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Abstract

We present a novel vision-based voice activity detection

(VAD) method that relies only on automatic upper body mo-

tion (UBM) analysis. Traditionally, VAD is performed using

audio features only, but the use of visual cues instead of au-

dio can be desirable especially when audio is not available

such as due to technical, ethical or legal issues. Psychology

literature confirms that the way people move while speak-

ing is different from while they are not speaking. This mo-

tivates us to claim that an effective representation of UBM

can be used to detect “Who is Speaking and When”. On the

other hand, the way people move during their speech varies

a lot from culture to culture, and even person to person in

the same culture. This results in unrelated UBM represen-

tations, such that the distribution of training and test data

becomes disparate. To overcome this, we combine stacked

sparse autoencoders and simple subspace alignment meth-

ods while a classifier is jointly learned using the VAD labels

of the training data only. This yields new domain invariant

feature representations for training and test data, showing

improved VAD results. Our approach is applicable to any

person without requiring re-training. The tests applied on a

publicly available real-life VAD dataset show better results

as compared to the state-of-the-art video-only VAD meth-

ods. Moreover, the ablation study justifies the superiority of

the proposed method and demonstrates the positive contri-

bution of each component.

1. Introduction

Voice Activity Detection (VAD) is automatically recog-

nizing whether a person is speaking or not in an audio/video

recording. VAD is very useful for a number of applications

e.g., for the analysis of human-human interaction, human-

computer (robot) interaction (HCI), and several industrial

applications. For instance, VAD can be used to extract
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speaker turn features to perform nonverbal social interac-

tion analyses between people [3]. In HCI, having an accu-

rate VAD can allow computer to respond to a specific in-

terlocutor when there is more than one person in the in-

teraction environment [8]. Similarly, video conferencing

systems could use VAD to transmit the video of the speak-

ing person only during multi-person meetings. Video nav-

igation and retrieval, speaker model adaptation to enhance

speaker recognition, and speaker attributed speech-to-text

transcription are other possible applications that VAD can

contribute [21].

The most common way to perform VAD is based on au-

dio processing (typically referred to as speaker diarization

[42]) while multimodal approaches (generally called active

speaker detection) has recently become more popular due

to their more accurate performances (e.g., [43, 11]). Multi-

modal active speaker detection techniques can be based on

joint modeling of speech, facial and body cues [11] or can

be based on speaker diarization while video is mainly used

to track/ localize/ associate the person to the speech [23].

On the other hand, VAD based on visual cues only might

be desirable when the audio is not available due to technical

or privacy related reasons. Additionally, in social gather-

ings, such as a cocktail party or a panel, there can be much

background noise, which makes the task of distinguishing

voices robustly a very challenging problem. However, there

are relatively less studies (e.g., [30, 12, 7, 8]) performing

VAD with solely visual cues and better performing method-

ologies are needed.

This paper aims at detecting “Who is Speaking and

When” using visual activity-based cues only. We hypoth-

esize that UBM of an active speaker is different from a

person who is not speaking and an effective representa-

tion of UBM can be used to detect the (non)speaker. This

claim is motivated by several findings. First of all, during

social interactions individuals unintentionally synchronize

their nonverbal and linguistic behavior [35]. Second, ges-

tures occur mainly during speech (with a delay of millisec-

onds) [17]. Third, it was shown that during narrations about

90% of the time all gestures occurs while person is speaking



[36] and it was observed that in a meeting the occurrence

of UBM while speaking was for more than 80% of the to-

tal speaking time [6]. Fourth, several approaches exploited

the relationship between speech and body cues (body mo-

tion, hand gestures, mouth movement, fidgeting, body pose,

etc.). For instance, in [34], the synchronization between

pitch and gestures were used to obtain more human-like

artificial agents. Additionally, it has recently been shown

that nonverbal behaviours extracted from UBM can result in

useful and robust features, e.g., to estimate emergent lead-

ers, and to detect the personality traits in conversations [4].

Such research proves that it is not necessary to extract se-

mantically high-level information from verbal cues.

