
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TIMESERIESEXAMAGENT: CREATING TIME SERIES
REASONING BENCHMARKS AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown promising performance in time series
modeling tasks, but do they truly understand time series data? While multiple
benchmarks have been proposed to answer this fundamental question, most are
manually curated and focus on narrow domains or specific skill sets. To address
this limitation, we propose scalable methods for creating comprehensive time
series reasoning benchmarks that combine the flexibility of templates with the
creativity of LLM agents. We first develop TimeSeriesExam, a multiple-choice
benchmark using synthetic time series to evaluate LLMs across five core reasoning
categories: pattern recognition, noise understanding, similarity analysis, anomaly
detection, and causality. We then scale our approach by automatically generating
benchmarks from real-world datasets spanning healthcare, finance and weather
domains. Through multi-dimensional quality evaluation, we demonstrate that our
automatically generated benchmarks achieve diversity comparable to manually cu-
rated alternatives. However, our experiments reveal that LLM performance remains
limited in both abstract time series reasoning and domain-specific applications,
highlighting ongoing challenges in enabling effective time series understanding in
these models.

1 INTRODUCTION

Recent studies have successfully applied Large Language Models (LLMs) to time series analysis tasks
including forecasting, anomaly detection, and classification (1; 13; 8; 19; 50; 51). These promising
results raise a fundamental question: do LLMs possess genuine reasoning capabilities about the
abstract concepts underlying time series data? Can they recognize trends, distinguish signal from
noise, or understand causal relationships without relying on domain-specific shortcuts? Existing
benchmarks designed to evaluate such capabilities face significant limitations– they are manually
curated, expensive to extend, and typically focus on narrow domains or specific skills (44; 33). This
creates a practical barrier for researchers and practitioners who need comprehensive evaluation tools
but lack the resources to construct domain-specific benchmarks for their datasets.

To address this gap, we begin with a simple proof of concept, and introduce TimeSeriesExam,
a controlled benchmark which uses synthetic time series to evaluate LLM reasoning across five
core categories: pattern recognition, noise understanding, similarity analysis, anomaly detection,
and causality. Initial results reveal two key insights: first, templated generation provides a viable
mechanism for creating diverse and systematic evaluation questions; second, LLMs continue to
struggle with abstract time series reasoning, even in these controlled settings.

Building on these insights, we tackle a broader practical challenge: how can we create benchmarks
that reflect the domain-specific reasoning required in real applications, such as diagnosing arrhythmias
from ECG signals or evaluating volatility regimes in financial markets? The key obstacle is that
domain experts lack the time to manually construct comprehensive benchmarks, making expert-
driven approaches impractical at scale. Inspired by recent advances in agent-based benchmark
construction (6; 15), we address this challenge by combining our controlled synthetic benchmark
with an extensible, agentic framework for automated domain-specific evaluation.

Experiments on multiple datasets spanning diverse domains reveal that (1) LLM performance varies
substantially across domains, and (2) even state-of-the-art models struggle with complex reasoning
tasks requiring integration of domain expertise and time series understanding.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our contributions are as follows:

• Foundational benchmark. We introduce TimeSeriesExam, a controlled evaluation
framework that systematically assesses whether LLMs understand core time series concepts.
This templated approach provides valuable insights into LLMs’ reasoning capabilities while
enabling scalable question generation, though it remains limited to domain-agnostic skills
on synthetic data.

• Scalable framework. Building on this foundation, we propose TimeSeriesExamAgent,
which combines the systematic nature of templates with the adaptability of LLM agents.
Given any domain-specific dataset, TimeSeriesExamAgentautomatically generates cus-
tomized time series reasoning benchmarks at scale, integrating multi-perspective verification
and optional human-in-the-loop refinement to ensure question quality and diversity.

• Multi-dimensional evaluation. We validate our approach across five datasets spanning four
domains and demonstrate its effectiveness for domain-specific fine-tuning. Our automatically
generated questions achieve diversity comparable to human-curated benchmarks.

2 RELATED WORK

Synthetic Time Series Generation The generation of synthetic time series with controlled behav-
iors, such as trends and cyclic patterns, is fundamental for constructing scalable reasoning benchmarks.
A common approach involves sampling from diverse random processes (18), such as Autoregressive
Processes, which offer variability but lack control over specific patterns like cyclic behavior. To ad-
dress this, (48) proposed a decomposition-based method, generating desired patterns by incorporating
cyclic components into an additive model on top of random processes. More recent frameworks, such
as (16) and (2), also leverage synthetic data generation for model training and evaluation. TabPFN
constructs synthetic regression and classification tasks from random function priors, while Chronos
employs large-scale transformer-based time series generation to capture realistic temporal dynamics.
We build upon these studies, through the design of the TimeSeriesExam benchmark, by having a more
diverse set of random processes and patterns, incorporating not only additive composition methods
but also multiplicative and other forms of composition.

Domain Specific Time Series Reasoning Benchmarks The task of creating domain-specific time
series reasoning benchmarks is challenging. Current domain-specific benchmarks usually have
limited scope and poor extensibility, since their curation often relies on templates or expert annotation.
For instance, ECG-QA (33) and ECG-Expert-QA (44) focus on ECG interpretation, while EngineMT-
QA (45) targets industrial settings. Automatic benchmark generation is a scalable alternative, but the
quality and diversity of automatically generated questions is unclear. Without extensive verification,
LLM-generated questions often require heavy manual curation (21; 25), which is both difficult and
time-consuming, undermining the primary advantage of automation.

Title Multi-domain Curation # Samples Skill type

Fully Automatic P R PS

Time-MQA (21) ✓ ✓ 200,000 ✓ ✓ ✗
Time-MMD (25) ✓ ✗ 17,113 ✓ ✗ ✗

MT-Bench (9) ✓ ✗ 22,000 ✓ ✓ ✗
ECG-QA (33) ✗ ✗ 414,348 ✓ ✓ ✓

Context-is-key (47) ✓ ✗ 71 ✓ ✓ ✗
TimeSeriesExamAgent (ours) ✓ ✓ 3000+ ✓ ✓ ✓

Table 1: Overview of time-series and multimodal datasets with curation and skill types (P—Prediction,
R—Reasoning, PS—Practical skills). Prediction refers to supervised tasks such as forecasting
or classification. Reasoning involves higher-level interpretation of time series signals (e.g., trend
recognition). Practical skills extend reasoning into domain-specific contexts (e.g., classifying volatility
regimes in finance). "+" represents that we can generate any number of samples, but we have already
generated 3,000 of them.

0The CiK benchmark contains 71 tasks, with the number of samples treated as a configurable hyperparameter.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Agents for benchmark creation LLM agents are autonomous systems which observe an envi-
ronment, use LLMs to reason, and act towards achieving a well-defined goal. Recent work has
shown the promise of using agents for creating benchmarks automatically. Most solutions adopt a
multi-agent pipeline with planning, generation, validation, and evaluation modules (6). For example,
(42) integrates exploratory evaluation using reinforcement learning, while (6) takes a description of
a natural language task as input. However, most of these approaches are not tailored to time series
and struggle to generate questions conditioned on numeric data. A recent solution incorporates time
series, but is limited to a single-step design and lacks extensive verification (29).

LLM-as-a-Judge Evaluation LLM judges have enabled the research community to scale eval-
uations and to assess problems that are inherently difficult to capture with conventional metrics.
However, LLM-as-a-judge also introduces challenges related to bias. We address this in two ways.
First, we adopt methods such as G-Eval (26), which provide probabilistic results and thus improve
both reliability and interpretability. Second, we account for intra-model bias, which is the tendency
of a single LLM to exhibit systematic preferences, by drawing on the idea of panel-based evalua-
tion (39). Specifically, we aggregate judgments from multiple LLMs, which reduces the influence of
any individual model’s bias and yields more stable scores.

3 TIMESERIESEXAMAGENT

3.1 PROOF-OF-CONCEPT: BUILDING SCALABLE BENCHMARKS USING TEMPLATES

To begin, we investigate LLMs’ understanding of fundamental time series concepts in a con-
trolled experimental setting by introducing a manually curated, configurable benchmark that we call
TimeSeriesExam.

To illustrate our approach, we present a proof-of-concept(PoC) showing how scalable benchmarks
for evaluating LLMs’ time series reasoning can be built from configurable templates. The aim is to
demonstrate that template-based design enables systematic generation of diverse, controlled “exams”
that probe specific reasoning skills. Our hypothesis is that once a small set of well-designed templates
exists, new benchmark items can be generated automatically by varying parameters and contexts.
To test this, we introduce TimeSeriesExam, a curated benchmark of fundamental time series
tasks, in which we make two simplifying assumptions: (1) templates are created manually, and (2)
evaluations are conducted in controlled synthetic settings where data properties are fully known.

Composition. TimeSeriesExam systematically assesses whether LLMs understand basic time
series patterns such as trends and seasonality (pattern recognition), the concept of noise and other
time series concepts in the presence of noise (noise understanding). It also evaluates LLMs on
three different reasoning tasks: identifying abrupt deviation from “normal" behavior (12) (anomaly

Category Subcategory Example question

Pattern Recognition

Trend What is the most likely linear trend coefficient of the given time series?

Cyclic The given time series has sine wave pattern.
How does its amplitude change from the beginning to the end?

Stationarity Is the given time series likely to be stationary after removing the cycle component?

Regime Switching Based on the given time series, how many different regimes are there?

Statistical properties Is the mean stable over time in the given time series?

Random processes Does the following time series exhibit a mean reversion property?

Noise Understanding

White Noise Is the given time series a white noise process?

Random Walk Is the given time series likely to be a random walk process?

Signal / Noise Ratio You are given two time series with the same underlying pattern but different noise level.
Which time series has higher magnitude of noise?

Anomaly Detection The following time series has two types of anomalies appearing at different time points.
What are the likely types of these anomalies?

Comparative Analysis
Shape Despite the noise, do the given two time series have similar patterns?

Distributional You are given two time series which are generated using a random walk.
Are they likely to have the same variance?

Causality Analysis Granger Causality Is there Granger causality between the two time series?

Table 2: Example template questions for different reasoning tasks. Each subcategory covers a specific
aspect of time series understanding, guiding the model to reason about comparative, anomalies, and
causal relationships.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Base Patterns

Non-periodic
E.g.: linear, exponential

Use: Add trend to time series

Periodic
E.g.: Sinusoids, Sawtooth, Square
Use: Add cyclical patterns to time

series

Random Processes
E.g.: Auto-regressive, Moving

Average, etc.
Use: Describe natural time-varying

processes

Composition

Additive
Use: Add trend and seasonality

Multiplicative
Use: Amplify seasonality by trend

Sequential
 Use: Simulate phase shifts

Noise and Anomalies
Noise

White Noise
Use: Add stationary

randomness

Red Noise
Use: Add non-

stationary
randomness

Flip
Reverse the time

series

Speed-up/down
 Increase or decrease

frequency of time
series

Cut-off
Simulates sensor

drop-off

Anomalies

● Question: The given time series is
composed of several concatenated
patterns. Is this time series stationary?

● Options: (A) No, (B) Yes
● Example: <Randomly generated

example>
● (Optional) Relevant Concepts:

<Definition of stationarity>
● (Optional) Hint: First identify different

parts of the time series. Then check if
each part is stationary.

