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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated state-of-the-art performance
in various graph representation learning tasks. Recently, studies revealed their
vulnerability to adversarial attacks. In this work, we theoretically define the concept
of expected robustness in the context of attributed graphs and relate it to the
classical definition of adversarial robustness in the graph representation learning
literature. Our definition allows us to derive an upper bound of the expected
robustness of Graph Convolutional Networks (GCNs) and Graph Isomorphism
Networks subject to node feature attacks. Building on these findings, we connect
the expected robustness of GNNs to the orthonormality of their weight matrices
and consequently propose an attack-independent, more robust variant of the GCN,
called the Graph Convolutional Orthonormal Robust Networks (GCORNs). We
further introduce a probabilistic method to estimate the expected robustness, which
allows us to evaluate the effectiveness of GCORN on several real-world datasets.
Experimental experiments showed that GCORN outperforms available defense
methods. Our code is publicly available at: https://github.com/Sennadir/GCORN.

1 INTRODUCTION

Graph-structured data is prevalent in a wide range of domains, motivating therefore the development
of neural network models that can operate on graphs, known as Graph Neural Networks (GNNs).
GNNs have emerged as a powerful tool for learning node and graph representations. Many GNNs
are instances of Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) such as Graph
Isomorphism Networks (GIN)(Xu et al., 2019b) and Graph Convolutional Networks (GCN)(Kipf
& Welling, 2017). These models have been successfully applied in real-world applications such as
molecular design (Kearnes et al., 2016). In parallel to their success, it has been shown, particularly in
the field of computer vision, that deep learning architectures can be susceptible to adversarial attacks
(Goodfellow et al., 2015). These attacks, which are based on injecting small perturbations into the
input, lead to unreliable predictions, limiting therefore the applicability of these models to real-world
problems. Similar to other deep learning architectures, GNNs are also vulnerable to adversarial
attacks. Recent studies (Dai et al., 2018; Zügner et al., 2018; Günnemann, 2022) have shown that a
GNN can be attacked by applying small structural perturbations to the input graphs. These attacks
pose a threat to the reliability of GNNs, particularly in safety-critical applications such as finance and
healthcare. Consequently, different attacks have been proposed to explore the robustness of GNNs.
Concurrently, several studies focus on developing methods to mitigate possible perturbation effects
and improve the robustness of MPNNs. The proposed methods include augmenting training data with
adversarial examples and retraining the model (Feng et al., 2019), pre-processing methods such as
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edge pruning (Zhang & Zitnik, 2020), and more recently robustness certificates (Schuchardt et al.,
2021). While the majority of these proposed defenses focus on structural perturbations, only limited
advances have been made for feature-based adversarial attacks on graphs. Moreover, despite the large
amount of research on the robustness of these methods through empirical exploration, there has been
limited progress in understanding the theoretical robustness of GNNs.

In this work, we conduct a theoretical examination of the robustness of MPNNs subject to adversarial
attacks. First, we formally define the concept of “Expected Adversarial Robustness” for structure
and feature-based perturbations in the context of graphs defined in a metric space. We further-
more establish a formal relation between our introduced expected robustness and the conventional
adversarial robustness formulation. Further, by analyzing the input sensitivity of the iterative message-
passing schemes, we derive an upper bound on the robustness of these models for both structural and
feature-based attacks. Motivated by our theoretical results, we propose a refined learning scheme,
called Graph Convolutional Orthonormal Robust Network (GCORN), for the GCN, to improve its
robustness to feature-based perturbations while maintaining its expressive power. In addition to
our theoretical findings, we empirically evaluate the effectiveness of our GCORN in both node and
graph classification on commonly used real-world benchmark datasets and compare GCORN to
existing methods to defend against feature-based adversarial attacks. Most empirical evaluations of
the effectiveness of defense methods consider worst-case scenarios, hence not taking into account the
variability of attacks and their likelihood of occurrence. To overcome this limitation, we propose a
novel probabilistic method for evaluating the expected robustness of GNNs, which is based on our
introduced robustness definition. The method is model-agnostic and can hence be applied to any
architecture to estimate the local robustness. More realistic and comprehensive evaluation of the
effectiveness of defense approaches can hence be conducted.

Our main contributions are: (i) We define and theoretically analyze the expected robustness of MPNNs,
producing an upper-bound on their expected robustness, (ii) a novel approach (GCORN) for improving
the expected robustness of GCNs to feature-based attacks while maintaining their performance in
terms of accuracy, (iii) a theoretically well-founded, probabilistic and model-agnostic evaluation
method, and (iv) an empirical evaluation of our GCORN on benchmark datasets, demonstrating its
superior ability compared to existing methods to defend against feature-based attacks.

2 RELATED WORK

While most studies on attacking machine learning models focus on images (Goodfellow et al., 2015),
work on discrete spaces such as graphs has also emerged. Analogous to images, most existing
graph-based attack methods frame the task as a search/optimization problem. For instance, the
targeted attack Nettack (Zügner et al., 2018) utilized a greedy optimization scheme while Zügner &
Günnemann (2019) formulate the problem as a bi-level optimization task and leverage meta-gradients
to solve it. Zhan & Pei (2021) expanded this work through a black-box gradient algorithm overcoming
several limitations. Furthermore, Dai et al. (2018) proposed to use Reinforcement Learning to solve
the search problem and generate adversarial attacks. Node injection attacks (Zou et al., 2021; Tao
et al., 2021; Chen et al., 2022; Ju et al., 2023) have also proven effective, with attackers introducing
malicious nodes instead of modifying existing nodes or edges, affecting therefore the model’s
performance. In parallel, the field of defending against adversarial attacks on GNNs is still relatively
under-explored compared to that of image-based models. The majority of methods are primarily
focused on heuristic strategies. Similar to computer vision, robust training (Zügner & Günnemann,
2019) and noise injection (Ennadir et al., 2024) have been used to improve the robustness of GNNs.
Additionally, low-rank approximation with graph anomaly detection (Ma et al., 2021) has been used
to defend against adversarial attacks. The GNN-Jaccard method (Wu et al., 2019) pre-processes the
adjacency matrix to detect potential manipulation of edges. In the same context, GNN-SVD (Entezari
et al., 2020) uses a low-rank approximation of the adjacency matrix to filter out noise. Other methods
such as edge pruning (Zhang & Zitnik, 2020) and transfer learning (Tang et al., 2020) have also been
proposed. Finally, Wang et al. (2020) proposed a low-pass adaptation of the message passing to
enhance robustness while providing theoretical guarantees. Although these defense strategies have
had some success, for the majority of them, their heuristic nature results in defenses against specific
types of attacks without any guarantees on the model’s underlying robustness. As a result, these
defenses may be susceptible to being circumvented by future new advanced attacks. Consequently,
the investigation of robustness certificates (Zügner & Günnemann, 2019; Bojchevski & Günnemann,
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2019; Gosch et al., 2023) has gained attention by providing attack-independent guarantees on the
stability of the model’s predictions such as randomized smoothing (Bojchevski et al., 2020).

While the majority of the existing work on defense strategies for GNNs has focused on structural
perturbations, there is far less work on addressing feature-based attacks. This represents a significant
gap in the literature as feature-based attacks on GNNs can be very effective. Seddik et al. (2022)
propose to add a node feature kernel to the message passing to enhance the robustness of GCNs.
Additionally, RobustGCN (Zhu et al., 2019) proposes to use Gaussian distributions as the hidden
representations, enabling the absorption of the impact of both structural and feature-based attacks.
Finally, Liu et al. (2021a) edited the message passing module using adaptive residual connections and
feature aggregation, which have been shown experimentally to enhance the model’s robustness against
abnormal node features. Robustness certificates have also been proposed for node feature-based
attacks (Scholten et al., 2022; Bojchevski et al., 2020).

