
Published as a conference paper at ICLR 2024

THE BLESSING OF RANDOMNESS: SDE BEATS ODE
IN GENERAL DIFFUSION-BASED IMAGE EDITING

Shen Nie1,2∗, Hanzhong Allan Guo1,2, Cheng Lu3, Yuhao Zhou3,
Chenyu Zheng1,2, Chongxuan Li1,2†
1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China
3Department of Computer Science and Technology, Tsinghua University, Beijing, China
{nieshen, guohanzhong, chongxuanli}@ruc.edu.cn;
{lucheng.lc15, yuhaoz.cs, chenyu.zheng666}@gamil.com;

ABSTRACT

We present a unified probabilistic formulation for diffusion-based image editing,
where a latent variable is edited in a task-specific manner and generally deviates
from the corresponding marginal distribution induced by the original stochastic
or ordinary differential equation (SDE or ODE). Instead, it defines a correspond-
ing SDE or ODE for editing. In the formulation, we prove that the Kullback-
Leibler divergence between the marginal distributions of the two SDEs gradually
decreases while that for the ODEs remains as the time approaches zero, which
shows the promise of SDE in image editing. Inspired by it, we provide the SDE
counterparts for widely used ODE baselines in various tasks including inpainting
and image-to-image translation, where SDE shows a consistent and substantial im-
provement. Moreover, we propose SDE-Drag – a simple yet effective method built
upon the SDE formulation for point-based content dragging. We build a challeng-
ing benchmark (termed DragBench) with open-set natural, art, and AI-generated
images for evaluation. A user study on DragBench indicates that SDE-Drag sig-
nificantly outperforms our ODE baseline, existing diffusion-based methods, and
the renowned DragGAN. Our results demonstrate the superiority and versatility of
SDE in image editing and push the boundary of diffusion-based editing methods.
See the project page https://ml-gsai.github.io/SDE-Drag-demo/
for the code and DragBench dataset.

1 INTRODUCTION

The primary objective of image editing tasks is to manipulate the content of a given image in a
controlled manner without deviating from the data distribution. As a representative example, point-
based dragging (Pan et al., 2023) provides a user-friendly way to manipulate the image content
directly. Although the field has witnessed numerous endeavors exploring diverse editing meth-
ods (Meng et al., 2021; Rombach et al., 2022; Su et al., 2022; Wu & De la Torre, 2022; Couairon
et al., 2022; Hertz et al., 2022; Zhao et al., 2022; Shi et al., 2023; Mou et al., 2023a), leveraging
(large-scale) pre-trained diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020b) to achieve remarkable empirical performance, there remains an absence of genuine attempts
to comprehend and expound upon this process from a probabilistic perspective.

To this end, we present a unified probabilistic formulation (see Fig. 1a, left panel) for diffusion-
based image editing in Sec. 3.1, encompassing a wide range of existing work (see Tab. 1). In
the formulation, the input image undergoes inversion or noise perturbation first, followed by ma-
nipulation or domain transformation to generate a task-specific latent variable. Starting from it, a
stochastic differential equation (SDE) or a probability flow ordinary differential equation (ODE)
is defined by a pretrained diffusion model. Notably, they differ from the ones used for sampling
because the corresponding marginal distributions mismatch. In Sec. 3.2, we theoretically show the

∗Work done during an internship at ShengShu, Beijing, China.
†Correspondence to Chongxuan Li.
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(a) Technical contributions. The left and right panels illustrate the unified probabilistic perspective for image
editing in diffusion and how to manipulate the latent variable in SDE-Drag respectively. Best viewed in color.

(b) Results in Dragging. The top and bottom rows visualize the results of SDE-Drag on real images and fake
ones produced by Stable Diffusion (Rombach et al., 2022; Podell et al., 2023) and DALL·E 3 respectively. In
particular, the last example shows that SDE-Drag can drag miniature lightning into the mug, which is mentioned
in the text description yet missing in the original sample from DALL·E 3. See more in Appendix G.3.

Figure 1: Overview of the paper. (a) Technical contributions. (b) Visualization of SDE-Drag.

promise of the SDE formulation for general image editing: the Kullback-Leibler (KL) divergence
between marginal distributions of the SDEs decreases as the time tends to zero while that of the
ODEs remains the same.

Inspired by the analyses, we provide the SDE counterparts for widely used ODE baselines in various
tasks. In particular, we propose a simple yet effective method (dubbed SDE-Drag) built upon the
SDE formulation for point-based content dragging (Pan et al., 2023) in Sec. 4.1. Distinct from the
prior work (Pan et al., 2023; Shi et al., 2023; Mou et al., 2023a), SDE-Drag manipulates the latent
variable in a straightforward copy-and-paste manner (see Fig. 1a, right panel) instead of performing
optimization in the latent space. We further build a challenging benchmark (termed DragBench)
with 100 natural, art, and AI-generated samples open-set for evaluation in Sec. 4.2.

In Sec. 5, we conduct extensive experiments on various tasks including inpainting, image-to-image
translation, and dragging, where the SDE counterparts show a consistent and substantial improve-
ment over the widely used baselines. Notably, SDE-Drag can not only deal with open-set images
but also improve the alignment between the prompt and sample from advanced AI-painting systems
like Stable Diffusion and DALL·E 3 (see Fig. 1b).

2 BACKGROUND

We present preliminaries on diffusion models, SDE and ODE samplers, and data reconstruction
algorithms in this section and discuss other related work in detail in Appendix C.
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Diffusion models. Let x0 denote a D-dimensional random variable follows a data distribution
q0(x0). Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) introduce
a forward process {xt}t∈[0,T ] that gradually adds Gaussian noise to x0 and defines:

q0t(xt|x0) = N (xt|
√
αtx0, (1− αt)I), (1)

where αt is a function of t that decreases monotonically. Besides, α0 = 1 and αT is sufficiently
small to ensure q0T (xT |x0) ≈ N (0, I). We denote the distribution of xt as qt(xt). It is equivalent
to represent the forward process as the following stochastic differential equation (SDE):

dxt = f(t)xtdt+ g(t)dwt, (2)
where wt is a standard Wiener process. For simplicity, we consider the VP type SDE (Song et al.,
2020b), i.e., f(t) = d logαt

2dt and g2(t) = −dαt

dt −
d logαt

dt (1−αt). The forward process has an equiv-
alent backward process referred to as the reverse-time SDE, which recovers q0(x0) from qT (xT ):

dxt =
[
f(t)xt − g2(t)∇xt

log qt(xt)
]
dt+ g(t)dw̄t, (3)

where w̄t is a standard Wiener process with backward time and∇xt
log qt(xt) is the score function

of qt(xt). A diffusion model parameterizes the score functions by a neural network sθ(xt, t), which
can be equivalently reparametrized as a noise prediction model ϵθ(xt, t). Taking ϵθ(xt, t) as an
example, the reverse-time SDE is given by

dxt =

[
f(t)xt +

g2(t)√
1− αt

ϵθ(xt, t)

]
dt+ g(t)dw̄t. (4)

We denote the marginal distribution of xt defined by Eq. (4) as pt(xt)
1. Insightfully, there exists a

probability flow ordinary differential equation (ODE), whose marginal distribution for any given t
matches pt(xt) (Song et al., 2020b). Formally, the ODE is defined as:

dxt =

[
f(t)xt +

g2(t)

2
√
1− αt

ϵθ(xt, t)

]
dt. (5)

Samplers. Samples can be generated from the diffusion model by discretizing the reverse SDE (i.e.,
Eq. (4)) (Ho et al., 2020; Bao et al., 2022b; Lu et al., 2022c) or ODE (i.e., Eq. (5)) (Song et al., 2020a;
Lu et al., 2022b) from T to 0. The ODE solvers often outperform SDE solvers given a few (e.g.,
10 − 50) steps and therefore are popular in sampling and editing. In particular, as a representative
and widely adopted approach, DDIM (Song et al., 2020a) produces samples as follows:

xt =
√
αt

(
xs −

√
1− αsϵθ(xs, s)√

αs

)
+
√
1− αt − σ2

sϵθ(xs, s) + σsw̄s, (6)

where s > t, σs = η
√
(1− αt)/(1− αs)

√
1− αs/αt, η = 0 and w̄s is a standard Gaussian noise.

For fairness, we employ DDPM (Ho et al., 2020) as the SDE sampler in our experiment, which is
also given by Eq. (6) with η = 1. We present the algorithms of both samplers in Appendix A.

Data reconstruction. To preserve relevant information about the input image, most editing methods
require a way to produce a latent variable that can reconstruct the input. This can be easily imple-
mented by ODE samplers because of its invertability. In fact, taking DDIM as an example, the latent
variable can be directly produced by Eq. (6) with s < t and η = 0, which is called DDIM inversion.

However, the SDE is nontrivial to invert because of the noise injected. The previous work (Wu &
De la Torre, 2022) proposes to invert the forward process of DDPM as follows:

xs =

√
αs

αt
xt +

√
1− αs

αt
w,w ∼ N (0, I), (7)

w̄′
s =

1

σs

(
xt −

√
αt

(
xs −

√
1− αsϵθ(xs, s)√

αs

)
−
√

1− αt − σ2
sϵθ(xs, s)

)
, (8)

where s > t. Intuitively, it first adds noise to obtain latent variables from data in Eq. (7) and solves
the “noise” w̄′

s to be added to reconstruct the data through Eq. (6). It is easy to check that if we plug
in w̄′

s and xs into the DDPM sampler in Eq. (6) with η = 1, we can reconstruct xt perfectly. Note
that it can be extended to all SDE solvers and we refer to the sampling process of SDE given w̄′

s to
Cycle-SDE for coherence. We present more details and algorithms of both reconstruction processes,
as well as preliminary experiments on their reconstruction ability in Appendix A.

1We omit the dependence on θ in pt(xt) for simplicity.
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Table 1: Summary of prior work in a unified formulation. I2I means the image-to-image transla-
tion task. As for the editing type, AM means to add a mask to combine the sampling result and noise
input. CL and CP mean to change the label and prompt during sampling respectively. OL means to
optimize the latent variable via gradient descent. See more details in Appendix B. In this paper, we
add SDE counterparts for the ODE-based methods, as highlighted in blue in the last column.

