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Abstract

The greatest ambition of mechanistic interpretability is to completely rewrite deep1

neural networks in a format that is more amenable to human understanding, while2

preserving their behavior and performance. In this paper we evaluate whether3

sparse autoencoders (SAEs) and transcoders can be used for this purpose. We use4

an automated pipeline to generate explanations for each of the sparse coder latents.5

We then simulate the activation of each latent on a number of different inputs using6

an LLM prompted with the explanation we generated in the previous step, and7

“partially rewrite” the original model by patching the simulated activations into8

its forward pass. We find that current sparse coding techniques and automated9

interpretability pipelines are not up to the task of rewriting even a single layer10

of a transformer: the model is severely degraded by patching in the simulated11

activations. We believe this approach is the most thorough way to assess the quality12

of SAEs and transcoders, despite its high computational cost.13

1 Introduction14

While large language models (LLMs) have reached human level performance in many areas [Guo et al.,15

2025], we understand little about their internal representations. Early mechanistic interpretability16

research attempted to explain the activation patterns of individual neurons [Olah et al., 2020, Gurnee17

et al., 2023, 2024], but research has found that most neurons are “polysemantic”, activating in18

semantically diverse contexts [Arora et al., 2018, Elhage et al., 2022].19

Sparse autoencoders (SAEs) were proposed to address polysemanticity [Cunningham et al., 2023].20

SAEs consist of two parts: an encoder that transforms activation vectors into a sparse, higher-21

dimensional latent space, and a decoder that projects the latents back into the original space. Both22

parts are trained jointly to minimize reconstruction error. Recently, a significant effort was made to23

scale SAE training to larger models, like GPT-4 [Gao et al., 2024] and Claude 3 Sonnet [Templeton24

et al., 2024], and they have become an important interpretability tool for LLMs. Recently Dunefsky25

et al. [2024] proposed sparse transcoders as an alternative method for extracting interpretable features26

from LLMs. The architecture of the transcoder is identical to that of an SAE, but it is trained to27

predict the output of a feedforward network given its input. With a good enough transcoder, we28

should be able to entirely replace the original FFN with its transcoder approximation, thereby partially29

rewriting the model in terms of more interpretable primitives.30

While it seems that neurons and sparse autoencoder latents can be explained by looking at the31

examples they activate on [Bills et al., 2023], some are more easily understood by their downstream32

effects [Gur-Arieh et al., 2025]. Paulo et al. [2024] took inspiration on Bills et al. [2023] and built33

an automated pipeline for generating natural language explanations of SAE latents and evaluating34

how good these explanations are. Rigorously measuring how interpretable an explanation is still a35

complicated and methodologically fraught task.36
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Figure 1: Partially rewriting an LLM. After training a transcoder or SAE, we generate explanations
for all the latents using contexts where that latent is active. An LLM is tasked to find patterns in
these activations and output a simple, single-sentence explanation for that latent. These explanations
are used by another LLM instance to predict whether the latent should be active on a given token.
After post-processing those predictions, we produce a reconstructed vector by pushing the simulated
activations through the decoder.

The idea of rewriting a neural net in a more interpretable form is not new. The “microscope AI”37

framework [Hubinger, 2019] aims to analyze a neural network’s learned representations to gain38

actionable insights for humans, rather than using the network directly. These insights would likely39

take the form of natural language explanations of the network’s features and circuits. Microscope40

AI aims to reduce risks associated with model deployment while still benefiting from the model’s41

knowledge. Imitative generalization is a proposal to extend this idea by jointly optimizing the network42

and its human-interpretable annotations to maximize their prior likelihood [Barnes, 2021]. Sparse43

autoencoders and similar techniques can then be used as “explainer” models, explaining the behavior44

of the network by sparsely decomposing its activations.45

In this work, we pursue the following idea: if the latents of a transcoder are interpretable enough,46

we can simulate its activations using natural language explanations. Specifically, we replace the47

encoder of the transcoder with an LLM prompted to predict the activation of each latent given its48

explanation and the textual context. We then patch this modified transcoder back into the model,49

hopefully yielding behavior nearly identical to the unpatched model. In the limit, we could use this to50