3 EXPECTED ADVERSARIAL ROBUSTNESS

In this section we mathematically define the concept of the expected robustness for a graph-based
function, such as a GNN. Let us consider three metric spaces with defined norms over the graph
space (G, ∥·∥G), the feature space (X , ∥·∥X ) and the label space (Y, ∥·∥Y ). Let D be the underlying
probability distribution defined on (G,X ,Y). Given a graph-based function f : (G,X ) → Y , and
some input (G,X) ∈ (G,X ) with its corresponding label y ∈ Y where f(G,X) = y, the goal of
an adversarial attack is to produce a perturbed graph G̃ and its corresponding features X̃ which are
‘slightly’ different from the original input (G,X) such that the predicted class of (G̃, X̃) is different
from the predicted class of (G,X). The adversarial task is contingent on defining a similarity measure
between the input graph and the adversarially generated graph. To this end, we introduce a distance
over our input metric spaces, which takes both the graph and its corresponding features into account

dα,β([G,X], [G̃, X̃]) = α∥G− G̃∥G + β∥X − X̃∥X .
In practice, a graph is represented by its adjacency matrix (or some other graph shift operator) and its
feature matrix, we can therefore, without loss of generality, consider the distance

dα,β2 ([G,X], [G̃, X̃]) = min
P∈Π

(
α∥A− PÃPT ∥2 + β∥X − PX̃∥2

)
, (1)

where Π is the set of permutation matrices and α, β are hyper-parameters. Note that for un-attributed
graphs, the distance in (1) aligns with the commonly used edit distance on graphs which is a measure
of similarity between two graphs quantifying the minimal number of edges that need to be edited
to convert one graph into another while taking into account graph isomorphism. Based on this
distance, we can mathematically formulate the adversarial task as finding a perturbed attributed
graph (G̃, X̃) within a specified budget ϵ such that f(G̃, X̃) = ỹ ̸= y with dα,β([G,X], [G̃, X̃]) < ϵ.
Moreover, given that in practice the attacker does not have access to the ground-truth labels, we
define an adversarial graph attack to be valid when f(G̃, X̃) ̸= f(G,X). We can now define the
expected vulnerability of a graph function as its likelihood to suffer from such attacks in the input’s
neighborhood defined by ϵ. Upper bounding this vulnerability allows us to quantify the model’s
expected robustness, we start by formulating the expected vulnerability of a graph function f as

Advα,βϵ [f ] = P(G,X)∼DG,X [(G̃, X̃) ∈ Bα,β(G,X, ϵ) : dY(f(G̃, X̃), f(G,X)) > σ], (2)

with Bα,β(G,X, ϵ) = {(G̃, X̃) : dα,β([G,X], [G̃, X̃]) < ϵ} for any budget ϵ ≥ 0. Additionally, dY
can be any defined distance in the output space Y and σ > 0. Here, we focus on real-valued output
mappings and consider the distance metric dY(f(G̃, X̃), f(G,X)) = ∥f(G̃, X̃)− f(G,X)∥Y . This
formulation is applicable to both graph and node classification tasks. In node classification, the
parameter σ determines the minimal number of nodes that need to be successfully attacked to consider
the attack to be adversarially successful at the graph-level. This allows for flexibility in different
scenarios, where in some cases, even a single node’s label flip may be considered a threat, while in
others, a limited number of changes can be tolerated. In graph classification, the parameter σ acts as
a threshold to the continuous softmax output above which an attack is considered effective. We can
now introduce the concept of expected robustness of a function defined on graphs, such as a GNN.
Definition 3.1 (Expected Adversarial Robustness). Let dα,β be a graph distance on the spaces (G,X )
and dY be a distance on the space Y . The graph function f : (G,X ) → Y is ((dα,β , ϵ), (dY , γ))–
robust if its vulnerability as defined in (2) can be upper-bounded by γ, i. e., Advα,βϵ [f ] ≤ γ.
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In Appendix A (Proposition A.1) we show how, via the equivalence of metrics, expected robustness
in a given metric implies expected robustness in several other metrics.

Relating Expected Adversarial Robustness to Worst-Case Adversarial Robustness. Our in-
troduced formulation represents a broader perspective of the classical “worst-case” adversarial
robustness, where the attacker aims to identify a single adversarial attack representing “worst-case”
losses within a predefined budget and neighborhood. Our Expected Adversarial Robustness focuses
on understanding the overall behavior of the underlying graph-based function within the specified
input neighborhood. This approach offers a more comprehensive assessment of the model’s robust-
ness. Nevertheless, we note that our formulation encompasses the adversarial robustness as a special
case since by definition these examples are included in our considered neighborhood. In fact, by
adjusting the hyper-parameter σ, we can isolate these worst-case examples. Lemma 3.2 directly
relates Definition 3.1 to the classical “worst-case” adversarial robustness.
Lemma 3.2. Let dα,β be a defined graph metric on the metric spaces G,X . Let f : (G,X ) → Y be
a graph-based function, we have the following result: If f is ((dα,β , ϵ), (dY , γ))–robust, then f is
also ((dα,β , ϵ), (dY , γ))–“worst-case” robust.

The proof of Lemma 3.2 is provided in Appendix B. As a result, our forthcoming theoretical analysis,
which considers the general case, is equally applicable to worst-case adversarial examples, which
will be also validated experimentally in Section 6. We finally note that the advantages and pitfalls of
the generalization of “worst-case” to average robustness have also been studied by Rice et al. (2021).

4 THE EXPECTED ROBUSTNESS OF MESSAGE PASSING NEURAL NETWORKS

We now use our Expected Adversarial Robustness Definition 3.1 to derive an upper bound on the
expected robustness of the GCN, based on which we introduce our more robust GCN adaptation.

4.1 ON THE EXPECTED ROBUSTNESS OF GRAPH CONVOLUTIONAL NETWORKS

Our work primarily focuses on the theoretical analysis of GCNs within the broader context of MPNNs.
The computations of one GCN layer are composed of the aggregation of node hidden states over
neighborhoods in the graph and subsequent node-wise updates of the hidden states via a weight
matrix and non-linear activation function. The updated hidden states are then passed to the next layer
for further aggregation and updates. An iteration of this process can be expressed as follows

h(ℓ) = ϕ(ℓ)(Ãh(ℓ−1)W (ℓ)), (3)

where h(ℓ) represents the hidden state in the ℓ-th GCN layer and h(0) is the initial node features
X ∈ Rn×K , W (ℓ) ∈ Rp×e is the weight matrix in the ℓ-th layer, e is the embedding dimension and
ϕ(ℓ) is a 1-Lipschitz continuous non-linear activation function. Moreover, Ã ∈ Rn×n, with n being
the number the nodes, denotes the normalized adjacency matrix Ã = D−1/2AD−1/2.