Task Methods x0 → xt0 Edit x̃t0 → x̃0 New results

Inpainting Meng et al. (2021); Zhao et al. (2022) Noise AM SDE

Inpainting Rombach et al. (2022) Noise AM ODE Tab. 2

I2I Couairon et al. (2022); Hertz et al. (2022) ODE CP ODE Fig. 2

I2I Su et al. (2022) ODE CL ODE Tab. 6

I2I Wu & De la Torre (2022) Noise CL Cycle-SDE

Dragging Shi et al. (2023); Mou et al. (2023a) ODE OL ODE Fig. 3

3 THE BLESSING OF RANDOMNESS IN DIFFUSION-BASED IMAGE EDITING

In this section, we formulate a broad family of image-editing methods in diffusion models from a
unified probabilistic perspective in Sec. 3.1 and show the potential benefits of SDE in Sec. 3.2.

3.1 A GENERAL PROBABILISTIC FORMULATION FOR IMAGE EDITING

In particular, given a pretrained diffusion model parameterized by θ, an image x0 to be edited, and
a potential condition c such as a label or text description, we identify two common stages for our
general probabilistic formulation.

The first stage initially produces an intermediate latent variable xt0 through either a noise-adding
process (e.g., Eq. (7)) or an inversion process (e.g., Eq. (6) with s < t and η = 0), where t0 ∈
(0, T ] is a hyperparameter. Then, the latent variable xt0 is manipulated manually or transferred to a
different data domain by changing the condition c in a task-specific manner2. We refer to the edited
latent variable as x̃t0 , which deviates from the corresponding marginal distribution pt0(·) in general.

The second stage starts from x̃t0 and produces the edited image x̃0 following either an ODE solver
(e.g., Eq. (6) with η = 0), an SDE Solver (e.g., Eq. (6) with η = 1), or a Cycle-SDE process (e.g.,
Eq. (6) with η = 1 and w̄′

s from Eq. (8)). This formulation encompasses a board family of methods,
as summarized in Tab. 1. We illustrate these two stages in the left panel of Fig. 1a and please refer
to Appendix B for more details.

Notably, the edited image x̃0 does not follow p0(·) in general because the marginal distributions
at time t0 mismatch, making the editing process distinct from the well-studied sampling process.
However, to the best of our knowledge, most of the prior work for image editing is empirical and
there remains an absence of attempts to comprehend and expound upon the editing process precisely.
Moreover, as mentioned in Sec. 2 and Tab. 1, due to the popularity of ODE in sampling and the
property of easy to reverse, ODE is widely adopted in editing methods, and existing SDE-based
approaches are rare and focus on a very specific task.

Our probabilistic perspective provides a general and principled way to study the editing process,
from which we attempt to answer the following natural and fundamental problems in the paper. Is
there any guarantee on the sample quality of the edited image (i.e., the gap between its distribution
and the data distribution)? Do the SDE and ODE formulations make any difference in editing?

3.2 THEORETICAL ANALYSES

We present theoretical analyses here and we employ the widely adopted KL divergence to measure
the closeness of distributions by default. Throughout the paper, we focus on analyzing the different

2Here we omit the detail that some existing methods manipulate the latent in multiple steps (see details in
Appendix F). Nevertheless, our analyses in Sec. 3.2 apply to both the one-step and multiple-step editing.
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behaviors of SDE and ODE formulations with mismatched prior distributions. Therefore, we assume
the model characterizes the true score functions (see Sec. 6) for simplicity. In such a context, all of
ODE, SDE, and Cycle-SDE can recover the data distribution without editing. Formally, we assume
that they characterize the same marginal distribution pt and pt = qt for any t ∈ [0, T ]. We present a
discussion in Appendix D.1 about the rationality of using p as a surrogate for q both theoretically and
empirically. Besides, we consider general cases for all 0 ≤ s < t ≤ T . By setting different values
of s and t, our results apply to both one-step and multiple-step editing. Please see Appendix D for
more details and all proofs.

We first prove that the KL divergence between the marginal distributions of two SDEs with mis-
matched prior distributions gradually decreases while that for ODEs remains as the time approaches
zero as shown by the following Theorems 3.1-3.2, respectively.
Theorem 3.1 (Contraction of SDEs, see Appendix D.3). Let p̃t and pt be the marginal distributions
of two SDEs (see Eq. (4)) at time t. For any 0 ≤ s < t ≤ T , if p̃t ̸= pt, then under some mild
regularity conditions listed in Lu et al. (2022a, Assumption A.1), it holds that

DKL(p̃s∥ps) = DKL(p̃t∥pt)−
∫ t

s

g(τ)2DFisher(p̃τ∥pτ )dτ < DKL(p̃t∥pt), (9)

where DKL(·∥·) denote the KL divergence and DFisher(·∥·) denote the Fisher divergence.
Theorem 3.2 (Invariance of ODEs, see Appendix D.3). Let p̃t and pt be the marginal distributions
of two ODEs (see Eq. (5)) at time t. For any 0 ≤ s < t ≤ T , under some mild regularity conditions
listed in Lu et al. (2022a, Assumption A.1), it holds that

DKL(p̃s∥ps) = DKL(p̃t∥pt). (10)

Theorems 3.1-3.2 share the same spirit as Lyu (2012); Lu et al. (2022a). In particular, they follow
from the Fokker-Plank equation and a detailed computation of the time derivative of DKL(p̃t∥pt).
Moreover, with a stronger yet standard assumption (i.e., the log-Sobolev inequality holds for the
data distribution), we can obtain a linear convergence rate in the SDE formulation. Namely, we have
DKL(p̃s∥ps) = exp(O(−(t−s)))DKL(p̃t∥pt). We present the formal statement and more details in
Appendix D.4 for completeness. Further, we conduct a toy experiment on a one-dimensional Gaus-
sian mixture data where the true score function has an analytic form and the log-Sobolev inequality
holds to illustrate the above results clearer in Appendix E.

The analysis of Cycle-SDE is more difficult because the random variables w̄′
s in the sampling path

are correlated. Therefore, it is highly nontrivial to obtain a quantitative convergence rate for Cycle-
SDE. However, we can still prove a similar “contractive” result as in SDE using the data processing
inequality for KL divergence (Cover, 1999). The result is presented in the following theorem.
Theorem 3.3 (Contraction of Cycle-SDEs, see Appendix D.5). Let pt and p̃t be the marginal distri-
butions of two Cycle-SDEs (e.g., see Eq. (6) with η = 1 and w̄′

s from Eq. (8)) at time t, respectively.
For any 0 ≤ s < t ≤ T , if pt ̸= p̃t, then

DKL(p̃s∥ps) < DKL(p̃t∥pt). (11)

In summary, we show that the additional noise in the SDE formulation (including both the original
SDE and Cycle-SDE) provides a way to reduce the gap caused by mismatched prior distributions,
while the gap remains invariant in the ODE formulation, suggesting the blessing of randomness
in diffusion-based image editing. Inspired by the theory, we propose the SDE counterparts for
representative ODE baselines across various editing tasks (as highlighted in blue in Tab. 1) and
show a consistent and substantial improvement in all settings (see Sec. 5).

4 DRAG YOUR DIFFUSION IN THE SDE FORMULATION

Among various image editing tasks, point-based dragging (Pan et al., 2023) provides a user-friendly
way to manipulate the image content directly and has attracted more and more attention in diffusion
models recently (Shi et al., 2023; Mou et al., 2023a). Inspired by the formulation and theory in
Sec. 3, we investigate how to drag images in the SDE formulation (see Sec. 4.1) and introduce a
challenging benchmark with 100 open-set images for evaluation in Sec. 4.2.
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Algorithm 1 SDE-Drag

Require: x0, as, at; hyper-parameters: r, m, n, t0 ∈ (0, T ], α ∈ (1,+∞), β ∈ [0, 1]
for j in {1, 2 . . . ,m} do

Obtain xt0 , {w̄′
i}ni=1 according to Eq. (7-8) with x0, n and t0 ▶ Add and memorize noise

Obtain x̃t0 according to Eq. (12) with α, β, r and xt0 ▶ Manipulate the latent variable
Obtain x̃0 according to Eq. (6) with η = 1, {w̄′

i}ni=1 and x̃t0 ▶ Sample with Cycle-SDE
x0 ← x̃0 ▶ Update the image

end for
Return x0

4.1 SDE-DRAG

We propose a simple yet effective dragging algorithm based on the SDE formulation, dubbed SDE-
Drag. We present SDE-Drag following the unified formulation in Sec. 3.

In the first stage, we first add noise to obtain the intermediate representation xt0 and obtain a series
of “noise” w̄′

s according to Eqs. (7-8). Distinct from the prior work (Pan et al., 2023; Shi et al., 2023;
Mou et al., 2023a), we manipulate the latent variable in a straightforward copy-and-paste manner
(see Fig. 1a, right panel) instead of performing optimization in the latent space. In particular, given
a source point as and a target point at provided by the user, let S and T denote the two squares with
side length 2r centered at the two points, respectively, where r is a hyperparameter. Then, we first
make a copy of xt0 as x̃t0 and modify x̃t0 as follows:

x̃t0 [T ] = αxt0 [S] , x̃t0 [S \ T ] = (βxt0 +
√
1− β2ϵ) [S \ T ] , ϵ ∼ N (0, I), (12)

where α ∈ (1,∞), β ∈ [0, 1) are hyperparameters, x[S] takes pixels in x that corresponds to the
set S and \ is the complementary operation for sets. Intuitively, SDE-Drag directly copies the noisy
pixels from the source to the target and amplifies them by a factor α. Besides, SDE-Drag perturbs
the source with a Gaussian noise by a factor β to avoid duplicating the content.

In the second stage, we directly produce x̃0 by a Cycle-SDE process defined by Eq. (6) with η = 1,
w̄s = w̄′

s and xt0 = x̃t0 . Besides, when an optional binary mask is provided, the unmasked area
of the latent representation x̃t at every step t is replaced by the corresponding unmasked area of the
latent representation xt

3 in the noise-adding process. To our knowledge, this is the first paper to
investigate SDE formulations in dragging among prior work (Shi et al., 2023; Mou et al., 2023a).