“rewrite” every feedforward layer in the model in terms of interpretable features and operations on51

those features.52

Unfortunately there are several roadblocks for this approach. Firstly, despite a majority latents53

seeming to have interpretable activations, a large fraction is either uninterpretable or not well-54

captured by our current pipeline. Secondly, even the ones that seem interpretable are hard to explain55

in their totality, as it is hard to generate simple explanations that are both contextually sensitive56

and specific. Finally, the predictions of the simulator LLM are not calibrated: it over-estimates the57

frequency with which latents fire, and how strong their activations should be. Because we believe58

that there are many potential ways to improve the quality and specificity of explanations, we see this59

test as a potential benchmark of transcoder and SAE interpretability.60
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Figure 2: Cross entropy loss increase for different fractions of transcoder and SAE substitution.
We compute the CE loss over 10K prompts, for the transcoder (left) and over 1K prompts SAE
(right) respectively, by substituting parts of the encoder with natural language explanations. Bars
in orange show the loss increase when selecting the latents with the highest interpretability scores
for replacement. Bars in red show the loss increase when randomly selecting a subset of latents to
replace. Bars in brown show the loss increase caused by replacing a random subset of the latents
with their mean activations– a simple baseline that we should ideally be able to overcome. The
blue bar represents the increase in loss from using the sparse coders as is. Bar heights represent the
mean value of the increase with respect to the base loss, while error bars represent the standard error.
The interpretability score used for selecting latents is detection scoring, [Paulo et al., 2024, page 5],
computed over 100 positive and 100 negative samples. Over this set of prompts, Pythia had a cross
entropy loss of 3.19 ± 0.09 nats per token. Prompts where the loss was lower than 0.1 nats were
excluded.

2 Methods61

2.1 Sparse coder training62

We train different types of sparse coders to evaluate their potential for partial rewriting. We begin by63

training a skip-transcoder on the MLP of the sixth layer of Pythia 160M [Biderman et al., 2023] as64

well as a skip-transcoder on the MLP of the fifteenth layer of SmolLM2 135M [Allal et al., 2025]. We65

also train a sparse autoencoder on the output of the 6th layer of Pythia 160M. The skip-transcoders66

have a linear “skip connection,” which Paulo et al. [2025] found improves the ability to approximate67

the original MLP at no cost to interpretability scores. That is, the transcoder takes the functional form68

ŷ = W2TopK(W1x+ b1) +Wskipx+ b2 (1)

where x is the input of the MLP and ŷ is the reconstructed output of the MLP. Both W2 and Wskip69

are zero-initialized, and b2 is initialized to the empirical mean of the MLP outputs, so that the70

transcoder is a constant function at the beginning of training. All models are trained to minimize the71

mean squared error ||y − ŷ||22 between the model’s output and the target module output.72

The sparse coders trained on Pythia have 32768 latents, while the ones trained on SmolLM2 have73

18432 latents. Sparsity is continuously enforced on the sparse coder latents using the TopK activation74

function proposed by Gao et al. [2024] with k = 32 for Pythia and k = 128 for SmolLM2.1 The75

sparse coders trained on Pythia are trained over the first 8B tokens of the Pile [Gao et al., 2020], using76

the Adam optimizer [Kingma, 2014], a sequence length of 2049, and a batch size of 64 sequences.277

The skip-transcoder trained on SmolLM2 was trained on 1B tokens of the FineWeb-Edu dataset78

[Lozhkov et al., 2024], part of the training corpus of the model, using the schedule-free Signum79

optimizer [Bernstein et al., 2018, Defazio et al., 2024], a sequence length of 2049, and a batch size of80

64 sequences. For this model, schedule-free Signum was used because it let to a significantly better81

reconstruction loss and a lower number of dead latents.82

1The higher k for SmolLM2 was an attempt to achieve higher rewriting performance by increasing the
number of active latents, after our initial experiments with Pythia at k = 32 yielded disappointing results.

2The optimizer appeared to converge after 1B tokens, so we early stopped the training run.
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Figure 3: Distribution of predicted activations for all latents. On the left we compare the distribu-
tion of predicted activations before normalization, and on the right we show what the distribution
looks like after quantile normalization. Before normalization, the predictor model systematically
over-predicts high activation values by multiple orders of magnitude. Quantile normalization primar-
ily has the effect of enforcing a prior in favor of features not being active.