Determining the exact expected adversarial robustness of a graph-based function, as outlined in
Section 3, poses a significant challenge. To overcome this, we provide an upper bound, referred
to as γ in Definition 3.1. Our definition of adversarial attacks is closely related to the concept of
sensitivity analysis. In both cases, the goal is to understand how small input changes can affect the
model’s output. We hence tackled the adversarial task by adopting an input perturbation perspective.
Similar approaches based on sensitivity analysis have had some success for deep neural networks
(DNNs). While extending to other domains such as Convolutional Neural Networks is direct,
generalizing to graphs presents new challenges. Notably, model dynamics differ due to the Message
Passing process involving the adjacency and node features, complicating the task of providing an
upper-bound. Since, the architecture itself involves the adjacency matrix, any perturbation on the
input produces a different dynamic in the model itself, unlike the classical DNNs architecture, which
remains static when subject to perturbations. Consequently, the theoretical analysis and results have
to reflect the underlying propagation architecture, i.e., the graph structure. Theorem 4.1 provides
theoretical insight into the expected robustness of GCNs by establishing an upper bound on the
amount of perturbation that a GCN can tolerate before its predictions become unreliable.
Theorem 4.1. Let f : (G,X ) → Y denote a graph-based function composed of L GCN layers, with
W (i) denoting the weight matrix of the i-th layer. Further, let d0,1 be a feature distance. For attacks
targeting node features of the input graph, with a budget ϵ, with respect to Definition 3.1:
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• f is ((d0,1, ϵ), (d1, γ))–robust with γ =
∏L

i=1∥W (i)∥1ϵ(
∑

u∈V ŵu)/σ, with ŵu denoting
the sum of normalized walks of length (L− 1) starting from node u and V is the node set.

• f is ((d0,1, ϵ), (d∞, γ))–robust with γ =
∏L

i=1∥W (i)∥∞ϵŵG/σ, with ŵG = max
u∈V

ŵu.

As previously mentioned, the provided upper-bound in Theorem 4.1 is directly dependent on both
the graph structure (in terms of walks from the graph’s nodes) and the propagation scheme (where
the length of the considered walks depends on the number of message-passing iterations). The
derived upper-bound is intuitive: effectively using feature-based attacks is increasingly difficult with
increasing graph sparsity; or conversely, in dense graphs node feature attacks can have greater effect
since the message passing scheme propagates them along a greater number of walks. To make this
precise, the expected sum of normalized walks in a sparser graph tends to be lower than in a denser
one, resulting in a reduced bound, indicating a more robust model within the considered neighborhood.
We finally note that this bound applies to both targeted and untargeted feature modifications, whether
limited to a specific subset or all the nodes. While our main focus is on node feature-based attacks,
our analysis provided in Theorem 4.1 can be extended to structural attacks; Theorem 4.2 sheds light
on this latter case.
Theorem 4.2. Let f : (G,X ) → Y denote a graph function composed of L GCN layers, where W (i)

denotes the weight matrix of the i-th layer. Further, let d1,0 be a graph distance. For structural
attacks with a budget ϵ, the function f is ((d1,0, ϵ), (d2, γ))–robust with

γ =

L∏
i=1

∥W (i)∥2∥X∥2ϵ(1 + L

L∏
i=1

∥W (i)∥2)/σ. (4)

We observe the upper bound in (4) to functionally depend on the size of the graph via ∥X∥2, yielding
the intuitive result that larger graphs have more potential targets to attack and thereby give rise to less
robust models. The proofs of Theorems 4.1 and 4.2 are provided in Appendix C.

4.2 ON THE GENERALIZATION TO OTHER GRAPH NEURAL NETWORKS

While our work focuses on GCNs, our analysis can be extended to any GNN. Our theoretical analysis
is contingent on assuming the input node feature space to be bounded, which is a realistic assumption
for real word data. For illustration, Theorem 4.3 derives the upper-bound of the specific case of GINs.
Theorem 4.3. Let f : (G,X ) → Y be composed of L GIN-layers (with parameter ζ = 0, that
is usually denoted by ϵ in the literature) and W (i) denote the weight matrix of the i-th MLP layer.
We consider the input node feature space to be bounded, i.e., ∥X∥2 < B for some B ∈ R, and
graphs of maximum degree ∆G. For node feature-based attacks, with a budget ϵ, the function f is
((d0,1, ϵ), (d∞, γ))–robust with

γ =

L∏
l=1

∥W (l)∥∞(B L ∆G + ϵ)/σ.

Theorem 4.3 is proved in Appendix D. In addition, following the same assumption, it is possible to
derive an upper bound on the GCN’s robustness when subject to both structural and feature-based
attacks simultaneously. The complete study and additional information are provided in Appendix F.

4.3 ENHANCING THE ROBUSTNESS OF GRAPH CONVOLUTIONAL NETWORKS

Leveraging the established upper-bound on the expected robustness in Theorem 4.1, we now introduce
a novel approach, called Graph Convolutional Orthonormal Robust Networks (GCORNs), which
enhances the robustness of a GCN to node feature perturbations while maintaining its ability to learn
accurate node and graph representations. To this end, we aim to design a GCN architecture for which
the upper bound γ as stated in Theorem 4.1 is low. As this quantity is dependent on the norm of the
weight matrices in each layer of the GCN, we propose to control the norms of these matrices.

Enhancing the robustness through enforcing matrix norm constraints during training has previously
been studied in the context of DNNs through methods such as Parseval regularization (Cisse et al.,
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2017) or optimizing over the orthogonal manifold (Ablin & Peyré, 2022). However, as observed in
our experiments, the added constraints of these methods can negatively impact the performance of the
graph function and additionally the hyper-parameter tuning can be tricky especially when dealing with
large datasets. In our work, we choose to tackle the task by modifying the mathematical formulation
of the GCN in (3) to encourage the orthonormality of the weights. We have therefore chosen to use
an iterative algorithm (Björck & Bowie, 1971), that mainly was used in the literature for studying
Lipschitz approximation (Anil et al., 2019), to ensure a fair trade-off between clean and attacked
accuracy. We note that, based on the introduced Theorem 4.1, any orthonormalization method can
theoretically enhance the underlying model’s robustness. Given our weight matrix W , the iterative
process which is computed using Taylor expansion, consists of finding the closest orthonormal matrix
Ŵ to our weight matrix W . By considering Ŵ0 =W , we recursively compute Ŵk from

Ŵk+1 = Ŵk

(
I + 1

2Qk + . . .+ (−1)p
(−1/2

p

)
Qp

k

)
, (5)

with k ≥ 0, Qk = I − ŴT
k Ŵk and p ≥ 1 is the chosen order. A key advantage of this orthonormal-

ization approach is its differentiability, hence its compatibility with the back-propagation process of
training GNNs. By incorporating this projection into each forward pass during the model’s training,
we encourage the orthonormality of the weights, consequently enhancing its expected robustness.

Training and Convergence of Our Approach. Encouraging the orthonormality of the weight
matrices for each layer in our framework mitigates the problems of vanishing and exploding gradients.
Our proposed method preserves the gradient norm, leading to enhanced convergence and improved
learning (Guo et al., 2022). It is important to note that the training of our framework relies on the
convergence of the iterative orthonormalization process. From the original work (Björck & Bowie,
1971) which examined this aspect, convergence is contingent on the condition ∥WTW − I∥≤ 1
being satisfied, which can be guaranteed by applying a scaling factor, based on the spectral norm, to
the weight matrices before the iterative process. We noticed that this approach not only guarantees
that the weight matrices satisfy the necessary condition for convergence but also helps to speed up
the convergence and the training process as analyzed by previous work (Salimans & Kingma, 2016).

Complexity of Our Approach. Equation (5) entails a trade-off between convergence speed and the
approximation’s precision. A higher order p yields closer projections in each iteration, resulting in an
increased computational complexity. This trade-off must be carefully considered to strike a balance
between complexity and approximation accuracy. The main complexity of the method results from
the matrix products which are O(e3) where e represents the embedding dimension. Our experiments
indicate that a low order and a small number of iterations often yield a satisfactory approximation
in practice. We note that our method’s complexity does not increase with growing input graph size,
distinguishing it from other defenses such as GNNGuard which has a complexity of O(e × |E|),
where |E| represents the number of edges or GNN-SVD which computes a low-rank approximation
through SVD with a corresponding complexity of O(n3), with n being the number of nodes. We
point out that we conducted an ablation study (reported in Appendix G) on the effect of changing the
order p and number of iterations k on both the precision of the orthonormal projection (represented
by both the clean accuracy and the adversarial accuracy) and the time complexity.

