k] is the set of class labels
{1, 2, 3, . . . , k}.

1

Published as a Tiny Paper at ICLR 2024

3 SELF-TEACHING PROMPTING

Self-teaching prompting is designed to solve issues of response randomness, the static nature of
previous prompts, and lack of learning from outputs.

Hints: Hints are used to solve the issue of response randomness. Initially, we select an example
with the highest contextual similarity score to utterance x from a small set of clean samples as a hint
to help reduce the response randomness in ChatGPT3.5.

Consistent-Sample as Additional Hints: Additional hints enable LLMs to learn more reliable
knowledge from consistent sample. Gr generates the predicted label sets Y⃗r, where r is the temper-
ature parameter controlling the randomness level in label prediction for each input sample x ∈ X .
Specifically, for each xi, Gr(xi, atop, ttop) = Y⃗ti , where atop and ttop are the example and its true
intent with the highest embedding score with xi chose from the hint. This holds for all i ∈ [N] =
{1, 2, 3, . . . , N} , where N is the total number of training sample and ∀r ∈ {0.1, 0.3, 0.5, 0.7}.
Consequently, four predicted sample distributions with varying temperature parameters r are ob-
tained, denoted as Dr = {(xi, Y⃗r,i)|xi ∈ X}. The selection criterion for the consistent distribution
defined as Dc = {(xi, Y⃗ci)|xi ∈ X and Y⃗r=0.1,i = Y⃗r=0.3,i = Y⃗r=0.5,i = Y⃗r=0.7,i}, including only
instances with matching prediction label sets across all four temperature-based configurations Gr.

Self-Teaching Prompting: Self-Teaching Prompt solves the static nature of the Prompts. For the
first epoch, consistent-sample process requires four repetitions and each repetition is using a differ-
ent randomness parameter r of the ChatGPT Gr. Subsequently, a consistent sample Dc is chosen
from those with identical prediction sets. The selected consistent sample is then merged with the
initial hints (a small set of clean samples), which is then exploited in the next prediction round. This
procedure is repeated for a total of three epochs. The algorithm table A.0.1 is presented in appendix.

4 EXPERIMENTS

Figure 1: Multi-Intent Accuracy/Matching Comparison of our Self-Teaching and Chain of Thought Prompt,
Random-CoT Prompt (Our Baseline Method), Tree of Thought, Few Shots. Accuracy/Matching Rate is defined
as (Correct Predictions/Number of Samples Used).

In Table 1 (A.3) of the Appendix, we have shown a comparison of our methods with the Chain of
Thought Prompt and Random-CoT Prompt (Our Baseline Method) to verify the effectiveness of the
method. The left-hand side line chart in Figure 1 demonstrates the intent accuracy rate for MIXSNIP,
while the right-hand side shows the intent accuracy rate for MIXATIS.

5 CONCLUSION

This paper presents a new paradigm for iteratively updating prompts by using their own generated
responses in a large language model for multi-intent learning with limited supervision. Our results
demonstrate that learning how to self-correct prompts can be valuable and significantly improve
performance in intent detection tasks.

2

Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one key author meets the URM criteria for ICLR 2024 Tiny
Papers Track.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al. Snips voice plat-
form: an embedded spoken language understanding system for private-by-design voice interfaces.
arXiv preprint arXiv:1805.10190, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought
for large language models, 2023.

Rashmi Gangadharaiah and Balakrishnan Narayanaswamy. Joint multiple intent detection and
slot labeling for goal-oriented dialog. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 564–569, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1055. URL https:
//aclanthology.org/N19-1055.

Charles T Hemphill, John J Godfrey, and George R Doddington. The atis spoken language systems
pilot corpus. In Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990, 1990.

Byeongchang Kim, Seonghan Ryu, and Gary Geunbae Lee. Two-stage multi-intent detection for
spoken language understanding. Multimedia Tools and Applications, 76:11377–11390, 2017.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference 2023,
2023.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Ankan Mullick, Abhilash Nandy, Manav Nitin Kapadnis, Sohan Patnaik, and R Raghav. Fine-
grained intent classification in the legal domain. arXiv preprint arXiv:2205.03509, 2022a.