In this study, we introduce a novel VAD methodology

using UBM. Our method extracts features using a Convo-

lutional Neural Network (CNN), trained once, and is appli-

cable for any (new) person without requiring re-training. In

other words, instead of estimating hand-crafted features (as

the state-of-the-art (SOA) visual-VAD studies performed),

this study investigates an end-to-end training, where UBM

features are directly learned from the data itself, while the

data has been exploited in dynamic images form [5]. As

many times mentioned in the psychology literature, the way

people move while speaking varies a lot from person to per-

son. This yields dissimilar UBM representations, thus, the

distribution of training data and the test data belonging to

the new person can be different from each other (a prob-

lem called domain-shift). To overcome this, our method

presents an unsupervised domain adaptation solution as fol-

lows. The new feature representations are obtained by ap-

plying two-layers stacked sparse autoencoder, and a sim-

ple subspace alignment method, while a classifier is jointly

trained using the VAD labels of the training data only. This

trained classifier is used to perform VAD for the new test

person. By using the proposed domain adaptation tech-

nique, which is novel in VAD context, we are not learning

person-specific features. We obtain a common representa-

tion between the training domain and the new person’s do-

main to perform an effective VAD. Therefore, our method

is still a generic approach (independent to person, i.e., not

using any VAD labels of the new person).

The contributions of this work are:

a) This is the first attempt that dynamic images [5] are used

for VAD task: the full UBM based features are extracted us-

ing a CNN model, that is fine-tuned with dynamic images.

The resulting nonverbal features are novel and already per-

form better than SOA features.

b) The VAD results are improved by integrating stacked

sparse autoencoder and a simple subspace alignment

method to perform unsupervised domain adaptation, which

does not require any labels belonging to the test data and

supports person-invariant training. This also provides more

consistent VAD results such that the detection performances

are equally well for all persons.

c) A comprehensive survey on visual data and/or body

motion-based VAD are presented.

The rest of this paper is organized as follows. The previ-

ous VAD approaches based on visual data and body motion-

based cues, including multimodal systems using visual data,

are reviewed in Section 2, and the main differences between

our work and theirs are highlighted. In Section 3, the details

of the proposed methodology are described. The experi-

mental setting is given in Section 4 with a brief description

of the dataset used. Following that, in Section 5, we com-

pare the results of our method with the baselines, and we

perform an ablation study to show the importance of each

component of our method. Finally, we conclude the paper

with a summary and list the future work in Section 6.

2. Related Work

As an earlier work on computer vision-based active

speaker detection, Rehg et al. [37] proposed a Bayes Net

model, which combines face detection, skin color, skin tex-

ture and mouth motion sensors. VAD using features ex-

tracted from face (e.g.; face gestures, lip movements, head

movements) is still an active area. For instance, in [31] fa-

cial movements have been detected using Spatiotemporal

Gabor filters applied to the mouth, the head or the entire

face, while mouth region gave the best result. Later, in [27],

head and lip movements have been used to detect and lo-

calize the active speaker in a human-machine multiparty

interactive dialogue setting. In detail, the head movement

versus fusion of head and lip movements and lip movement

versus fusion of lip and head movements were analyzed in

three settings: speaker dependent, speaker independent and

hybrid. It was observed that head movements contributes

significantly towards VAD and outperforms lip movements

except speaker independent settings, and fusion of both im-

proves performance of VAD [27]. More recently, face fea-

tures extracted from AlexNet to perform VAD in real-time

multiparty interactions, was presented in [39]. Long short-

term memory (LSTM) has been used to model the tempo-

ral dependencies between face features over time with the

VAD labels extracted from an acoustic speaker diarization

method. Then, the trained LSTM model has been used to

predict if a given frame composed of face, is speaking or

not [39].

There are also methods using visual activity (e.g.; head

activity, hand gestures, full body or UBM) for VAD. In [30],

the correlation between head/ hand activity and speaking

status was analyzed by assuming that; the speaker is the one

who moves most, and group’s visual attention is more likely

to converge on the speaker than on others. In that study

[30], visual activity of skin-colour regions has been repre-

sented using Discrete Cosine Transform (DCT) coefficients

and residual coding bit-rate, while a Bayesian approach has



been used to detect visual focus of attention (VFOA). Su-

pervised and unsupervised methods have been applied to

test the features extracted for VAD in meetings [30]. Even

though, that study [30] showed promising results, detection

of VFOA is mostly robust when there are multiple cam-

eras capturing each person individually at close distance.

Gebre et al. [22] used motion history images (MHI) as a

likelihood measure of speaking activity, and their method

showed encouraging results on the same meeting dataset

used in [30]. Cristani et al. [12] utilized the relationship

between speech and gestures to detect the active speaker in

surveillance scenarios. That method [12] is based on a local

video descriptor, which extracts the optical flow of human

body, and encodes optical flow energy and complexity us-

ing an entropy-like measure [12]. The results of that study

[12] are promising, but the dataset they used has a top-view,

which already decreases the possibility of occlusions and

also the frames where the region of interests overlap (i.e.,

inter-person occlusions) were discarded from the analyses.