When the target point is far from the source point, it is challenging to drag the content in a single
operation (Pan et al., 2023). To this end, we divide the process of Drag-SDE into m steps along the
segment joining the two points and each one moves an equal distance sequentially. We present the
whole process in Algorihtm 1 with n discretization steps in sampling. m and n are hyperparamters.

We emphasize that we employ default values of all hyperparameters (e.g., α, β, m, and n) for all
input images and SDE-Drag is not sensitive to the hyperparameters, as detailed in Sec. 5.3. More-
over, it is easy to extend SDE-Drag by adding multiple source-target pairs either simultaneously or
sequentially. For more implementation details, please refer to Appendix F.6. Our experiments (see
Sec. 5.3) on a benchmark introduced later demonstrate the effectiveness of the SDE-Drag over an
ODE baseline and representative prior work (Pan et al., 2023; Shi et al., 2023).

4.2 DRAGBENCH

Built upon large-scale text-to-image diffusion models (Rombach et al., 2022), SDE-Drag and ODE-
based diffusion (Shi et al., 2023; Mou et al., 2023a) can potentially deal with open-set images, which
is desirable. However, existing benchmarks (Pan et al., 2023) are restricted to specific domains like
human faces. To this end, we introduce DragBench, a challenging benchmark consisting of 100
image-caption pairs from the internet that cover animals, plants, art, landscapes, and high-quality
AI-generated images. Each image has one or multiple pairs of source and target points and some
images are associated with binary masks. Please refer to Appendix F.4 for more details.

3Note that our analyses in Sec. 3.2 apply to any time interval including this case.
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Table 2: Results in inpainting. Inpaint-ODE and Inpaint-SDE employ DDIM (Song et al., 2020a)
and DDPM (Ho et al., 2020) respectively. Inpaint-SDE outperforms Inpaint-ODE in all settings.

Small Mask (average mask ratio 0.2) Large Mask (average mask ratio 0.4)

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
# steps 25 50 100 25 50 100 25 50 100 25 50 100

Inpaint-ODE 5.84 5.86 5.86 0.227 0.227 0.227 17.73 17.57 17.50 0.363 0.361 0.361
Inpaint-SDE 5.18 4.97 4.91 0.218 0.215 0.215 16.43 15.48 15.27 0.351 0.345 0.343

5 EXPERIMENT

We conduct experiments on various tasks including inpainting (see Sec. 5.1), image-to-image (I2I)
translation (see Sec. 5.2), and dragging (see Sec. 5.3), where the SDE counterparts show a consistent
and substantial improvement over the widely used baselines. We also analyze the sensitivity of
hyperparameters and time efficiency (see Sec. 5.4).

5.1 INPAINTING

Setup. Inpainting aims to complete missing values based on observation. For broader interests,
we follow the LDM (Rombach et al., 2022) to employ the Places (Zhou et al., 2017) dataset for
evaluation and adopt FID (Heusel et al., 2017) and LPIPS (Zhang et al., 2018) to measure the sample
quality. For simplicity and fairness, the base model (i.e., Stable Diffusion 1.5 (Rombach et al., 2022)
trained on LAIOB-5B (Schuhmann et al., 2022)), and most of the hyperparameters remain the same
as the ODE baseline (Rombach et al., 2022). The only tuned hyperparameter is the number of
sampling steps n and we conduct systematical experiments with 25, 50, and 100 steps. Please refer
to Appendix F.1 for more details.

Results. As presented in Tab. 2, the SDE counterpart significantly outperforms the ODE baseline
across all settings under both the FID and PLIPS metrics. Notably, with a few steps (e.g., 25), where
ODE is widely recognized to have a significant advantage in normal sampling, SDE still manages to
achieve superior results. Further, the performance of SDE at 25 steps surpasses that of ODE at 100
steps, which strongly suggests the usage of SDE in inpainting. Additionally, we present the results
of high-order algorithms in Tab. 5 for completeness and the conclusion remains.

5.2 IMAGE-TO-IMAGE TRANSLATION

Setup. As visualized in Fig. 14 in Appendix I.2, I2I aims to transfer the input images to another
domain by changing its label or text description. We provide the SDE counterparts for two represen-
tative ODE approaches. Due to space limit, we present the results on DiffEdit (Couairon et al., 2022)
here and those on DDIB (Su et al., 2022) in Appendix G.2. For fairness, we use Stable Diffusion
1.5 (Rombach et al., 2022) trained on LAION-5B (Schuhmann et al., 2022)) and employ image-
caption pairs from the COCO dataset (Lin et al., 2014) and annotations from the COCO-BISON
dataset (Hu et al., 2019) following the DiffEdit. Similarly, we adopt the same evaluation metrics in-
cluding FID, LPIPS, and CLIP-Score (Radford et al., 2021). which measures the alignment between
edited images and target prompts. As suggested by DiffEdit, we tune a single key hyperparame-
ter, i.e. the time index of the latent variable t0, and keep others unchanged. The SDE counterpart
(termed DiffEdit-SDE) employs the Cycle-SDE. Please refer to Appendix F.3 for more details.

Results. Quantitatively, DiffEdit-SDE outperforms the ODE baseline (termed DiffEdit-ODE) under
all metrics with a wide range of t0, as presented in Fig. 2. Qualitatively, as visualized in Fig. 14,
DiffEdit-SDE achieves a better image-text alignment and higher image fidelity simultaneously. We
observe similar results in experiments with DDIB in Appendix G.2.

5.3 DRAGGING

Setup. As visualized in Fig. 17 in Appendix I.4, dragging (Pan et al., 2023) aims to drag the content
following the instructions of the source points and target points. We compare our SDE-Drag against
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Figure 2: Results in I2I (DiffEdit). We consider t0 ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. With the same
value of t0 (linked by dashed lines), DiffEdit-SDE outperforms DiffEdit-ODE under all metrics.

a direct ODE baseline (termed ODE-Drag), an ODE-based prior work (Shi et al., 2023), and the
DragGAN (Pan et al., 2023). We focus on the challenging and desirable dragging task on open-
set images and there is no standard benchmark in the literature as far as we know. Therefore, we
conduct a user study on the DragBench introduced in Sec. 4.2, as summarized below.

User Study. There were 6 participants and 100 questions for each one vs. one (e.g., SDE-Drag
vs. ODE-Drag) comparison by default. There were 22 questions to compare with DragGAN be-
cause it is restricted to specific domains such as cats and lions. In each question, participants were
presented with original images paired with two differently edited images produced by distinct mod-
els. Participants were tasked with selecting a better image between the pair, which is known as the
Two-Alternative Forced Choice methodology commonly used in the literature (Kawar et al., 2023;
Bar-Tal et al., 2022; Kolkin et al., 2019; Park et al., 2020). See more details in Appendix F.5.

Implementation. Throughout the paper, the hyperparameters in SDE-Drag are r = 5, n = 120,
t0 = 0.6T , α = 1.1, β = 0.3 and m = ⌈∥as − at∥/2⌉, where ∥as − at∥ denotes the Euclidean
distance between as and at. If multiple points are present, m is determined based on the greatest
distance among all pairs of points. To enjoy relatively high classifier-free guidance (CFG) and
numerical stability simultaneously, we linearly increase the CFG from 1 to 3 as the time goes from
0 to t0. Note that SDE-Drag is insensitive to most of the hyperparameters, as detailed in Sec. 5.4.

ODE-Drag shares all the hyperparameters as SDE-Drag except that it employs ODE inversion and
sampling algorithms. Besides, following Shi et al. (2023), we integrate an optional LoRA (Hu et al.,
2021) finetuning process for all diffusion-based methods. Nevertheless, SDE-Drag without LoRA
still outperforms ODE-Drag and DragGAN. See more implementation details in Appendix F.6.

Results. As shown in Fig. 3, SDE-Drag significantly outperforms all competitors including the di-
rect baseline ODE-Drag, representative ODE-based prior work (Shi et al., 2023) and DragGAN (Pan
et al., 2023) on the challenging DragBench through a comprehend user study. For completeness, we
also present the results without LoRA against ODE-Drag and DragGAN in Fig. 7 in Appendix G.3
and the conclusion remains. In addition, the visualization results in Appendix I.3 show that SDE-
Drag can produce high-quality images edited in a desired manner, which agrees with the user study.
All these results together with the ones in inpainting (Sec. 5.1) and I2I (Sec. 5.2) clearly demonstrate
the superiority and versatility of SDE in image editing.

We further highlight that SDE-Drag is able to deal with multiple points simultaneously or sequen-
tially on open-domain images and improve the alignment between the prompt and sample from the
advanced AI-painting systems like DALL·E 3 and Stable Diffusion (Podell et al., 2023) in Figs. 18-
20, advancing the area of interactive image generation.

5.4 SENSITIVITY ANALYSIS AND TIME EFFICIENCY

We perform a sensitivity analysis for all experiments. Overall, we did not tune the hyperparameters
heavily and the SDE-based methods are not sensitive to most of the hyperparameters. In particular,
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Figure 3: Results in dragging. (a-c) present the preference rates (with 95% confidence intervals) of
SDE-Drag over ODE-Drag, DragDiffusion, and DragGAN. SDE-Drag significantly outperforms all
competitors. The blank box in (c) denotes the ratio of the open-domain images in DragBench that
DragGAN cannot edit. (d) shows that the average time cost per image is comparable for all methods.

Tab. 2 and Fig. 2 suggest that SDE-based methods can achieve good results in a wide range of
key hyperparameters in inpainting and I2I. Below we focus on the analysis of SDE-Drag where we
perform preliminary experiments on several images over a small set of values for hyperparameters.

Time t0 and amplification factor α. We evaluated SDE-Drag with t0/T ∈ {0.4, 0.5, 0.6, 0.7, 0.8}.
As identified in Meng et al. (2021) and confirmed in Fig. 9, a higher t0 improves the fidelity while
lowering the faithfulness of the edited images and vice versa. However, the overall performance is
similar for values between 0.5T and 0.7T and we set t0 = 0.6T by default. We also evaluate SDE-
Drag with α ∈ {1.0, 1.1, 1.2} and the default value of 1.1 performs slightly better (see Fig. 10).