Ankan Mullick, Abhilash Nandy, Manav Nitin Kapadnis, Sohan Patnaik, R Raghav, and Roshni Kar.
An evaluation framework for legal document summarization. arXiv preprint arXiv:2205.08478,
2022b.

Ankan Mullick, Ishani Mondal, Sourjyadip Ray, R Raghav, G Sai Chaitanya, and Pawan Goyal.
Intent identification and entity extraction for healthcare queries in indic languages. arXiv preprint
arXiv:2302.09685, 2023.

OpenAI. Gpt-4 technical report, 2023.

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. Agif: An adaptive graph-interactive framework
for joint multiple intent detection and slot filling. arXiv preprint arXiv:2004.10087, 2020.

3

https://aclanthology.org/N19-1055
https://aclanthology.org/N19-1055

Published as a Tiny Paper at ICLR 2024

Libo Qin, Fuxuan Wei, Tianbao Xie, Xiao Xu, Wanxiang Che, and Ting Liu. GL-GIN: Fast and
accurate non-autoregressive model for joint multiple intent detection and slot filling. In Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
178–188, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-long.15. URL https://aclanthology.org/2021.acl-long.15.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Gokhan Tur and Renato De Mori. Spoken language understanding: Systems for extracting semantic
information from speech. John Wiley & Sons, 2011.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Bowen Xing and Ivor W Tsang. Co-guiding net: Achieving mutual guidances between multi-
ple intent detection and slot filling via heterogeneous semantics-label graphs. arXiv preprint
arXiv:2210.10375, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. Pomdp-based statistical spoken
dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179, 2013.

4

https://aclanthology.org/2021.acl-long.15

Published as a Tiny Paper at ICLR 2024

A APPENDIX

A.0.1 ALGORITHM TABLE

Algorithm 1: Self-Teaching Prompt
Data: Initial small set of clean samples De,A,T (Initial Hints), where e = 0. Training

distribution of DX

Learning Objective: Refined Prediction label set of samples from ChatGPT
Initialisation: Loading Initial small set of clean samples De,A,T , where e = 0;
Randomness level: R = {0.1, 0.3, 0.5, 0.7};
for e ∈ {0, 1, 2} do

for r ∈ R do
for Each x in Training Distribution of D(X) do

Compute cosine similarity 1 between x and each a in the hints using lower
embedding extracted using Word2vec model;

Choose example (aTOP, tTOP)
1from De(A, T), based on highest cosine similarity

score with x to be fed into Gr(x, a, t);
Select consistent samples Dec, where e is the e-th epoch, with the same prediction

set across Gr(x, a, t), ∀r ∈ R;
end

end
/* Update the hints for the next epoch */

De+1,c(A, T,Xc, Y⃗c) = De,A,T (A, T) ∪Dec(Xc, Y⃗c) /* The updated hints now
consist of initial small set of clean sample and new
consistent samples of first epoch */

end

A.0.2 SIMILARITY SCORE

Similarity =
W (a) ·W (x)

∥W (a)∥∥W (x)∥
(1)

where W stands for the word2vec model (Mikolov et al., 2013). It produces the lower embedding of
the example sentence a and input question x. It has been first trained on whole sentences datasets X .
The cosine similarity score is used to evaluate the word embedding similarity between the Question
x and Sample a. The positive example is determined as following:

atop, ttop = argmax
(ai,ti)∈De,(A,T)

Similarity(ai, x) (2)

A.0.3 EVALUATION METRICS FOR PROMPTING

The matching/accuracy ratio is designed to measure the exact matching rate between the predicted
label set and the tru label set. It is denoted as:

Matching/Accuracy Ratio =
Number of correctly predicted labels

Total number of samples
(3)

The Subset Ratio evaluate the ratio of the predicted label set that includes the true label set. The
subset ratio is only used in dealing with multi-intents classification task. It is defined as:

Subset Ratio =
Number of predicted label sets that includes true labels

Total number of samples
(4)

These metrics is used to measure the performance of our proposed prompting method in terms of
intent prediction accuracy and the subset intent prediction.