● Model Response: … the first part of the
given time series appears to have a
relatively constant mean and variance.
Therefore, the correct answer is: B) Yes

Category: Pattern Recognition
Subcategory: Stationarity Detection

Figure 1: (Left) Time Series Curation Pipeline: The composition model generates controlled
synthetic time series step-by-step. The pipeline enables diversity by combining different components
to create numerous synthetic time series with varying properties. (Right) Each template evaluates
a specific category, and includes a question, list of options, example question and answer pair for
in-context learning, and optionally a hint and descriptions of complicated technical terms. Here,
GPT-4o showcases its ability to transfer visual understanding and time series concepts into effective
reasoning.

detection), comparing and contrasting statistical properties of 2 time series (comparative reasoning),
reasoning about causality, specifically Granger Causality (14) (causality). As shown in Table 2,
each category is further divided into sub-categories that represent more specific concepts within the
broader category.

Question Templates. The TimeSeriesExam comprises over 100 unique templates, carefully
curated in collaboration with time series experts and cross-verified for accuracy, that can be used to
generate any number of random questions. Each template (Fig. 1)(Right) evaluates a specific (sub-
)category (e.g., pattern recognition), and comprises of a question (e.g., “Is this time series
stationary?"), a list of options (e.g., “(A) Yes, (B) No"), and an example question and
answer pair for in-context learning. Each template comes with a hint which breaks down complex
questions into simpler steps and textual descriptions of complicated technical terms. By incorporating
these relevant concepts, we can isolate an LLM’s ability to understand time series concepts (e.g.,
whether the mean and variance remain constant) from its understanding of complex technical jargon
(e.g., stationarity). Each option (e.g. “(A) Yes") is linked to a synthetic time series generator
(Fig. 1)(Left) that produces a random time series as if the current option were true (e.g., a random
stationary time series). This allows us to generate random but accurate time series at scale.

Generating Questions. We generate different questions from the same template by systematically
varying the correct option and producing synthetic time series conditioned on the template and the
correct option pair. Our simple and scalable approach, illustrated in Fig. 1(Left), involves sampling
a small number of base patterns from a predefined pool and combining them using a composition
function. Base patterns can be periodic (e.g., sine function), non-periodic (e.g., linear increasing
function), or random time-varying processes (e.g., AR process). Depending on the template’s nature,
the final step adds additive noise or anomalies using the anomaly injection process described in (12).

Improving Questions Iteratively. We use Item Response Theory (IRT) (27) to achieve finer grained
control over the quality of randomly generated questions included in the TimeSeriesExam. IRT
is a statistical framework that models the relationship between an individual’s (or LLM’s) latent
trait (e.g., knowledge, ability) and their responses to a set of items (e.g., questions on a test). It is a
valuable tool in exam development as it helps to identify weak exam items, ensures consistent scoring
across different versions of the exam, and also allows tailoring the testing experience to the LLM’s
abilities.

Our primary objective is to design a TimeSeriesExam where each question can maximally
distinguish the abilities of candidate LLMs. We use the two-parameter logistic (2PL) model for this.
Formally, for LLM j with ability θj , and question i with difficulty bi, discrimination ability ai, the 2PL
model defines the probability of a correct response as: P(rij = 1|ai, bi, θj) = 1/(1 + e−ai(θj−bi))

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Each TimeSeriesExam typically undergoes 1–3 rounds of iterative refinement. In each round,
all candidate models take the exam. Based on their responses, we fit the parameters of Equation 3.1
using maximum likelihood estimation (MLE). Then, we drop X% of samples with the lowest sum of
difficulty and discrimination ability. Finally, we randomly re-generate questions from the dropped
templates. This iterative process is detailed in Algorithm 1 and the hyper-parameters of the fitting
process are provided in App. B.2. We demonstrate the increase in the differentiability parameter
across the iteration rounds and provide an analysis of the trajectory in App. B.3

While detailed empirical results are presented in Section A.1, the PoC establishes two takeaways: (i)
template-based generation yields diverse, controllable items across core reasoning categories, and
(ii) modern VLMs still struggle on higher-order time series reasoning, which motivates a scalable
pipeline for real datasets with minimal expert time.

3.2 TIMESERIESEXAMAGENT : A SCALABLE DOMAIN-AGNOSTIC BENCHMARK CREATION
TOOL

Input

Generation

Concept LLM

Generator LLM

TimeSeriesAgent Verification

Verifier LLM

↓ Student LLM ↑ Student LLM . . .

Natural language
description

Dataset + Loading
class

Example templates Structure check

Output

• Question relevant?

• Ambiguity?

• Time series needed?

Figure 2: TimeSeriesExamAgentarchitecture. The user provides exam-making instructions and
a custom dataset with minimal loading code. Agent outputs question templates – Python functions
generated by a generator LLM and filtered through three progressive stages of verification (syntax
and output format check, validation by LLM judge, capability-aligned filtering). Arrows denote data
flow, red ones show direction for rejected templates.

Building on the PoC in the previous subsection that surfaced persistent gaps in LLMs’ time series rea-
soning, we now focus on the practical need to evaluate models on domain-specific datasets at scale and
with minimal expert effort. Domain experts are often interested in assessing LLMs on specialized rea-
soning capabilities rather than on broad, preexisting benchmarks (e.g., evaluating anomaly detection
in ECG data versus generic healthcare reasoning). To this end, they typically possess domain-specific
datasets and wish to construct benchmarks that reflect the reasoning challenges within these datasets.
However, building such benchmarks manually is labor-intensive, as we have demonstrated with
TimeSeriesExam. To address this challenge, we propose TimeSeriesExamAgent, a multi-
agent framework that combines planning, generation, and verification to enable automatic benchmark
construction on real datasets while minimizing expert time.

Setup An overview of the agentic framework is shown in Fig. 2. The Generation Agent takes as
input a description of the natural language task T and a data set D. The description T may include
user guidelines for generation, contextual information about the dataset, or other relevant instructions.
For convenience, we denote each sample in D as (xi, zi), where xi ∈ Rn×d is a time series with n
observations and d variables, and zi is an auxiliary array containing metadata or labels related to the
series. The user provides a dataset class D that supports basic operations such as querying the i-th
sample.

Generation Motivated by TimeSeriesExam, we generate question templates instead of samples
directly, as shown in Fig. 3. Templates offer two advantages: they are scalable, and their abstraction
adds an extra layer of robustness. By relying on structured, rule-based generation rather than manual
inputs, they reduce the chance of human errors or inconsistencies. Our generator LLM produces
a predefined number of templates, each implemented as a Python function. A template contains
a formatted string for the question and options, together with parameters that control how many
questions to generate. For each question, the template samples a pair (xi, zi) from the dataset D and
applies a rule-based calculation to determine the correct answer from the time series. For example,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in a trend-detection template, the function computes the linear trend coefficient of xi and selects
“Yes, there is a linear trend” if the coefficient exceeds a specified threshold. In addition to such
signal-derived logic, templates can also utilize the auxiliary property zi, effectively transforming
classification problems into question–answer form. For instance, if an ECG series in the dataset is
labeled as exhibiting atrial fibrillation, the template can present this label as one of the multiple-choice
options. Each generated sample consists of the question, its options, the correct answer, and one
or more associated time series represented as numerical values. We provide a breakdown of the
Generation Agent and its prompt in App. C. An example template is also provided.

Dataset Handler

+ getDataframe()
+ query(id)
 . . .

Sampled questionTemplate

What kind of AV

conduction

abnormality is

presnet in this rec?

A) . . . B) . . .

C) . . . D) . . .

Dataset

Input

def question(num_samples:int) ->

List[QAPair]:

Question and option definition

Requierments for time series

Finding records in dataset

len(qa_pairs_list) = num_samples

return qa_pairs_list

Figure 3: Question generation process: With information about
dataset, TimeSeriesExamAgent generates question template
in a form of Python functions. The created function can be called
to get arbitrary number of question samples.

Verification We observe
that LLM-based generation
frequently produces errors or
irrelevant outputs, motivating
the need for a structured veri-
fication process. We propose a
multistage verification process
to check the accuracy and
relevance of each template. If a
template fails at any stage, it is
returned to the generation agent
with feedback. The generation
is iterative with a maximum of
three attempts, after which the
ongoing template is discarded to
avoid excessive context length
and cost from repeated failures.

Structure verification We check whether the generated template can be executed successfully. We
execute the generated template k = 3 times; if there are any failures, the error message is returned as
feedback.

Content verification Certain aspects of quality control are particularly well-suited for using LLM-as-
a-judge evaluation. For example, verifying that a question is grammatically correct, free of ambiguity
or bias, and genuinely answerable from the accompanying time series can be effectively handled
by an LLM. To this end, we use an LLM verifier to assess the validity of each template. We use a
binary scheme: a template must pass all categories to be accepted. Any failure triggers rejection and
regeneration, ensuring robustness. Details are in App. D.1.

Capability-Aligned Filtering Inspired by TimeSeriesExam, which leverages IRT to enhance
differentiability across questions, we adoptted a similar but localized framework that operates at
the level of each template. To detect templates that generate overly simple or irrelevant exams, we
evaluate them using a set of test-taking LLMs with varying capabilities. This approach is supported
bmy educational theory, particularly the expertise reversal effect (20). A template is discarded if
weaker LLMs achieve higher average accuracy than stronger models, as this typically indicates
that the template is flawed or noisy rather than genuinely discriminative. Templates are retained if
performance scales with model capability, or if all models perform poorly, since such questions may
still capture genuine difficulty. We provide hyperparameters in App. D.5 and other design specifics in
App. D.1.1

4 EXPERIMENTAL SETUP, RESULTS AND ANALYSIS

4.1 STATE-OF-THE-ART LLMS STRUGGLE ON EXAMS GENERATED BY
TIMESERIESEXAMAGENT

First, we generate one exam for each of the five real world datasets: PTB-XL (40), MIT-BIH (31),
MIMIC-IV Waveform (30), yahoo finance stock dataset (37), and WeatherBench 2 (36). In total, we
have 209 samples for YFinance, 197 samples for MIT-BIH, 151 samples for PTB-XL, 205 samples
for MIMIC-IV Waveform, and 95 samples for WeatherBench 2. We sample 4 or 5 instances per
template. Thus, the difference in the number of generated samples is a result of the template filtering
mechanism above.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Dataset
Model MIT-BIH PTB-XL MIMIC-IV W YFinance WeatherBench2 Average

random guess 0.25 0.25 0.25 0.25 0.25 0.25
gpt-4o (17) 0.416 0.424 0.385 0.586 0.389 0.440

o3-mini (35) 0.442 0.477 0.356 0.555 0.379 0.442
Qwen2.5-VL-Instruct (3) 0.411 0.490 0.439 0.572 0.368 0.456

Gemma-3-27b-it (38) 0.497 0.517 0.370 0.534 0.232 0.430
GPT-5 0.533 0.450 0.424 0.617 0.547 0.515

Gemini-2.5-Pro 0.614 0.457 0.400 0.624 0.453 0.510

Table 3: Comparative performance of four vision–language models across medical (MIT-BIH,
PTB-XL, MIMIC-IV Waveform (MIMIC-IV W)), financial (YFinance), and meteorological (Weath-
erBench 2) time series datasets. The results highlight dataset-specific strengths; nonetheless, all
models achieve less than 55 mean accuracy, underscoring the difficulty of time series reasoning for
current VLMs. The evaluation protocol is provided in App. E.3

We select candidate models to cover a diverse range of performance levels, as indicated by the Open-
VLM Leaderboard (11). In Table 3, we find that while general-purpose multimodal models such as
gpt-4o perform well on finance-related questions, their performance is weaker on healthcare bench-
marks. This contrast could suggest that the general reasoning ability does not always transfer across
domains, particularly when tasks require domain-specific expertise or fine-grained interpretation of
physiological signals. In App. H, we highlight two types of failure modes by studying responses
from VLMs. Perception: As evidenced by our ablation on input resolution (DPI) or modality (text
vs. vision), the best way to receive data depends on the specific question. Compositional Reasoning:
Models do not fail not on simple recognition, but on problems that require multi-step reasoning.