2.2 Interpreting latents83

We use the automated interpretability pipeline released by Paulo et al. [2024] to generate explanations84

and scores for transcoder and SAE latents. For all sparse coders we collected activations over 10M85

tokens of the same dataset they were trained on. For each latent, representative samples of its86

activations are sampled and shown to an LLM, in our case Llama 3.1 70b Instruct [Dubey et al.,87

2024], which is told to give a succinct explanation that summarizes the activations (Figure 1, first88

row). We only explain latents that are active on more than 200 instances over the 10M samples taken.89

The LLM is shown 40 examples, 4 examples from each of the 10 activation deciles for that latent.90

After explanations are generated for each latent, they are scored. We also use the automated91

interpretability pipeline from Paulo et al. [2024] for this process. We use both fuzzing and detection92

to score the latents. To compute the detection score, Llama 3.1 70b Instruct is given the explanation93

of the latent and a set of examples. The LLM then has to decide which examples activate the latent94

and which don’t using the explanation that was given. We repeat this process 20 times, showing95

five examples each time, totaling 50 non-activating examples and 50 activating examples. We use96

stratified random sampling from the 10 activating deciles of that latent. At the end the detection score97

of the latent is given by the F1 score of the scorer, F1 = 2
p−1+r−1 , where p is the precision and r is98

the recall. The fuzzing score is computed with a similar protocol, but instead the LLM is shown a set99

examples where one token is highlighted in each, and the model has to label each highlighted token100

as activating or non-activating. Again the final metric used is the F1 score.101

2.3 Simulation102

The next step in the pipeline is to use an LLM to simulate the activation of a latent in a context given103

the latent’s explanation (Figure 1, middle panel). For this task, we select up to 10K sequences, each104

32 tokens long, and highlight the final one. The LLM is tasked to output a single number from 0 to 9105

to quantify the activation of the latent on that token for that specific sequence. Because our scorer106

model has a token for each independent digit, we can estimate the expected value by summing the107

probability of each digit times the value of the digit. We then map this number to the real activations108

by dividing the expected value by nine (yielding a number between 0 and 1), then multiplying this109

value by the maximum observed activation for the latent. The prompt used for simulation can be110

found in Appendix A.111

4



2.3.1 Quantile normalization112

We found in early experiments that Llama produces highly uncalibrated predictions of feature113

activations: the marginal distribution of the predicted activations differs markedly from the marginal114

distribution of the true activations (Figure 3, left panel). Patching these uncalibrated activations115

into the model yields very poor results. To alleviate this problem, we use quantile normalization,116

which monotonically transforms the model’s predictions in such a way that their marginal distribution117

matches that of the true activations. This transformation is an optimal transport map under a variety118

of cost functions [Santambrogio, 2015].119

We compute the quantile normalizer separately for each individual feature, using the empirical120

CDFs of the simulator’s predicted activations and the true activations of a transcoder computed121

from a random sample of 10% of the data. Once the quantile normalizer has been computed, this122

transformation is then applied to all simulator predictions. This transformation successfully reduces123

the number of predicted active latents to numbers that are coherent with the true distribution.124

3 Evaluation125

We evaluate the rewriting of the model by measuring the resulting cross-entropy loss in next token126

prediction on chunks of text sampled from the Pile. These chunks of texts have lengths that are127

uniformly sampled from 32 to 256 tokens. This range was selected such that, at its minimum, there is128

a significant number of tokens that can be shown to the simulator model, and at its maximum the129

sequences are short enough that the presence of very long range features is unlikely.130

Simply replacing a single MLP with a transcoder increases the model’s cross-entropy loss by about131

10%. This loss increase is equivalent to that of using an early Pythia checkpoint, one that was trained132

on only 25% of the data,3 rather than the final Pythia checkpoint. Rewriting any part of the transcoder133

in natural language will necessarily degrade the model’s performance even further. Consequently,134

we focus on rewriting a single MLP block, since rewriting all MLP blocks simultaneously would135

cause the model to become completely unusable. The same applies to the residual stream SAE: the136

cross-entropy loss of the model when adding a single SAE to the residual stream increases by 33%.137

This is equivalent to using a Pythia checkpoint trained on less than 10% of the data.138

