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Abstract

People can autonomously select and achieve novel goals to shape their own learning.
But goal selection can involve selecting goals from large spaces, where repeated
planning becomes computationally intractable. We propose program induction
as an inductive bias for defining human-like priors to make goal selection easier.
We demonstrate this tractable, semi-autonomous method for goal selection on a
novel ShapeWorld task using a handcrafted grammar that maps states to reward
functions.

1 Introduction

People can autonomously achieve new goals through learning. We can use signals of progress to
learn how to cook unfamiliar foods (e.g. tasting while cooking) or to refine a unique art style (e.g.
comparing to an imagined image). Goals like inventing new tools or coming up with (and testing)
scientific theories can involve generative outcomes. Even when imagined outcomes have never been
achieved or observed before, we can learn our way toward new feats using intrinsic evaluations
of goal progress [1, 2, 3]. Such unsupervised learning is often modeled using the computational
framework of reinforcement learning (RL) [4].

Goals support such directed learning processes. Goals shape how we represent actions, the environ-
ment, and the intrinsic rewards (e.g. signals of progress) that support problem solving [5, 6]. Goals
also give humans – finite and rational agents – computational bounds on the problems we solve
[7, 8, 9]. Selecting novel goals is a decision-making opportunity to choose how we learn, innovate,
and grow. If RL can capture how people learn to achieve novel goals, how can we model how people
select such goals in the first place?

Models of novel goal selection are rare because rational models of cognition typically capture
decision-making with predetermined sets of choices [10], while the space of novel goals is often
vast or unbounded [11]. The reason for considering limited choices is computational tractability.
For novel goal selection, considering an unfamiliar objective can involve planning of how it may be
achieved. While computationally expensive, this can reduce the uncertainty that comes with choosing
a never-before-achieved goal [12]. Unfortunately, planning for each potential goal in a large space
quickly becomes intractable.

Another hurdle for modeling goal selection is formalism. RL has no formal representation of a goal
[13]. Instead, RL implicitly assumes that any goal can be represented using a Markov reward function
R [14], a hypothesis that has been shown to have strict theoretical [15, 16, 17] and practical [18]
limitations. Hierarchical, value-based models (e.g. options) circumvent this problem by casting goals
as high level actions that consist of lower level routines [19]. While helpful in some contexts, these
models do not capture how agents choose novel goals, since they rely on grouping existing routines
to form new actions.

We propose program induction as a model for tractable selection of novel goals [20]. We first describe
how a traditional, model-based algorithm would select novel goals, and then formalize program
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induction as an inductive bias to make this problem more tractable. We compare these methods on a
novel goal selection paradigm, ShapeWorld, and conclude with future directions for this approach.

2 Framework
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Figure 1: Schematic of the
framework.

One challenge with selecting new goals is evaluating goal feasibility.
It does not matter how rewarding a goal is, if that goal in unachiev-
able. And if two goals have equivalent reward associated with their
achievement, the easier to achieve goal should be preferred due to
the external and cognitive costs associated with making more deci-
sions [10]. Under these assumptions (and without loss of generality
for variably-rewarding goal achievement), we consider a setting in
which all goals have equal reward for achievement, but uncertain
feasibility. To capture how agents might select goals that they do
not yet know how to achieve, we force agents to choose novel goals
before knowing their starting state. The intention is to model how
agents might select novel goals when planning is difficult.

We therefore simplify the problem of goal selection to the problem
of choosing easy-to-achieve goals under uncertainty. We review three different agents who solve this
problem differently: 1) an optimal agent that uses value iteration to compute the value of each state
as a potential goal, 2) a program-based agent that relies on program induction to choose good goals,
and 3) an agent that chooses goals randomly. We then compare the strengths and weaknesses of these
agents when it comes to selecting achievable goals.

Defining the goal selection problem. Consider a rewardless MDP = (S,A, T, γ) where s ∈ S are
the states, a ∈ A are the actions, T (s, a, s′) is the transition function between states, and γ temporally
discounts potential rewards. We say that the goal state of the agent is sg such that:

R(s) =

{
1 if s = sg,

−1 otherwise.
(1)

Thus, the objective of a reward maximizing RL agent is to select some sg that can be achieved in the
least number of (−1 costing) steps. This reflects the costs (external and cognitive) associated with
pursuing a goal. We let the starting state s0 ∈ S be initialized at random after goal selection has
occurred. This prevents the agent from trivially choosing an adjacent state as its goal.