4.2 TIMESERIESEXAMAGENT GENERATES QUESTIONS WITH DIVERSITY COMPARABLE TO
HUMAN-CURATED BENCHMARKS

We evaluate the diversity of questions generated by our framework against ECG-QA (33), a template-
based benchmark built on PTB-XL. Our aim is to show that TimeSeriesExamAgent achieves
comparable variety without manual template design. For each benchmark, we randomly sam-
pled 50 questions and computed pairwise embedding distances. Embeddings were extracted using
Qwen/Qwen3-Embedding-8B1, the top open-source model on the Hugging Face MTEB leader-
board2.

Mean ± Std
Benchmark Dataset Embedding Normalized Levenshtein

ECG-QA 0.207 ± 0.079 0.519 ± 0.157
TimeSeriesExamAgent (ours) 0.301 ± 0.070 0.542 ± 0.039

Table 4: Diversity of questions measured by embedding and normalized Levenshtein distances.
Higher values indicate greater variability in phrasing.

As shown in Table 4, our framework achieves a level of diversity that is broadly comparable to
human-curated benchmarks. This suggests that it can capture a range of question formulations
without relying on handcrafted templates, which may help its scalability to other domains. For
completeness, we include a visualization in App. E.2 to further illustrate this observation.

We employed an LLM-as-a-jury approach using G-Eval, where a panel of models (Gemini-1.5-Pro,
GPT-3.5-Turbo, and Qwen2.5-VL-72B-Instruct) evaluated the quality of each question. To ensure
cost efficiency, we selected relatively weaker models, as prior work shows this setup can maintain
evaluation quality while mitigating intra-model bias (39). Each model independently assigned a
score from 1 to 10 based on four criteria. The aggregated results, reported in Table 5, show that

1https://huggingface.co/Qwen/Qwen3-Embedding-8B
2https://huggingface.co/spaces/mteb/leaderboard

7

https://huggingface.co/Qwen/Qwen3-Embedding-8B
https://huggingface.co/spaces/mteb/leaderboard

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Combined Quality Evaluation. Scores (1–10) averaged across four criteria. Rows are
grouped by their original source tables.

Mean Result
Dataset Specificity Unambiguity Domain Relevance Answerability
Finance Domain
FinMME 8.10 7.59 6.62 6.95
MTBench 6.88 6.11 8.35 7.29
TimeSeriesExamAgent (ours) 8.29 7.24 8.89 8.57
Medicine Domain
ECG-QA 5.60 5.77 8.17 8.47
TimeSeriesExamAgent (ours) 8.43 8.40 9.00 9.10

TimeSeriesExamAgent outperforms ECG-QA across all dimensions, particularly in specificity
and answerability. This indicates that our framework generates precise, well-grounded, and domain-
appropriate questions.

4.3 LLMS TRAINED ON OUR GENERATED SAMPLES EXHIBIT TRANSFERABLE REASONING
SKILLS ON ESTABLISHED DATASETS

Accuracy
Method General Parsable
Random answering 34.9% 34.9%
Base 21.8% 34.6%
Fine-tuned-confounded 39.7% 42.3%
Fine-tuned 47.0% 49.7%

Table 6: Results of VLM fine-tuning on the exams generated
by TimeSeriesExamAgent. General: all incorrectly
formatted responses are treated as wrong answers. Parsable:
only correctly formatted responses are evaluated.

Another way to assess the value of
TimeSeriesExamAgent is to test
whether its generated data supports
transfer learning. We finetuned VLM
Qwen2.5-VL-3B-Instruct.
We first generated 2000 training
samples using TimeSeriesExam
based on the PTB-XL dataset, while
testing was conducted on 12000
randomly selected samples from
the ECG-QA (34) test split using
MIMIC-IV data. Training parameters
are provided in App. F. To isolate the
effect of structural learning from actual gain in reasoning capability, we add a row Fine-tuned-
counfounded where we train the LLM based on the generated template from Finance and Weather
domain with same gradient steps.

Table 6 shows clear gains under the strict accuracy metric: the Base model achieves 21.8%, while
fine-tuning on structurally similar but domain-irrelevant exam lifts accuracy to 39.7%. This confirms
the model learn from instruction following and structural similarity of the MCQs. Training on
TimeSeriesExamAgent–generated ECG exams lifts accuracy further to 47.0%, which gives
216% relative improvement from the base model. This confirms the model also gained ECG
reasoning capability. The fine-tuned model also surpasses the Random baseline (34.9%), indicating
that agent-generated questions provide genuinely useful supervision rather than superficial patterning.
Overall, these results suggest that synthetic, agent-curated exams can improve decision quality.

4.4 CHOICE OF LLM DOES NOT INTRODUCE BIAS FOR TIMESERIESEXAMAGENT

Although we only use the LLM-as-a-Jury system for linguistic properties check, we conducted
experiment to confirm the consistency of juries with regard to choice of LLMs used, so that our
pipeline do not subject bias from a specific set of LLM. We generate exams using default generator
LLM Claude-4-sonnet, and evaluated using 3-model juries drawn from a fixed pool of LLMs
(Gemini-2.0, Deepseek-V3.2, GPT-3.5 Turbo, Qwen-2.5-VL, LLama-3.3). We plotted inter-jury
Pearson Correlation and Cohen’s κ in App. I and observed that scores from most juries were
moderately to highly correlated (Cohen’s κ ≥ 0.5). This confirms the consistency among different
subset of LLMs and that our pipeline do not subject to bias arising from using a specific set of LLMs.

To confirm the choice of generator LLM do not introduce additional bias to the agentic pipeline,
We fixed the jury to the default configuration (Gemini-2.0, GPT-3.5-Turbo, and Qwen2.5-VL-72B-
Instruct), and compared two different generator LLMs: Claude 4 and DeepSeek V3.2. We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

specifically picked DeepSeek because it is disjoint from both the Jury and Verifier model families
(Qwen, Gemini, GPT), ensuring strict independence. Unlike the previous experiment, changing the
generator alters the specific questions produced. Therefore, we fixed the underlying data source to
MIT-BIH and evaluated the statistical distribution (mean ± standard deviation) of the jury scores
across the generated artifacts. The results are presented in Table 9. While DeepSeek V3.2 exhibits
slightly higher raw means, the results are statistically comparable, with the scores of both models
falling within one standard deviation of each other across all categories. This confirms that our
generation pipeline is robust to the choice of state-of-the-art generator LLM.

5 DISCUSSION, OPEN QUESTIONS AND OPPORTUNITIES

Reliance on Expert-Generated Prompts A key limitation of TimeSeriesExamAgentis that
the quality of the generated exams ultimately depends on the user instruction and coverage of the
underlying time series dataset. For example, if important clinical instructions for the healthcare data
set are absent, the resulting questions may not adequately capture the reasoning challenges faced
in practice. In an offline sessions with cardiologists, we observed that when clinicians contributed
targeted feedback during the prompt design stage, the resulting exams were consistently judged
as more clinically valid and useful (See App. G). This highlights the importance of structured
collaboration between automated systems and human experts, especially in high-stakes domains such
as healthcare. We aim to provide a quantitative analysis in the rebuttal phase.

Demand for human-in-the-loop evaluation. Building on the previous observation, we integrated
optional human-in-the-loop modules into TimeSeriesExamAgent to facilitate a more practical
deployment. These modules allow domain experts to refine templates, validate generated questions,
and iteratively improve exam quality. Although we received encouraging anecdotal feedback from
clinicians and practitioners who interacted with the system, the influence of such human feedback
pipelines could not be systematically tested within the scope of this study. A formal evaluation of
how human involvement impacts benchmark validity and downstream model assessment remains an
important direction for future work and the community.

Limited Evaluation Mode. In the current framework, questions are mainly evaluated by providing
the time series as image input. In App. H.1, we provide a few case studies to highlight how
input modality of time-series could impact model answers. These studies highlight the need for an
intelligent decision-making tools, such as an agentic framework, to dynamically choose the most
suitable representation. There is growing interest in agentic frameworks for time series analysis tasks
(7; 49). Our benchmark provides a natural testbed for such systems, since many of the generated
questions require multi-step reasoning, or direct computation over numeric data. Enabling agentic AI
systems to autonomously write and execute code in order to answer our benchmark questions would
provide valuable insights into their reasoning fidelity and robustness.

Natural extension beyond time series. Although we focus on time series data, the underlying
framework is not inherently restricted to this modality. Our design only assumes access to structured
data and domain-specific prompts, making it extensible to other settings such as images, tables, or
even multimodal combinations of signals and text. We chose time series as a starting point because it
is a highly structured domain with well-established industrial applications.

6 CONCLUSION

This work first examined whether LLMs can reason about fundamental time-series concepts. To
address these questions, we introduced TimeSeriesExam, a controlled benchmark for probing
conceptual understanding, and TimeSeriesExamAgent, a scalable framework that enables prac-
titioners to generate customized benchmarks from their own data. Our experiments show that while
LLMs capture some surface-level patterns, they continue to struggle with more complex reasoning
such as anomaly detection. At the same time, benchmarks generated by TimeSeriesExamAgent
match or exceed the diversity and quality of human-curated datasets, and can even provide useful
finetuning signals for downstream tasks. These results suggest that automated, agentic benchmark
construction can help make evaluation more adaptive and domain-relevant.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We release all evaluated datasets at https://anonymous.4open.science/r/
TimeSeriesExamAgentSubmission-C9C5. The evaluation protocol is described in
App. E.3, and the appendix further provides implementation details of the pipeline, including prompts
and configuration settings.

REFERENCES

[1] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,
2024.

[2] Afshin Ansari, Amol Bhattacharya, Abhijit Kulkarni, et al. Chronos: Learning the language of
time series. arXiv preprint arXiv:2403.07815, 2024.

[3] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
arXiv preprint arXiv:2502.13923, 2025.

[4] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachan-
dran. Benchagents: Automated benchmark creation with agent interaction. arXiv preprint
arXiv:2410.22584, 2024.

[7] Yifu Cai, Xinyu Li, Mononito Goswami, Michał Wiliński, Gus Welter, and Artur Dubrawski.
Timeseriesgym: A scalable benchmark for (time series) machine learning engineering agents.
arXiv preprint arXiv:2505.13291, 2025.

[8] Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv
preprint arXiv:2310.04948, 2023.

[9] Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk,
Leandros Tassiulas, Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark
for temporal reasoning and question answering. arXiv preprint arXiv:2503.16858, 2025.

[10] Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. arXiv preprint arXiv:2507.06261, 2025.

[11] Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating
large multi-modality models. In Proceedings of the 32nd ACM International Conference on
Multimedia, pages 11198–11201, 2024.