Latterly, directional audio information has been used to la-

bel improved trajectory features extracted from head and

torso tracks of people as speaking/non-speaking [7]. These

labels have been used for the training of an SVM to per-

form video-based VAD. Improved trajectory has been cal-

culated from 15 consecutive frames, pooled by a Fisher vec-

tor (FV) representation and has been associated with spatio-

temporal features e.g., the mean pixel location of the trajec-

tory, and Histogram of Gradients (HoG), Histogram of Flow

(HoF) and Motion Boundary Histogram (MBH) features.

Chakravarty et al. [8] extended that scheme [7] to an online

learning setting, starting from a generic active speaker de-

tection classifier, which gradually adapts itself to a specific

person.

One of the first audio-visual VAD approach was pre-

sented in [19], which was tested on human-centered user-

interfaces. In that study [19], face, skin, texture, mouth mo-

tion, and silence detectors have been optimally fused with

contextual information using a Dynamic Bayesian Network

(DBN) architecture, showing improved performance as ex-

ploiting the temporal correlation between audio and visual

sensors. Graphical models have been also used e.g., in

[1, 10], such that the audio from single microphone source

have been used to determine if someone is speaking, and vi-

sual features have been used to localize the active speaker.

In [23], the results of multiple audio-based source localiza-

tion techniques have been combined with a tracker allowing

to associate multiple persons to the multiple speeches. Sim-

ilarly, in [29], faces have been mapped with voices based

on the correlation between speech and face clusters. That

method [29] is advantageous as not requiring any a priori

but it requires an accurate pre-trained face and speech de-

tector. In [15], tightly cropped face images and sound mix-

tures have been jointly modeled with a CNN and a bidirec-

tional LSTM model to perform speaker-independent VAD.

In [13], active speakers were found by tracking and recog-

nizing voice of people with a hierarchical audio-visual sys-

tem applied to surveillance scenarios. In that study [13], by

using multiple modalities, challenges; large occlusions and

cross-talks were handled. However, that approach is limited

since only the most dominant speaker could be detected and

tracked but the other persons speaking at the same time with

the dominant speaker, cannot be detected.

The first approach using entire body motion information

together with audio features was presented in [43], which

was tested on meetings having single stationary camera and

a single microphone. That approach [43] is based on long

term co-occurrences between audio and video subspaces

found by clustering, does not require training, and does not

rely on a priori. However, it is not clear if that method [43]

is able to detect overlapping active speakers. The acous-

tic features; MFCCs and visual activity-based features; the

average motion vector magnitude in skin blocks have been

fused in [18]. These multimodal features showed improved

results as compared to audio-only baseline [18]. In [20],

speaker models have been learned from speech samples cor-

responding to gestures such that the occurrence of gestures

indicates the presence of speech and the location of gestures

indicates the identity of the speaker.

In [9], cross-modal supervision from video within an

audio-visual co-training has been addressed. In detail, a

generic body cues-based VAD classifier trained by direc-

tional audio, has been used to train a video-based person-

specific VAD. Then, learned video classifiers have been

used to supervise the training of personalized voice mod-

els. The drawback of that study [9] is, performing person-

specific VAD, which requires training data for each new

person VAD is performed. Recently, in [40], a CNN model

has been used to learn features from facial area while acous-

tic data has been represented a with Mel-filterbank features.

The features coming from two-modalities have been con-

catenated and used by unidirectional LSTM. In that study

[40], joint modeling was not performed, which is differ-

ent from [11] that proposed a two-stream CNN model that

learns an embedding between the sound and the mouth mo-

tions. The results in [11] showed that joint learning of au-

dio and synchronized lip-motion could improve the active

speaker detection results as compared to visual activity-

based VAD presented in [8].

Unlike any work discussed here, wearable sensors (a sin-

gle triaxial accelerometer worn around the neck) have been

used to perform VAD in crowded scenes in [24]. In that

work [24], body movements have been represented in terms

of power spectral density of a motion signal and transduc-

tive transfer learning has been applied to be able to better

model individual differences in speaking behavior of dif-

ferent persons. As the first attempt for speech activity de-



tection, depth visual information has been combined with

audio and planar video information in [41]. The results

showed that depth information significantly contributes to

VAD. However, that model [41] was tested on simple sce-

narios having two persons, and should be tested on more

realistic interactions to validate the results.

