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Abstract

Single domain generalized object detection aims to train an
object detector on a single source domain and generalize it
to any unseen domain. Although existing approaches based
on data augmentation exhibit promising results, they over-
look domain discrepancies across multiple augmented do-
mains, which limits the performance of object detectors.
To tackle these problems, we propose a novel diffusion-
based framework, termed SDG-DiffDet, to mitigate the im-
pact of domain gaps on object detectors. The proposed
SDG-DiffDet consists of a memory-guided diffusion module
and a source-guided denoising module. Specifically, in the
memory-guided diffusion module, we design feature statis-
tics memories that mine diverse style information from local
parts to augment source features. The augmented features
further serve as noise in the diffusion process, enabling the
model to capture distribution differences between practical
domain distributions. In the source-guided denoising mod-
ule, we design a text-guided condition to facilitate distribu-
tion transfer from any unseen distribution to source distri-
bution in the denoising process. By combining these two
designs, our proposed SDG-DiffDet effectively models fea-
ture augmentation and target-to-source distribution trans-
fer within a unified diffusion framework, thereby enhancing
the detection performance on unseen domains. Extensive
experiments demonstrate that the proposed SDG-DiffDet
achieves state-of-the-art performance across two challeng-
ing scenarios.

1. Introduction
In recent years, the rapid advancement of deep learning
[17, 29] has significantly prompted the development of ob-
ject detection area [7, 22, 32, 47], achieving remarkable
performance with large-scale labeled datasets. However, in
many real-world scenarios, directly applying trained object
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Figure 1. Comparison with existing methods. (a) Existing meth-
ods aim to learn an unbiased detector by using data augmentation
techniques to improve the data diversity. (b) Our method aims to
learn a source-biased detector by transferring distribution from un-
seen domains to the source domain based on a diffusion model.

detectors to unseen datasets leads to a notable decline in
performance due to domain shifts [37], including changes
in lighting, weather conditions, and so on. Domain adapta-
tion for object detection (DAOD) is a common approach to
mitigate this issue by learning domain-invariant features be-
tween labeled source and unlabeled target domains. How-
ever, DAOD methods [15, 28] require target data during the
training stage, significantly limiting their practical applica-
tion.

To deal with this problem, domain generalization for ob-
ject detection [21, 24, 31, 39] has been proposed to gen-
eralize knowledge from single or multiple source domains
to unseen target domains. Early approaches [21, 41, 41]
primarily focus on the scenario where multiple source do-
mains are available during training, aiming to learn domain-
invariant features to improve the generalization ability of
object detectors. Nevertheless, obtaining labeled data from
multiple source domains incurs significant annotation costs,
thereby hindering the practicability of such techniques.
Consequently, single domain generalized object detection
has been proposed [3, 23, 42], which aims to generalize a
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model trained on a single source domain to multiple un-
seen target domains, providing a more feasible and chal-
lenging approach. Existing single domain generalized ob-
ject detection can be generally divided into two categories,
involving feature disentanglement based methods [42] and
data augmentation based methods [20, 23, 39]. Feature
disentanglement based methods aim to separate domain-
invariant representations from domain-specific ones. How-
ever, some studies [45] have indicated that completely re-
moving domain-specific features with a single source do-
main is challenging. On the other hand, data augmentation
based methods, including input-level augmentation [23] and
feature-level augmentation [39], aim to learn an unbiased
object detector by enhancing data diversity as shown in Fig-
ure 1 (a). However, these methods still face the following
two challenges: (1) Previous methods adopt predefined aug-
mentation techniques to diversify source data, which may
fail to cover the distribution of the target domain, espe-
cially when a significant distribution shift exists between
source and target domains. (2) Training an object detector
on multiple augmented domains neglects domain discrep-
ancies across these domains, thereby limiting the object de-
tection performance.