Perturbation factor β. We evaluate SDE-Drag with β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1}. Intuitively,
when β = 1, the signal at the source point is retained, leading to “copying” the content. For typical
dragging, SDE-Drag is robust to values between 0.1 and 0.5. Fig. 11 visualizes the effect of β.

Dragging steps m. As discussed in Sec. 4.1, when the target point is far from the source point, it
is challenging to drag the content with m = 1. As illustrated in Fig. 12, it is sufficient to use an
adaptive strategy with m = ⌈∥as − at∥/2⌉. SDE-Drag is robust when using a factor between 1/4
and 1 in the adaptive strategy.

LoRA. We perform a systematical ablation study of LoRA in terms of user preference. We provide
visualization results in Fig. 8 and more detailed analyses in Appendix F.6.

Notably, although the optimal hyperparameters may vary for each image, SDE-Drag works well in
a wide range of hyperparameters and we provide a set of default hyperparameters for all images.

We now discuss the time efficiency. Overall, SDE-based methods achieve excellent results without
increasing the computational time. As shown in Tab. 7 in Appendix G.4, the SDE counterpart
takes nearly the same time as the direct ODE baseline in all experiments. Besides, SDE-Drag,
DragDiffusion, and DragGAN have similar time efficiency as well, as shown in Figure 3d.

6 CONCLUSION AND DISCUSSION

We present a unified probabilistic formulation for diffusion-based image editing encompassing a
wide range of existing work. We theoretically show the promise of the SDE formulation for gen-
eral image editing. We propose a simple yet effective dragging algorithm (SDE-Drag) based on
the SDE formulation and a challenging benchmark with 100 open-set images for evaluation. Our
results in inpainting, image-to-image translation, and dragging clearly demonstrate the superiority
and versatility of SDE in general image editing.

There are several limitations. Theoretically, we do not consider the model approximation error and
discretization error, which can potentially be addressed based on existing work (Lu et al., 2022a; Lee
et al., 2022; 2023; Chen et al., 2022; 2023). Besides, it is nontrivial to obtain convergence rate results
for Cycle-SDE, which requires task-specific assumptions and analysis. Empirically, we observe that
the open-set dragging problem is far from solved and we present failure cases in Appendix J.
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Ethics Statement. This paper enhances the effectiveness of various image editing techniques,
which leads to numerous societal benefits, including boosting productivity in visual industries, in-
troducing modern tools to educational curricula, and democratizing digital content creation for a
wider audience. However, it can also be harnessed to produce deceptive images or “deepfakes”, and
may give rise to ethical concerns around image alterations that misrepresent reality or history if not
used properly. Besides, the editing process relies on a pretrained diffusion model. If the model is
trained on biased data, the editing process may amplify the bias.
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Algorithm 2 DDIM sampler

Require: xT

1: for i = n+ 1, . . . , 2 do

2: xti−1
=
√
αti−1

(
xti

−
√

1−αti
ϵθ(xti

,ti)
√
αti

)
+
√
1− αti−1

ϵθ(xti , ti)

3: end for
4: return x0

Algorithm 3 DDPM sampler

Require: xT

1: for i = n+ 1, . . . , 2 do
2: σti =

√
(1− αti−1

)/(1− αti)
√

1− αti/αti−1

3: w̄i ∼ N (0, I)

4: xti−1
=
√
αti−1

(
xti

−
√

1−αti
ϵθ(xti

,ti)
√
αti

)
+
√
1− αti−1

− σ2
tiϵθ(xti , ti) + σtiw̄i

5: end for
6: return x0

A BACKGROUND IN DETIAL

In this section, we detail the sampling algorithm (see Appendix A.1) and the data reconstruction
methods (see Appendix A.2) employed in our experiments. In addition, we present an empirical
study of the reconstruction capability of Cycle-SDE and DDIM inversion in Appendix A.3.

A.1 SAMPLERS

We denote the noise prediction network as ϵθ(xt, t) and define a time sequence {ti}n+1
i=1 in-

creasing from t1 = 0 and tn+1 = T , where n is the number of sampling steps. Specifi-
cally, when classifier-free guidance (Ho & Salimans, 2022) is employed, we have ϵθ(xt, t) =
ϵθ(xt, t,∅) + s (ϵθ(xt, t, c)− ϵθ(xt, t,∅)), where s is the guidance scale, c is the conditional
embedding and ∅ is the unconditional embedding. We detail two representative ODE and SDE
samplers, i.e., DDIM (Song et al., 2020a) and DDPM (Ho et al., 2020) in Algorithm 2 and Algo-
rithm 3, respectively.

A.2 DATA RECONSTRUCTION

With the same notation as Appendix A.1, below we summarize the data reconstruction methods
based on ODE or SDE solver.

Due to the invertibility of ODE, given x0, we can deduce the latent representation xT that ensures
the reconstruction of x0 via ODE sampling. Based on Eq. (5), the general formulation of ODE
inversion is defined as:

xT = x0 +

∫ T

0

[
f(t)xt +

g2(t)

2
√
1− αt

ϵθ(xt, t)

]
dt, (13)

we detail the widely used DDIM inversion in Algorithm 4, which is a special discretization method
of general ODE inversion.

In the context of an SDE solver, given x0, we first log a forward trajectory {xti}n+1
i=1 em-

ploying the forward precoss (i.e., Eq. (7)). Recall that each sampling step (e.g., Eq. (6) with
η = 1) of the SDE solver (first order) can be denoted as xti−1 = f(ϵθ,xti , ti) + σtiw̄ti ,
where f is a function defined by sampling algorithm. Consequently, we can analyticly compute
w̄ti =

(
f(ϵθ,xti , ti)− xti−1

)
/σti based on xti and xti−1 logged in the forward trajectory. With

all {wti}n+1
i=2 calculated, we can reconstruct x0 employ the SDE solver sampling from xT (i.e.,

xtn+1
). We call these procedures Cycle-SDE and describe a DDPM-based Cycle-SDE in Algo-

rithm 5.
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Algorithm 4 DDIM inversion

Require: x0

1: for i = 2, . . . n+ 1 do

2: xti =
√
αti

(
xti−1

−
√

1−αti−1
ϵθ(xti−1

,ti−1)√
αti−1

)
+
√
1− αtiϵθ(xti−1

, ti−1)

3: end for
4: return xT

Algorithm 5 Cycle-SDE (based on DDPM)

Require: x0

1: for i = 2, . . . n+ 1 do
2: xti =

√
αti/αtt−1

xti−1
+
√
1− αti/αtt−1

w, w ∼ N (0, I)

3: σti =
√
(1− αti−1

)/(1− αti)
√

1− αti/αti−1

4: w̄i =
1

σti

(
xti−1

−√αti−1

(
xti

−
√

1−αti
ϵθ(xti

,ti)
√
αti

)
−
√

1− αti−1
− σ2

tiϵθ(xti , ti)

)
5: Record σti and w̄i.
6: end for
7: for i = n+ 1, . . . 2 do

8: xti−1
=
√
αti−1

(
xti

−
√

1−αti
ϵθ(xti

,ti)
√
αti

)
+
√
1− αti−1

− σ2
tiϵθ(xti , ti) + σtiw̄i

9: end for
10: return xT , {w̄i}ni=1

A.3 EMPIRICAL STUDY OF CYCLE-SDE

In this section, we discuss the reconstruction capability of Cycle-SDE with classifier-free guidance
(CFG) and compare it to the widely adopted ODE inversion method in image reconstruction.

In the procedure of Cycle-SDE, we first log a forward trajectory {xti}n+1
i=1 via the forward process,

and the sampling process of Cycle-SDE reconstructs this trajectory through the analyticly com-
puted {wti}n+1

i=2 (see Appendix A.2). However, practical constraints like floating-point precision
can lead to reconstruction errors. These errors are especially significant when employing a larger
CFG scale, because of the numerical instability inherent to CFG (Lu et al., 2022c). While the re-
construction potential of Cycle-SDE has been touched upon in earlier research (Wu & De la Torre,
2022; Huberman-Spiegelglas et al., 2023), we present a complete discussion here.

Firstly, we presented a visual representation of Cycle-SDE’s performance under various CFG scale
and machine precision in Fig. 4. Cycle-SDE can flawlessly reconstruct the original image without
CFG (i.e., CFG scale 1). However, as we increase the CFG scale, such as to 4, the numerical instabil-
ity intensifies, thereby hindering the ability to reconstruct the image. We demonstrate that executing
experiments with double precision ensures stability and promotes successful image reconstruction,
which shows that the primary source of Cycle-SDE’s reconstruction error is numerical instability.

Furthermore, we also conducted quantitative experiments to evaluate the image reconstruction ca-
pability of Cycle-SDE and ODE inversion. The reconstruction upper bound was determined using
the vector-quantized auto-encoder provided by Stable Diffusion (Rombach et al., 2022), denoted as
VQAE. We employ Stable Diffusion 1.5 (Rombach et al., 2022) as our foundational model. Follow-
ing Mokady et al. (2023), we randomly select 100 image-caption pairs from the COCO validation set
for our dataset and use PSNR to measure reconstruction quality. For the CFG, Following Mokady
et al. (2023), we use a scale 7.5, which is also the default set in Stable Diffusion. We limited our
sampling to 50 steps for simplicity.

As outlined in Table 3, Cycle-SDE cannot successfully reconstruct the origin image when employing
CFG. Implementing the experiment with double precision mitigates the numerical instability inher-
ent to CFG, significantly reducing Cycle-SDE’s reconstruction error, and bringing it closer to the
upper bound. Conversely, the reconstruction error in ODE inversion is mainly due to approximation
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(a) Origin image (b) CFG scale 1

(c) CFG scale 4 (d) CFG scale 4, double precision

Figure 4: Qualitative results in image reconstruction. Except for (d) which uses double precision,
all other reconstruction experiments utilize single precision. Due to numerical instability in CFG,
Cycle-SDE struggles to reconstruct the original image while using double precision ensures numer-
ical stability.

Table 3: Quantitative results in image reconstruction under CFG scale 7.5. For the experiment
of Cycle-SDE, results from three trials were averaged due to randomness. Numerical instability in
CFG affects both Cycle-SDE and DDIM inversion in reconstructing the original image. While dou-
ble precision enhances stability, discretization errors in DDIM still dominate, preventing successful
reconstruction.