1In the implementation, the cosine similarity score is used to select top positive samples, with a single top sample chosen in the first epoch
and top-ranked samples chosen in subsequent epochs for datasets MixATIS and MixSNIPS.

5

Published as a Tiny Paper at ICLR 2024

A.0.4 EXPERIMENT

A.1 DATASETS

The experiments are implemented on two open source multi-intents datasets. One of the datasets is
MixATIS (Hemphill et al., 1990; Qin et al., 2020), which consists of 13162 utterances for training,
756 utterances for validation and 828 utterances for testing. The other one is MixSNIPS (Coucke
et al., 2018; Qin et al., 2020), with 39776, 2198 and 2, 199 utterances for training, validation and
testing dataset.

A.2 ADDITIONAL DATASETS FOR GENERALIZABILITY OF SELF-TEACHING PROMPTING
(STP)

In our study, we have enhanced the scope of testing the generalizability of our Self-Teaching Prompt-
ing (STP) method by incorporating multi-lingual and multi-domain additional datasets. Specifically,
we included the legal dataset, as detailed in Mullick et al. (2022a;b), along with the medical dataset
from Mullick et al. (2023). The legal dataset is comprehensive, comprising 1,385 training samples
across four distinct intents. Furthermore, we expanded our experiment to add Healthcare datasets,
namely the Indian Healthcare Query Intent-WebMD and 1mg (IHQID-WebMD). The dataset pro-
vide an authentic representation of Indian hospital query data, spanning several Indic languages
such as Hindi, Bengali, Tamil, Telugu, Marathi, and Gujarati. However, for the purposes of our
evaluation, we will only focus on the English and Gujarati versions of these datasets. Each of these
language versions contains 306 training samples, collectively covering a total of four intents. This
diversified dataset selection is integral to measuring the adaptability and effectiveness of our STP
approach in real-world, multilingual contexts.

A.3 BASELINES

• Chain of Thought Prompt (Wei et al., 2022): This method provides a step-by-step, ground
truth explanation to ChatGPT, allowing it to follow a logical sequence of thoughts.

• Self-Consistency Prompt (Wang et al., 2022): This method aims to enhance the consistency
of generated answers by sampling multiple and diverse paths using a few-shot chain of
thought approach.

• Random-CoT Prompt: This serves as the baseline for Self-Teaching Prompting. Instead of
using our proposed iterative framework, it randomly selects an answer from our consistent
sample distribution without adapting to our self-taught scheme.

• Tree of Thoughts Prompt (ToT): (Long, 2023; Yao et al., 2023) designed the Tree of
Thoughts (ToT) prompt. It endows Large Language Models (LLMs) with the ability to
engage in intermediate step exploration and correction by ‘communicating to themselves.’

• Few Shots Prompt: (Brown et al., 2020) introduces the concept of few-shot prompts, which
use a few examples as demonstrations in the prompt to help the model improve its perfor-
mance.

A.3.1 EXPERIMENTAL RESULTS

The Table 1 presents a comparison of accuracy between the Self-Teaching Prompting Method and
other methods. Table 2 displays the intent matching/accuracy for the additional baseline methods,
Tree of Thoughts and Few Shots.

A.4 COST AND BENEFIT TRADE OFF ANALYSIS

The iterative process of STP, which requires multiple epochs and temperature configurations, in-
evitably increases computational resource usage compared to methods that do not need iterative
updates. However, the increased complexity and resource usage are justified by the improved accu-
racy. In addition, it should be noted that even our initial learning phase outperforms other prompting
methods. Additionally, in resource-constrained environments, STP can be adjusted by decreasing
the number of epochs and number of temperatures, given the available resources. This adaptability

6

Published as a Tiny Paper at ICLR 2024

Table 1: ChatGPT 3.5 Generated Prediction Label Set: Matching Ratios and Subset Ratios for two
whole datasets (MixATIS and MIXSNIPS) at different confidence levels (0.1, 0.3, 0.5, and 0.7).
Random-CoT Prompting uses randomly selected example from the positive sample pool for each
question.