To solve these two problems, we aim to learn a source-
biased object detector by modeling feature augmentation
and target-to-source distribution transfer in a unified diffu-
sion model as shown in Figure 1 (b). Specifically, the for-
ward process gradually adds noise to the input data over
different time steps T during the training stage, thereby
simulating various data distributions. The reverse pro-
cess can facilitate distribution transfer from augmented do-
mains to source domain. In this way, the object detector is
trained solely on source-style samples, thereby preventing it
from being influenced by domain gaps across multiple aug-
mented domains and improving the performance on both
source and target domains. However, directly applying dif-
fusion model to single domain generalized object detection
poses the following two challenges: (1) How to maintain
the structure of feature distribution in the forward process?
Traditional diffusion models [12, 16, 48] define a Marko-
vian chain in the forward process by gradually adding Gaus-
sian noise. However, the augmented features generated in
this way tend to be a gaussian noise, lacking the structural
characteristics of real-world features. As a result, the diffu-
sion denoising process fails to perceive the true distribution
differences between unseen target domains and the source
domain, which impedes the performance of object detec-
tors. (2) How to guide the reverse process to source distri-
bution during the inference stage? In the reverse process, it
is essential to guide the diffusion model to generate source-
style features that preserve semantic consistency with in-
put features. A straightforward approach is to utilize corre-
sponding source features as conditions to control the reverse

process. However, this approach becomes unfeasible since
source information is unavailable during inference.

To overcome these two challenges, we propose a novel
diffusion-based framework for single domain generalized
object detection, namely SDG-DiffDet, which consists
of an Memory-guided Diffusion Module and a Source-
guided Denoising Module. In the memory-guided dif-
fusion module, we introduce memory modules to store
the channel-wise mean and standard deviation of local
parts across the entire dataset. Subsequently, we randomly
sample feature statistics from these memories to generate
augmented features with Adaptive Instance Normalization
(AdaIN) [14], which transfers diverse styles to the source
domain, while preserving the content structure. There-
fore, by using augmented features as noise, we effectively
shift the source distribution closer to the augmented dis-
tributions, enabling the diffusion model to better capture
the distributional differences between practical domains.
The source-guided denoising module aims to transfer aug-
mented distributions to the source distribution. Consider-
ing that source information is unavailable during the in-
ference stage, we incorporate text-guided conditions as a
bridge, generating conditions that maintain the semantic
content of input features while aligning them with the style
of source domain. Specifically, we create a set of text em-
beddings that involve source-domain style and class infor-
mation. These embeddings further interact with input fea-
tures through a cross attention mechanism to generate con-
ditions with source style, which guide the diffusion model
to transfer any unseen domain distributions to source dis-
tribution through multiple steps of reverse process. By
combining these two designs, our SDG-DiffDet effectively
models feature augmentation and target-to-source distribu-
tion transfer within a unified diffusion framework, thereby
enhancing the detection peerformance on unseen domains.

The major contributions of our work can be summarized
as follows: (1) We propose SDG-DiffDet, a novel diffusion-
based framework for single domain generalized object de-
tection, which explicitly models the distribution shift be-
tween source and augmented domains. To the best of our
knowledge, this is the first work to apply diffusion model
to single domain generalized object detection. (2) We intro-
duce a memory-guided diffusion module to model feature
augmentation in the diffusion process and a source-guided
denoising module to perform target-to-source transfer in the
denoising process. (3) Experimental results on two domain
generalization datasets show the effectiveness and superior-
ity of our method.

2. Related Work
In this section, we provide a brief overview of methods re-
lated to single domain generalized object detection and dif-
fusion model for perception task.
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2.1. Single Domain Generalized Object Detection
Existing single domain generalized object detection can
be broadly grouped into two categories: feature disentan-
glement based methods [42] and data augmentation based
methods [3, 23, 45]. Feature disentanglement based meth-
ods focus on disentangling domain-invariant representa-
tions from domain-specific representations. CDSD [42]
employs a cyclic-disentangled module to extract domain-
invariant feature representations within a single domain and
design a self-distillation module to further enhance the de-
tection performance on unseen target domains. Nowadays,
data augmentation-based methods have achieved superior
performance by enhancing the diversity of source domain
images. AFDA [3] uses the common off-the-shelf image
corruptions to disturb input-level distribution and align pre-
dictions across different augmentations of an image. UFR
[23] first considers single domain generalized object detec-
tion from a casual view and proposes an unbiased Faster-
RCNN to reduce the data bias, attention bias and prototype
bias. OA-DG [18] introduces object-aware mixing to pre-
vent global data augmentation from damaging object anno-
tation. Besides, some methods [19, 39] utilize a pretrained
CLIP [30] to augment source data in the feature space.
CLIPGap [39] introduces a semantic augmentation method
to augment the source domain to specific target domains
with the corresponding textual prompts. PGST [20] fur-
ther leverages grounded language-image pre-training model
(GLIP) to achieve style transfer from source domain to tar-
get domain. Different from these methods that only focus
on generating diversity augmented domains to cover un-
seen target domains, our method learns to model distribu-
tion transfer between augmented domains and source do-
main by diffusion model.