Float32 Float64

VQAE DDIM inversion Cycle-SDE VQAE DDIM inversion Cycle-SDE

PSNR 25.48 11.86 11.83 25.48 16.97 24.28

errors encountered during the ODE discretization phase. Therefore, enhancing machine precision
has minimal impact on reducing the reconstruction error of ODE inversion.

B DIFFUSION-BASED EDITING METHODS

We present representative diffusion-based editing methods mentioned in Tab. 1 as instances of the
general probabilistic formulation in detail.
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Inpainting aims to complete missing values based on observation. We start by discussing image
sampling and then delve into the distinctions between inpainting and sampling. For a single sam-
pling step in the diffusion model, either an SDE solver or ODE solver is employed to sample from
pθ(xs|xt) where s < t. In the context of inpainting, SDEdit (Meng et al., 2021) and Stable Dif-
fusion (Rombach et al., 2022) initially generate yt through the noise-adding process given the ref-
erence image y0, and replace the unmasked area of xt with the unmasked area of yt to produce
x̃t. SDEdit and Stable Diffusion then sample from pθ(xs|x̃t) employing an SDE solver and ODE
solver, respectively. It is clear that p̃t0(·) ̸= pt0(·) due to the manipulation.

DiffEdit (Couairon et al., 2022) and Prompt-to-Prompt (Hertz et al., 2022; Mokady et al., 2023)
are methods for image-to-image translation. In the first stage, both methods produce xt0 through
ODE inversion employing the source image’s prompt c1. For consistency with other methods, we
denote xt0 as x̃t0 . In the second stage, they utilize the target prompt c2 for ODE sampling from x̃t0 .
Consequently, x̃t0 ∼ p̃t0(·|c1) and a mismatch exists between p̃t0(·|c1) and pt0(·|c2).
DDIB (Su et al., 2022) introduces a distinct methodology for image-to-image translation. It employs
a probabilistic approach similar to DiffEdit and Prompt-to-Prompt. The primary distinction is that
DDIB uses a class-conditional diffusion model, whereas DiffEdit uses a text-conditional diffusion
model.

CycleDiffusion (Wu & De la Torre, 2022) is another method for image-to-image translation tasks.
CycleDiffusion produce xt0 through the noise-adding process and compute w̄′

s in Eq.(8) employing
the source image’s label c1. It then utilizes the target label c2 for Cycle-SDE sampling. Similar to
DiffEdit and DDIB, p̃t0(·|c1) ̸= pt0(·|c2) in CycleDiffusion.

DragDiffusion (Shi et al., 2023) and DragonDiffusion (Mou et al., 2023a) are designed for image
dragging. In the first stage, both methods produce xt0 through ODE inversion. After optimizing xt0
with gradient descent, they produce x̃t0 and then employ ODE sampling from x̃t0 . Clearly, we have
p̃t0(·) ̸= pt0(·) due to the optimization procedure.

C RELATED WORK

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b)
are able to generate high quality imags (Dhariwal & Nichol, 2021), audios (Chen et al., 2020; Kong
et al., 2020), videos (Ho et al., 2022; Singer et al., 2022), point clouds (Luo & Hu, 2021), 3D (Poole
et al., 2022; Wang et al., 2023), and molecular conformations (Hoogeboom et al., 2022; Bao et al.,
2022c). Especially with the emergence of large-scale text-to-image models (Rombach et al., 2022;
Ramesh et al., 2022; Saharia et al., 2022; Bao et al., 2023; Balaji et al., 2022; Xue et al., 2023b;
Podell et al., 2023), there has been a significant advancement in the domain of image generation.

SDE and ODE Solvers. There are some works on increasing the effectiveness of the diffusion
model via solving reverse SDE or its equivalent reverse ODE with advanced methods. Ho et al.
(2020); Song et al. (2020b); Karras et al. (2022); Lu et al. (2022c); Bao et al. (2022b;a); Jolicoeur-
Martineau et al. (2021); Xue et al. (2023a) introduce the reverse SDE discretization methods while
Song et al. (2020a); Liu et al. (2022); Lu et al. (2022b;c); Zhang et al. (2022); Karras et al. (2022);
Zhao et al. (2023) employ fast ODE sampling algorithm.

In comparison, previous work focuses on sampling from the diffusion model. In contrast, this paper
studies SDE and ODE formulations in the context of image editing.

Diffusion-based image editing method. Based on the powerful open-set generation capabilities
of the large-scale text-to-image diffusion model, the field of image editing has experienced rapid
development. Meng et al. (2021); Zhao et al. (2022); Hertz et al. (2022); Wu & De la Torre (2022);
Couairon et al. (2022); Bar-Tal et al. (2022); Kawar et al. (2023); Kim et al. (2022); Mokady et al.
(2023); Lugmayr et al. (2022); Wang et al. (2022); Chung et al. (2022) introduce advanced inpainting
or image-to-image editing method employing various user control. We propose a general probabilis-
tic formulation for image editing and analyze the difference between SDE and ODE when the prior
distribution mismatch is due to manipulation or domain transformation during inference. Therefore,
our formulation applies to all the above methods. However, training-based methods like Mou et al.
(2023b); Zhang et al. (2023) without mismatch, are excluded from our framework.
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Inspired by the fast sampling of ODE solvers in image generation, ODE solvers are widely adopted
in diffusion-based image editing methods. Our theoretical and empirical evidence suggests that SDE
is preferable in editing. Besides, existing SDE-based methods (Meng et al., 2021; Wu & De la Torre,
2022) focus on a specific task but we demonstrate the superiority and versatility of SDE in general
image editing.

Image dragging methods. Recently, Pan et al. (2023) introduced an interactive Point-based image
editing method followed by Shi et al. (2023); Mou et al. (2023a). In comparison, Pan et al. (2023) is
a GAN (Goodfellow et al., 2014; Karras et al., 2019) based method, implying its editing capabilities
are confined to specific data, such as lions and cats. In contrast, Shi et al. (2023); Mou et al. (2023a)
are diffusion-based methods, possessing the capability for open-set editing. However, both of them
employ ODE-based formulation, making it possible to further improve.

To our knowledge, SDE-Drag is the first SDE-based method for dragging open-set images. Besides,
SDE-Drag manipulates the latent variable in a simple and straightforward copy-and-paste manner
instead of performing optimization in the latent space as in all prior work (Pan et al., 2023; Shi et al.,
2023; Mou et al., 2023a).

D THEORETICAL ANALYSIS

D.1 THE RATIONALE TO MINIMIZE KL(p̃0||p0)

The final objective of image editing is to analyze the editing distribution p̃0 and data distribution q0
under certain divergence. In this section, we explain why making p̃0 and p0 close is meaningful both
theoretically and empirically.

Theoretically, we indeed assume that the diffusion model characterizes the true score functions,
namely KL(p0||q0) = 0 in Sec. 3.2. Then our theory on KL(p̃0||p0) holds for KL(p̃0||q0) as
desired. Intuitively, the assumption can be relaxed to a bounded approximation error of the score
function, i.e., Eqt [∥sθ(xt, t) − ∇xt ln qt∥2] < ϵ based on the latest theoretical work (Chen et al.,
2022; Lee et al., 2023; Chen et al., 2023). In particular, if ϵ → 0, then the total variation distance
(TV) for q0 and p0 tends to zero, namely, TV (q0, p0) → 0, making p0 an accurate approximation
for q0.

Empirically, experimental results suggest that p0 is a good surrogate for q0, especially compared
to p̃0. For instance, Stable Diffusion (Rombach et al., 2022) can generate high-fidelity images in
human perception. Besides, Tab. 6 shows that the FID for sampling (namely p0) is significantly
lower than the FID for editing (ODE baseline, namely p̃0), suggesting that p0 is much closer to q0
than p̃0, making it meaningful to minimize KL(p̃0||p0).

D.2 ASSUMPTIONS

Throughout this section, we adopt the regularity assumptions in Lu et al. (2022a, Assumption A.1).
These assumptions are technical and guarantee the existence of the solution to ScoreSDEs, and
make the integration by parts and the Fokker-Planck equations valid. For completeness, we list
these assumptions in this section.

For simplicity, in the Appendix sections, we use∇(·) to denote∇x(·) and omit the subscript x. And
we denote ∇ · h(x) := tr(∇h(x)).
Assumption D.1. We make the same assumptions as Lu et al. (2022a, Assumption A.1) and we
include them here only for completeness:

1. q0(x) ∈ C3 and Eq0(x)[∥x∥22] <∞.

2. ∀t ∈ [0, T ] : f(·, t) ∈ C2. And ∃C > 0, ∀x ∈ Rd, t ∈ [0, T ] : ∥f(x, t)∥2 ≤ C(1 + ∥x∥2).

3. ∃C > 0,∀x,y ∈ Rd : ∥f(x, t)− f(y, t)∥2 ≤ C∥x− y∥2.

4. g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.

5. For any open bounded set O,
∫ T

0

∫
O ∥qt(x)∥

2
2 + d · g(t)2∥∇qt(x)∥22dxdt <∞.
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6. ∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ∥∇qt(x)∥22 ≤ C(1 + ∥x∥2).

7. ∃C > 0,∀x,y ∈ Rd : ∥∇ log qt(x)−∇ log qt(y)∥2 ≤ C∥x− y∥2.

8. ∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ∥sθ(x, t)∥2 ≤ C(1 + ∥x∥2).

9. ∃C > 0,∀x,y ∈ Rd : ∥sθ(x, t)− sθ(y, t)∥2 ≤ C∥x− y∥2.

10. Novikov’s condition: E
[
exp

(
1
2

∫ T

0
∥∇ log qt(x)− sθ(x, t)∥22dt

)]
<∞.

11. ∀t ∈ [0, T ],∃k > 0 : qt(x) = O(e−∥x∥k
2 ), pSDE

t (x) = O(e−∥x∥k
2 ), pODE

t (x) =

O(e−∥x∥k
2 ) as ∥x∥2 →∞.