Level of Randomness 0.1 0.3 0.5 0.7 Average Diff from Third Epoch (MixATIS)
MixATIS - Chain of Thought Prompting

Matching Ratio 0.3073 0.3000 0.3045 0.286 0.2995 0.1182
Subset Ratio 0.5164 0.5153 0.5185 0.498 0.5120 0.0196

MixATIS - Random-CoT Prompt (Baseline)
Matching Ratio 0.3403 0.3382 0.3386 0.3286 0.3364 0.0813

Subset Ratio 0.5106 0.5102 0.5152 0.5064 0.5106 0.0210
MixATIS - Self-Teaching Prompting - First Epoch

Matching Ratio 0.3733 0.3767 0.3761 0.3448 0.3677 0.05
Subset Ratio 0.5705 0.5764 0.5784 0.5516 0.5692 -0.0376

MixATIS - Self-Teaching Prompting - Second Epoch
Matching Ratio 0.4322 0.4231 0.4366 0.4054 0.4243 -0.0066

Subset Ratio 0.5423 0.5381 0.5583 0.5316 0.5426 -0.011
MixATIS - Self-Teaching Prompting - Third Epoch

Matching Ratio 0.39832 0.4302 0.4208 0.4215 0.4177 -
Subset Ratio 0.5141 0.5401 0.5351 0.5372 0.5316 -

MIXSNIPS - Chain of Thought Prompting Diff from Third Epoch (MIXSNIPS)
Matching Ratio 0.3962 0.4147 0.4352 0.4567 0.4257 0.3555

Subset Ratio 0.4459 0.4644 0.4814 0.5004 0.4730 0.3325
MIXSNIPS - Random-CoT Prompt (Baseline)

Matching Ratio 0.568 0.602 0.586 0.568 0.581 0.2002
Subset Ratio 0.612 0.63 0.622 0.63 0.623 0.1825

MIXSNIPS - Self-Teaching Prompting - First Epoch
Matching Ratio 0.6613 0.6765 0.6832 0.6869 0.6770 0.1042

Subset Ratio 0.7455 0.7602 0.7680 0.7715 0.7613 0.0442
MIXSNIPS - Self-Teaching Prompting - Second Epoch

Matching Ratio 0.7925 0.7557 0.7548 0.7589 0.7655 0.0157
Subset Ratio 0.8238 0.7913 0.7904 0.7960 0.8004 0.0051

MIXSNIPS - Self-Teaching Prompting - Third Epoch
Matching Ratio 0.7688 0.7783 0.7951 0.7827 0.7812 -

Subset Ratio 0.7936 0.8018 0.81867773 0.8077 0.8055 -

Figure 2: Intent Accuracy and Subset Ratio Comparison of our Self-Teaching and Chain of Thought
Prompt, Random-CoT Promp (Our Baseline Method).

endows STP with the flexibility to operate in various scenarios, making it a feasible solution even
when computational resources are scarce. The results shown in Tables 5, 6, and 7 illustrate a
drastic improvement in intent accuracy through the Self-Teaching Prompting (STP) approach. More
specifically, we observe continuous improvement in intent accuracy across each epoch, indicating
the efficacy of the STP in improving model performance and reducing randomness. For instance, in

7

Published as a Tiny Paper at ICLR 2024

Dataset Few Shots Prompting Tree of Thought Prompting
Subset Ratio Matching/Accuracy Ratio Subset Ratio Matching/Accuracy Ratio

Mixatis 0.5371 0.3452 0.5600 0.3600
Mixsnips 0.7871 0.7316 0.7425 0.6729

Table 2: Comparison of Subset and Accuracy Ratios for Mixatis and Mixsnips on ToT and Few
Shots Prompting. The above results are conducted using temperature at 0.7.