2.2. Diffusion Model for Perception Task
Diffusion models [12] have attracted significant attention
due to their impressive progress in image generation [25,
25, 33, 48]. Recently, some works have explored its poten-
tial application in discriminative tasks. ProtoDiff [4] incor-
porates probabilistic modeling and task-guided prototypes
to enhance the performance of few-shot learning. ODISE
[44] employs the diffusion model as a feature extractor and
demonstrates the great potential of text-to-image generation
models in open vocabulary segmentation tasks In the con-
text of object detection, DiffusionDet [1] formulates object
detection as a denoising diffusion process, which generates
bounding boxes from random boxes by reversing the diffu-
sion process. Diffusion-SS3D [11] introduces a diffusion
process for semi-supervised 3D object detection, aiming to
produce high-quality pseudo-labels by denoising random
noise to object sizes and label distributions. In this paper,
we utilize the diffusion model for single domain general-
ized object detection, aiming to provide a new perspective

of distribution transfer in feature space.

3. Method
3.1. Preliminaries
Problem Formulation. In the context of single domain
generalized object detection, we have a labeled source do-
main and T unseen target domains. For simplicity, we de-
note the source domain as Ds = {xs

i , y
s
i }

Ns

i=1, where xs
i is

an image, ysi = {ci, bi} denotes the corresponding labels,
including class labels ci and bounding box coordinates bi.
The T unseen target domains are represented as {Dt}Tt=1.
The source domain and T target domains share the same
category label space. Our goal is to train a detector on the
source domain and generalize it to unseen target domains.

Adaptive Instance Normalization (AdaIN) [14].
Given a feature map F, AdaIN shows that the channel-wise
feature statistics of F capture style information of the cor-
responding image, allowing style transfer between different
images. Therefore, transferring the style from a source fea-
ture Fs to a target feature Ft can be expressed as:

AdaIN(Fs,Ft) = σ(Ft)(
Fs − µ(Fs)

σ(Fs)
) + µ(Ft), (1)

where µ ∈ RC and σ ∈ RC denote channel-wise mean and
standard deviation, respectively.

3.2. Overview
The overall architecture of our proposed SDG-DiffDet is
shown in Figure 2. The primary objective of our method
is to transfer unseen features to the source style, thereby
training a source-biased object detector. Our approach is
composed of two main modules: an memory-guided dif-
fusion module for feature augmentation (Sec. 3.3) and a
source-guided denoising module for target-to-source distri-
bution transfer (Sec. 3.4).

3.3. Memory-guided Diffusion Module
In this section, we aim to generate diverse features that can
be used as noise in the diffusion process. Previous works
[31] points out that the image itself is a style library for
feature augmentation due to the style discrepancy between
local parts, such as textures, colors, etc. Therefore, we de-
sign feature statistics memories to transfer the style of local
parts to the whole image with AdaIN. Specifically, given an
image xs from the source domain, we first employ Elow to
extract its low-level feature map Fl

s ∈ RHl×W l×Cl

, where
Elow denotes the first three layers of the feature encoder,
H l,W l and Cl denote the height, weight and channels of
Fl
s, respectively. Then, to incorporate diverse style infor-

mation from the entire dataset, we introduce two memories,
including a mean memory Mµ = {µm}Mm=1 and a stan-
dard deviation memory Mσ = {σm}Mm=1. All elements
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Figure 2. (a) The overall architecture of our proposed SDG-DiffDet. Source images are initially fed into a feature encoder to extract
their 2D feature representations. The image features are then processed by the memory-guided diffusion module to generate noised source
features, which are subsequently denoised with the source stylization denoising module. The denoised augmented features are input into
the detection head for final prediction. (b) Illustration of the memory-guided diffusion module. We utilize feature statistics sampled from
memories to augment source features, which act as noise in the diffusion process. (c) Illustration of the source-guided denoising module.
The frozen text encoder takes source-style text prompts to generate text embeddings, which interact with augmented features via a cross-
attention layer, producing conditions that guide the denoising process.

in these memories are learnable parameters and initialized
with Kaiming initialization [9]. During the training stage,
we randomly sample a mean value and a standard deviation
from the corresponding memory to generate a augmented
source feature Fl

a with Eq (1). Subsequently, we pass Fl
a

and Fl
s through the remaining layers Ehigh to obtain Fa and

Fs, and Fa serves as noise to guide the diffusion process
in capturing the distribution of the augmented domain. Fi-
nally, the generated noise Fa is gradually added to Fs using
a fixed forward process:

Ft =
√
1− βtFt−1 + βtFa,

F0 = Fs,
(2)

where T is the overall timesteps and {βt}Tt=1 [36] is a set of
predefined parameters that controls step sizes.