2.1. Highlights of The Proposed Method

Unlike multimodal VAD techniques discussed above,

we only utilize visual cues. We neither analyze the head

motions like in [31, 27, 30] nor the face features as in

[31, 27, 39]. Detecting visual focus of attention (VFOA)

as applied in [30] is also out of the focus of this study,

since it is not always true that the majority of the persons

are gazing the speaker (for instance, in panel discussions

when panelists are sitting in a single row, it is rare that they

face each other). Dissimilar to our approach, there are a lot

of methods based on lip movements e.g.; [31, 27, 11, 33].

However, these techniques are limited as detecting lip mo-

tion is not always possible. For instance, when speaker

presents a profile view to the camera or the camera reso-

lution is low, or the speaker is far away from the camera or

the speaker’s face is occluded by her hands, facial features

detectors fail to detect the lips. Additionally, in [7], it is also

shown that body activity-based features can outperform lip

motion-based features for VAD. We only use the features

representing upper body activity of a person, which is simi-

lar to [12, 22, 7, 8]. However, the way we initially represent

the body motion (by dynamic images [5]), and then model

and extract features (by using an end-to-end deep learning

approach) are completely different from these works.

Our method is a generic approach such that it does not

require any VAD labels belonging to the person in the test

data. Also, it does not need any video frame of the test

data for the training of the feature extractor. This is ad-

vantageous as compared to the studies, e.g.; [8, 9], and the

majority of the multimodal approaches, which presented

a person-specific VAD. The way people gesticulate while

speaking varies a lot from person to person, thus, a person-

specific model can outperform a generic model [8]. How-

ever, person-specific models are restrictive as they need

to be re-trained for each new person. Moreover, person-

specific models can still have data discrepancy problem,

which results in poor VAD performance. To handle data

discrepancy problem, unlike applying online training as per-

formed in [8], we present an unsupervised domain adapta-

tion method, which have never been applied for video-based

VAD. That domain adaptation method not only improves

the VAD performance on average, but also provides consis-

tent results such that VAD performances are equally well

for all persons.

The dataset we use to evaluate our method is from a real-

life panel i.e, not a role-play scenario based small group

meeting as in [30, 18, 20, 22, 43]. In such meeting datasets,

all participants know what the group task is, the cameras

are always static, there are more than one cameras captur-

ing participants from their frontal view, and the places of

the cameras are known by the participants. These results

in less challenging head, body and even lip motion detec-

tion. [8] is one of the baseline work as utilizing the same

dataset with us. One of the main difference between our

study and theirs is that, all the features they proposed were

hand-crafted, while ours are extracted from the data itself,

which are based on deep learning. In that study [8], tem-

poral continuity (is based on the heuristics that if a person

is speaking it is more likely that she will continue speaking

for a while rather than stop speaking), was used and the mis-

classification results were largely corrected. However, it is

not clear how the window size of the temporal continuity

should be selected to obtain accurate VAD results. Instead,

our method does not need to apply temporal continuity to

correct the results. The results of [8] are also not stable,

such that VAD results are good for some persons, while for

others they are not sufficient.

3. Proposed Method

The proposed method is illustrated in Figure 1. First,

multiple dynamic images, representing UBM of the person

in the given video, are generated from the training and test

videos individually (Section 3.1). Then, ResNet50 [28] is

fine-tuned for VAD task while the dynamic images of train-

ing data are the inputs. This fine-tuned model is used to

extract features for each dynamic image (Section 3.2) of

training and test data. Following that, the features obtained

for training data could be used to train a classifier (such

as Support Vector Machine as applied in this study) or even

without extracting features, the trained model could be used

with the softmax function to classify the dynamic images of

the test data as speaking or not-speaking (i.e., a fully end-

to-end system). However, the softmax result (referred as

Softmax in Section 5) and the classifier’s result when fea-

tures extracted were the input (referred as SVM in Sec-

tion 5) showed that, while these approaches work well for

some speakers, their performance is not sufficient for some

other speakers. This might be due to the fact that the way

people move while speaking varies from person to person

[7, 8], which results in dissimilar UBM representations (in

our case dissimilar dynamic images) that might cause a do-

main shift problem resulting in lower classification perfor-

mance. This challenge is overcome by applying an unsu-

pervised domain adaptation method, and a SVM classifier.