Optimal goal selection through planning. Given randomly initialized starting states, an optimal
agent must marginalize over all starting states to calculate which goals can be achieved in the least
number of steps on average. In order to determine which goals are most achievable on average, we
first calculate the optimal value function V ∗ under each goal using value iteration [4]. Since starting
state s0 is chosen at random, the value of choosing a particular goal state is the expected value of that
goal, Vg , across all states:

Vg(sg) =
∑
s∈S

V ∗(s|sg)p(s) (2)

Goals can then be selected greedily, or using softmax:

PRL(sg) =
eV (sg)∑
s′g

eV (s′g)
(3)

Program-based goal selection. We define a goal as an ordered pair g = (zg, R), where zg is a
compact goal embedding that we call a “goal program,”[5, 21]. Goal programs are sampled from a
generative grammar G, which assigns a probabilistic distribution over a potentially infinite space of
goal programs [21, 22, 23]:

zq ∼ G (4)

Crucially, a goal program zg generated by G corresponds to a set of states in the MDP (Figure 1). We
can say the set of states Sz to which the program applies are covered by zg. Thus we can think of a
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goal program as a binary function over states. We then sample sg ∼ Uniform(Sz) to define a reward
function as in (1). While in theory a goal program could cover and reward many states, allowing
multiple states to satisfy a current goal would make programs with large coverage more feasible. We
constrain the kinds of goals the agent can set to single-state goals for simplicity. This preserves the
assumption that all goals are created equal, save for the risk described by T and uncertainty over s0.
We leave inspecting the relationship between program coverage and goal selection to future work.

Though not necessary for goal selection, we can compare the predictions of the optimal agent PRL

to those of a program-based agent PG. This can be done by calculating the likelihood a state s is
covered by a program zg generated by G. Let PG(zg) be the probability that zg is chosen from G and
P (s|zg) be the probability s is sampled from the states covered by zg . Then:

PG(s) =
∑
zg∈G

PG(zg)P (s|zg). (5)

Random goal selection. While agnostic to the objective of selecting easy to achieve goals, a
random agent can still choose a goal state sg without taking into account any information about the
environment, and try to then maximize reward according to Eq (1):

sg ∼ Uniform(S). (6)

Advantages and Disadvantages. The optimal agent uses value iteration to compute the optimal
value function V ∗(s|sg) for every sg ∈ S. This means repeatedly solving the RL problem for each
state. While choosing greedily using Vg will select the easiest to achieve goals (e.g. goals with the
highest utility), in large state spaces it is prohibitively expensive to compute Vg for every possible
goal.

By contrast, a program-based agent samples a program zg from G and then a state sg covered by zg .
This reduces the computational cost of choosing a goal by putting the onus of good goal selection on
the grammar G. This enables agents to choose goals in contexts where planning is difficult. While
formulating a useful grammar is non-trivial, methods for doing so are a productive area of current
research [24, 25]. Program induction can also induce human-like biases, like preference for minimum
description length or cache and reuse strategies [26, 27, 22]. Using symbolic formulation of goals
also enables program reuse across domains—all while being more computationally efficient at the
time of sampling a goal [28].

Last, we note that goal selection need not be a complex process. An agent could select goals at
random, and then work towards achieving those goals. But without making an informed decision,
achieving those goals may difficult or impossible.

3 Simulations

Aim. Program-based agents can select goals as informed by a grammar G, which reduces re-
liance on expensive planning. Here, we use the novel ShapeWorld task to compare a handcrafted,
program-based agent to a planning agent. The grammar for the program-based agent captures the
inherent symmetry in the transition function of ShapeWorld (e.g. three(circle). We compare our
programatic goal selection to the results from value iteration (the planning agent).

Figure 2: A ShapeWorld demo.

Task: Shapeworld. The agent first selects a
single goal state that is different from previously
selected goals, and is then presented with the
initial shape configuration. The agent then tra-
verses the state space to achieve the goal, ideally
as efficiently as possible given the real-world
cost of time. The agent traverses states by mak-
ing shapes interact. Each shape is defined by
three properties: number of sides (circle, trian-
gle, square), level of shade (low, medium, high),
and texture (plain, striped). Agents pick an actor shape (first click) and a recipient shape (second
click) (Figure 2, left). Recipient shapes change by alternating texture and becoming closer to the
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Figure 3: An embedding of the Shapeworld state space using multidimensional scaling according
to the traversal distance between pairs of states. States are colored by negative likelihood (lower is
better). The optimal agent shares the highest likelihood states (circled in red) with the program based
agent. Outside of these few states, the agents diverge in their likelihoods.

shade of the actor shape. Recipient shapes also take on the number of sides of the actor shape with 0.8
probability. This yields N = 5832 states (shape configurations), which makes planning with a single
goal state feasible (marginalizing over the state space) while making optimal goal selection difficult
(solving the RL problem 5832 times, one for each goal state). Ultimately, this task is intended to be
difficult yet manageable for human participants, making it suitable for testing human goal selection
strategies.