The major challenge is how to ensure these memories
involve diverse styles of feature statistics across the entire
dataset. In the following, we take mean memory Mµ as an
example and describe how to update the memory in detail.
Memory update. We first split Fs into different parts with
the ground truth to achieve Fsplit

s =
{
fo
1 , . . . , f

o
N , f b

}
:

fo
i = Fl

s ·mo
i ,

f b = Fl
s ·mb,

(3)

where i ∈ {1, 2, . . . N} and N is the number of objects. mo
i

and mb represent the mask of the i-th objects and the rest
background regions, respectively. For simplicity, we omit

the superscript o and denote f b as fN+1. The channel-wise
mean of each part can be calculated as:

µ(fi) =
1

H lW l

W l∑
w=1

Hl∑
h=1

fi, (4)

where i ∈ {1, 2, . . . N + 1}. We calculate the normal-
ized similarity metric between each element in Mµ and
{µ(fi)}N+1

i=1 :

sm,i =
exp(µm · µ(fi))∑N+1

n=1 exp(µm · µ(fn))
, (5)

where s is an M × (N + 1) similarity matrix. With the
similarity matrix, we update µm as follows:

µm ← µm +

N+1∑
i=1

sm,iµ(fi). (6)

To prevent each memory element from containing identical
style information, we further adopt a diversity loss moti-
vated by [24], which is formulated as:

Lµ
div =

1

M(M − 1)

M∑
i=1

M∑
j=1,j ̸=i

⟨µi, µj⟩
∥µi∥2∥µj∥2

. (7)

We adopt the same way to update Mσ , where only Eq (4) is
replaced by calculated channel-wise standard deviation:

σ(fi) =

√√√√ 1

H lW l

W l∑
w=1

Hl∑
h=1

(fi − µ(fi))2. (8)
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The total diversity loss Ldiv is formulated as:

Ldiv = Lµ
div + L

σ
div (9)

3.4. Source-guided Denoising Module
After the forward diffusion process, we further perform a
denoising process to model distribution transfer between
unseen domains and the source domain. To guide the de-
noising process, we first generate condition Fcond that can
be utilized in both training and testing stages while preserv-
ing the source-style semantic information. To achieve this,
we propose to utilize a pretrained CLIP text encoder to ob-
tain text embeddings t̃ = [t̂1, . . . , t̂K , t̂K+1]

T with learn-
able textual contexts p:

t̂k = ET ([p, ek,d]), (10)

where K denotes the total category number, ek represents
the embedding for the name of the k-th class, eK+1 and d
denote the text embedding for “background” and source
domain prompts “in a daytime clear scene”, re-
spectively. The embeddings t̂ are further projected through
an MLP layer to produce the final output t ∈ R(K+1)×C .
Then, we incorporate a cross-attention layer to generate the
conditions for Fa. Specifically, keys and values are derived
from t, and queries are derived from the flattened Fa:

Q = FaWQ,K = tWK, V = tWV , (11)

where WQ,WK,WV ∈ RC×dk . The conditions Fa
cond are

obtained with the multi-head attention mechanism:

Fa
cond = softmax(

QKT

√
dk

)V. (12)

Additionally, we adopt a pixel-text matching loss [24] to
fine-tune the prompts to align source visual features with
text embeddings at pixel level. In the context of object de-
tection, ground truth segmentation labels are not available.
Therefore, we use ground truth bounding boxes and labels
to build binary supervision y ∈ {0, 1}HW×(K+1). The
pixel-text matching loss is computed with a binary cross-
entropy (BCE) loss:

Lmat = BCE(sigmoid(F̃s t̃
T
/τ), y), (13)

where F̃s and t̃ represent the l2 normalized version of Fs

and t along the channel dimension, τ = 0.07 is a tempera-
ture coefficient.