D.3 ANALYSES OF SDE AND ODE

Theorem D.1 (Contraction of SDEs). Let pt and p̃t be the marginal distributions of two SDEs (see
Eq. (4)) at time t respectively. For any 0 ≤ s < t ≤ T , if pt ̸= p̃t, then

DKL(p̃s∥ps) = DKL(p̃t∥pt)−
∫ t

s

g(τ)2DFisher(p̃τ∥pτ )dτ < DKL(p̃t∥pt), (14)

where DKL(·∥·) denote the KL divergence and DFisher(·∥·) denote the Fisher divergence.

The proof shares the same spirit with previous works (Lyu, 2012; Lu et al., 2022a). In fact, the result
is a special case of Proposition C.1. in Lu et al. (2022a). We add proof here for completeness.

Proof. We consider a genreal form of f(xt, t) and f(xt, t) = f(t)xt in Eq. (2) is a special case.
The two reverse SDEs share the same score model θ while starting from two different prior distri-
butions pt and p̃t respectively. The process of both reverse SDEs is the same as follows:

dxt = [f(xt, t)− g(t)2sθ(xt, t)]dt+ g(t)dw̄t. (15)

However, the induced marginal distributions pt and p̃t are different for any t ∈ (0, T ] because of the
different priors, and by the Fokker-Planck equation, we have

∂pt(x)

∂t
= −∇x · (h(x, t)pt(x)) and

∂p̃t(x)

∂t
= −∇x · (h̃(x, t)p̃t(x)), (16)

where∇x· is the divergence operator, and

h(x, t) ≜ f(x, t)− g(t)2sθ(x, t) +
1

2
g(t)2∇x log pt(x), (17)

h̃(x, t) ≜ f(x, t)− g(t)2sθ(x, t) +
1

2
g(t)2∇x log p̃t(x), (18)

Expanding the time derivative of the KL divergence, we obtain

∂DKL(p̃t∥pt)
∂t

=
∂

∂t

∫
p̃t(x) log

p̃t(x)

pt(x)
dx

=

∫
∂p̃t(x)

∂t
log

p̃t(x)

pt(x)
dx−

∫
p̃t(x)

pt(x)

∂pt(x)

∂t
dx

= −
∫
∇x · (h̃(x, t)p̃t(x)) log

p̃t(x)

pt(x)
dx+

∫
p̃t(x)

pt(x)
∇x · (h(x, t)pt(x))dx

=

∫
(h̃(x, t)p̃t(x))

⊤∇x log
p̃t(x)

pt(x)
dx−

∫
(h(x, t)pt(x))

⊤∇x
p̃t(x)

pt(x)
dx (19)

=

∫
p̃t(x)[h̃(x, t)

⊤ − h(x, t)⊤][∇x log p̃t(x)−∇x log pt(x)]dx

=
1

2
g(t)2

∫
p̃t(x)∥∇x log p̃t(x)−∇x log pt(x)∥22dx

= g(t)2DFisher(p̃t∥pt). (20)
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Eq. (19) holds because of integration by parts with mild regularity assumptions (see Assumption
A.1 in Lu et al. (2022a)). Based on Eq. (20), the KL divergence between ps and p̃s is given by:

DKL(p̃s∥ps) = DKL(p̃t∥pt)−
∫ t

s

∂DKL(p̃τ∥pτ )
∂τ

dτ

= DKL(p̃t∥pt)−
∫ t

s

g(τ)2DFisher(p̃τ∥pτ )dτ

< DKL(p̃t∥pt).

Theorem D.2 (Invariance of ODEs). Let p̃t and pt denote the marginal distributions of two ODEs
(see Eq. (5) at time t repectively. For any 0 ≤ s < t ≤ T , it holds that

DKL(p̃s∥ps) = DKL(p̃t∥pt). (21)

The proof of Theroem D.2 is similar to Theroem D.1. In particular, it is easy to check that
∂DKL(p̃t∥pt)

∂t = 0, which is a special case of Theorem 3.1 in Lu et al. (2022a). We add proof
here for completeness.

Proof. In the ODE setting, ˜̃pt and p̃t follow the Fokker-Planck equation Eq. (16) with h(x, t) =

h̃(x, t) = f(x, t)− 1
2g(t)

2sθ(x, t). In view of Eq. (20), we know that

∂DKL(p̃t∥pt)
∂t

=

∫
p̃t(x)[h(x, t)

⊤ − h̃(x, t)⊤][∇x log p̃t(x)−∇x log pt(x)]dx = 0.

Therefore, it holds that DKL(p̃s∥ps) = DKL(p̃t∥pt).

D.4 CONVERGENCE OF SDES

Following the main text, we have f(x, t) = − 1
2g

2(t)x in the following analysis. Below we intro-
duce a widely used functional inequality, and we refer the interested readers to Bakry et al. (2014)
for more details. We say a distribution p satisfies the log-Sobolev inequality (LSI) if there exists
cLSI(p) > 0 such that the following holds for every distribution q:

DKL(q∥p) ≤
cLSI(p)

2
Eq

∥∥∥∥∇ log
q

p

∥∥∥∥2 , (22)

and the smallest constant cLSI(p) is called the log-Sobolev constant.

Proposition D.1. Suppose that the LSI holds for the data distribution qs with cLSI(qs) ≥ 1 and
pt = qt. For any 0 ≤ s < t ≤ T , if pt ̸= p̃t, then

DKL(p̃s∥ps) ≤ exp

(
− 1

cLSI(qs)

∫ t

s

g2(τ)dτ

)
DKL(p̃t∥pt). (23)

Proof. By Lee et al. (2022, Lemma E.7), we see that LSI also holds for qτ with τ ∈ [s, t] and
cLSI(qτ ) ≤ max {cLSI(qs), 1} ≤ cLSI(qs). From Eq. (20) and the PI, we know

d

dτ
DKL(p̃τ∥pτ ) = g2(τ)Ep̃τ

∥∥∥∥∇ log

(
p̃τ
pτ

)∥∥∥∥2 ≥ g2(τ)

cLSI(qs)
DKL(p̃τ∥pτ ),

which implies that

d

dτ

(
ec

−1
LSI(qs)

∫ t
τ
g2(u)duDKL(p̃τ∥pτ )

)
≥ 0.

Therefore, the conclusion follows by integrating over τ .
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D.5 ANALYSIS OF CYCLE-SDE

We first present a useful lemma.
Lemma D.1. Assume that for any arbitrary values of x, p(x) > 0, q(x) > 0, q(x|y) > 0 amd
q(x|y) > 0. If p(x|y) = q(x|y) and p(y|x) = q(y|x) holds for all x and for almost every y, we
have p(x) = q(x) for all x.

Proof. By the definition of conditional distribution, for all x and almost every y, we have

p(x,y)

p(y)
=

q(x,y)

q(y)
and

p(x,y)

p(x)
=

q(x,y)

q(x)
,

which implies that

p(x)q(y) = q(x)p(y),

We finish the proof by taking integral w.r.t. y on both sides

p(x) =

∫
p(x)q(y)dy =

∫
q(x)p(y)dy = q(x).

The SDE inversion algorithm does not follow the SamplingSDE process. However, it still reduces
the KL divergence between two marginal distributions induced by two processes from different prior
distributions as the time approaches zero. This is formally characterized by the following theorem.
Theorem D.3 (Contraction of Cycle-SDEs). Let pt and p̃t be the marginal distributions of two
Cycle-SDEs (e.g., see Eq. (6) with η = 0 and w̄′

s from Eq. (8)) at time t respectively. For any
0 ≤ s < t ≤ T , if pt ̸= p̃t, then

DKL(p̃s∥ps) < DKL(p̃t∥pt). (24)

Proof. We first introduce two joint distributions of xt and xs as follows:

pt,s(xt,xs) = ps|t(xs|xt)pt(xt) and p̃t,s(xt,xs) = ps|t(xs|xt)p̃t(xt).

where the conditional distribution ps|t(xs|xt) is defined by Eq. (6) with w̄s obtained from Algo-
rithm 5. We denote the conditional distributions by pt|s = pt,s/ps and p̃t|s = p̃t|s/ps.

Then, according to the chain rule for KL divergence Cover (1999), we have that:

DKL(p̃t,s∥pt,s) = DKL (p̃t ∥ pt) + Ept

[
DKL

(
p̃s|t ∥ ps|t

)]︸ ︷︷ ︸
=0

= DKL (p̃s ∥ ps) + Eps

[
DKL

(
p̃t|s ∥ pt|s

)]︸ ︷︷ ︸
≥0

,

which implies that DKL(p̃s∥ps) ≤ DKL(p̃t∥pt). This is also known as the data processing inequality
of KL divergence (Cover, 1999).

The remaining part of the proof shows that Eps

[
DKL

(
p̃t|s ∥ pt|s

)]
> 0 by contradiction. In fact,

if Eps

[
DKL

(
p̃t|s ∥ pt|s

)]
= 0, then pt|s(·|xs) = p̃t|s(·|xs) holds almost surely, and according

to Lemma D.1, we have pt = p̃t, which is a contradiction. The assumptions in Lemma D.1 hold
because of the added Gaussian noise in Algorithm 5.

E TOY EXAMPLE

In this section, we conduct a toy simulation on the Gaussian mixture data where the true score
function has a closed form and the log-Sobolev inequality holds to illustrate our theoretical results
(Theorem 3.1, Theorem 3.2 and Proposition D.1) clearer.

Data distribution. We generate examples from a binary mixture of Gaussian distributions, that is,
q0(x0) =

1
2N (x0| − µ, σ2) + 1

2N (x0|µ, σ2), where µ = 0.5 and σ = 0.2. Its score function has
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an analytic form, we derive it in the following for completeness. We know that xt =
√
αtx0 +√

1− αtϵt, where ϵt ∼ N (0, 1). Then, by changing of variable of probability density, we have
√
αtx0 ∼

1

2
N (−

√
αtµ, αtσ
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Therefore, we can obtain the true score function as follows:
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where we recall that µt =
√
αtµ and σ2

t = αtσ
2+1−αt. In our experiment, αt is set by the cosine

schedule in Nichol & Dhariwal (2021).

Besides, the log-Sobolev inequality holds for q0 with cLSI(q0) ≤ σ
(
1 + 1

4

(
e

4µ2

σ + 1
))

(see
Schlichting (2019, Sec. 4.1) for details).