Method Total Estimated Time Total Estimated Cost (Dollars)
Our Method 92 hours, 27 minutes, and 45 seconds 59.779152
ToT 14 hours, 7 minutes, 22 seconds 11.724276
Few Shots 10 hours, 17 minutes, 33 seconds 30.905524

Table 3: Total Estimated Time and Cost for Different Methods on MIXSNIPS.

the Medical Dataset (English) as shown in Table 5, the STP method demonstrates a consistent in-
crease in matching ratio/accuracy across multiple epochs. Starting with an intent accuracy of 0.8385
in Epoch 1, the method shows gradual improvement. This trend indicates the STP’s ability to endow
the model with self-teaching capabilities and progress over each epoch. In addition, compared to
other methods such as Tree of Thought and Few Shots Prompting, the STP method exhibits superior
intent accuracy and lower standard deviation, as shown in the Legal Dataset (English) in Table 7.
The STP method not only outperforms in terms of intent accuracy but also demonstrates high con-
sistency, as indicated by the lower standard deviations. Lastly, Table 4 shows that the Self-Teaching
Prompting (STP) method is a cost-effective approach, especially when dealing with challenging
tasks like multi-intent classification. It costs only 8 dollars, yet achieves a 7.91% higher intent ac-
curacy compared to the Few Shot method and a 6.43% improvement in intent accuracy against the
ToT method. Therefore, the total cost incurred remains significantly low.

A.5 SELF-TEACHING PIPELINE

A few of Clean
Samples

(Initial Hints)
Epoch=(r=0)

 Self-Teaching
Prompting

(STP)
"ChatGPT"=G

Consistent
Samples

(Additional
Hints)

Epoch=(r+1)

Total
Hints
Pool

 Epoch Iterate

Consistent Samples: The samples with the same prediction
across

Query

Consistent
Samples

(Additional
Hints)

Epoch=(r+2)

Figure 3: Self-Teaching Prompting

A.6 EXPERIMENT ON ADDITIONAL DATASETS

We have conducted experiments on additional datasets, including a medical dataset in both English
and Gujarati (one of the languages of India), as well as a legal dataset. These are shown in Table 2
(Medical Dataset in English), Table 3 (Medical Dataset in Gujarati), and Table 4 (Legal Dataset).
We compared our Self-Teaching Prompting (STP) method with Chain of Thought (CoT), Self-
Consistency, Tree of Thought, and Few Shot Prompting. Our method consistently outperforms
the other methods. We conducted experiments at four different temperatures to demonstrate the
consistency of our work. The total cost (US dollars) and estimated time for each dataset are also
included, corresponding to all methods.

8

Published as a Tiny Paper at ICLR 2024

Dataset Total Estimated Time Total Estimated Cost (Dollars)
Our Method 8 hours, 46 minutes, 28 seconds 19.56491814
Few Shots 1 hours, 52 minutes, 6 seconds 11.104942

Table 4: Total Estimated Time and Cost for Our Method and other method on MIXATIS

Method Matching Ratio/Accuracy Std Estimate Time Total Cost
Our (STP)

STP Epoch 1 0.8385 0.004259 0h 15m 52s 0.27418
STP Epoch 2 0.8352 0.001419 0h 11m 58s 0.27352
STP Epoch 3 0.8401 0.001412 0h 11m 52s 0.27352
STP Epoch 4 0.8418 0.002718 0h 11m 54s 0.27354

Self-Consistency
Self-Consistency 0.7984 0.00882 0h 12m 2s 0.28546

Chain of Thought
Chain of Thought 0.7672 0.01331 0h 11m 59s 0.27550

Tree of Thought
Tree of Thought 0.7459 0.0314 0h 15m 46s 0.37620

Few Shots
Few Shots 0.8082 0.008518 0h 11m 57s 0.39214

Table 5: Summary of Metrics Medical Dataset (Single Intent Classification) in English. The Std
denotes standard deviation

Method Metric Std Estimate Time Total Cost
Our (STP)

STP Epoch 1 0.740164 0.002719 0h 12m 7s 0.936448
STP Epoch 2 0.740164 0.003573 0h 11m 59s 0.936008
STP Epoch 3 0.741803 0.008479 0h 12m 6s 0.937416
STP Epoch 4 0.745082 0.002719 0h 12m 0s 0.936544