With the condition Fcond, we design a diffusion model fθ
to reconstruct source features Fs in a generative paradigm.
The detailed architecture of fθ with a U-Net is presented in
the Supplementary Materials. Specifically, to recover F0

from noised features Ft, the diffusion model fθ is trained

to perform the reverse diffusion process with Fcond. The
training objective is formulated with the MSE loss:

Lrec = ∥fθ(Ft,Fa
cond, t)− F0∥2. (14)

In addition, we conduct a T -step reverse diffusion to gener-
ate the corresponding source-style features of F̂

a

s , which are
then input into detector head for prediction:

F̂
a

s = Reverse(Fa,Fa
cond, T ). (15)

3.5. Training and Inference
Training Stage. We employ Faster-RCNN as the basic ob-
ject detector and the total loss of our SDG-DiffTection is
represented as follows:

L = Ldet + αLdiv + βLrec + γLmat, (16)

where Ldet is the supervised detection loss. α, β and γ
are the hyperparameters used to balance the contribution of
different losses.
Inference Stage. Given the unseen target domain feature
Fu, we perform a T -step reverse diffusion to generate the
associated source-style feature:

F̂
u

s = Reverse(Fu,Fu
cond, T ), (17)

where Fu
cond can be obtained by Eq (11) and Eq (12), only

replacing Fa with Fu. We employ F̂
u

s to predict object la-
bels and corresponding bounding boxes.

4. Experiment
4.1. Experimental Setup
Datasets. Urban Scene Dataset [42] provides images
captured under five various weather conditions, includ-
ing Daytime Clear (DC), Night Clear (NC), Night Rainy
(NR), Dusk Rainy (DR), and Daytime Foggy (DF). The
images are selected from three datasets: Barkeley Deep
Drive 100k (BDD-100k) [46], FoggyCityscapes [34] and
AdverseWeather [8]. Additionally, rainy images are ren-
dered from BDD-100k dataset [43]. For our experiments,
we use Daytime Clear dataset as the source domain, which
consists of 19,395 training images and 8,313 test images.
The remaining four datasets are employed for testing, con-
sisting of 26,158 images in Night Clear scene, 3,775 images
in Daytime Foggy scene, 3,501 images in Dusk Rainy scene
and 2,494 images in Night Rainy scene. All these datasets
contain bounding box annotations for seven categories, in-
cluding person, car, bike, rider, motor, bus and truck.

Real to Artistic consists of four datasets, including Pas-
cal VOC, Clipart1k, Watercolor2k and Comic2k. Pascal
VOC, Clipart1k, Watercolor2k, and Comic2k. Pascal VOC
is composed of real images covering 20 object classes,
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Table 1. Single domain generalization results on the Urban Scene
dataset. C denotes that the image encoder is CLIP-initialized. Avg
denotes the average mAP across all out-of-domain scenarios.

Method C DC DF DR NC NR Avg

FR [32] ✗ 51.8 38.9 30.0 15.7 33.1 29.4
IBN-Net[26] ✗ 49.7 29.6 26.1 32.1 14.3 25.5
SW [27] ✗ 50.6 30.8 26.3 33.4 13.7 26.1
IterNorm [13] ✗ 43.9 28.4 22.8 29.6 12.6 23.4
ISW [2] ✗ 51.3 31.8 25.9 33.2 14.1 26.3
CDSD [42] ✗ 56.1 33.5 28.2 36.6 16.6 28.7
CLIPGap [39] ✓ 51.3 38.5 32.3 36.9 18.7 31.6
SRCD [31] ✗ - 35.9 28.8 36.7 17.0 29.6
OA-Mix [18] ✗ 55.8 38.3 33.9 38.0 16.8 31.8
PDOC [19] ✓ 53.6 38.5 33.7 19.2 39.1 32.6
UFR [23] ✗ 58.6 39.6 33.2 40.8 19.2 33.2
AFDA [3] ✗ 52.8 37.2 38.1 42.5 24.1 35.5