[12] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, and Andrey Kan. Unsu-
pervised model selection for time-series anomaly detection. arXiv preprint arXiv:2210.01078,
2022.

[13] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

10

https://anonymous.4open.science/r/TimeSeriesExamAgentSubmission-C9C5
https://anonymous.4open.science/r/TimeSeriesExamAgentSubmission-C9C5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[14] Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral
methods. Econometrica: journal of the Econometric Society, pages 424–438, 1969.

[15] Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated
evaluation of retrieval-augmented language models with task-specific exam generation. arXiv
preprint arXiv:2405.13622, 2024.

[16] Noah Hollmann, Samuel Müller, Johannes Haug, Patrick Schramowski, and Kristian Kersting.
Tabpfn: A transformer that solves small tabular classification problems in a second. Advances
in Neural Information Processing Systems (NeurIPS), 2023.

[17] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[18] Aya Abdelsalam Ismail, Mohamed Gunady, Hector Corrada Bravo, and Soheil Feizi. Bench-
marking deep learning interpretability in time series predictions. Advances in neural information
processing systems, 33:6441–6452, 2020.

[19] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by
reprogramming large language models. arXiv preprint arXiv:2310.01728, 2023.

[20] Slava Kalyuga. Expertise reversal effect and its implications for learner-tailored instruction.
Educational psychology review, 19(4):509–539, 2007.

[21] Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang,
Ming Jin, and Qingsong Wen. Time-mqa: Time series multi-task question answering with
context enhancement. arXiv preprint arXiv:2503.01875, 2025.

[22] John Patrick Lalor and Pedro Rodriguez. py-irt: A scalable item response theory library for
python. INFORMS Journal on Computing, 35(1):5–13, 2023.

[23] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural information processing
systems, 33:9459–9474, 2020.

[24] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. arXiv preprint
arXiv:2005.11401, 2020.

[25] Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Prabhakar Kamarthi,
Aditya Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd:
Multi-domain multimodal dataset for time series analysis. Advances in Neural Information
Processing Systems, 37:77888–77933, 2024.

[26] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
Nlg evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634,
2023.

[27] Frederic M Lord and Melvin R Novick. Statistical theories of mental test scores. IAP, 2008.

[28] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[29] Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Althoff. Language
models still struggle to zero-shot reason about time series. arXiv preprint arXiv:2404.11757,
2024.

[30] Benjamin Moody, Shaoxiong Hao, Benjamin Gow, Tom Pollard, Weixuan Zong, and Roger
Mark. Mimic-iv waveform database. PhysioNet, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[31] George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE
engineering in medicine and biology magazine, 20(3):45–50, 2001.

[32] Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens,
2024.

[33] Jungwoo Oh, Gyubok Lee, Seongsu Bae, Joon-myoung Kwon, and Edward Choi. Ecg-qa: A
comprehensive question answering dataset combined with electrocardiogram. Advances in
Neural Information Processing Systems, 36:66277–66288, 2023.

[34] Jungwoo Oh, Gyubok Lee, Seongsu Bae, Joon-myoung Kwon, and Edward Choi. Ecg-qa: A
comprehensive question answering dataset combined with electrocardiogram. Advances in
Neural Information Processing Systems, 36, 2024.

[35] OpenAI. Openai o3-mini system card. https://openai.com/index/
o3-mini-system-card/, January 2025. Accessed: 2025-08-22.

[36] Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russel,
Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, Matthew Chantry,
Zied Ben Bouallegue, Peter Dueben, Carla Bromberg, Jared Sisk, Luke Barrington, Aaron
Bell, and Fei Sha. Weatherbench 2: A benchmark for the next generation of data-driven global
weather models, 2023.

[37] Ranan Roussi. yfinance: Yahoo! finance market data downloader. https://github.com/
ranaroussi/yfinance, 2017. Accessed: 2025-08-22.

[38] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

[39] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady
Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries:
Evaluating llm generations with a panel of diverse models. arXiv preprint arXiv:2404.18796,
2024.

[40] Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze,
Wojciech Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography
dataset. Scientific data, 7(1):1–15, 2020.

[41] Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
summarizing enables long-term dialogue memory in large language models, 2025.

[42] Wanying Wang, Zeyu Ma, Pengfei Liu, and Mingang Chen. Testagent: A framework for domain-
adaptive evaluation of llms via dynamic benchmark construction and exploratory interaction.
arXiv preprint arXiv:2410.11507, 2024.

[43] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

[44] Xu Wang, Jiaju Kang, Puyu Han, Yubao Zhao, Qian Liu, Liwenfei He, Lingqiong Zhang,
Lingyun Dai, Yongcheng Wang, and Jie Tao. Ecg-expert-qa: A benchmark for evaluating
medical large language models in heart disease diagnosis. arXiv preprint arXiv:2502.17475,
2025.

[45] Yilin Wang, Peixuan Lei, Jie Song, Yuzhe Hao, Tao Chen, Yuxuan Zhang, Lei Jia, Yuanxiang
Li, and Zhongyu Wei. Itformer: Bridging time series and natural language for multi-modal qa
with large-scale multitask dataset. arXiv preprint arXiv:2506.20093, 2025.

[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

12

https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://github.com/ranaroussi/yfinance
https://github.com/ranaroussi/yfinance

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[47] Andrew Robert Williams, Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa
Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Cha-
pados, et al. Context is key: A benchmark for forecasting with essential textual information.
arXiv preprint arXiv:2410.18959, 2024.

[48] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. arXiv
preprint arXiv:2202.01575, 2022.

[49] Wen Ye, Wei Yang, Defu Cao, Yizhou Zhang, Lumingyuan Tang, Jie Cai, and Yan Liu. Domain-
oriented time series inference agents for reasoning and automated analysis. arXiv preprint
arXiv:2410.04047, 2024.

[50] Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series
analysis by pretrained lm. Advances in neural information processing systems, 36:43322–43355,
2023.

[51] Nina Żukowska, Mononito Goswami, Michał Wiliński, Willa Potosnak, and Artur Dubrawski.
Towards long-context time series foundation models. arXiv preprint arXiv:2409.13530, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TIMESERIESEXAM DATASET DETAILS

Meta-information Type Anomaly Detection Similarity Analysis Noise Understanding Pattern Recognition Causality Analysis
Questions 129 113 87 371 63

%age questions with 2 time series 31.01 100 14.94 3.77 100

Table 7: TimeSeriesExam meta-information breakdown for each category. Each question is associated
with a time series of length 128 time steps, and an example time series of length 64 time steps.

A.1 TIMESERIESEXAM EVALUATION

Model Similarity Pattern Causality Noise Anomaly Overall

Gemma-3-27B-IT(38) 0.62 0.59 0.51 0.71 0.51 0.59
GPT-4o(17) 0.78 0.78 0.61 0.77 0.54 0.73
Qwen2.5-VL-72B(3) 0.60 0.45 0.49 0.40 0.22 0.44
Gemini-2.5-Pro(10) 0.78 0.76 0.57 0.65 0.59 0.71

Table 8: Accuracy of model on each category of TimeSeriesExam.

Table 8 reports the accuracy on TimeSeriesExam in five categories of reasoning. We evaluated
several state-of-the-art vision language models (VLMs) following the protocol described in App. E.3.
Overall, GPT-4o achieves the strongest performance, closely followed by Gemini-2.5-Pro, while
Qwen2.5-VL lags significantly behind. Across categories, models perform best on relatively shallow
tasks such as similarity and pattern recognition, where surface-level cues often suffice. Performance
drops sharply for more challenging categories. In particular, anomaly detection proves to be the most
challenging, reflecting the need to integrate subtle statistical deviations with contextual reasoning.
These results highlight that, while modern VLMs capture basic time series patterns, they fall short on
higher-order reasoning tasks. We provide a case study in App. H.1

B TIMESERIESEXAM ALGORITHMS AND PARAMETERS

B.1 ITERATIVE REFINEMENT ALGORITHM

Algorithm 1 Iterative Dataset Refinement with IRT and Resampling

Require: num_iterations = 3, drop_percentage = 0.2, initial dataset D0

1: D ← D0

2: for iteration = 1 to num_iterations do
3: Evaluate each candidate i on D, and obtain the response set R = {rij | rij =

1 if candidate i correctly answers question j}
4: Fit the IRT model to obtain the discrimination parameters A = {aj | j ∈ Questions} and

difficiulty parameter B = {bj | j ∈ Questions}
5: Normalize set A and B between 0 and 1, and calculate score S = {bj + aj | j ∈ Questions}
6: Find S′ which is the score for samples that are answered correctly by the best model in the

round
7: Find the index set I = {j | aj < Quantile(S′, drop_percentage)}, where aj is less than the

drop_percentage quantile of A
8: for each j ∈ I do
9: Resample a new question q′ from the same category as question j

10: Set D[j]← q′

11: end for
12: end for
13: return D

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 IRT MODEL PARAMETERS

The IRT models are fitted using library py-irt (22). The parameters are epochs=2000, lr=0.1, lrde-
cay=0.9999, dropout=0.5, hidden=100

B.3 AVERAGE SAMPLE DISCRIMINATION PARAMETER OVER ROUNDS

Figure 4: The sample average discrimination parameter across rounds shows an upward trend,
indicating an improved ability of the questions to differentiate candidates with varying levels of
ability.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.4 DROPPED DATASET DISTRIBUTION PER ROUND

Figure 5: Dropped Dataset Distribution per round. Dropped category distribution per round generally
mirrors the overall category distribution.

We can observe in Fig. 5 that the proportion of dropped questions for each category is approximately
uniform. The difference in number of questions in each category is a result of different template
curated.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C TIMESERIESEXAMAGENT GENERATION AGENT WORKFLOW

We rely on two stages of generation for the templates: planning and generating, inspired by the
chain-of-thought (CoT) prompting(46).

Generation planning To provide a relevant and diverse set of templates, we rely on a comprehensive
list of domain-specific concepts. There are several ways our pipeline generates a list of concepts:

1. LLM generation: User guidelines and dataset descriptions are provided as input to an LLM,
which proposes the concepts.

2. Web Search: We provide the option for generator LLM obtain concepts through web search.

3. Retrieval Augmented Generation: As an option, the user could also provide a relevant file
from which the LLM reads and generates concepts(23).

Template generation As input to our generator, the following components are provided:

• User-provided guidelines: a document containing the user’s goal or specific requirements,

• Dataset description: a list of columns and example values with ranges from the dataset, with
a short usage example,

• List of concepts: generated in previous step. For each template, our pipeline will choose a
concept at random to ensure diversity.

• Example templates[Optional]: user-provided few-shot examples presenting required struc-
tural elements (5).

C.1 GENERATION PROMPT

Here is the goal of the exam questions:
{user_info_text}

Here are sample concepts on which you can base your question
generation:

{concept_conversation}

Use the concept numbered {concept_no} from the list to guide the
design of your question template.

Here is the description of the dataset you will use to generate
the question:

{dataset_describe}

In your template, use the provided ‘user_dataset‘ object. Use its
‘query(index)‘ method to load relevant time series data.

Do not select time series randomly. First, formulate the question,
and then choose a time series that fits its logic and

reasoning needs.

Generate one function-based question template now.