5 ESTIMATION OF OUR ROBUSTNESS MEASURE

Based on our introduced definition of expected robustness in Section 3, we introduce an algorithm
to empirically estimate the quantity Advα,βϵ [f ], serving therefore as a new metric to evaluate GNN
robustness. While most defense methods on graphs are evaluated using the worst-case accuracy of a
GNN when exposed to specific attack schemes (Bojchevski et al., 2020; Xu et al., 2019a; Zügner
& Günnemann, 2019), Advα,βϵ [f ] is an attack-independent and model-agnostic robustness metric
based on uniform sampling. It can therefore be used as a security checkpoint, in addition to existing
robustness metrics, to evaluate the GNN robustness against unknown attack distributions.

Numerous model-agnostic robustness metrics (Weng et al., 2018; Cheng et al., 2021) have emerged
primarily in computer vision. These metrics mainly assess robustness through measuring the distortion
between input and output manifolds. While these methods can be extended to the graph classification
task with appropriate distortion definitions, their application in the node classification context proves
challenging. To our knowledge, there exists no specific or analogous adaptation within the context of
graph representation learning. Thus, our proposed evaluation aims to address this gap.
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Given that the expected value of an indicator random variable for an event E is the probability of that
event, i.e., E[1{E}] = P (E), we use (6) as an equivalent formulation of Advα,βϵ [f ] in (2).

Advα,βϵ [f ] = E (G,X)∼DG,X ,

(G̃,X̃)∈Bα,β((G,X),ϵ)

[
1{dY(f(G̃, X̃), f(G,X)) > σ}

]
. (6)

From the law of large numbers (Bernoulli, 1713), the mean sampling is an unbiased estimator of
the vulnerability quantity Advα,βϵ [f ]. Consequently, we estimate a GNN’s expected robustness by
generating multiple graph pairs ([G,X], [G̃, X̃]), where each input graph [G,X] is sampled from
the underlying distribution DG,X and [G̃, X̃] is uniformly sampled from the ball of radius ϵ centered
around [G,X], i. e., dα,β([G,X], [G̃, X̃]) ≤ ϵ. This approach can be used for both structural and
feature attacks. Since we focus on the latter, we propose a sampling strategy based on the distance

d0,1([G,X], [G̃, X̃]) = ∥X − X̃∥X= max
i∈{1,...,n}

∥Xi − X̃i∥p, (7)

where ∥·∥p is the Lp-norm (p > 0) and Xi, X̃i are the i-th rows of the matrices X, X̃ ∈ Rn×K .
Since the original dataset consists of samples [G,X] from the underlying distribution DG,X , we only
need to sample uniformly graphs [G̃, X̃] from the neighborhood of the dataset graphs [G,X] such
that ∥X − X̃∥X≤ ϵ and G̃ = G. Sampling such X̃ is equivalent to first sample Z ∈ Rn×K from
Bϵ =

{
Z ∈ Rn×K : ∥Z∥X≤ ϵ

}
and then set X̃ = X + Z. Sampling from the ball Bϵ could be

performed by partitioning the ball with respect to the possible values of ∥Z∥X .

Sr = {Z ∈ Rn×K : ∥Z∥X= r}, Bϵ = ∪r≤ϵSr; ∀r ̸= r′ Sr ∩ Sr′ = ∅.

We therefore propose to use the following Stratified Sampling approach, which is based on two main
steps: (i) Sample a distance r from [0, ϵ] using the distribution pϵ defined in Lemma 5.1; (ii) Sample
Z from Sr. Additional details on the prior distribution r and the sampling from Sr are in Appendix H.

Lemma 5.1. Let RK be the real finite-dimensional space and ϵ a positive real number. If R(p) is
the random variable indicating the maximum of the Lp norm’s values inside the ball of radius ϵ, i.e.,
Bϵ =

{
Z ∈ Rn×K : maxi∈{1,...,n}∥Zi∥p≤ ϵ

}
. Then, for every p > 0, the density distribution of

R(p) does not depends on p and is defined as follows, pϵ(r) = K 1
ϵ

(
r
ϵ

)K−1
1{0 ≤ r ≤ ϵ}.

The proof is available in Appendix I. We note that the proposed framework is a practical and theory-
based robustness evaluation approach applicable to any GNN, since no assumption has been made on
the underlying architecture. Algorithm 1 in Appendix H offers a summary of the approach.

6 EMPIRICAL INVESTIGATION

This section examines the practical impact of our theoretical findings on real-world datasets where
we aim to investigate the robustness of GCORN in comparison to other defense benchmarks.

6.1 EXPERIMENTAL SETUP

The necessary code to reproduce all our experiments is available on github
https://github.com/Sennadir/GCORN. In this section, we focus on node classification while
we report results on graph classification (Morris et al., 2020) in Appendix J. We use the citations
networks Cora, CiteSeer, and PubMed (Sen et al., 2008), the Co-author network CS (Shchur
et al., 2018), and the citation network between Computer Science arXiv papers OGBN-Arxiv (Hu
et al., 2020). Further information about the datasets and implementation details are provided in
Appendix L. To reduce the impact of initialization, we repeated each experiment 10 times and used
the train/validation/test splits provided with the datasets and for the CS dataset, we followed the
framework of Yang et al. (2016). We note that for the node feature-based attacks, we normalized the
input features to work in a continuous space allowing more flexibility in terms of available attacks.

Attacks. We use two evasion and one poisoning feature-based attacks: (i) The baseline random attack
injecting Gaussian noise N (0, I) to the features with a scaling parameter ψ controlling the attack
budget; (ii) The white-box Proximal Gradient Descent (Xu et al., 2019a), which is a gradient-based

7
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Table 1: Attacked classification accuracy (± standard deviation) of the models on different benchmark
node classification dataset after the feature attacks.

Attack Dataset GCN GCN-k AirGNN RGCN ParsevalR GCORN

Random
(ψ = 0.5)

Cora 68.4 ± 1.9 69.2 ± 2.6 73.5 ± 1.9 71.6 ± 0.3 72.9 ± 0.9 77.1 ± 1.8
CiteSeer 57.8 ± 1.5 62.3 ± 1.2 64.6 ± 1.6 63.7 ± 0.6 65.1 ± 0.8 67.8 ± 1.4
PubMed 68.3 ± 1.2 71.2 ± 1.1 70.9 ± 1.3 71.4 ± 0.5 71.8 ± 0.8 73.1 ± 1.1
CS 85.3 ± 1.1 86.7 ± 1.1 87.5 ± 1.6 88.2 ± 0.9 87.6 ± 0.6 89.8 ± 1.2
OGBN-Arxiv 68.2 ± 1.5 52.8 ± 0.5 66.5 ± 1.3 63.8 ± 1.9 68.3 ± 1.9 69.1 ± 1.8

Random
(ψ = 1.0)

Cora 41.7 ± 2.1 46.3 ± 2.8 53.7 ± 2.2 52.8 ± 1.6 55.3 ± 1.2 57.6 ± 1.9
CiteSeer 38.2 ± 1.3 45.3 ± 1.4 49.8 ± 2.1 43.7 ± 2.2 51.2 ± 1.2 57.3 ± 1.7
PubMed 60.1 ± 1.7 62.3 ± 1.3 62.4 ± 1.2 61.9 ± 1.2 61.3 ± 1.7 65.8 ± 1.4
CS 69.9 ± 1.3 73.2 ± 0.9 76.7 ± 2.8 76.2 ± 1.4 78.7 ± 1.2 81.3 ± 1.6
OGBN-Arxiv 66.4 ± 1.9 46.6 ± 0.6 62.7 ± 1.6 63.0 ± 2.4 66.1 ± 0.7 67.3 ± 2.1