Ours ✗ 60.2 41.1 38.9 43.1 25.4 37.1
Ours ✓ 61.8 43.2 40.9 44.7 26.6 38.9

while Clipart1k contains artistic images with the same 20
classes. Additionally, Watercolor2k and Comic2k each con-
sist of 6 classes, which are subsets of the Pascal VOC
classes. For our experiments, we follow prior methods
by using Pascal VOC as the source domain, which con-
sists of 16,551 training images and 5,000 test images. Cli-
part1k includes 1,000 images, while both Watercolor2k and
Comic2k contain 2,000 images each, and all three datasets
are treated as unseen domains.
Implementation Details. We employ Faster-RCNN [32]
with ResNet101 [10] as our backbone. In all experiments,
we train our model for 100k iterations with an initial learn-
ing rate of 0.01, which is reduced by a factor of 10 after
80k iterations. Our model is optimized by Stochastic Gra-
dient Descent (SGD) with a momentum of 0.9, and set the
batch size to 4. All experiments are conducted on 4 RTX
3090 GPUs and implemented based on Detectron2. For the
hyperparameters, we set α = β = γ = 0.1, T = 10,
M = 32. All results are reported using mean average preci-
sion (mAP) metric with a 0.5 threshold for Intersection over
Union (IoU).

4.2. Comparison with State-of-the-arts Methods

In this section, we present a comparative analysis of our re-
sults against other state-of-the-art methods. Following pre-
vious works [39, 42], we compare our method with several
feature normalization approaches, including SW [27], IBN-
Net [26], IterNorm [13], and ISW [2].
Results on Urban Scene Datasets. Table 1 shows the re-
sults on different weather conditions. Following most previ-
ous DG methods, we only use ImageNet pre-trained fea-
ture encoder for object detection. We observe that our
method achieves the best results of 60.2 % mAP on the
source domain. Compared to other augment-based methods

Table 2. Single domain generalization results on Real to Artist
dataset. C denotes that the image encoder is CLIP-initialized. Avg
represents the average mAP across all out-of-domain scenarios.

Method C Pascal VOC Clipart Watercolor Comic Avg

FR [32] ✗ 82.4 25.7 44.5 18.9 29.7
NP [6] ✗ 79.2 35.4 53.3 28.9 39.2
AFDA [3] ✗ 80.1 38.9 57.4 33.2 43.2

Ours ✗ 84.7 40.7 59.4 35.1 45.1
Ours ✓ 86.2 42.1 60.9 36.3 46.4

Table 3. Extend to zero-shot domain adaptation. ’C’ denotes that
the image encoder is CLIP-initialized.

Method C DF DR NS NR Avg

PODA [5] ✓ 44.4 40.2 43.4 20.5 37.1
Ours ✓ 44.2 41.8 45.9 27.3 39.8

[3, 23], our method demonstrates that training with source-
style features alone allows the detector to capture domain-
specific knowledge, thus providing supplementary informa-
tion for supervised learning and enhancing the model’s per-
formance on the source domain. Furthermore, for unseen
target domains, our method achieves the best 37.1 % mAP,
demonstrating the effectiveness of our approach in han-
dling challenging weather conditions. Additionally, using
CLIP initialization further improves detection performance
by 1.8% mAP. Class-wise results are provided in the Sup-
plementary Material.
Results on Real to Artistic Datasets. Table 2 presents the
results on the challenging real-to-artistic scenarios, where
the domain shift is relatively large. Our method consis-
tently achieves 45.1 % mAP on unseen target domains, out-
performing AFDA by 1.9%. These results indicate that the
proposed memory-guided diffusion module effectively sim-
ulates unseen domains, while the source-guided denoising
module successfully reverses target domains to source dis-
tribution even under significant domain shifts.

4.3. Extend to Zero-shot Domain Adaptation
We extend our method to zero-shot domain adaptation [5],
which provides target domain descriptions in natural lan-
guage. The core idea behind these methods is to transfer
the source domain to specific target domains using target
prompts, whereas our method focuses on transferring any
target domain to the source distribution to improve detec-
tion performance across all target domains. For a fair com-
parison, we follow [5] to use target domain descriptions
to augment source features, which are subsequently trans-
ferred back to source distribution. Our method achieves
39.8 % mAP, outperforming PODA by 2.7 % mAP.

4.4. Quantitative Analysis
Ablation Studies. We conduct a series of ablation studies
to verify the effectiveness of each individual module in our
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Table 4. Ablation studies. MD, SD represent our proposed
memory-guided diffusion module and source-guided denosing
module, respectively. We employ vanilla Faster-RCNN as the
baseline. w/ aug. denotes the feature augmentation method pro-
posed in sec. 3.3.