C.2 EXAMPLE OF QUESTION TEMPLATE

def question_6(num_samples, verbose=False):
hyperparameters = {

"min_trend_days": 20,
"max_series_length": 3000,
"trend_strength_threshold": 0.7,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

"momentum_window": 10,
}

question = "Analyzing the price movements of {ticker} over the
given time period, does the price trend demonstrate strong

momentum and sustainability, or does it show signs of weakness
and potential reversal?"

options = [
"The trend shows strong momentum with consistent

directional movement and minimal pullbacks, suggesting the
trend is likely to continue.",

"The trend shows signs of weakness with frequent reversals
and inconsistent momentum, suggesting a potential trend

change.",
"The trend shows mixed signals with alternating periods of

strength and weakness, making direction unclear.",
"The price movement shows no clear trend pattern,

indicating a ranging or sideways market."
]

def calculate_trend_strength(prices):
if len(prices) < hyperparameters["min_trend_days"]:

return None, None

returns = np.diff(prices) / prices[:-1]

Calculate momentum consistency
positive_days = np.sum(returns > 0)
negative_days = np.sum(returns < 0)
total_days = len(returns)

directional_consistency = max(positive_days, negative_days
) / total_days

Calculate average magnitude of moves
avg_abs_return = np.mean(np.abs(returns))

Calculate trend persistence (consecutive moves in same
direction)

consecutive_moves = []
current_streak = 1
for i in range(1, len(returns)):

if np.sign(returns[i]) == np.sign(returns[i-1]):
current_streak += 1

else:
consecutive_moves.append(current_streak)
current_streak = 1

consecutive_moves.append(current_streak)

avg_streak = np.mean(consecutive_moves)
max_streak = max(consecutive_moves)

Determine overall trend direction
overall_return = (prices[-1] - prices[0]) / prices[0]
trend_direction = "up" if overall_return > 0 else "down"

return {
"directional_consistency": directional_consistency,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

"avg_abs_return": avg_abs_return,
"avg_streak": avg_streak,
"max_streak": max_streak,
"overall_return": abs(overall_return),
"trend_direction": trend_direction

}, returns

qa_pairs = []
df = user_dataset.get_dataframe()

attempted_tickers = set()

while len(qa_pairs) < num_samples:
if verbose:

print(f"[Question 6] Generating question {len(qa_pairs
)} / {num_samples}")

Select a ticker that hasn’t been attempted
available_tickers = [i for i in df.index if i not in

attempted_tickers]
if not available_tickers:

break

ticker_id = random.choice(available_tickers)
attempted_tickers.add(ticker_id)

ticker = df.loc[ticker_id, ’ticker’]
prices = user_dataset.query(ticker_id)

if len(prices) < hyperparameters["min_trend_days"]:
continue

Limit series length
if len(prices) > hyperparameters["max_series_length"]:

start_idx = random.randint(0, len(prices) -
hyperparameters["max_series_length"])

prices = prices[start_idx:start_idx + hyperparameters
["max_series_length"]]

Select a subset for analysis (to make question more
focused)

analysis_length = min(len(prices), random.randint(50, 200)
)

start_idx = random.randint(0, len(prices) -
analysis_length)

analysis_prices = prices[start_idx:start_idx +
analysis_length]

trend_metrics, returns = calculate_trend_strength(
analysis_prices)

if trend_metrics is None:
continue

Determine answer based on trend strength metrics
strength_score = (

trend_metrics["directional_consistency"] * 0.4 +
min(trend_metrics["avg_streak"] / 5, 1.0) * 0.3 +
min(trend_metrics["overall_return"] * 10, 1.0) * 0.3

)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

if strength_score >= hyperparameters["
trend_strength_threshold"] and trend_metrics["max_streak"] >=
5:

answer = options[0]
elif strength_score < 0.4 or trend_metrics["

directional_consistency"] < 0.6:
answer = options[1]

elif 0.4 <= strength_score < hyperparameters["
trend_strength_threshold"]:

answer = options[2]
else:

answer = options[3]

question_text = question.format(ticker=ticker)

qa_pairs.append({
"question": question_text,
"options": options,
"answer": answer,
"ticker": ticker,
"ts": analysis_prices,
"relevant_concepts": ["Volume-Price Trend Correlation

", "Trend Strength Analysis", "Price Momentum"],
"domain": "finance",
"detractor_types": ["Incorrect trend interpretation",

"Misunderstanding momentum signals"],
"question_type": "multiple_choice",
"format_hint": "Please answer the question and provide

the correct option letter, e.g., [A], [B], [C], [D], and
option content at the end of your answer. All information need
to answer the question is given. If you are unsure, please

provide your best guess.",
})

return qa_pairs

C.3 EXAMPLE OF NATURAL LANGUAGE DESCRIPTION

I want to create time series exam testing model understanding of
finance time series data.

To load the data, use the provided ‘‘‘user_dataset‘‘‘ object.

Given time series come from Yahoo Finance, include closing price
of a stock. Interval between samples is 1 day.

Make sure that the length of time series (total number of samples
of one or two time series) does not excide 3000.

Please make sure that exams cannot be answer without timeseries!

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 EXAMPLES OF GENERATED QUESTIONS

ECG Question Example

Q: Analyze the P-wave morphology and amplitude characteristics in this recording. What atrial
abnormality is present?

A. RAO/RAE: Right atrial overload/enlargement with prominent P-waves
B. LAO/LAE: Left atrial overload/enlargement with bifid P-waves
C. Normal P-wave morphology with no atrial abnormalities
D. Absent P-waves indicating atrial fibrillation
answer: LAO/LAE: Left atrial overload/enlargement with bifid P-waves

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Finance Question Example

Q: Based on the daily closing price data for MAA over the past 2000 trading days, what does
the Relative Strength Index (RSI) analysis reveal about the stock’s momentum condition at the
end of the period?

A. The stock is in overbought territory with RSI above 70, suggesting potential selling pressure.
B. The stock is in oversold territory with RSI below 30, suggesting potential buying opportunity.
C. The stock shows neutral momentum with RSI around 50, indicating balanced buying and

selling pressure.
D. The stock shows strong upward momentum with RSI consistently increasing but not yet

overbought.
answer: The stock shows neutral momentum with RSI around 50, indicating balanced buying
and selling pressure.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D TIMESERIESEXAMAGENT DESIGN SPECIFICS

D.1 LLM VERIFIER

For each template, we use an LLM to evaluate the generated question. Specifically, we ask:

• Is the question relevant to the given concept?
• Does answering the question require the provided time series?
• Are the question and answer free from ambiguity and bias?

D.1.1 VALIDATION PROMPT

You are an expert validator of question templates involving reasoning over
{exam_type} time series data.
You are given an exam question template:

{exam_template}

Your task is to validate the question template using the following criteria:
1. Is the question relevant to {exam_type} time series analysis?
2. Would you need the time series itself to answer the question?
3. Are there no ambiguity in the question or its answer?

If the answer to all is YES or MOSTLY YES, return only the number 1.
If the answer to either is NO, return your objections.
Return 1 (do not include any additional text then) or describe your objections.

D.2 DETRACTORS

In addition, the mechanism of plausible but incorrect answer choices was implemented. The LLM
is prompted to reflect on possible mistakes that the test taker might make while solving the exam.
Using this knowledge, misleading, incorrect option choices can be generated.

D.3 CONTEXT CONDENSATION

A common issue we encountered in the framework was context window overflow during exam
regeneration. To mitigate this, we applied context condensation, which reduces the number of tokens
while preserving essential information. In our setup, the agent generates templates in a conversational
manner. The process begins with a generation prompt, followed by a message containing the generated
exam. If errors occur or the exam is rejected during verification, the feedback and regenerated exams
are appended to the conversation. Several context condensation techniques exist, such as windowing
(4) and context compression (32). We adopt a summarization-based method (41; 43), which has
shown strong results in prior work and fits our use case. Specifically, we summarize non-recent pairs
of failing exams and error messages into short descriptions that highlight the issues encountered.
These summaries provide the LLM with concise feedback, supporting the generation of higher-quality
templates.

D.4 RAG/WEB SEARCH

In our setup, LLMs can also make use of external knowledge sources. The agent has two options:
(i) a Retrieval-Augmented Generation (RAG) tool (24)„ which pulls information from a structured
corpus such as a PDF with domain materials, and (ii) web search, which provides access to more
up-to-date or niche information. The retrieved content is then used to support concept generation,
helping the model produce more accurate and comprehensive outputs.

D.5 FRAMEWORK HYPERPARAMETERS

In this section, we list all the hyperparameter used for our agentic workflow.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

1. Generator LLM: the LLM used to generate concepts and the correspond-
ing template. We used claude-sonnet-4-20250514 (initial generation with
reasoning_effort="medium"). As a result, models developed by Anthropic
are excluded from subsequent evaluations.

2. Concept LLM: the LLM used to generate concepts. We used gpt-4o-2024-08-06.
3. Verifier LLM: the LLM used to verify templates. We used gpt-4o-2024-08-06.
4. Student LLMs: the student LLMs we use to check the exam differentiability. Currently we

have two student LLMs: stronger: gpt-4o-2024-08-06 and weaker: gpt-4o-mini. For each
template under evaluation, students receive the same set of 3 samples to answer.

5. Exam type: We are generating the data connected to specific domain. We used "ecg",
"medicine", "finance", "weather" and "mechanical".

6. Few-shot examples: 9 templates prepared beforehand were used to present the desired
structure to the generator LLM. For each generation, 3 templates were randomly selected
and included in the prompt as few-shot examples. This introduces variability into the
generation process, enhancing diversity.

7. Regeneration patience: Templates requiring multiple regeneration cycles were generally of
lower quality. In our experiments, we set a maximum of 3 regeneration attempts.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E EVALUATION DETAILS OF GENERATED RESULT FROM
TIMESERIESEXAMAGENT

E.1 LLM-AS-A-JURY

We evaluated a set of generated questions using the LLM-as-a-jury approach. Below are example
criteria we applied for ECG evaluation:

1. SPECIFICITY
You are an expert judge evaluating the specificity of ECG multiple

-choice questions.
The questions normally come together with relevant time series

data, which should be analized to answer the question
correctly. It is not includded in currently evaluated samples.

Evaluate the specificity of the generated ECG multiple-choice
question.

A good question should target a single phenomenon.

Evaluation steps:
1. Read the question and all answer options.
2. Determine if the question targets a single, clearly defined ECG

finding or clinical interpretation.
3. Assess the ratio of unique medical terms to general words.
4. Penalize if:

- The question is overly broad or open-ended (e.g., "Is this
ECG normal?").
- The wording leaves diagnostic interpretation unclear.
- The question covers multiple unrelated phenomena.

Score highest if the question has one precise focus (e.g., "Is
there ST elevation in lead V3?").

Score from 1-10 where:
- 10: Excellent specificity with clear, focused medical

terminology targeting a single phenomenon
- 7-9: Good specificity but could be more focused
- 4-6: Moderate specificity with some clarity issues
- 1-3: Poor specificity, too broad, or covers multiple unrelated

phenomena

Respond with just a number from 1 to 10, followed by a brief
explanation for your score.

2. UNAMBIGUITY
You are an expert judge evaluating the unambiguity of ECG multiple

-choice questions.
The questions normally come together with relevant time series

data, which should be analized to answer the question
correctly. It is not included in currently evaluated samples.

Task: Evaluate if the question and answers can be objectively
assessed without multiple interpretations.