Self-Consistency
Self-Consistency 0.711475 0.004016 0h 12m 8s 1.019896

Few Shots Prompting
Few Shots Prompting 0.690164 0.008828 0h 11m 58s 1.430464

Chain of Thought
Chain of Thought 0.646721 0.019723 0h 12m 8s 1.019896

Tree of Thought
Tree of Thought 0.726230 0.033796 0h 12m 9s 0.837304

Table 6: Summary of Metrics Medical Dataset (Single Intent Classification) in Gujarati. The Std
denotes standard deviation

Metric Matching Ratio/Accuracy Std Estimate Time Total Cost
Our (STP)

STP Epoch 1 0.577978 0.007047 0h 14m 38s
6.86064STP Epoch 2 0.594224 0.005306 0h 14m 6s

STP Epoch 3 0.598014 0.003477 0h 14m 14s
Self-Consistency

Self-Consistency 0.576173 0.076412 0h 41m 54 s 1.78551
Tree of Thought Prompting

Tree of Thought 0.522563 0.012551 0h 13m 52s 2.02092
Few Shots Prompting

Few Shots 0.581408 0.004128 0h 14m 55s 4.17343
Chain of Thought Prompting

Chain of Thought 0.575632 0.004772 0h 13m 8s 2.28816

Table 7: Summary of Metrics for Legal Dataset (Single Intent Classification) in English. The Std
denotes standard deviation.

A.7 EXPERIMENTAL DETAILS

In Self-Teaching Prompting (STP), the group prompting format, where each query consists of mul-
tiple utterances, has been utilised on the MixATIS and MixSNIPS datasets to obtain a prediction for
each utterance from ChatGPT. This formatting is more economic for large scale multi-intent clas-
sification tasks. The single prompting format, where each query consists of a single utterance, has
been applied to Legal and Medical datasets (in both English and Gujarati).

9

Published as a Tiny Paper at ICLR 2024

A.8 STP PROMPTING OVERALL STRUCTURE

In the following we have provided overall structure of our Self-Teaching Prompting.
import openai
import numpy as np
import pandas as pd
import json
from gensim.models import Word2Vec
import time

Set your OpenAI API key
api_key = "YOUR_API_KEY"
openai.api_key = api_key
temperatures=[0.1,0.3,0.5,0.7]
[Other initializations and configurations]
examples=[Clean Samples]
Function to calculate similarity between sentence and examples
def calculate_similarity(sentence, examples, model):

sentence_vector = np.mean([model.wv[word] for word in sentence.lower().split() if word in model.wv], axis
↪→ =0)

similarities = {}
for example, vector in examples.items():

if np.isnan(vector).any() or np.isnan(sentence_vector).any():
continue

try:
similarity = np.dot(vector, sentence_vector) / (np.linalg.norm(vector) * np.linalg.norm(

↪→ sentence_vector))
if not np.isnan(similarity):

similarities[example] = similarity
except Exception as e:

print(f"Error calculating similarity for ’{example}’: {e}")
return similarities

Main processing loop
for epoch in range(3):

for temperature in temperatures:
[Processing code for each epoch and temperature]
...

Calculate similarities and select top similar example
example_vectors = {example: model.wv[word] for word in example.split() if word in model.wv}
for sentence in dataset:

similarities = calculate_similarity(sentence, example_vectors, model)
top_similar_example = max(similarities, key=similarities.get)

[Further processing with the selected example]

10

	Introduction
	Problem Statement
	Self-Teaching Prompting
	Experiments
	Conclusion
	Appendix
	Algorithm Table
	Similarity Score
	Evaluation Metrics for Prompting
	Experiment

	Datasets
	Additional Datasets for generalizability of Self-Teaching Prompting (STP)
	Baselines
	Experimental Results

	Cost and Benefit Trade off Analysis
	Self-Teaching Pipeline
	Experiment on Additional Datasets
	Experimental Details
	STP Prompting Overall Structure