PGD

Cora 54.1 ± 2.4 58.3 ± 1.6 68.2 ± 1.8 62.5 ± 1.2 68.6 ± 1.7 71.1 ± 1.4
CiteSeer 52.3 ± 1.1 59.6 ± 1.6 59.3 ± 2.1 61.9 ± 1.1 62.1 ± 1.5 65.6 ± 1.4
PubMed 66.1 ± 2.1 67.3 ± 1.3 70.8 ± 1.7 69.5 ± 0.9 68.9 ± 2.1 72.3 ± 1.3
CS 71.3 ± 1.1 74.1 ± 0.8 76.3 ± 2.1 76.6 ± 1.2 77.3 ± 0.6 79.6 ± 1.2
OGBN-Arxiv 67.5 ± 0.9 49.9 ± 0.7 55.7 ± 0.9 63.6 ± 0.7 67.6 ± 1.2 68.1 ± 1.1

Nettack

Cora 60.9 ± 2.5 64.2 ± 5.2 66.7 ± 3.8 63.4 ± 3.8 67.5 ± 2.5 68.3 ± 1.4
CiteSeer 55.8 ± 1.4 71.7 ± 1.4 67.5 ± 2.5 70.8 ± 3.8 69.2 ± 3.8 77.5 ± 2.5
PubMed 60.0 ± 2.5 65.8 ± 2.9 69.2 ± 1.4 71.7 ± 3.8 68.3 ± 1.4 70.8 ± 1.4
CS 55.8 ± 1.4 71.6 ± 1.4 76.7 ± 1.4 71.7 ± 2.9 75.8 ± 2.8 78.3 ± 1.4
OGBN-Arxiv 49.2 ± 2.9 53.3 ± 1.4 56.7 ± 1.4 52.6 ± 2.5 55.8 ± 1.4 55.8 ± 1.4
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Figure 1: (a) and (b) display Advα,βϵ [f ] for Cora and OGBN-Arxiv. (c) Robustness guarantees on
Cora, where ra, rd are respectively the maximum number of adversarial additions and deletions.

approach to the adversarial optimization task. We set the perturbation rate to 15%. While this attack
has limited success for structural perturbations due to the discrete space, it is known to be powerful
in continuous spaces, such as the node feature space; (iii) The targeted-attack Nettack (Zügner et al.,
2018), where similar to the original study, we selected 40 correctly classified target nodes, comprising
10 with the largest classification margin, 20 randomly chosen, and 10 with the smallest margin.

Baseline Models. Currently, as presented in Section 2, there are only few methods for defending
against feature-based adversarial perturbations. We compare against (i) GCN-k (Seddik et al., 2022);
(ii) RobustGCN (RGCN) (Zhu et al., 2019); (iii) AIRGNN (Liu et al., 2021a) and (iv) we finally
compared to the Parseval Regularization (ParsevalR) (Cisse et al., 2017), another orthonormalization
method, with great success in the computer vision. The aim is mainly to motivate the merits of our
proposed orthonormalization method based on the iterative weight projection.

6.2 EXPERIMENTAL RESULTS

Empirical Estimation of Our Expected Robustness. We start by investigating the robustness of
the different considered benchmarks through the empirical estimation of Advα,βϵ [f ] as introduced in
Section 5 (see Appendix M and L). Figure 1 (a) and (b) report the estimated values of the vulnerability
Advα,βϵ [f ] for our GCORN and the considered defense benchmarks for the Cora and OGBN-Arxiv
datasets, respectively. Additional results on further datasets are provided in Appendix J. The figures
show that our GCORN yields the lowest adversarial vulnerability indicating therefore that our
proposed approach is exhibiting greater expected robustness within the considered neighborhood.

8
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Table 2: Attacked classification accuracy (± standard deviation) of the models on different benchmark
node classification datasets after the structural attacks.

Attack Dataset GCN GCN-Jaccard RGCN GNN-SVD GNN-Guard ParsevalR GCORN

Mettack

Cora 73.0 ± 0.7 75.4 ± 1.8 69.2 ± 0.3 73.6 ± 0.9 74.4 ± 0.8 71.9 ± 0.7 77.3 ± 0.5
CiteSeer 63.2 ± 0.9 69.5 ± 1.9 68.9 ± 0.6 65.8 ± 0.6 68.8 ± 1.5 68.3 ± 0.8 73.7 ± 0.3
PubMed 60.7 ± 0.7 62.9 ± 1.8 65.1 ± 0.4 82.1 ± 0.8 84.8 ± 0.3 69.5 ± 1.1 71.8 ± 0.4
CoraML 73.1 ± 0.6 75.4 ± 0.4 77.1 ± 1.1 71.3 ± 1.0 76.5 ± 0.7 76.9 ± 1.3 79.2 ± 0.6

PGD

Cora 76.7 ± 0.9 78.3 ± 1.1 72.0 ± 0.3 71.6 ± 0.4 75.0 ± 2.0 78.4 ± 1.2 79.9 ± 0.4
CiteSeer 67.8 ± 0.8 70.9 ± 1.0 62.2 ± 1.8 60.3 ± 2.4 68.9 ± 2.2 70.6 ± 1.0 73.1 ± 0.5
PubMed 75.3 ± 1.6 73.8 ± 1.3 78.6 ± 0.4 81.9 ± 0.4 84.3 ± 0.4 77.3 ± 0.7 77.4 ± 0.4
CoraML 76.9 ± 1.2 75.0 ± 2.4 77.5 ± 0.3 73.1 ± 0.5 75.5 ± 0.8 81.3 ± 0.4 84.1 ± 0.2

DICE

Cora 74.9 ± 0.8 76.9 ± 0.9 79.6 ± 0.3 72.2 ± 1.4 75.6 ± 1.1 79.7 ± 0.8 78.9 ± 0.4
CiteSeer 64.1 ± 0.5 66.0 ± 0.6 68.7 ± 0.5 62.6 ± 1.2 65.5 ± 1.1 68.9 ± 0.4 74.6 ± 0.4
PubMed 79.4 ± 0.4 78.3 ± 0.2 79.8 ± 0.4 76.6 ± 0.5 77.8 ± 0.7 79.2 ± 0.3 78.1 ± 0.6
CoraML 78.3 ± 0.6 77.5 ± 0.3 80.1 ± 0.4 58.7 ± 0.4 77.5 ± 0.2 80.5 ± 1.3 81.1 ± 0.8

Worst-Case Adversarial Evaluation. Table 1 reports the attacked node classification accuracies for
our GCORN and the other considered benchmarks. The results show that, when subject to features-
based adversarial attacks with a varying budget, the performance of GCN is severely impacted.
Instead, the proposed GCORN demonstrates a significant improvement in defending against these
attacks in comparison to other methods. For instance, GCORN is outperforming the GCN-k by an
average of ∼ 12% in accuracy. In certain situations, GCORN demonstrates the ability to recover the
GCN’s performance to a level equivalent to no adversarial attack. Furthermore, the baselines are not
as effective in defending against gradient-based attacks. In contrast, GCORN, which is based on an
attack-agnostic upper bound (Theorem 4.1), demonstrates its ability to defend against gradient-based
attacks. We, additionally study the trade-off between robustness and input sensitivity in Appendix J.

Certified Robustness. In addition to our probabilistic and empirical evaluations, we assessed the
certified robustness of a GCN and our proposed GCORN on the Cora dataset using the sparse
randomized smoothing approach (Bojchevski et al., 2020). Specifically, we plotted their certified
accuracy S(ra, rd) for varying addition ra and deletion rd radii. Figure 1(c) showcases our theoretical
robustness; GCORN improves the certified accuracy with respect to feature perturbations for all radii.