The parameters of the domain adaptation method and

the SVM are jointly learned. The proposed domain adap-

tation method aligns the subspace of train (source domain)

and test (target domain) features extracted from fine-tuned

ResNet50 model [28] after applying two-layers stacked



sparse autoencoder (Section 3.3). An SVM classifier is

trained using the new feature representations of training

data obtained from the domain adaptation approach, and the

corresponding VAD labels. To determine the voice activity

of a test dynamic image, the trained SVM classifier (Sec-

tion 3.4) is applied to the corresponding data represented

in terms of the new domain adapted features, resulting in a

VAD label as speaking or not-speaking. This predicted label

corresponds to the test video frames, those the test dynamic

image is constructed from.

3.1. Multiple Dynamic Images Construction

There are diverse way to detect the visual activity (Visu-

alAct) of a person, which can be used to extract UBM. For

example, in [30], a combination of motion vectors, DCT co-

efficients and residual coding bit-rate were used to estimate

VisualAct for VAD. In [22], motion history images (MHI)

were used to represent the VisualAct for video-based VAD.

Optical flow is another popular method used to extract Vi-

sualAct to detect the speakers [12]. Recently, to summarize

the short-term spatio-temporal content of a video in a single

image, Bilen et al. [5] proposed dynamic image represen-

tation, which achieved significantly better results for activ-

ity recognition. Dynamic image can be seen as a compact

representation of a video segment, which summarizes the

appearance and motions of it. Construction of a dynamic

image contains rank-pooling that encodes the temporal evo-

lution of the frames in a video and potentially enables the

use of any CNN model with fine-tuning. The details of its

algorithm can be found in [5].

We obtain multiple dynamic images to represent an input

video. For each consecutive 10 frames in a given video,

we obtain one dynamic image without overlapping. The

number of frames used, are defined arbitrarily. We observed

that dynamic images constructed from RGB domain (raw

video frames) were good at capturing the motions belong

to the person in the video. Some example dynamic images

from the dataset used, are given in Figure 2.

3.2. ResNet50 Fine-tuning and Feature Extraction

Dynamic images can be used with any CNN architec-

tures for fine-tuning as also shown in [5]. We first fine-

tuned AlexNet (pre-trained on ImageNet dataset). However,

this resulted in over-fitting even regularization techniques

e.g., drop-out on fully connected layers, batch normaliza-

tion in convolution layers and data augmentation techniques

were applied. Given that, a CNN model having more layers

might have better feature representation capacity [26], we

also performed our analysis by using ResNet50 [28], which

gave significantly better (p-value < 0.01) VAD results as

compared to AlexNet.

When dynamic images extracted from speaking and non-

speaking video segments are the inputs, ResNet50 (pre-

trained on ImageNet dataset) is fine-tuned by adding a fully-

connected layer after the final convolution layer (called fc1
in the rest of this paper). This fc1 layer has 2048 neurons

and its weights are randomly initialized. Only the weights

of fully connected layer are updated during fine-tuning, in

other words the weights of convolution layers are not up-

dated. The model is trained in end-to-end manner with cross

entropy loss function, Adam optimizer, 10e−5 learning rate

and for 20 epochs.

During fine-tuning, we noticed that there is much more

non-speaking segments as compared to the speaking seg-

ments, but training with an imbalanced data misleads the

classification task [2]. To overcome this, the data in each

batch (in total 128 samples) is balanced such that 64 speak-

ing and 64 non-speaking randomly selected samples are

used. Additionally, data augmentation is applied as follows.

Some randomly selected training images are horizontally

flipped and/or a 64x64 randomly selected patch is replaced

with the mean value of the images, which can be seen as a

dropout in input layer.

3.3. Unsupervised Domain Adaptation

The autoencoder was introduced by Rumelhart et al. [38]

as an unsupervised learning model and have been used for

different purposes. It is essentially a neural network trained

to map the input to an output, which is a reconstruction of

the input. The simplest form of an autoencoder has a single

hidden layer that encodes an input x to its new represen-

tation y, with an activation function f (usually non-linear),

weight matrix (W ) and a bias vector b. The encoded y is

then decoded to reconstruct the input x (shown as xr be-

low). Training is based on a loss function that is minimized

while hidden/output layer weight matrices (W and W ′) and

hidden/output layers bias vectors (b and b′) are optimized.