After collecting the predicted activations for all features of a given token in a given sentence, and139

after applying quantile normalization to those predictions, we use the TopK activation function to140

ensure it has the expected level of sparsity. This activation vector is fed into the decoder, yielding a141

reconstructed output vector. In the case of the transcoders, the original output of the MLP is discarded142

and in its place we inject the reconstructed vector (Figure 1), while in the case of the SAE the output143

of the layer is discarded and in its place the reconstructed vector is patched in.144

We evaluate over 10K different contexts for the Pythia transcoder, 2K for the SmolLM2 transcoder,145

and 1K for the Pythia SAE, measuring the cross-entropy loss for next-token prediction. This process146

is very expensive, as each context requires individually prompting the simulator for 32 thousand147

latents. We therefore had to make a total of 327 million queries to the simulator model. Our simulator148

models were hosted locally using VLLM [Kwon et al., 2023], and the experiments took 1 week on 4149

nodes with 8xA40 GPUs.150

Partial rewriting. We also experiment with mixing predicted and ground truth latent activations in151

varying proportions, allowing us to examine the effect of rewriting only part of the encoder. We do152

this in two different ways:153

1. Select the top k most interpretable features according to our evaluation pipeline [Paulo et al.,154

2024]. This is labeled “Top scoring” in Figure 2.155

2. Sample k features uniformly at random from the transcoder. This is labeled “Sampling” in156

Figure 2.157

The “Mean Ablation” baseline condition is like “Sampling” except that we replace the selected latents158

with their mean activations.159

3The cross-entropy loss of Pythia 160M checkpoints on this set of prompts is not monotonic with training
time, so a more precise estimate is not possible.
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Figure 4: Detection score predicts sensitivity and specificity. Binning explanations by their scores
makes it evident that high-scoring explanations are more specific and sensitive.

4 Results160

The left panel of Figure 2 illustrates how cross-entropy loss increases on Pythia as we replace more161

and more transcoder latents with their simulated counterparts. Unfortunately, we see that the “Top162

Scoring” and ”Sampling” conditions both result in very similar loss increases to the baseline ”Mean163

Ablation” condition, for most fractions of substitution. The same behavior can be seen when using164

the residual stream SAE (Figure 2, right panel), and when using the transcoder trained on SmolLM165

2 (Figure A2). For some fractions and models we observe that randomly selecting which latents to166

substitute, instead of always substituting the most interpretable latents, leads to a smaller increase in167

the cross entropy loss, showing that the interpretability metrics are somewhat capturing how easy it168

is to describe the behaviour of the latents. While our substitution method works better than mean169

ablation for some fractions, it is not consistently better and in fact when we do full substitution we170

find that there is almost no difference between the two.171

This indicates that our explanation pipeline is incapable of rewriting even a small fraction of a172

transformer without causing a substantial increase in the next-token prediction loss– an increase173

that is comparable to simply replacing neurons in the transformer with their mean values. This is a174

negative result which suggests more work needs to be done to improve explanation quality.175

4.1 Explanations are not detailed enough176

One of the reasons that we need to calibrate the activation predictions is because we find that current177

explanations do not allow the model to be specific enough. To understand this, let’s consider the178

case that the classifier only achieves a specificity of 99%. The transcoder used in this work has179

32768 latents, and if the LLM predictor can only achieve a specificity of 99% this means that, that on180

average, it predicts that there are 320 active latents, 10 times more than the actual number (k = 32).181

Even with a sensitivity of 100%, where the model correctly identifies all of the latents that should be182

active, it is unlikely that the top 32 predictions all would be the correct ones. We observe than on183

average the current automatic latent explanation setup has a specificity of around 80%, meaning that184

on average the model identifies close to 6 thousand latents as being active.185

By performing quantile normalization, a large chunk of incorrectly predicted activations, activations186

that should be zero but were given a non-zero value by the predictor, are set back to zero. This187

significantly increases the specificity, enough that some of the original model’s performance is188

maintained, but at the same time this significantly decreases the sensitivity, as some of the correctly189

classified active latents are also set to zero.190

We find that detection scores [Paulo et al., 2024, page 5] are predictive of the specificity and191

sensitivity of an explanation, with higher scoring latents corresponding to explanations that have192

higher specificity and sensitivity (Figure 4). This is expected, as detection scoring corresponds to193

detecting whether a given latent is active on a given context, which is similar to our simulation task194
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in this work. For the same reason, latents with higher fuzzing scores also have higher sensitivity and195