Structural Perturbations. Although our focus is on node feature-based adversarial attacks, we
also provided a theoretical analysis for structural perturbations (Theorem 4.2). To evaluate the
effectiveness of our approach in handling structural attacks, we conducted an empirical comparison
to five baseline defense methods that focus on structural perturbations, GNN-Jaccard (Wu et al.,
2019), RobustGCN (Zhu et al., 2019), GNN-SVD (Entezari et al., 2020), GNNGuard (Zhang &
Zitnik, 2020) and the Parseval Regularization(ParsevalR) (Cisse et al., 2017). We considered three
structural adversarial attacks with a perturbation budget 0.1|E|: “Mettack” (with the ‘Meta-Self’
strategy) (Zügner & Günnemann, 2019), “Dice” (Zügner & Günnemann, 2019) and “PGD” (Xu
et al., 2019a). The average node classification accuracies of the considered models under attack
are presented in Table 2. Our GCORN shows remarkable defense capabilities against these attacks,
outperforming other methods in 8 of 12 experiments. This result highlights the effectiveness of our
proposed defense mechanism in enhancing the robustness of the underlying GCNs against structural
perturbations while providing theoretical guarantees which are absent for the considered baselines.

7 CONCLUSION

We have proposed GCORN, an adaptation of the GCN, which is robust against feature-based adversar-
ial attacks. The approach utilizes the orthonormalization of weight matrices to control the robustness
of GCNs via an upper bound we derived. Additionally, we have proposed a probabilistic evaluation
method for the robustness of GNNs based on the introduced definition of “Expected Adversarial
Robustness”. Experimental results comparing our GCORN model to the standard GCN and existing
defense methods show the superior performance of GCORN on different real-world datasets.
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Appendix: Bounding the Expected Robustness of
Graph Neural Networks Subject to Node Feature

Attacks

A PROOF OF PROPOSITION A.1

Proposition A.1. Let f : (G,X ) → Y be a graph-based classifier subject to feature-based attacks and
X be of dimension D. Let d0,12 be the graph distance corresponding to the spectral norm, d0,11 corre-
sponding to theL1 norm and d0,1p corresponding to theLp norm with p > 2. If f is ((d0,12 , ϵ), (dY , γ))–
robust, then f is also ((d0,1p , D−1/2ϵ), (dY , γ))–robust and ((d0,11 , D−2ϵ), (dY ,

√
Dγ))–robust.

Proof. Let RD the real finite-dimensional space. The set of standard considered norms of RD for
x = (x1, . . . , xD) ∈ RD is

∀p > 0, ∥x∥p=

(
D∑
i=1

|xi|p
)1/p

, ∥x∥∞= max
1≤i≤n

|xi|.

As for any x ∈ RD, the mapping p 7→ ∥x∥p is monotone decreasing (Raıssouli & Jebril, 2010) ,
meaning that

q > p ≥ 1 ⇒ ∥x∥q≤ ∥x∥p.

Using Holder’s inequality with s = q/p > 1, we have

(∥x∥p)p =

D∑
i=1

|xi|p

=

D∑
i=1

|xi|p · 1

≤

(
D∑
i=1

(|xi|p)s
) 1

s
(

D∑
i=1

1
s

s−1

)1− 1
s

=

(
D∑
i=1

(|xi|p)q/p
) p

q
(

D∑
i=1

1
q

q−p

)1− p
q

= D1−p/q (∥x∥q)p .

Thus,
q > p ≥ 1 ⇒ ∥x∥p≤ D1/p−1/q∥x∥q. (8)

We additionally have that

∥x∥q =

(
D∑
i=1

|xi|q
)1/q

,

≤

(
D∑
i=1

∥x∥q∞

)1/q

≤ D1/q∥x∥∞
≤ D1/q∥x∥p. (9)
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From (8) and (9), we deduce that

q > p ≥ 1 ⇒ D
1
q−

1
p ∥x∥p≤ ∥x∥q≤ D

1
q ∥x∥p,

Consequently, for any matrix N ∈ Rn×D, we have the following

p > q ≥ 1 ⇒ ∀x ̸= 0

{
D

1
q−

1
p ∥Nx∥p≤ ∥Nx∥q≤ D

1
q ∥Nx∥p,

D
1
q−

1
p ∥x∥p≤ ∥x∥q≤ D

1
q ∥x∥p,

⇒ ∀x ̸= 0

{
D

1
q−

1
p ∥Nx∥p≤ ∥Nx∥q≤ D

1
q ∥Nx∥p,

D− 1
q 1
∥x∥p

≤ 1
∥x∥q

≤ D− 1
q+

1
p 1
∥x∥p

,

⇒ ∀x ̸= 0, D− 1
p
∥Nx∥p
∥x∥p

≤ ∥Nx∥q
∥x∥q

≤ D
1
p
∥Nx∥p
∥x∥p

,

⇒ D− 1
p ∥N∥p≤ ∥N∥q≤ D

1
p ∥N∥p.

In particular, for p = 2, we have

∀q > 2,∀N ∈ Rn×D ∥N∥2≤
√
D∥N∥q. (10)

Similar for q = 2 and p = 1, we have

∀N ∈ Rn×D ∥N∥2≤ D∥N∥1. (11)

The Inequalities (10) and (11) stay valid for the distance related to the norm Lp, i. e.,

∀X, X̃ ∈ Rn×D ,∀p > 2, d2(X, X̃) ≤
√
Ddp(X, X̃),

d2(X, X̃) ≤ Dd1(X, X̃).

Finally, for every input graph G,X , we have

∀p > 2, {(G′, X ′) | dp([G,X], [G̃, X̃]) <
1√
D
ϵ} ⊂ {(G′, X ′) | d2([G,X], [G̃, X̃]) < ϵ},

{(G′, X ′) | d1([G,X], [G̃, X̃]) <
1

D
ϵ} ⊂ {(G′, X ′) | d1([G,X], [G̃, X̃]) < ϵ}.

Therefore, the ((d0,12 , ϵ), (dY , γ))-robustness of a graph function f implies the
((d0,1p , D−1/2ϵ), (dY , γ))–robustness and ((d0,11 , D−1ϵ), (dY ,

√
Dγ))–robustness.

B PROOF OF LEMMA 3.2

Lemma. Let dα,β be a defined graph metric on the metric spaces G,X . Let f : (G,X ) → Y be a
graph-based function, we have the following result: If f is ((dα,β , ϵ), (dY , γ))–robust, then f is also
((dα,β , ϵ), (dY , γ))–“worst-case” robust.

Proof. Let Wα,β
ϵ = {(Aw, Xw); d

α,β([G,X], [G̃, X̃]) ≤ ϵ} be the set of “worst-case” adversarial
attacks within the attack budget ϵ. We denote the expected vulnerability of a graph function f on the
set of worst-case adversarial examples as Advα,βϵ [f ]|Wα,β

ϵ
.

By definition, we have Wα,β
ϵ ⊂ Bα,β(G,X, ϵ). Consequently, we have that

Advα,βϵ [f ]|Wα,β
ϵ

= P(G,X)∼DG,X [(G̃, X̃) ∈ Wα,β
ϵ : dY(f(G̃, X̃), f(G,X)) > σ] (12)

≤ P(G,X)∼DG,X [(G̃, X̃) ∈ Bα,β(G,X, ϵ) : dY(f(G̃, X̃), f(G,X)) > σ] (13)

≤ Advα,βϵ [f ]. (14)

Let the graph function f be ((dα,β , ϵ), (dY , γ))–robust, then Advα,βϵ [f ] ≤ γ. From (14), we have
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W −Advα,βϵ [f ] ≤ Advα,βϵ [f ] ≤ γ.