These can be summarized as follows.

y = f(Wx+ b) (1)

xr = f(W ′y + b′) (2)

Recently, the autoencoder is used for unsupervised domain

adaptation [32] such that a common representation between

training (source domain) and test (target domain) data is

learned. This idea has never been applied for video-based

VAD. Previous studies [25, 14] showed that, it is possible to

learn better performing domain-invariant features thanks to

non-linear transformation property of autoencoder. How-

ever, using autoencoder only might not be sufficient (i.e.;

does not always grantee effective features), and in some

cases autoencoder can result in more discrepancy across tar-

get and source domain. We combine autoencoder with a

subspace alignment approach (referred as AE+SA for the

rest of the paper). The autoencoder structure and the sub-

space alignment technique used are summarized as follows.



Figure 1. The illustration of the proposed method.

Figure 2. Example dynamic images obtained from 10 consecutive

speaking and not-speaking frames.

Stacked Sparse Autoencoder: A two-layers stacked

sparse autoencoder (2AE) is used. The number of hidden

neurons in each layer, l2 weight normalization factor (i.e.,

regularization parameter for weight updating), sparsity con-

straints for sparsity control, and sparsity proportion are all

optimized layer-wise. In detail, the number of neurons in

first and second layers are set to 512 and 128, respectively

while the l2 weight regularization is 0.002, and sparsity reg-

ularization is four. The sparsity proportion in each encoding

layers are 0.15 in first layer and 0.40 in second layer. These

values correspond to the best VAD performance obtained

for the validation set. The training of 2AE is performed for

300 epochs using complete test data and the same amount of

randomly selected training samples (called balanced train-

ing in Section 5). The loss function contains two parts; a

mean square error between input and output, and two reg-

ularization terms. The first regularization term (weight de-

cay) controls the overfitting and the second regularization is

sparsity constraint on the hidden units.

Principal component analysis based subspace align-

ment (PCA-SA) [16]: Suppose, Sf is the feature set of

source data and Tf is the feature set of target data, both

having d dimensions. First, the source and target features

are normalized to zero mean and unit variance. Then, PCA

is applied to both data with N eigenvectors correspond-

ing to top N eigenvalues. These N eigenvectors are con-

sidered as the bases of source and target subspaces repre-

sented as UfS and UfT (where UfS , UfT ∈ RdxN ). As UfS

and UfT are extracted through singular value decomposi-

tion (SVD), they are orthonormal to their transposed form

(U ′

fS
UfS = I , U ′

fT
UfT = I). Later, a linear transformation

matrix M , which transforms the source subspace coordi-

nates UfS into target feature subspace UfT , is learned by

optimizing the Bregman divergence as follows.

F (M) = ‖UfSM − UfT ‖
2

F
(3)

M∗ = argminM (F (M)) (4)

where ‖.‖
2

F is the Frobenius norm. Eq. 3 can be re-written

as:

F (M) =
∥

∥U ′

fS
UfSM − U ′

fS
UfT

∥

∥

2

F
=

∥

∥M − U ′

fS
UfT

∥

∥

2

F
(5)

which results in M∗ = U ′

fS
UfT and Uc = UfSM

∗,

where Uc stands for target-source common coordinate

system (called the target aligned source coordinate system

in [16]). As a result of this alignment, the new feature

representations of target (ftT ) and source (ftS ) domains are

found as ftT = TfUfT and ftS = SfUc, respectively. The



only parameter is the number of eigenvectors, whose value

is found automatically from the set of values: {5, 10, 15,
20, 25, 30}, based on the best VAD performance obtained

for the validation set.

3.4. Classifier Learning and Inference

The proposed method could be combined with any clas-

sifier for learning and inference. We use linear Support Vec-

tor Machine (SVM), which is in line with many studies such

as [7, 8]. As kernel parameter C was taken as 10k while

k = {−4,−3,−2,−1, 0, 1, 2, 3, 4}. The SVM model is

jointly trained with 2AE + SA and is used for the classifi-

cation of test data.

4. Experiments

The proposed method was evaluated using the only pub-

licly available real-life VAD dataset, called Columbia [8].