Evaluation steps:
1. Read the question and all answer options.
2. Determine if the question can be objectively assessed.
3. Check if the answers are clear and unambiguous.
4. Penalize if:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

- The question uses subjective terms (e.g., "Does this look
strange?").
- The answers are open to multiple interpretations.
- The question cannot be objectively answered.

A good question should be clear and objective (e.g., "Is there
tachycardia?").

Score from 1-10 where:
- 10: Completely unambiguous and objective with crystal clear

question and answers
- 7-9: Mostly clear with only minor ambiguities
- 4-6: Moderately clear but has some ambiguous elements
- 1-3: Highly ambiguous, subjective, or open to multiple

interpretations

Respond with just a number from 1 to 10, followed by a brief
explanation for your score.

3. DOMAIN RELEVANCE
You are an expert judge evaluating the domain relevance of ECG

multiple-choice questions.
The questions normally come together with relevant time series

data, which should be analized to answer the question
correctly. It is not includded in currently evaluated samples.

Task: Evaluate if the question actually pertains to ECGs and
medicine.

Evaluation criteria:
1. Does the question contain medical and ECG-specific terminology?
2. Is the question relevant to ECG interpretation and medical

diagnosis?
3. Is the question related to ECG interpretation?
4. Does the question have proper medical context?

A good question should contain relevant medical terms (e.g., "QRS
," "arrhythmia," "P wave") and pertain to ECG interpretation.

Score from 1-10 where:
- 10: Highly relevant to ECG domain with extensive proper medical

terminology
- 7-9: Good domain relevance with appropriate medical terms
- 4-6: Moderate relevance but could be more medically specific
- 1-3: Poor medical relevance or contains primarily non-medical

terms

Respond with just a number from 1 to 10, followed by a brief
explanation for your score.

3. ANSWERABILITY
You are an expert judge evaluating the answerability of ECG

multiple-choice questions.
The questions normally come together with relevant time series

data, which should be analized to answer the question
correctly. It is not includded in currently evaluated samples.

Task: Evaluate if the question can be answered based on ECG data
analysis.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Evaluation steps:
1. Read the question and all answer options.
2. Determine if the question can be answered by analyzing ECG

waveform data.
3. Assess whether the question requires time series analysis or

could be answered without it.
4. Penalize if:

- The question asks about non-ECG factors (e.g., "Was the
patient nervous?").
- The question can be answered without analyzing the ECG time
series data.
- The question is too general and doesn’t require specific ECG
analysis.

Score highest if the question requires specific ECG time series
analysis (e.g., "Is there atrial fibrillation?").

Give fewer points if the question can be answered without time
series data.

Score from 1-10 where:
- 10: Requires specific, detailed ECG analysis and is fully

answerable from the data
- 7-9: Mostly answerable from ECG data but could be more specific
- 4-6: Partially answerable from ECG but has some limitations
- 1-3: Cannot be answered from ECG data or is too general/

unrelated

Respond with just a number from 1 to 10, followed by a brief
explanation for your score.

E.2 T-SNE EMBEDDING PLOTS

Figure 6: t-SNE analysis of embeddings: (left) text-only vs. (right) text and time series concatenated
together.

To visualize distributional differences, we applied t-SNE (28), which preserves local distances
between samples. As shown in Fig. 6, questions generated by our framework form a more widely
scattered distribution, confirming the higher diversity observed in Table 4.

We ran the t-SNE algorithm using the scikit-learn implementation with the random seed fixed to 42,
in order to ensure full reproducibility of the dimensionality reduction results across different runs.
The other parameters were set to default.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The text embeddings were generated using the SentenceTransformer model (Qwen3-Embedding-
8B), while the time-series embeddings were obtained from MOMENT-1-large and averaged across
leads or multiple time series when applicable. The two vectors were then combined through direct
concatenation to form a joint embedding.

E.3 QA SAMPLES EVALUATION PROTOCOL

All used models were accessed by API with LiteLLM Python library. The following API providers
were used with default parameters:

• Closed source models – OpenAI API, Anthropic API
• Open source models for TimeSeriesExamAgent generated exams – Hugging Face

Inference Providers API
• Open source models for TimeSeriesExam– Novita AI 3

During the evaluation, the images of the plots were encoded with base64 encoding and provided to
the models. Plots were created with DPI = 50. We used setup without context condensation.

3https://novita.ai/

29

https://novita.ai/

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F FINETUNE PARAMETERS

Hyperparameter Value
Base model Qwen2.5-VL-3B-Instruct
GPU setupe 4*NVIDIA RTX A6000 48GB GPU
Frameworks Hugging Face Accelerate,

DeepSpeed ZeRO 3 stage
Train samples 2000
Warm-up steps 16
Batch size per device 1
Gradient accumulation steps 8
Learning rate 5e-5
Optimizer AdamW
Learning rate scheduler Cosine
Weight decay 0.1

LoRA rank (r) 16
LoRA alpha 16
LoRA dropout 0.0
LoRA target modules q_proj, k_proj, v_proj, o_proj,

gate_proj, up_proj, down_proj

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G FEEDBACK IMPACT

One of the challenges we observed during question generation was the misuse of domain-specific
jargon. Although the generated questions were grammatically correct, they sometimes included
terminology that did not align with standard ECG practice. This can lead to confusion for clinicians,
as non-standard phrasing undermines clarity and clinical relevance.

The following generated question contains terminology that was later identified as suboptimal:

Q: Examine this Lead II ECG recording and measure the QRS voltage amplitudes throughout
the tracing. Based on the peak-to-peak QRS amplitudes observed, what voltage abnormality is
present?

The clinicians noted that certain expressions in the question do not reflect standard ECG terminology.
In particular, the phrase “peak-to-peak QRS” was considered inappropriate. To address this, the
natural language description was refined by adding the following instruction:

Please frame your questions in a way that is clear and natural for
ECG specialists (i.e., adjust terminology accordingly).

Following this modification, a second round of consultation confirmed that the issue of non-standard
jargon had been resolved. An example of an improved question generated with the revised prompt is
shown below:

Q: Based on QRS voltage amplitude measurements across all 12 leads in this ECG, which
ventricular condition is most likely present?

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H CASE STUDY

In this section, we provide a few fine-grined failure mode analysis for samples from both
TimeSeriesExamand exams generated by TimeSeriesExamAgent

H.1 CASE STUDY 1: ANOLMAY PATTERN DISRUPTS VISUAL REASONING

GPT-4o

Based on the given time series, it shows an overall upward trend that appears to be exponential,
as the rate of increase seems to accelerate over time. Additionally, the oscillations in the time
series resemble a square wave pattern, characterized by sharp transitions between high and
low values.
Answer: B) Exponential trend and square wave

Gemma-3-27B-IT

The series shows an accelerating trend (exponential) with regular oscillations resembling a
sine wave.
Answer: A) Exponential trend and sine wave

Qwen2.5-VL-72B

The overall upward pattern is consistent with a linear trend. The cyclic component matches a
sine wave.
Answer: A) Linear trend and sine wave

Gemini-2.5-Pro

The trend curves upward, suggesting exponential. Oscillations are smooth and sinusoidal.
Answer: A) Linear trend and sine wave

This example shows common failure modes in time-series reasoning. GPT-4o correctly identified
the exponential trend and square wave, but other models misclassified either the trend (linear vs.
exponential) or the cyclic component (sine vs. square). Notably, these errors occurred even though
formal definitions and visual examples of wave types were provided during inference. Models often
defaulted to smoother structures like sine waves when uncertain. The presence of an anomaly further
disrupted reasoning: several models appeared to overfit to local deviations instead of extracting the
underlying trend–cycle combination. Current VLMs can describe surface patterns but struggle with
precise categorization under noise or anomaly conditions.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

H.2 CASE STUDY 2: INPUT MODALITY IMPACTS MODEL PERFORMANCE

question

Question: Compare the QRS duration and morphology between Beat A (sample 99947) and
Beat B (sample 74805). Based on the conduction velocity assessment, which statement is
most accurate?
Answer: Beat A shows normal conduction velocity with narrow QRS duration, while Beat B
demonstrates delayed intraventricular conduction with prolonged QRS duration indicating
bundle branch block

GPT-4o Vision

To compare the QRS duration and morphology between Beat A and Beat B, evaluate the width
and the shape of the QRS complexes in both images:1. **QRS Duration and Morphology:**-
Beat A: Displays a narrower QRS complex.- **Beat B:** Displays a wider QRS com-
plex, which often indicates a prolonged duration.2. **Conduction Velocity:**- A narrow
QRS complex usually signifies normal rapid conduction.- A wide QRS complex commonly
indicates delayed intraventricular conduction, such as a bundle branch block.these obser-
vations, Beat A demonstrates normal conduction with a narrow QRS, while Beat B shows
delayed conduction with a prolonged QRS duration., the most accurate statement is:[A] Beat
A shows normal conduction velocity with narrow QRS duration, while Beat B demonstrates
delayed intraventricular conduction with prolonged QRS duration indicating bundle branch
block.
Result: Correct

GPT-4o Text

To determine the most accurate statement about the QRS duration and morphology between
Beat A (sample 99947) and Beat B (sample 74805), we need to evaluate the conduction
velocity, QRS duration, and any presence of abnormalities like bundle branch block.A:time
series data shows significant spikes in amplitude, indicating a broad and potentially prolonged
QRS complex. This suggests a delayed intraventricular conduction that aligns with a bundle
branch block.B:time series data for Beat B does not exhibit the same broadness or prolonged
QRS complex as Beat A. The narrower spikes indicate normal conduction velocities and
narrow QRS duration., the comparison shows that Beat A has a delayed conduction with a
wide QRS, probably indicating a conduction problem like a bundle branch block, whereas
Beat B shows normal rapid conduction with a narrow QRS duration.on this analysis, the most
accurate statement is:[C]
Result: Incorrect

This is a typical case where visual input outperforms textual input. ECG diagnosis is traditionally
performed by examining the waveform plot rather than directly reading the raw 12-lead values.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

question

Question: Based on the QRS complex morphology in this single-lead ECG beat, what is the
most likely classification?
Answer: Right bundle branch block beat with wide QRS complex and characteristic RBBB
morphology

GPT-4o Vision

To classify the QRS complex morphology:- A **normal beat** typically has a **narrow
QRS complex** and a uniform morphology.- A **left bundle branch block (LBBB)** is
characterized by a **wide QRS complex** (greater than 120 ms) with the distinct n̈otchedör
s̈lurredp̈atterns often seen in lead V1 and lead I.- A **right bundle branch block (RBBB)**
also results in a **wide QRS complex** with a typically positive R’ wave in leads like V1.-
Poor signal quality would make it difficult to classify the beat.the provided ECG, the
QRS complex appears wide and shows a morphology that could indicate an LBBB due to its
characteristic shape.most likely classification is:[B]
Result: Incorrect

GPT-4o Text

The key points to consider for classification based on the QRS complex morphology are:1.
Normal beats typically have a narrow QRS complex with a regular morphology.2. Left bundle
branch block (LBBB) beats have a wide QRS complex and a specific LBBB morphology.3.
Right bundle branch block (RBBB) beats also have a wide QRS complex but with a distinctive
RBBB morphology.4. Unclassifiable beats have poor signal quality preventing accurate
identification.the provided time series data, it appears that the QRS complexes are quite
wide, which is characteristic of a bundle branch block. Both channel 1 and channel 2 show
significant variation and complex waveforms that exceed what would typically be considered
a normal, narrow QRS complex. distinguish between LBBB and RBBB:- LBBB typically
shows a dominant S-wave in V1 and a notched R-wave in leads like I and V6, but since we
have single-lead data, precise pattern identification can be challenging.- RBBB often shows an
RSR’ pattern or a terminal R wave in V1 and a wide S wave in leads I and V6.the information
provided and assuming that data fits broadly to standard patterns, this wide QRS complex
could more likely correspond to the characteristic morphology of RBBB., the most likely
classification for the QRS complex morphology in this single-lead ECG beat is a right bundle
branch block beat with a wide QRS complex and characteristic RBBB morphology.final
choice is [C].
Result: Correct

Indeed, the vision model fails here, even itself noting the poor signal quality in the plot. Because this
question can be answered using only a single ECG lead, the textual input avoids the long-context
burden from multi-lead data and allows a more focused inspection, leading to better performance.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

H.3 CASE STUDY 3: DIFFERENT RESOLUTION IMPACTS PERCEPTION

question

Question: Examine this single-beat ECG recording. Which type of bundle branch block
pattern does it most likely represent?
Answer: Right bundle branch block (RBBB), characterized by an RSR’ pattern (terminal R
wave) in lead V1 and wide S waves in lateral leads.