Sampler. Based on the true score function st(xt), we can derive ϵ(xt, t) = −
√
1− αts(xt, t) and

adopt DDPM (i.e., Eq. 6 with η = 1) as the SDE sampler, DDIM(i.e., Eq. 6 with η = 0) as the
ODE sampler. We sample data from different prior distributions including Gaussian distributions
N (0, 1), N (2, 22) and and uniform distribution U [−2, 2].
Results and discussion. As shown in Fig. 5, when the prior distribution is N (0, 1), getting benefit
from the analytic score function s(xt, t), both SDE and ODE sampler recover q0. However, when
the prior distribution mismatch with the standard Gaussian distribution, the SDE sampler succeeds
in recovering q0 while the ODE sampler fails.

The simulation results illustrate our theory (Theorem 3.1, Theorem 3.2 and Proposition D.1) more
clearly. On the one hand, Theorem 3.1 and Proposition D.1 state that DKL(p̃0∥p0) ≈ DKL(p̃0∥q0)
is exponentially smaller than DKL(p̃T ∥pT ), which means that though the prior mismatch, the SDE
sampler can find p̃0 that is similar to q0. However, in terms of the ODE sampler, Theorem 3.2
guarantees that DKL(p̃t∥pt) remains unchanged during the sampling process, which means that the
ODE sample can never find p̃0 that is similar to q0.

F EXPERIMENTAL DETAILS

We present experimental details in this section.
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(a) p̃T (xT ) = N (0, 1) (b) p̃T (xT ) = N (2, 22) (c) p̃T (xT ) = U [−2, 2]

Figure 5: 1D toy experiment. (a) Both ODE and SDE samplers match the data if p̃T (xT ) =
N (0, 1). (b-c) ODE fails to recover the data distribution while SDE succeeds though the prior
distribution mismatch with p̃T (xT ) ̸= N (0, 1).

F.1 INPAINTING

We first provide an overview of the inpainting tasks and then detail the experimental settings of
Section 5.1.

In the realm of image generation, ODEs converge more rapidly than SDEs (Song et al., 2020b;a;
Lu et al., 2022b;c; Karras et al., 2022). As a result, ODEs have been more prevalently utilized in
inpainting tasks compared to SDEs. To our knowledge, we are the first to conduct a systematic
comparison between SDEs and ODEs in the context of inpainting, demonstrating that SDE can
achieve superior results in inpainting tasks.

Inpainting-SDE and inpainting-ODE are equivalent to the inpainting methods used by SDEdit and
Stable Diffusion respectively, which are described in Appendix B.

We adopt Stable Diffusion 1.5 as our foundational model and consistently use the prompt
“photograph of a beautiful empty scene, highest quality settings”
for all images following Rombach et al. (2022). For classifier-free guidance (Ho & Salimans, 2022),
we utilize a commonly accepted scale of 7.5. In addition, we employ the mask provided by Li et al.
(2022) in evaluation for simplicity.

F.2 DDIB

In this section, we summarize DDIB (Su et al., 2022) and detail the experimental settings of Ap-
pendix G.2.

DDIB is an image-to-image translation method that leverages the reversibility of ODE. Please refer
to Appendix B for more details about DDIB. To validate the superiority of SDE in general image
editing methods, we replaced the ODE inversion and ODE solver in DDIB with the noise-adding
and Cycle-SDE processes, respectively.

For our evaluations, we utilize the FID to measure the similarity between translated images and the
target dataset, in addition to the SSIM and L2 metrics to gauge the resemblance between translated
images and the source dataset. We set the scale of the classifier guidance to 1 (Dhariwal & Nichol,
2021), consistent with Su et al. (2022).

F.3 DIFFEDIT

In this section, we give an overview of DiffEdit (Couairon et al., 2022) and provide detailed experi-
mental configurations of Section 5.2.

DiffEdit is a method designed for image-to-image translation. Given a source image x0 accompa-
nied by a source prompt that describes it, and a target prompt that outlines the desired editing image,
DiffEdit first generates a mask M to highlight the editing area. Subsequently, the method uses the
ODE inversion with the source prompt to obtain the latent representation xt0 , where t0 ∈ (0, T ]
serves as a hyper-parameter. DiffEdit then employs the ODE sampling from xt0 employing the
target prompt and the mask M to perform inpainting. For the general probabilistic formulation of
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Table 4: Categories in DragBench with corresponding image counts

Image type art animal plant natural landscape AI-generated

Count 5 50 8 20 17

DiffEdit, please refer to Appendix B. In our SDE implementation, both the ODE inversion and the
ODE solver are substituted by the noise-adding and the Cycle-SDE process, respectively.

We adopt the evaluation pipeline from Couairon et al. (2022). For each image in the COCO vali-
dation set, COCO-BISON identifies captions that are not directly paired but are similar to the orig-
inal. Consequently, we possess a source image with an accompanying source prompt and a target
prompt paired with a reference image for each edit. We utilize the Stable Diffusion 1.5 (Rombach
et al., 2022) as our base model and apply the default classifier-free guidance scale of 7.5 for both
DiffEdit-SDE and DiffEdit-ODE. The interval [0, T ] is discretized into 100 steps with varying t0.
For example, with t0 = 0.5T , both the inversion and sampling procedures consist of 50 steps each.

F.4 DRAGBENCH

In this section, we present DragBench, our newly introduced benchmark for image dragging. Drag-
Bench consists of an open set of 100 images, spanning 5 distinct categories, as detailed in Table 4.
Each image in the set is accompanied by a textual description and at least one pair of source-target
points. Furthermore, out of the entire collection, 44 images were randomly chosen. For these se-
lected images, masks were applied to regions that do not include the source-target points and visually
should remain unchanged. We release DragBench on our project page.

F.5 USER STUDY

We provide more details about the user study of Section 5.3. Fig. 6 presents a screenshot of the
interface in the user study, which includes the guidelines and a sample question provided to the
participants.

F.6 DRAGGING

In this section, we provide a comprehensive overview of our proposed SDE-Drag and outline the
implementation details of DragDiffusion and DragGAN.

We employ Stable Diffusion 1.5 (Rombach et al., 2022) as the base model for both SDE-Drag
and ODE-Drag. To enjoy relatively high classifier-free guidance (CFG) and numerical stability
simultaneously, we linearly increase the CFG scale from 1 to 3 as time goes from 0 to t0.

Subsequently, we delve into the impact of LoRA fine-tuning. As depicted in Figs. (8a-8c), LoRA
fine-tuning aids in retaining the core content of the image, particularly in arduous dragging tasks
such as revealing the unseen facet of an object. Nonetheless, LoRA fine-tuning may result in over-
fitting to the input image, compromising its editability, as evidenced in Figs. (8e-8g). To strike a
balance between preserving the core content and avoiding overfitting, we adopted a dynamic LoRA
scale strategy. Specifically, we reduce the LoRA scale from 1 to 0.5 as time goes from 0 to t0.
Note that a LoRA scale of 0 indicates reliance solely on the pre-trained U-Net weights, excluding
LoRA parameters. Conversely, at a LoRA scale of 1, all LoRA parameters are utilized. At higher
values of t (e.g., t = t0), the denoising process determines the object’s outline. Thus, to circumvent
overfitting, we opt for a smaller LoRA scale. On the other hand, at lower t values (e.g., t = 0), the
object’s outline is already defined, and the denoising process merely augments details. Therefore, a
larger LoRA scale at this stage doesn’t pose a risk of overfitting. We assessed the impact of reducing
the LoRA scale from 1 to various values {0.7, 0.5, 0.3, 0} across several images. Our observations
revealed minimal overall differences, leading us to settle on 0.5 as our choice. The influence of the
dynamic LoRA scale is evident in Figs. (8d, 8h).

We set the fine-tuning learning rate at 2 × 10−4, LoRA rank to 4, and training steps to 100. On a
single A100 GPU, this takes about 20 seconds for a single image.
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Figure 6: Screenshot from the User Study. The top and bottom row displays the guidelines and a
sample question provided to the participants, respectively.

For the baseline implementation, we follow the official code provided by DragGAN (Pan et al.,
2023) and DragDiffusion (Shi et al., 2023) to edit the images in DragBench for user study and time
comparison. For DragDiffusion, we stop optimization when all the source points are no more than 1
pixel away from the corresponding target points and the maximum number of optimization steps is
set to 40 following the official code. In addition, following DragGAN, we stop optimization when
all the source points are no more than d pixel away from the corresponding target points. When the
number of point pairs is no more than 5, d is set to 1, otherwise it is set to 2. The maximum number
of optimization steps of DragGAN is set to 300.

G ADDITIONAL RESULTS

G.1 ADDITIONAL RESULTS OF INPAINTING

In this section, to comprehensively demonstrate the superiority of SDE, we present inpainting results
using the second-order ODE and SDE solvers. As shown in Tab 5, the SDE algorithm continues to
outperform the ODE approach in the context of second-order solvers across all settings. However,
when juxtaposed with the first-order solvers, the performance of the second-order algorithms falls
short. We conjecture that this underperformance primarily stems from pixel manipulation magnify-
ing the well-known instability tied to high-order algorithms (Lu et al., 2022c).

G.2 ADDITIONAL RESULTS OF IMAGE-TO-IMAGE TRANSLATION

In this section, we present the results of another image-to-image translation method named
DDIB (Su et al., 2022), illustrating the superiority of SDE compared to the ODE baseline over
the general image editing methods.
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Table 5: Results in inpainting under second order solver. Inpainting-ODE-2 and Inpainting-
SDE-2 employ DPM-Solver++(2M) and SDE-DPM-Solver++(2M) (Lu et al., 2022c) respectively.
Inpaint-SDE-2 outperforms Inpaint-ODE-2 in all settings.

Small Mask Large Mask

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
# steps 25 50 100 25 50 100 25 50 100 25 50 100

Inpainting-ODE-2 6.12 6.03 5.95 0.229 0.228 0.227 18.13 17.82 17.67 0.363 0.362 0.361
Inpainting-SDE-2 6.11 5.39 5.10 0.224 0.219 0.217 18.04 16.20 15.61 0.355 0.347 0.344

Table 6: Results in DDIB. Editing and Sampling represent image-to-image translation and image
generation, respectively. SDE significantly outperforms ODE under FID in image-to-image transla-
tion and exhibits a more consistent performance between editing and sampling.