This dataset contains a 87 minutes-long video (frame rate

is 30 frames per second), which is from a panel discussion

at Columbia University. There are seven participants on the

panel. The field of the view of the camera is changing to

focus on smaller groups of panelist at a time. Following the

SOA [8, 9, 11], we only focused on the parts of the video

where there is more than one person in the frame and dis-

carded any person in the margins of the video. This resulted

in five participants (Bell, Bollinger, Lieberman, Long, Sick)

while two-three participants are visible at any one time. We

used the VAD labels, speaking/not-speaking for each video

frame, belonging to these five persons, to be able to com-

pare our results with SOA. This dataset supplies the bound-

ing boxes i.e., the detections of each person. However, we

observed that these bounding boxes contain only the head

of the panelists, instead of the whole upper body. There-

fore, we re-extracted the bounding boxes, this time contain-

ing the whole upper body of a given panelist, which will

be supplied upon request. Leave-one-person-out cross val-

idation and F1-score as the evaluation metric were used to

compare our results with SOA [8, 9, 11].

5. Results

The best results of the SOA [8, 9, 11] and the proposed

method are given in Table 1. The results of the ablation

study is also reported in the same table. Ablation study

allows us to make a performance comparison particularly

between: i) AlexNet and ResNet50, ii) ResNet50 w/ and

w/o data augmentation, iii) one-layer sparse autoencoder

and two-layers stacked sparse autoencoder, iv) sparse au-

toencoder w/ and w/o balanced training, v) the proposed

method and the proposed method without sparse autoen-

coder i.e. using subspace alignment only for unsupervised

domain adaptation, vi) the proposed method and the pro-

posed method without subspace alignment i.e. using sparse

autoencoder only for unsupervised domain adaptation.

As seen (Table 1), the average performance of the pro-

posed method is better than the video-only SOA VAD ap-

proach [8]. The performance of [8] is highly dependent to

the choice of window size (W ) of temporal continuity al-

gorithm (see Section 2.1 for more information). Given that

we create dynamic images for each 10 consecutive frames,

it can be more fair to compare the performance of the pro-

posed method with [8] while W is equal to 10. In this case,

the proposed method performs even better (11%) than [8].

The same arguments are correct for [9], when its video-only

features are used. Additionally, the performance of the pro-

posed method is as good as the SOA multimodal VAD ap-

proach [11]. This is an important achievement since the

proposed method is based on visual activity only, while [11]

utilizes lip motions with audio.

Better average VAD performance of the proposed

method is definitely very important but having low VAD

standard deviation (STD) of all participants (while still per-

forming better on average), is also a significant aspect of the

proposed method. In detail, the performance of [8] has fluc-

tuations such that it performs well for some persons (e.g.,

Long: 86.90%), while performs highly worse for some oth-

ers (e.g., Bollinger: 65.89%). This can be observed from

the high STD values: 8.45% and 10.36% as well. The

same arguments are correct for [9], when its video-only fea-

tures are used. On the other hand, [11] has much lower

STD (5.94%) than [8, 9], which is as good as the pro-

posed method. The performance of the proposed method

is the most consistent (STD= 5.14%). This is not only

due to applying unsupervised domain adaptation, but also

due to the superiority of the proposed features (fc1 features

of ResNet50) as compared to the SOA features. This can

be seen from STD values: 7.82% (Softmax), 7.76% (Soft-

max), 6.97% (SVM), i.e.; all of them are much lower than

STDs of [8] while all of them also perform better than [8],

on average. Once the autoencoder and subspace alignment

techniques are integrated individually, the average perfor-

mance gradually improves (88.31% and 87.43%, respec-

tively), while STD values decreases (5.18% and 6.56%,

respectively).

These results also proves that, the way ResNet50 is fine-

tuned clearly outperforms fine-tuning AlexNet. Data aug-

mentation (see Section 3.2) applied during the fine-tuning

of ResNet50, improves the VAD performance for all par-

ticipants. Balanced training of sparse autoencoder (see Sec-

tion 3.3) contributes positively to the VAD performances for

all participants independent to the number of layers (one-

layer or two-layers stacked sparse autoencoder). More-

over, two-layers stacked autoencoder enhances the VAD

performance, which also results in lower-dimensional fea-

ture space as compared to single layer autoencoder. The



Table 1. F1-scores (%) on the Columbia dataset. The results of [8] is taken from [11]. AVG and STD stand for average and standard

deviation of F1-scores of all participants, respectively. W , FT , w/AUG, AE, 2AE, BT and SA stand for window size, fine-tuning, with

augmentation, sparse autoencoder, stacked sparse autoencoder, balanced training and subspace alignment, respectively. The best results of

all are emphasized in bold-face.