Method MD SD DF DR NS NR Avg

Baseline 33.1 28.4 35.2 15.4 28.0

Baseline w/ aug. 37.9 35.1 39.0 19.2 32.8

+ Diffusion

35.9 30.1 38.4 16.5 30.2
✓ 38.8 34.1 39.5 20.8 33.3

✓ 38.9 35.8 39.7 22.1 34.1
✓ ✓ 41.1 38.9 43.1 25.4 37.1

Table 5. Effect of Memory-guided Diffusion Module.

Method DF DR NS NR Avg

Fourier Aug. [35] 40.8 38.2 42.6 23.7 36.3
Text-guided Aug. [39] 40.6 37.8 41.7 23.9 36.0
NP [6] 40.5 38.3 41.9 24.2 36.2
Image Corruption [3] 40.7 38.2 42.2 24.6 36.4

Ours 41.1 38.9 43.1 25.4 37.1

proposed methods in Table 4. Specifically, the first and sec-
ond rows demonstrate that by diversifying the source fea-
tures, the baseline object detector generalizes effectively to
unseen domains, achieving a notable improvement of 4.8%
mAP. Besides, simply using a traditional diffusion model
results in an average improvement of 2.2 % mAP across
four target domains. The third row demonstrates that re-
placing Gaussian noise with the augmented features in the
forward process yields a 3.1 % mAP improvement, indicat-
ing that using augmented features as noise allows the dif-
fusion model to better capture practical distribution differ-
ences. Besides, the source-guided denoising module leads
to a 3.9% performance gain, which proves that training
a source-biased object detector significantly enhances the
performance of the object detector. By further integrating
two designed modules together, we achieve an overall 6.9%
mAP improvement, highlighting the effectiveness of these
modules in applying a diffusion process to single domain
generalized object detection.
Effect of Memory-guided Diffusion Module. The pro-
posed memory-guided diffusion module aims to generate
perturbed features that may reflect unseen target domains.
To prove the effectiveness of the proposed module, we ex-
plore different data augmentation methods in feature space
[6, 35, 39] or input space [3] to augment features which sub-
sequently act as input in the denoising diffusion step. Table
5 shows that our proposed method leads to at least 0.7 %
performance gain than other augmentation methods, indi-
cating that our proposed augmented method can effectively
simulate unseen target distribution.
Effect of Source-guided Denoising Module. To demon-

Table 6. Effect of Source-guided Denoising Module. DAE denotes
denoising autoencoder.

Method DF DR NS NR Avg

AdaIN 39.1 35.4 40.8 21.2 34.1
DAE 40.8 36.2 42.1 23.2 35.6

Ours 41.1 38.9 43.1 25.4 37.1

Table 7. Effect of external CLIP supervison. All results are repro-
duced by official code.

Method DC DF DR NC NR Avg

Faster-RCNN 56.2 34.5 29.2 35.4 16.2 28.9
OA-Mix [18] 57.7 38.6 34.7 39.0 17.5 32.5
AFDA [3] 56.6 38.3 38.5 42.1 24.9 36.0
Ours 60.2 43.2 40.9 44.7 25.4 37.1

Table 8. Effect of different condition designs. St denotes a source
style template “in a daytime sunny scene”.