Lion→ Tiger Cock→ Bird

FID ↓ l2 ↓ SSIM ↑ FID ↓ l2 ↓ SSIM ↑
Editing

DDIB-ODE 30.25 68.21 0.059 58.02 83.63 0.135
DDIB-SDE 16.55 67.83 0.063 26.63 87.13 0.160

Sampling
ODE 15.71 - - 29.51 - -
SDE 17.56 - - 28.62 - -

Setup. For fairness and consistency, we employ the ImageNet dataset and ADM (Dhariwal &
Nichol, 2021) trained on ImageNet in the evaluation following DDIB. We adopt the wide-use metrics
FID, L2 and SSIM (Wang et al., 2004) in image-to-image translation (Meng et al., 2021; Zhao et al.,
2022; Wu & De la Torre, 2022) for quantitative analysis. We keep all hyperparameters the same as
DDIB for simplicity and fairness. Furthermore, in order to visually illustrate the difference between
editing and sampling, we also conduct image-generation experiments on the target dataset, which is
a sampling from Gaussian noise that employs the target dataset label. For more discussion about the
DDIB experiment please refer to Appendix F.2.

Results. As presented in Tab. 6, for translations from Lion to Tiger and Cock to Bird, the DDIB-
SDE (i.e., the SDE-based DDIB) significantly outperforms the DDIB-ODE (i.e., the ODE-based
DDIB) in image fidelity, as gauged by the FID metric. While achieving high image fidelity, DDIB-
SDE preserves similar image faithfulness to DDIB-ODE as measured by the L2 and SSIM metrics.
Please refer to Fig. 13 for visualization results, in which DDIB-SDE shows a higher image fidelity
in image-to-image translation.

For ODE, there is a significant performance difference between editing and sampling, with the edit-
ing FID being notably inferior. Conversely, SDE demonstrates more uniform performance, with the
editing and sampling FID scores closely aligned. This observation robustly validates our motivation
that SDE achieves superior consistency between editing and sampling.

G.3 ADDITIONAL RESULTS OF USER STUDY

In this section, we present additional user study results of SDE-Drag over ODE-Drag and DragGAN
without LoRA. As shown in Fig. 7, SDE-Drag consistently outperforms the two baselines.

G.4 ADDITIONAL RESULTS OF TIME EFFICIENCY

In this section, we discuss the time efficiency. As shown in Table 7, in all experiments, the SDE
counterpart takes nearly the same time as the direct ODE baseline.
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(a) SDE w/o LoRA vs. ODE w/o LoRA
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(b) SDE-Drag w/o LoRA vs. DragGAN

Figure 7: Results of dragging without LoRA. We present the preference rates (with 95% con-
fidence intervals) of SDE-Drag over ODE-Drag and DragGAN without LoRA. SDE-Drag signif-
icantly outperforms all competitors. The blank box in (b) denotes the ratio of the open-domain
images in DragBench that DragGAN cannot edit.

Table 7: Additional results in per-image time costs. The SDE counterpart takes nearly the same
time as the direct ODE baseline.

Inpainting DiffEdit DDIB Dragging

SDE 3.06s 4.82s 299.20s 75.86s
ODE 3.11s 4.86s 300.18s 76.62s

Device NVIDIA A100 NVIDIA A100 NVIDIA GeForce RTX 3090 NVIDIA A100

H HYPERPARAMETER ANALYSIS OF SDE-DRAG

We present more sensitivity analysis results of SDE-Drag in this section. Notably, SDE-Drag is
not sensitive to most of the hyperparameters. To highlight the roles of individual parameters in
SDE-Drag, we showcase images that respond differently to specific hyperparameter adjustments.

Fig. 8 shows the effect of finetuning LoRA. In addition, we display the analysis of hyperparameter
t0, α, β and m in Fig. 9, Fig. 10, Fig. 11 and Fig. 12, respectively.

I VISUALIZATION RESULTS

I.1 DETAILS OF DDIB

As presented by Fig. 13, DDIB-SDE shows a higher image fidelity in image-to-image translation
compared with DDIB-ODE.

I.2 DETAILS OF DIFFEDIT

In Table 8, we present the quantitative metrics from the DiffEdit experiment, corresponding to Fig. 2
in Section 5.2. Additionally, Fig. 14 offers a visual comparison between DiffEdit-SDE and DiffEdit-
ODE, demonstrating that DiffEdit-SDE ensures superior image quality and better image-text align-
ment.
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(a) Input image (b) w/o fine-tuning LoRA (c) Constat LoRA scale 1 (d) Dynamic LoRA scale

(e) Input image (f) w/o fine-tuning LoRA (g) Constat LoRA scale 1 (h) Dynamic LoRA scale

Figure 8: Analysis of LoRA fine-tuning. (a-c) demonstrate that LoRA fine-tuning aids in preserv-
ing object consistency during editing, whereas (e-g) indicates a potential risk of overfitting to the
input image. (d, h) illustrate how the dynamic LoRA scale strategy, as detailed in Appendix F.6,
effectively balances between content retention and overfitting prevention.

(a) Input image (b) t0 = 0.4T (c) t0 = 0.6T (d) t0 = 0.8T

Figure 9: Analysis of hyper-parameter t0. A lower t0 will lead to greater faithfulness to the input
image but may compromise image quality. Conversely, a higher t0 enhances image fidelity at the
expense of faithfulness. However, in most of the cases, SDE-Drag is robust to t0 between 0.5T and
0.7 T so we set the default t0 as 0.6 T.

I.3 DRAG COMPARE

In this section, we provide visual comparisons of SDE-Drag with DragDiffusion and DragGAN in
Fig. 15 and Fig. 16, respectively.

I.4 DRAG FUN

In this section, we showcase the editing outcomes of SDE-Drag. The edits of real images are il-
lustrated in Fig. 17. Edits of images generated by Stable Diffusion (Rombach et al., 2022; Podell
et al., 2023) are shown in Fig. 18, and edits of DALL·E 3 generated images can be seen in Fig. 19.
Moreover, we highlight the methodology of dragging multiple points sequentially in Fig. 20.
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(a) Input image (b) α = 1. (c) α = 1.1 (d) α = 1.2

(e) Input image (f) α = 1. (g) α = 1.1 (h) α = 1.2

Figure 10: Analysis of hyper-parameter α. SDE-Drag is not sensitive to the value of α in most
of the cases as shown in the top row. However, we observed that a small number of images achieve
better editing results when α = 1.1 as evidenced in bottom line. Therefore, we set the default α to
1.1.

(a) Input image (b) β = 0.3 (c) β = 1

Figure 11: Analysis of hyper-parameter β. For clarity, we fix the hyper-parameter m to 1 in this
figure. When β = 1 the object at the source point is retained, which can be used for “copying”
objects. A β value between 0.1 and 0.5 is suitable for ”dragging” and produces nearly identical
editing outcomes. Consequently, we set the default β as 0.3.

J FAILURE CASE

We show a failure case of SDE-Drag in Fig. 21 which indicates that effectively dragging open-set
images is still a significant challenge.
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(a) Input image (b) m = ⌈(s− t)/2⌉ (c) m = 1

Figure 12: Analysis of hyper-parameter m. m = ⌈∥as − at∥/2⌉ represent that the distance in
each dargging operation is 2 pixels. We found that 1 pixel and 4 pixels per operation also work well.
However, it is challenging when m = 1.

(a) Source image (b) DDIB-SDE (c) DDIB-ODE

(d) Source image (e) DDIB-SDE (f) DDIB-ODE

Figure 13: The visualization results of DDIB. The source class is “lion”, the target class is
“tiger”. DDIB-SDE achieves significantly better image fidelity compared to DDIB-ODE.
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Table 8: Quantitative results of DiffEdit. For all evaluation metrics, DiffEdit-SDE consistently
surpasses DiffEdit-ODE across different t0.

Model FID ↓ Clip-Score ↑ LPIPS ↓
t0 = 0.3

DiffEdit-SDE 7.20 0.219 0.171
DiffEdit-ODE 7.67 0.215 0.173

t0 = 0.4

DiffEdit-SDE 7.29 0.224 0.181
DiffEdit-ODE 8.24 0.215 0.184

t0 = 0.5

DiffEdit-SDE 7.57 0.228 0.195
DiffEdit-ODE 9.42 0.215 0.199

t0 = 0.6

DiffEdit-SDE 7.97 0.230 0.209
DiffEdit-ODE 11.27 0.214 0.214

t0 = 0.7

DiffEdit-SDE 8.65 0.232 0.219
DiffEdit-ODE 13.51 0.212 0.228

t0 = 0.8

DiffEdit-SDE 9.25 0.232 0.227
DiffEdit-ODE 15.91 0.210 0.240

(a) Source image (b) Obtained mask image (c) DiffEdit-SDE (d) DiffEdit-ODE

(e) Source image (f) Obtained mask image (g) DiffEdit-SDE (h) DiffEdit-ODE

Figure 14: Visualization results of Diffedit. For the top row, the source prompt is
“Young female sitting on a bench near a small stagnant lake” and the
target prompt is “"A man sitting on a wooden bench near a lake.” For the
bottom row, the source prompt is “A man sitting down at a table using a
computer.”, and the target prompt is “An older man sitting at a desk looking
at a laptop.”. DiffEdit-SDE achieves significantly better image fidelity and image-text align-
ment compared to DiffEdit-ODE.
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Figure 15: Visual comparison between DragDiffusion and SDE-Drag. The left column displays
the original input images, while the center and right columns present edits from DragDiffusion and
SDE-Drag, respectively.
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Figure 16: Visual comparison between DragGAN and SDE-Drag. The left column displays the
original input images, while the center and right columns present edits from DragGAN and SDE-
Drag, respectively.
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Figure 17: Editing results of SDE-Drag in real images.
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Figure 18: Editing results of SDE-Drag in images generated by Stable Diffusion.

Figure 19: Editing results of SDE-Drag in images generated by DALL·E 3.
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Figure 20: Results of dragging multiple points sequentially.

Figure 21: Failure case of SDE-Drag. For each input image shown on the far left, we tested SDE-
Drag with three different random seeds. Such results suggest that dragging open-set images is still
a significant challenge.
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