GPT-4o DPI=25

I’m sorry, I can’t identify the specific bundle branch block pattern from the image.
Result: Incorrect

GPT-4o DPI = 100

Based on the ECG recording, the pattern includes a wide QRS complex with an RSR’ pattern
in lead V1, indicating a terminal R wave. This is characteristic of a right bundle branch block
(RBBB).[B] Result: Correct

With DPI = 25, the model even struggles to recognize the block pattern, indicating that perceptual
quality strongly affects performance.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

A common failure mode in programmatically generated benchmarks is semantic mismatch: the natural
language in answer options describes patterns or conditions that the underlying code never actually
verifies. For instance, an option may claim a trend is “consistent throughout the period” while the
code only compares aggregate means, or state that event A “follows” event B while the code merely
checks co-occurrence. When labels are assigned based on computational criteria that diverge from
option semantics, ground-truth answers become decoupled from what the options literally describe.
The following case studies illustrate this phenomenon across three financial reasoning templates.

H.4 CASE STUDY: FLAWED VOLATILITY BENCHMARK FAVORS WEAKER MODELS

Question Template. “Analyze the daily price volatility of {company} around the highlighted time
period (day {N} marked as earnings announcement). How did the stock’s volatility change in the 10
trading days after the announcement compared to the 10 trading days before?”

Options:

A. Volatility increased significantly after the earnings announcement.
B. Volatility decreased significantly after the earnings announcement.
C. Volatility remained relatively unchanged around the announcement period.
D. Volatility was highest on the announcement day itself, then gradually returned to pre-

announcement levels.

Problematic Code Segment.
Volatility computation
pre_period_returns = returns[announcement_day-10:announcement_day]
post_period_returns = returns[announcement_day:announcement_day

+10] # BUG: includes announcement day
pre_volatility = np.std(pre_period_returns) # Standard deviation

(10-day)
post_volatility = np.std(post_period_returns)
announcement_volatility = abs(returns[announcement_day]) # Single

absolute return
Option D classification
max_period_volatility = max(max([abs(r) for r in

pre_period_returns]),
max([abs(r) for r in

post_period_returns]))
if announcement_volatility > max_period_volatility * 1.2:

answer = options[3] # "Volatility highest on announcement day
, then returned to normal"

Critical Errors and Model Performance Analysis. The benchmark contains compounding errors
that create an inverse correlation between model capability and accuracy: (1) Metric Inconsistency.

The code computes period volatility as standard deviation (σ =
√

1
n

∑
(ri − r̄)2) but announcement-

day volatility as a single absolute return (|rt|). These are dimensionally incompatible—a rigorous
model attempting to reason about volatility comparisons will recognize this inconsistency and struggle
to select an answer that assumes they are comparable.

(2) Label-Description Mismatch. Option D states volatility “gradually returned to pre-announcement
levels,” yet the code never verifies σpost ≈ σpre. A sample can be labeled as Option D even when
post-period volatility remains elevated.

Why Weaker Models Outperform. Stronger models engage in deeper reasoning: they may (a) notice
the metric mismatch and refuse to commit, (b) detect the logical flaw in Option D’s selection criteria,
or (c) question the synthetic “earnings announcement” that is actually a random date. Weaker models,
by contrast, rely on shallow pattern matching—associating keywords like “announcement day” and
“volatility spike” with Option D without verifying computational consistency. The flawed answer
key rewards this superficial heuristic, penalizing models that reason correctly about the underlying
financial concepts. This exemplifies how benchmark artifacts can systematically disadvantage more
capable models.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

H.5 CASE STUDY: SHARPE RATIO BENCHMARK WITH DEAD OPTIONS

Question Template. “Given the daily price charts for {ticker1} and {ticker2}, analyze their rolling 60-
day Sharpe ratios over the time period. Which stock demonstrates superior risk-adjusted performance
during the analyzed period?”

Options:

A. {better_ticker} shows consistently higher risk-adjusted returns with a rolling Sharpe ratio that
outperforms {worse_ticker} throughout most of the period.

B. {worse_ticker} shows consistently higher risk-adjusted returns with a rolling Sharpe ratio that
outperforms {better_ticker} throughout most of the period.

C. Both stocks show similar risk-adjusted performance with comparable Sharpe ratios throughout
the period.

D. The analysis is inconclusive due to insufficient data.

Problematic Code Segment.

avg_sharpe1 = np.mean(rolling_sharpe1)
avg_sharpe2 = np.mean(rolling_sharpe2)
sharpe_diff = abs(avg_sharpe1 - avg_sharpe2)
if sharpe_diff < hyperparameters["min_sharpe_difference"]:

continue # Skip similar cases -> Option C never valid
if avg_sharpe1 > avg_sharpe2:

better_ticker = ticker1
worse_ticker = ticker2
answer = options[0].format(...) # Always Option A

else:
better_ticker = ticker2
worse_ticker = ticker1
answer = options[0].format(...) # Always Option A (never
Option B)

Critical Errors and Model Performance Analysis. The benchmark contains structural flaws that
make three of four options unreachable: (1) Dead Options. The answer is always options[0]
(Option A). Option B is never selected—even though it is semantically constructed as a valid
alternative, the code assigns the “better” ticker dynamically such that Option A is always correct.
Options C and D are filtered out via continue statements, making them structurally impossible
answers.

(2) “Consistently” Unverified. Option A claims the winner shows “consistently higher” Sharpe ratios
“throughout most of the period.” However, the code only compares average Sharpe: S̄1 = 1

T

∑
t S1,t

vs S̄2. A stock with high early-period Sharpe and negative late-period Sharpe could win on average
without ever being “consistent.” No check verifies that Sbetter,t > Sworse,t for most t.

Why Weaker Models Outperform. A stronger model may: (a) recognize that “consistently through-
out most of the period” requires temporal dominance analysis, not just mean comparison, and hesitate
to select Option A; (b) consider Option B as valid when the ticker ordering in the question differs from
the better/worse assignment; or (c) reason that Option C could apply if rolling Sharpes frequently
cross. Weaker models exploit the surface-level heuristic that Option A—phrased most confidently and
always listing a “winner”—is the intended answer. Since Option A is always correct by construction
regardless of actual consistency, shallow pattern matching succeeds while rigorous financial reasoning
is penalized.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

H.6 CASE STUDY: REGIME SWITCHING BENCHMARK WITH SEMANTIC MISALIGNMENT

Question Template. “Analyzing the daily price movements of {ticker} over the given time period,
does the stock exhibit clear volatility regime switching behavior where the market alternates between
distinct high-volatility and low-volatility periods?”

Options:

A. Yes, the stock shows clear regime switching with distinct periods of high volatility followed by
periods of low volatility.

B. No, the stock maintains relatively constant volatility throughout the time period with only minor
fluctuations.

C. Yes, but the volatility changes are gradual and continuous rather than showing distinct regime
switches.

D. The data is insufficient to determine volatility regime patterns.

Problematic Code Segment.

Regime switching: requires at least one sustained high AND one
sustained low period

has_regime_switching = len(high_periods) > 0 and len(low_periods)
> 0

if has_regime_switching:
answer = options[0] # "high volatility followed by low
volatility"

else:
vol_cv = np.std(rolling_vol) / np.mean(rolling_vol) #
Coefficient of variation
if vol_cv < 0.3:

answer = options[1] # Constant volatility
else:

answer = options[2] # "Gradual and continuous" <-
semantic mismatch

Post-hoc filtering enforces 60% bias toward Option A
min_required = int(0.6 * num_samples)
while regime_switching_pairs < min_required:

for i in range(len(qa_pairs)):
if qa_pairs[i]["answer"] != options[0]:

qa_pairs.pop(i)
break

Critical Errors and Model Performance Analysis. The benchmark contains semantic and structural
flaws that decouple labels from data: (1) Option A Misrepresents Detection Logic. Option A states
volatility shows “high volatility followed by low volatility,” implying temporal ordering. However,
the code only verifies existence of ≥ 1 high period and ≥ 1 low period anywhere—they need not
alternate or follow any sequence.

(2) Option C Semantic Mismatch. Option C describes “gradual and continuous” changes, yet the code
assigns it when CV ≥ 0.3. High CV indicates erratic fluctuations—the opposite of gradual.

Why Weaker Models Outperform. The semantic mismatches in (1) and (2) mean ground-truth
labels are effectively arbitrary with respect to what the options actually describe. Correct reasoning
about temporal ordering or gradual vs. erratic behavior yields no predictive power over labels.

I LLM-AS-A-JURY SCORE CONSISTENCY ANALYSIS

To evaluate the consistency of jury-based scoring, we begin by selecting a diverse set of open- and
closed-source models (Gemini-2.0, DeepSeek-V3.2, GPT-3.5 Turbo, Qwen-2.5-VL, and Llama-3.3).
We form all possible triplets from this set and compute jury scores using the same procedure as in

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 5. For each triplet, we aggregate the metrics into a combined average score to provide a holistic
view. We then measure both the Pearson correlation and Cohen’s Kappa across all triplets to assess
statistical consistency. The resulting correlations and agreement scores are shown in Figures 7 and 8.