Text Conditions St DF DR NS NR Avg

w/o conditions 39.5 34.7 40.3 21.4 34.0

Hand-crafted prompts 39.9 36.7 41.4 23.1 35.3
✓ 40.5 37.9 42.2 23.5 36.0

Learnable prompts 40.8 38.7 42.4 25.1 36.8
Ours ✓ 41.1 38.9 43.1 25.4 37.1

strate the unity of the proposed denoising process, we evalu-
ate alternative baselines for transferring unseen target distri-
butions to the source domain. First, we apply AdaIN using
the stored mean and standard deviations of the source data,
which results in a 3.0 % mAP performance drop. Addition-
ally, inspired by denoising autoencoders [40], we adopt a
similar U-Net framework with source conditions, replacing
the iterative denoising process with direct source feature re-
construction, resulting in a 1.5% mAP performance drop.
These results suggest that the denoising process more ef-
fectively maps diverse features back to the source domain.
Effect of CLIP Assisting. Our method integrates an ex-
ternal CLIP model to assist the training process. For a fair
comparison, we also utilize pixel-text matching to super-
vise previous works [3, 18], with the results presented in
Table 7. While CLIP supervision with source-style prompts
improves detection performance on the source domain for
vanilla Faster-RCNN, it struggles on unseen target domains.
In contrast, our method achieves an 8.2 % performance
gain, highlighting that the performance improvement stems
not only from CLIP supervision but also from the effective-
ness of the proposed diffusion process.
Effect of Condition Design. We study three different con-
dition designs as shown in Table 8. Specifically, we first
employ a handcraft template “a photo of [class]”
without incorporating source information. Our model
achieves a 1.3 % mAP improvement compared to uncondi-
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（a）Daytime Foggy （b）Night Clear （c）Dusk Rainy （d）Night Rainy

Figure 3. Visualization of detection results on (a) Daytime Foggy,
(b) Night Clear. Top: The predictions of CLIPGap [39]. Bottom:
The predictions of our SDG-DiffDet.

(a) Baseline w/aug. (b) Ours

Figure 4. t-SNE Visualization. We employ circles to represent
Daytime Clear dataset and crosses to represent Daytime Foggy
dataset. (a) and (b) represent baseline Faster-RCNN with feature
augmentation method proposed in sec. 3.3 and our SDG-DiffDet,
respectively.

tional denoising process, indicating that the semantic rep-
resentations of input features can be preserved by CLIP
text embedding during the reverse process. Besides, em-
ploying learnable prompts [49] further improves the per-
formance by 1.4 % mAP, suggesting that learnable con-
texts help the model generalize better to downstream tasks.
Moreover, adding source-style prompts results in improve-
ments of 0.7% for handcrafted prompts and 0.3% for learn-
able prompts. This proves that incorporating source-style
prompts helps the model better transfer target distributions
to the source distribution.

4.5. Qualitative Analysis

Visualization of Detection Results. We present the visu-
alization of detection results as shown in Figure 3. The
proposed method demonstrates improved object classifica-
tion accuracy with the source-biased object detector. For
instance, in the night clear scene, the distinct car is misclas-
sified as a person by CLIPGap, while our method provides
accurate predictions. Furthermore, compared to CLIPGap,
our approach better distinguishes foreground and back-
ground regions, effectively reducing false positive detec-
tions. Please refer to the Supplementary Material for more

Table 9. Detection results and model efficiency comparison for
different diffusion timestep T. Params denotes model parameter
and IT denotes inference time.

Methods T Params (M) DF DR NS NR Avg IT (s)

Faster-RCNN 0 89.2 33.1 28.4 35.2 15.4 28.0 0.151

Ours
5

97.0
40.5 38.8 43.0 24.9 36.8 0.174

10 41.1 38.9 43.1 25.4 37.1 0.198
15 40.8 38.7 43.6 25.8 37.2 0.225

visualization results.
t-SNE Visualization. We perform t-SNE [38] visualiza-
tions to analyze feature representations of different meth-
ods. As shown in Figure 4 (a), while utilizing data augmen-
tation to generate multiple augmented domains can align
features between the source and unseen target domains, the
extracted features lack discriminability, resulting in a signif-
icant number of false positives caused by misclassification.
In contrast, Figure 4 (b) shows that our method not only
aligns features across domains but also achieves better class
separation, indicating that our source-biased object detector
is more discriminative.

4.6. Limitations
The experimental results demonstrate the remarkable per-
formance of our method. However, due to the iterative na-
ture of the diffusion model, our method requires 198 ms
per image at timestep T = 10, which is slower than Faster
R-CNN, as shown in Table 9. Additionally, our approach
incurs approximately 7.8M extra parameters to perform
target-to-source distribution transfer. Exploring more effi-
cient techniques to achieve faster processing speeds while
reducing the additional model complexity presents an inter-
esting direction for future research.

5. Conclusion

In this paper, we propose SDG-DiffDet, a novel diffusion-
based framework for single-domain generalized object de-
tection, which explicitly models target-to-source distribu-
tion transfer. SDG-DiffDet consists of two key modules:
a memory-guided diffusion module that models feature
augmentation during the diffusion process and a source-
guided denoising module that facilitates distribution trans-
fer from unseen domains to the source domain during the
denoising process. Extensive experiments demonstrate that
our method significantly outperforms existing approaches
across two challenging domain generalization datasets.
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