We therefore, can conclude that if f is ((dα,β , ϵ), (dY , γ))–robust, then f is ((dα,β , ϵ), (dY , γ)) −
“worst-case” robust.

C PROOF OF THEOREM 4.1 AND 4.2

Theorem. Let f : (G,X ) → Y denote a graph-based function composed of L GCN layers, with
W (i) denoting the weight matrix of the i-th layer. Further, let d0,1 be a feature distance. For attacks
targeting node features of the input graph, with a budget ϵ, with respect to Definition 3.1:

• f is ((d0,1, ϵ), (d1, γ))–robust with γ =
∏L

i=1∥W (i)∥1ϵ(
∑

u∈V ŵu)/σ, with ŵu denoting
the sum of normalized walks of length (L− 1) starting from node u and V is the node set.

• f is ((d0,1, ϵ), (d∞, γ))–robust with γ =
∏L

i=1∥W (i)∥∞ϵŵG/σ, with ŵG = max
u∈V

ŵu.

Proof. Let’s consider a graph-function f that is based onL layers of GCN. The GCN message-passing
propagation can be written for a node u as

h(ℓ)u = σ(ℓ)( Σ
v∈N (u)

⋃
{u}

W (ℓ)h
(ℓ−1)
v√

(1 + du)(1 + dv)
) (15)

where W (ℓ) ∈ Rdℓ−1×dℓ is the learnable weight matrix with dℓ being the embedding dimension of
layer ℓ and σ(ℓ) is the activation function of ℓ-th layer. We recall that h(0) = X ∈ Rn×d is set to the
initial node features.

Let X the original node features and denote by X ′ the perturbed adversarial features. Let’s consider
a node u ∈ V , we denote by hu its representation in the clean graph and h′u its representation in
the attacked graph , we note that the activation functions (σ(ℓ))1≤ℓ≤L are nonexpensive. Since we
only consider node feature based adversarial attacks, then by definition the original node u and its
corresponding node in the corrupted graph have the same neighborhood, we can therefore write

∥h(L)
u − h′

(L)
u ∥= ∥h(ℓ)u − h′

(ℓ)
u ∥

= ∥σ(ℓ)( Σ
v∈N (u)

⋃
{u}

W (ℓ)h
(ℓ−1)
v√

(1 + du)(1 + dv)
)− σ(ℓ)( Σ

v′∈N (u)
⋃
{u}

W (ℓ)h′
(ℓ−1)
v′√

(1 + du)(1 + dv′)
)∥

≤ ∥W (ℓ)∥∥ Σ
v∈N (u)

⋃
{u}

h
(ℓ−1)
v√

(1 + du)(1 + dv)
− Σ

v′∈N (u)
⋃
{u}

h′
(ℓ−1)
v′√

(1 + du)(1 + dv′)
∥

≤ ∥W (ℓ)∥∥ Σ
v∈N (u)

⋃
{u}

h
(ℓ−1)
v − h′

(ℓ−1)
v√

(1 + du)(1 + dv)
∥

= ∥W (ℓ)∥∥ Σ
v∈N (u)

⋃
{u}

1√
(1 + du)(1 + dv)

[σ(ℓ−1)( Σ
j∈N (v)

⋃
{v}

W (ℓ−1)h
(ℓ−2)
j√

(1 + dv)(1 + dj)
)−

σ(ℓ−1)( Σ
j∈N (v)

⋃
{v}

W (ℓ−1)h′
(ℓ−2)
j√

(1 + dv)(1 + dj)
)]∥

≤ ∥W (ℓ)∥∥W (ℓ−1)∥∥ Σ
v∈N (u)

⋃
{u}

1√
(1 + du)(1 + dv)

Σ
j∈N (v)

⋃
{v}

h
(ℓ−1)
j − h′

(ℓ−1)
j√

(1 + dv)(1 + dj)
∥

By iteration on the same process, we get the following result:
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∥h(L)
u − h′

(L
u′ ∥ ≤

L∏
l=1

∥W (l)∥2∥ Σ
v∈N (u)

⋃
{u}

Σ
j∈N (v)

⋃
{v}

. . .

Σ
z∈N (y)

⋃
{y}

Xu −X ′
u√

(1 + du)(1 + dw)(1 + dj) . . . (1 + dy)
√
(1 + dz)

∥

≤
L∏

l=1

∥W (l)∥∥ŵu∥ϵ

with ŵu being the sum of normalized walks of length (L− 1) starting from node u.

Let’s now consider the final output of the model which represents in the case of node classification
the individual output of each node.

∥f(A,X)− f(A,X ′)∥= ∥


...

h
(L)
u − h′

(L)
u

...

 ∥

Based on the previous formulation, we have the following results:

∥f(A,X)− f(A,X ′)∥1≤ ϵ

L∏
l=1

∥W (l)∥1
∑
u∈V

ŵu

∥f(A,X)− f(A,X ′)∥∞= ϵ

L∏
l=1

∥W (l)∥∞max
u∈V

ŵu

Therefore, we computed the Lipschitz constant of our considered model f . To link this constant to
our robustness definition in Equation 2, we use the Markov inequality as follows

Advα,βϵ [f ] = P(G,X)∼DG,X [(G̃, X̃) ∈ Bα,β(G,X, ϵ) s.t. dY(f(G̃, X̃), f(G,X)) > σ]

≤ 1

σ
E (G,X)∼DG,X ,

(G′,X′)∈Bα,β((G,X),ϵ)

[∥f(A,X)− f(A,X ′)∥∞]

≤ 1

σ

(
L∏

l=1

∥W (l)∥op

)
ϵmax

u∈V
| ŵu |1 .

Thus, the classifier f is ((d0,1, ϵ), (d∞, γ))–robust robust with

γ =

L∏
i=1

∥W (i)∥ϵmax
u∈V

ŵu/σ.

And we also have that the classifier f is ((d0,1, ϵ), (d1, γ))–robust with

γ =

L∏
i=1

∥W (i)∥ϵ(
∑
u∈V

ŵu)/σ.

Theorem. Let f : (G,X ) → Y denote a graph function composed of L GCN layers, where W (i)

denotes the weight matrix of the i-th layer. Further, let d1,0 be a graph distance. For structural
attacks with a budget ϵ, the function f is ((d1,0, ϵ), (d2, γ))–robust with

γ =

L∏
i=1

∥W (i)∥∥X∥ϵ(1 + L

L∏
i=1

∥W (i)∥)/σ.

17



Published as a conference paper at ICLR 2024

Proof. Following the same analogy, let’s consider the case of structural perturbations. We only
consider that the activation functions (σ(ℓ))1≤ℓ≤L are nonexpensive. In this setting, the graph shift
operator (the normalized adjacency matrix in our work) is the one to be edited and the input features
are shared between the two graphs. Let Ã the clean adjacency and h(i) its hidden represented in the
i-th layer and Ã′, h′(i), with the attacked/perturbed one.

Let’s first consider the following

∥h′(l)∥ = ∥σ(l)(Ã2h
′(l−1)

W (l))∥

≤ ∥Ã2∥∥W (l)∥∥h′(l−1)∥

≤ ∥W (l)∥∥h′(l−1)∥.

By recursion, we have: ∥h′(L)∥ ≤
∏L

i=1∥W (i)∥∥X∥.
From another side, we have the following

∥σ(l)(Ãh
(l)
1 W (l))− σ(l)(Ã′h′

(l)
2 W (l))∥2 ≤ ∥Ãh(l)W (l) − Ã′h′

(l)
2 W (l)∥2

≤ ∥W (l)∥∥Ãh(l) − Ã′h′
(l)

+ Ãh′
(l) − Ãh′

(l)∥2
≤ ∥W (l)∥∥Ã(h(l) − h′

(l)
)− h′

(l)
(Ã− Ã)∥2

≤ ∥W (l)∥(∥Ã∥∥(h(l) − h′
(l)
)∥+∥h′(l)∥∥(Ã− Ã′)∥2)

≤ ∥W (l)∥∥(h(l) − h′
(l)
)∥+∥W (l)∥∥h′(l)∥ϵ.