Method Bell Bollinger Lieberman Long Sick AVG STD Details

[8, 9] 82.90 65.80 73.60 86.90 81.80 78.20 8.45 W=10, video-only results of [9]

[8, 9] 90.30 69.00 82.40 96.00 89.30 85.40 10.36 W=100, video-only results of [9]

[11] 93.70 83.40 86.80 97.70 86.10 89.54 5.94 W=10

Softmax 78.29 84.38 59.39 63.59 64.14 69.96 10.76 FT AlexNet

Softmax 85.95 91.08 90.71 71.84 85.95 85.11 7.82 FT ResNet50

Softmax 86.07 93.30 91.88 73.62 86.34 86.24 7.76 FT ResNet50 w/AUG
SVM 86.35 93.78 92.34 76.09 86.25 86.96 6.97 FT ResNet50 w/AUG, fc1 fea.

AE+SVM 86.54 92.95 92.19 77.57 86.96 87.24 6.15 FT ResNet50 w/AUG, fc1 fea., 1-layer AE.

AE+SVM 87.18 93.58 92.10 78.22 87.39 87.69 6.00 FT ResNet50 w/AUG, fc1 fea., BT 1-layer

AE.

2AE+SVM 86.34 94.44 92.09 78.66 87.16 87.74 6.09 FT ResNet50 w/AUG, fc1 fea., 2-layers AE.

2AE+SVM 87.28 94.01 92.20 80.70 87.35 88.31 5.18 FT ResNet50 w/AUG, fc1 fea., BT 2-layers

AE.

SA+SVM 86.51 94.12 92.33 77.32 86.87 87.43 6.56 FT ResNet50 w/AUG, fc1 fea., PCA− SA.

Proposed

Method

(2AE+SA+SVM)

87.28 96.35 92.15 83.03 87.21 89.20 5.14 FT ResNet50 w/AUG, fc1 fea., BT 2-layers

AE, PCA− SA

proposed method performs well when PCA− SA is used,

which is a very simple method requiring few parameters to

be learned. PCA − SA is also useful to show the good-

ness of the proposed method and the proposed features

without the necessity to resort to more complex algorithms

for UBM-based VAD. When domain adaptation is applied

(2AE + SA+ SVM ), for “LONG” significantly better re-

sult (p-value < 0.01) as compared to SVM was obtained.

6. Conclusions

We have demonstrated that computer vision and deep

learning-based upper body motion (UBM) analysis is ef-

fective for voice activity detection (VAD) task, which can

be especially important in case other modalities such as

audio is neither feasible to acquire nor reliable. We have

utilized dynamic image representation with an end-to-end

deep learning-based methodology to extract novel features

from whole upper body. This is different from many previ-

ous works that focused on motion in individual body parts

like lips, face or head, and also unlike the works being based

on feature engineering. Additionally, we have interoperated

the challenge of domain specificity, which leads to perfor-

mance degradation across participants depending upon the

characteristics of each person (i.e. some person moves more

than others) by proposing an effective domain adaptation

technique.

This is the first attempt that to realize VAD, dynamic im-

ages are used for motion representation, and autoencoder is

associated with subspace alignment techniques. The pro-

posed method is a generic, person-independent approach,

which does not require any VAD labels belong to the per-

son in the test. This has been rarely realized in previous

approaches.

The comparisons between the proposed method and the

SOA video-only VAD methods showed better performance

of the proposed method while it performed as well as SOA

multimodal VAD approach when an unconstrained real-life

panel discussion VAD dataset is used. Moreover, unsu-

pervised domain adaptation provided more consistent VAD

performance such that the detector works equally well for

all participants and for some participants significantly im-

proved results were obtained as compared to not apply-

ing domain-adaptation. The domain-adaptation part of our

method will be better investigated, once a dataset contain-

ing participants having different ethnic origins, is collected.

The proposed method can be applied to any dataset since it

is not based on specific body part detection e.g. lips, face.

In case background motion exists, person detection can be

performed before constructing dynamic images for better

performance.

A limitation of the proposed method is requiring the

number of raw video frames to construct a dynamic image.

All other values of parameters are found automatically dur-

ing training based on the best VAD performance of the val-

idation data. As future work, an automatic way to construct

dynamic images in necessary number will be explored. Ad-

ditionally, the proposed method will be adapted to perform

VAD in crowd, and multiparty egocentric video streams.
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