specificity (Figure A1).196

5 Limitations197

We divide the limitations of this work into three categories. One type of limitation is related with the198

quality of sparse coders we investigated. We only explored TopK sparse coders, trained on one to ten199

billion tokens, with an expansion factor of 32x. However, we don’t see any evidence in the literature200

that other activation functions would make the sparse coders more interpretable, so it is unlikely that201

other architectures would significantly improve our results. Larger sparse coders would lead to lower202

reconstruction losses but would require even higher specificity.203

The quality of explanations is a limitation of our work, as it is possible that better explanation204

generation techniques could yield better rewriting results. While the quality of explanations could205

likely be improved with careful prompt tuning or even finetuning the explainer model, we think206

the results would not substantially change due to the huge gap between the specificity of current207

explanations and the specificity that would be required for satisfactory model rewriting.208

Rewriting is also very computationally expensive. Larger models would probably be able to simulate209

the activations more accurately, but this would make the process even more expensive.210

6 Conclusion211

In this work, we proposed a new methodology for rigorously evaluating the faithfulness of natural212

language explanations of sparse coder latents in transformers, based on partially rewriting the213

transformer using these explanations. We found that existing explanations are severely wanting. We214

are still unable to outperform mean ablation, where each latent is substituted by its average value215

over the dataset.216

This is mainly due to the fact that explanations are not specific enough, leading to a high number of217

false positives. Our results highlight the fact that it is important for an explanation to correctly identify218

the contexts where a feature is not active, in addition to the feature’s activation level in contexts where219

it is active. Future work on the interpretability of latents should take this into consideration.220

To improve upon these results, new techniques are needed to make explanations more specific, for221

instance using contrast pairs of highly similar features to bring out additional details. This could222

potentially increase the sensitivity as well, which takes a big hit when using quantile normalization.223

Impact Statement224

This paper presents work whose goal is to advance the field of Mechanistic Interpretability. There225

are many potential societal consequences of our work, none which we feel must be specifically226

highlighted here.227
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A Simulation prompt312

You are an intelligent and meticulous linguistics researcher.

You will be given a certain explanation of a feature of
text, such as "male pronouns" or "text with negative sentiment"
and examples of text that contains this feature. Some explanations
will be given a score from 0 to 1. The higher the score the better
the explanation is, and you should be more certain
of your response (positive or negative).

These features of text are normally identified by looking for specific
words or patterns in the text. There are many features associated
with a single token, and sometimes the feature is related with
the previous token or context.

Your job is to identify how much the last token, which is marked
between << and >>, represents the feature. You will output
a integer between 0 and 9, where 0 corresponds to no relation
to the explanation and 9 to a strong relation.

Most of the tokens should have no relation. The ones that
are related, should more likely be given 1 than 2, 2 than 3,
and so on. Only give a 9 if the description exactly matches the token.

You must return your response in a valid Python list.
Do not return anything else besides a Python list.

Figure A1: Fuzzing score predicts sensitivity and specificity Explanations with higher fuzzing
scores lead to better predictions of the simulations
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Figure A2: Cross entropy loss increase for different fractions of transcoder in SmolLM 2. We
compute the CE loss over 2K prompts, for the transcoder, by substituting parts of the encoder with
natural language explanations. Bars in orange show the average loss increase when choosing the top
scoring latents for replacement. Bars in red show the average loss increase when randomly selecting
a subset of latents to replace. Bars in brown show the average loss increase caused by using the mean
activations out a part of the transcoder. Bar heights represent the mean value of the increase with
respect to the base loss, error bars represent the standard error. The interpretability score used for the
selecting latents is detection scoring, [Paulo et al., 2024, page 5], computed over 100 positive and
100 negative samples. Prompts where the loss was lower than 0.1 nats were excluded.

NeurIPS Paper Checklist313
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Answer: [Yes]317
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Question: Does the paper discuss the limitations of the work performed by the authors?319
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the paper, properly credited and are the license and terms of use explicitly mentioned and364

properly respected?365

Answer: [Yes]366
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well as details about compensation (if any)?374
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Question: Does the paper describe potential risks incurred by study participants, whether378

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)379

approvals (or an equivalent approval/review based on the requirements of your country or380

institution) were obtained?381

Answer: [NA]382

16. Declaration of LLM usage383
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