I.1 PEARSON CORRELATION AMONG JURY

de
ep

see
k+

ge
mini-

2.0
+gp

t-3
.5-

tu

de
ep

see
k+

ge
mini-

2.0
+llam

a-3
.3

de
ep

see
k+

ge
mini-

2.0
+mistr

al

de
ep

see
k+

ge
mini-

2.0
+qw

en

de
ep

see
k+

gp
t-3

.5-
tu+

llam
a-3

.3

de
ep

see
k+

gp
t-3

.5-
tu+

mistr
al

de
ep

see
k+

gp
t-3

.5-
tu+

qw
en

de
ep

see
k+

mistr
al+

llam
a-3

.3

de
ep

see
k+

mistr
al+

qw
en

de
ep

see
k+

qw
en

+llam
a-3

.3

ge
mini-

2.0
+gp

t-3
.5-

tu+
llam

a-3
.3

ge
mini-

2.0
+gp

t-3
.5-

tu+
mistr

al

ge
mini-

2.0
+gp

t-3
.5-

tu+
qw

en

ge
mini-

2.0
+mistr

al+
llam

a-3
.3

ge
mini-

2.0
+mistr

al+
qw

en

ge
mini-

2.0
+qw

en
+llam

a-3
.3

gp
t-3

.5-
tu+

mistr
al+

llam
a-3

.3

gp
t-3

.5-
tu+

mistr
al+

qw
en

gp
t-3

.5-
tu+

qw
en

+llam
a-3

.3

mistr
al+

qw
en

+llam
a-3

.3

Jury 3-Tuple

deepseek+gemini-2.0+gpt-3.5-tu

deepseek+gemini-2.0+llama-3.3

deepseek+gemini-2.0+mistral

deepseek+gemini-2.0+qwen

deepseek+gpt-3.5-tu+llama-3.3

deepseek+gpt-3.5-tu+mistral

deepseek+gpt-3.5-tu+qwen

deepseek+mistral+llama-3.3

deepseek+mistral+qwen

deepseek+qwen+llama-3.3

gemini-2.0+gpt-3.5-tu+llama-3.3

gemini-2.0+gpt-3.5-tu+mistral

gemini-2.0+gpt-3.5-tu+qwen

gemini-2.0+mistral+llama-3.3

gemini-2.0+mistral+qwen

gemini-2.0+qwen+llama-3.3

gpt-3.5-tu+mistral+llama-3.3

gpt-3.5-tu+mistral+qwen

gpt-3.5-tu+qwen+llama-3.3

mistral+qwen+llama-3.3

Ju
ry

 3
-Tu

pl
e

1.00

0.91 1.00

0.93 0.93 1.00

0.94 0.93 0.94 1.00

0.83 0.93 0.84 0.85 1.00

0.85 0.85 0.92 0.86 0.92 1.00

0.86 0.86 0.85 0.92 0.92 0.93 1.00

0.78 0.92 0.89 0.85 0.96 0.94 0.89 1.00

0.80 0.87 0.91 0.91 0.90 0.96 0.95 0.95 1.00

0.78 0.92 0.85 0.90 0.96 0.89 0.94 0.96 0.95 1.00

0.81 0.92 0.81 0.81 0.86 0.73 0.74 0.83 0.74 0.83 1.00

0.85 0.85 0.91 0.83 0.76 0.83 0.75 0.81 0.80 0.74 0.89 1.00

0.86 0.86 0.84 0.91 0.78 0.76 0.84 0.75 0.81 0.81 0.89 0.90 1.00

0.77 0.92 0.88 0.83 0.85 0.81 0.75 0.91 0.83 0.87 0.95 0.92 0.85 1.00

0.81 0.88 0.92 0.91 0.79 0.83 0.83 0.86 0.90 0.86 0.86 0.93 0.93 0.93 1.00

0.77 0.93 0.83 0.88 0.86 0.75 0.81 0.87 0.84 0.91 0.95 0.85 0.92 0.95 0.93 1.00

0.67 0.84 0.78 0.73 0.91 0.86 0.80 0.94 0.86 0.89 0.88 0.83 0.76 0.93 0.85 0.88 1.00

0.71 0.79 0.81 0.81 0.85 0.90 0.89 0.90 0.94 0.89 0.78 0.85 0.85 0.85 0.91 0.86 0.92 1.00

0.67 0.84 0.73 0.79 0.92 0.80 0.86 0.90 0.86 0.94 0.88 0.75 0.84 0.88 0.84 0.93 0.94 0.92 1.00

0.66 0.85 0.80 0.80 0.89 0.84 0.84 0.95 0.91 0.94 0.85 0.80 0.80 0.93 0.90 0.93 0.96 0.95 0.96 1.00

3-Tuple Jury Correlation: All Metrics Combined
(Based on averaged per-question scores)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: Correlation across all jury-model combinations. We see consistently high (≥ 0.5) inter-rater
correlation. This confirms that any possible triplets has consistent scores.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

I.2 COHEN’S KAPPA AMONG JURY

de
ep

see
k+

ge
mini-

2.0
+gp

t-3
.5-

tu

de
ep

see
k+

ge
mini-

2.0
+llam

a-3
.3

de
ep

see
k+

ge
mini-

2.0
+mistr

al

de
ep

see
k+

ge
mini-

2.0
+qw

en

de
ep

see
k+

gp
t-3

.5-
tu+

llam
a-3

.3

de
ep

see
k+

gp
t-3

.5-
tu+

mistr
al

de
ep

see
k+

gp
t-3

.5-
tu+

qw
en

de
ep

see
k+

mistr
al+

llam
a-3

.3

de
ep

see
k+

mistr
al+

qw
en

de
ep

see
k+

qw
en

+llam
a-3

.3

ge
mini-

2.0
+gp

t-3
.5-

tu+
llam

a-3
.3

ge
mini-

2.0
+gp

t-3
.5-

tu+
mistr

al

ge
mini-

2.0
+gp

t-3
.5-

tu+
qw

en

ge
mini-

2.0
+mistr

al+
llam

a-3
.3

ge
mini-

2.0
+mistr

al+
qw

en

ge
mini-

2.0
+qw

en
+llam

a-3
.3

gp
t-3

.5-
tu+

mistr
al+

llam
a-3

.3

gp
t-3

.5-
tu+

mistr
al+

qw
en

gp
t-3

.5-
tu+

qw
en

+llam
a-3

.3

mistr
al+

qw
en

+llam
a-3

.3

Jury 3-Tuple

deepseek+gemini-2.0+gpt-3.5-tu

deepseek+gemini-2.0+llama-3.3

deepseek+gemini-2.0+mistral

deepseek+gemini-2.0+qwen

deepseek+gpt-3.5-tu+llama-3.3

deepseek+gpt-3.5-tu+mistral

deepseek+gpt-3.5-tu+qwen

deepseek+mistral+llama-3.3

deepseek+mistral+qwen

deepseek+qwen+llama-3.3

gemini-2.0+gpt-3.5-tu+llama-3.3

gemini-2.0+gpt-3.5-tu+mistral

gemini-2.0+gpt-3.5-tu+qwen

gemini-2.0+mistral+llama-3.3

gemini-2.0+mistral+qwen

gemini-2.0+qwen+llama-3.3

gpt-3.5-tu+mistral+llama-3.3

gpt-3.5-tu+mistral+qwen

gpt-3.5-tu+qwen+llama-3.3

mistral+qwen+llama-3.3

Ju
ry

 3
-Tu

pl
e

1.00

0.62 1.00

0.64 0.47 1.00

0.61 0.62 0.66 1.00

0.59 0.61 0.42 0.56 1.00

0.66 0.43 0.75 0.53 0.48 1.00

0.60 0.50 0.41 0.46 0.66 0.51 1.00

0.53 0.71 0.58 0.64 0.65 0.63 0.50 1.00

0.64 0.57 0.76 0.74 0.54 0.74 0.58 0.74 1.00

0.47 0.55 0.43 0.72 0.75 0.43 0.59 0.59 0.61 1.00

0.58 0.59 0.38 0.48 0.69 0.37 0.52 0.51 0.45 0.56 1.00

0.55 0.41 0.67 0.45 0.36 0.68 0.36 0.41 0.52 0.30 0.45 1.00

0.56 0.50 0.40 0.64 0.51 0.46 0.44 0.45 0.47 0.56 0.49 0.57 1.00

0.58 0.77 0.62 0.66 0.59 0.55 0.46 0.80 0.64 0.58 0.57 0.53 0.49 1.00

0.61 0.51 0.70 0.66 0.49 0.61 0.55 0.55 0.77 0.53 0.50 0.66 0.56 0.63 1.00

0.50 0.56 0.50 0.74 0.50 0.42 0.46 0.53 0.61 0.70 0.53 0.42 0.61 0.60 0.70 1.00

0.52 0.55 0.47 0.54 0.57 0.59 0.41 0.68 0.58 0.49 0.57 0.65 0.58 0.63 0.55 0.48 1.00

0.59 0.48 0.52 0.52 0.48 0.65 0.56 0.56 0.68 0.46 0.43 0.66 0.69 0.51 0.69 0.51 0.72 1.00

0.39 0.40 0.30 0.50 0.62 0.33 0.54 0.42 0.43 0.66 0.50 0.37 0.64 0.39 0.45 0.60 0.52 0.60 1.00

0.51 0.61 0.55 0.67 0.59 0.55 0.51 0.72 0.76 0.67 0.55 0.44 0.53 0.71 0.77 0.72 0.68 0.61 0.46 1.00

3-Tuple Jury Cohen's Kappa: All Metrics Combined
(Based on discretized per-question scores)

0.0

0.2

0.4

0.6

0.8

1.0

Co
he

n'
s K

ap
pa

Figure 8: Cohen’s Kappa across all jury-model combinations.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

I.3 QUALITY RATING FOR DIFFERENT GENERATOR LLMS

Table 9: Comparison of Jury scores between DeepSeek V3.2 and Claude 4 generators on the MIT-BIH
dataset.

Metric DeepSeek V3.2 Claude 4
Specificity 8.23 ± 0.24 8.08 ± 0.17
Unambiguity 7.55 ± 0.12 7.47 ± 0.28
Domain Relevance 8.69 ± 0.49 8.72 ± 0.22
Answerability 8.69 ± 0.14 8.53 ± 0.08
No Unintended Hints 7.46 ± 0.13 7.37 ± 0.18

41

	Introduction
	Related Work
	TimeSeriesExamAgent
	Proof-of-Concept: Building Scalable Benchmarks using Templates
	TimeSeriesExamAgent: A scalable domain-agnostic benchmark creation tool

	Experimental Setup, Results and Analysis
	State-of-the-art LLMs struggle on exams generated by TimeSeriesExamAgent
	TimeSeriesExamAgent generates questions with diversity comparable to human-curated benchmarks
	LLMs trained on our generated samples exhibit transferable reasoning skills on established datasets
	Choice of LLM does not introduce bias for TimeSeriesExamAgent

	Discussion, Open Questions and Opportunities
	Conclusion
	TimeSeriesExam dataset details
	TimeSeriesExam Evaluation

	TimeSeriesExam algorithms and parameters
	Iterative Refinement Algorithm
	IRT Model Parameters
	Average Sample Discrimination Parameter over Rounds
	Dropped dataset distribution per round

	TimeSeriesExamAgent Generation Agent Workflow
	Generation Prompt
	Example of Question Template
	Example of Natural Language Description
	Examples of Generated Questions

	TimeSeriesExamAgent Design Specifics
	LLM Verifier
	Validation Prompt

	Detractors
	Context Condensation
	RAG/web search
	Framework Hyperparameters

	Evaluation Details of Generated Result From TimeSeriesExamAgent
	LLM-as-a-jury
	t-SNE Embedding Plots
	QA Samples Evaluation Protocol

	Finetune parameters
	Feedback Impact
	Case Study
	Case Study 1: Anolmay pattern disrupts visual reasoning
	Case Study 2: Input modality impacts model performance
	Case Study 3: Different resolution impacts perception
	Case Study: Flawed Volatility Benchmark Favors Weaker Models
	Case Study: Sharpe Ratio Benchmark with Dead Options
	Case Study: Regime Switching Benchmark with Semantic Misalignment

	LLM-as-a-Jury score consistency analysis
	Pearson Correlation among Jury
	Cohen's Kappa among Jury
	Quality Rating for Different Generator LLMs