Simulation. We designed a grammar (see appendix, Table 1) to prefer symmetric goal states. That
is, states that have high rotational symmetry are easier to describe with few primitives. For example,
the parsimonious program two(circle) symmetrically covers all states that have two shapes with
the circle feature. Meanwhile, two(square,(1,2)) is less parsimonious and covers similar, but
not necessarily symmetrical states. To compare PG(s) and PRL(s), we simulated the likelihood
distributions (Figure 3) for 1) an Optimal Planner using value iteration and Eq (2), 2) a Program
Inductive Agent that uses Eq (5), and 3) a Random Agent as in Eq (6).

Results. Figure 3 uses multidimensional scaling to project the Shapeworld state space into two
dimensions for visualization, with states colored by negative log likelihood (lower magnitude is
better). The heat maps allow visualization of the divergent goal selection for each model. We note
that both the Optimal Planner and Program Inductive Agent overlapped for most preferred goal states
(e.g., those covered by three(same)). Meanwhile, the Program Inductive agent de-emphasizes
non-symmetric states more than the Optimal Planner, as observed by a more uniform likelihood
distribution across all the other states. The random agent is agnostic to the structure of the task,
selecting goals according to a uniform distribution.

Discussion. We created an efficient goal-selecting agent that prefers symmetric goal states. Coinci-
dentally, some symmetric states are also the easiest goal states to reach as indicated by value iteration
(the Optimal Planner). This is because our transition function makes symmetric states easy to achieve.
With a different transition function T , this grammar would likely fail to recommend easy-to-achieve
goals. This is already seen in how the Program Induction Agent equally prefers non-symmetric goal
states (assigns a flat likelihood distribution) in contrast to the Optimal Planner.

Overall, we demonstrate the feasibility of using program induction to propose candidate goals in a
structured way. These goals may or may not align with high utility goals. Instead, program induction
provides a promising, efficient, and structured method for solving the goal selection problem. What
remains to be seen is (1) methodology for how to align program induction with prior knowledge
about goal utility and (2) whether or not program induction describes human goal selection.
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4 General Discussion

Program induction can embody domain-specific knowledge and inductive biases that can capture
scenarios where people rely on their intuitions to set goals [22]. We demonstrate that program
induction stands to provide a structured way of selecting goals when planning is too difficult. In our
example, program induction can efficiently select symmetric goals. An added upshot of this model is
that it captures how goal achievement can be intrinsically rewarding, since programs can map to a
reward function [6]. This provides an example of how an agent can autonomously create intrinsic
rewards for itself using inductive biases over selected goals.

Davidson et al (2024) demonstrated that this approach has limitations. It can be challenging to design
a grammar G that perfectly aligns with the kind of goals people naturally come up with [21]. With
recent progress of leveraging large language models as priors over programs [29], and methods that
fine-tune a grammar to match human goal generation [21], there is great potential to empower this
framework beyond simple hand-crafted grammars. That is, future directions can involve aligning
program induction with existing knowledge about goal utility, and testing how well these methods
describe human behavior.

Future directions of this framework can also involve approximating Bayesian inference methods as
models for human goal switching. As grammar G usually covers an open-ended space, searching
over this infinite space of possible programs has been notoriously intractable. But a rich literature
of how people search over this space has begun to address this problem [24, 25]. Such algorithms
could provide a computational account of how people set the next goal after achieving or failing
the current one, how people realize that a goal is impossible to achieve, and when they have to
change their mind as a result. Such directions can be used to investigate human behavior, potentially
illuminating individual differences in goal selection strategies. As goal-centric learning has become
an increasingly prolific area of research in human behavior [6], such directions provide potential for
insight into how humans successfully solve difficult problems, or struggle to achieve their own goals.
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A Appendix / supplemental material

Table 1: Probabilistic context free grammar for a program based agent.

Part

Non-terminal Symbols Production Rules Description

S and(S,S), S Allow conjunction.
A one(B), two(B), three(B), two(E), three(E) Number of shapes considered.
A two(F,E), three(F,E)
A one(B,C), two(B,D)
A two(E,D)
B square, circle, triangle
B low, medium, high
B striped, plain
C (0), (1), (2) Single locations.
D (0,1), (0,2), (1,2) Diad locations.
E same, different Feature comparisons.
F 1, 2, 3 Number of features to compare.
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