By recursion, we get the following (By considering ∀i > 1 : ∥W (i)∥ ≥ 1)

∥Φ(A1, X)− Φ(A2, X)∥2 ≤
L∏

i=1

∥W (i)∥∥X∥ϵ+ L(

L∏
i=1

∥W (i)∥)2∥X∥ϵ

≤
L∏

i=1

∥W (i)∥∥X∥ϵ(1 + L

L∏
i=1

∥W (i)∥).

Similarly to the previous proof, we deduce that the classifier f is ((d1,0, ϵ), (d2, γ))–robust where

γ =
∏L

i=1∥W (i)∥∥X∥ϵ(1 + L
∏L

i=1∥W (i)∥)/σ.

D PROOF OF THEOREM 4.3

Theorem. Let f : (G,X ) → Y be composed of L GIN-layers (with parameter ζ = 0, that is
usually denoted by ϵ in the literature) and W (i) denote the weight matrix of the i-th MLP layer.
We consider the input node feature space to be bounded, i.e., ∥X∥2 < B for some B ∈ R, and
graphs of maximum degree ∆G. For node feature-based attacks, with a budget ϵ, the function f is
((d0,1, ϵ), (d∞, γ))–robust with

γ =

L∏
l=1

∥W (l)∥∞(B L ∆G + ϵ)/σ.
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Proof. Let’s now consider a graph-function f that is based on L GIN-layers (with a parameter ζ = 0,
that is usually denoted by ϵ in the literature). The GIN message-passing propagation process can be
written for a node u as:

h(ℓ+1)
u = T (ℓ+1)((1 + ζ)h(ℓ)u + Σ

v∈N (u)
h(ℓ)v )

where T denotes a Neural Networks (a MLP) for example and ζ denotes the parameter of the GIN.
We recall that h(0) = X ∈ Rn×d is set to the initial node features.

Let X the original node features and X̃ the perturbed features. Let’s consider a node u ∈ V , we
denote by hu its representation in the clean graph and h′u its representation in the attacked graph
, we note that we consider the activation functions to be nonexpensive. Since we only consider
node feature based adversarial attacks, then by definition the original node u and its corresponding
corrupted node have the same neighborhood, we can therefore write

∥h(L)
u − h′

(L)
u ∥ = ∥T (ℓ)((1 + ζ)h(ℓ−1)

u + Σ
v∈N (u)

h(ℓ−1)
v )− T (ℓ)((1 + ζ)h′

(ℓ)
u + Σ

v∈N (u)
h′

(ℓ)
v )∥

≤ ∥W (ℓ)∥∥(1 + ζ)(h(ℓ−1)
u − h′

(ℓ−1)
u ) + Σ

v∈N (u)
(h(ℓ−1)

v − h′
(ℓ−1)
v )∥

We assume that the input feature space H0 is bounded, thus each hidden space Hi of the iterative
process of message passing is bounded and let B = max

ℓ≤L
Bℓ be its global maximum bound. From the

previous result, we have

∥h(ℓ)u − h′
(ℓ)
u ∥≤ ∥W (ℓ)∥∥(1 + ζ)(h(ℓ−1)

u − h′
(ℓ−1)
u ) +B × deg(u)∥

By iteration over the previous process, and by considering ∀i > 1 : ∥W (i)∥ ≥ 1, we can write

∥h(L)
u − h′

(L)
u ∥ ≤ B × deg(u)×

L∏
l=1

∥W (l)∥
L∑

l=1

(1 + ζ)l +

L∏
l=1

∥W (l)∥(1 + ζ)L∥h(0)u − h′
(0)
u ∥

≤ B × deg(u)×
L∏

l=1

∥W (l)∥
L∑

l=1

(1 + ζ)l +

L∏
l=1

∥W (l)∥(1 + ζ)Lϵ

≤
L∏

l=1

∥W (l)∥[B × deg(u)

L∑
l=1

(1 + ζ)l + (1 + ζ)Lϵ]

Since we consider the GIN-parameter ζ ≈ 0, we can deduce from the previous result that

∥h(ℓ+1)
u − h′

(ℓ+1)
u′ ∥≤

L∏
l=1

∥W (l)∥[B × L× deg(u) + ϵ]

Let’s now consider the final output of the model which represents in the case of node classification
the individual output of each node.

∥f(A,X)− f(A,X ′)∥= ∥


...

h
(L)
u − h′

(L)
u

...

 ∥

Based on the previous formulation, we have the following results
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∥f(A,X)− f(A,X ′)∥∞=

L∏
l=1

∥W (l)∥∞[B × L×max
u∈V

deg(u) + ϵ]

Similar to the previous proof of Theorem 4.1, we connect the Lipschitz constant of our considered
model f to the robustness definition in Equation 2 through Markov inequality and we get the following

γ =

L∏
l=1

∥W (l)∥∞[B × L×max
u∈V

deg(u) + ϵ]/σ.

E GENERALIZING TO ANY GRAPH NEURAL NETWORK

While this work focuses on GCNs, it can be easily extended to other GNN architecture. Given the
iterative nature of GNNs, they can be viewed as a composition of multiple continuously differentiable
functions, fi : Hi → Hi+1, where Hi represents the input space of the i− th function. The Lipschitz
constant, as shown in Zhao et al. (2021) is given by C =

∏
i∥▽fi∥. The functions {fi}i can be

grouped into two categories : (i) The set L of functions fi that are linear with a corresponding
parameter Wi. (ii) The set of functions that are not linear. We can hence decompose C ′ according
to the nature of the function as follows

C ′ =
( ∏

fi /∈L

∥▽fi∥
)( ∏

fi∈L

∥Wi∥
)
.

We can assume the input feature space H0 to be bounded; this a realistic assumption. Thus, each
hidden space Hi is also bounded, and since {▽fi}fi /∈L are continuous functions on bounded spaces,
there exists an upper bound Ci for ∥▽fi∥. Therefore, there exists C > 0, such that,

C ′ ≤ C
∏
fi∈L

∥Wi∥.

We return to the previous case by simply taking ϵ′ = ϵC/C ′. Furthermore, following the assumption
on the input feature space being bounded, it is possible to derive an upper bound on the GNN’s ro-
bustness when subject to both structural and feature-based attacks simultaneously (See Appendix F).

F VULNERABILITY UPPER-BOUND WHEN DEALING WITH BOTH
STRUCTURAL AND NODE FEATURES ATTACKS

In this section, we derive the upper-bound for a GCN’s vulnerability Advα,β,ϵ[f ] when dealing with
both structural and feature-based attacks simultaneously.

Advα,β,ϵ[f ] ≤
1

σ
E (G1,X1)∼DG,X ,
(G2,X2)∈Bα,β((G1,X1),ϵ)

[∥f(A1, X1)− f(A2, X2)∥2]

≤ 1

σ
E (G1,X1)∼DG,X ,
(G2,X2)∈Bα,β((G1,X1),ϵ)

[∥f(A1, X1)− f(A1, X2) + f(A1, X2)− f(A2, X2)∥2]

≤ 1

σ
E (G1,X1)∼DG,X ,
(G2,X2)∈Bα,β((G1,X1),ϵ)

[∥f(A1, X1)− f(A1, X2)∥2+∥f(A1, X2)− f(A2, X2)∥2]

≤ 1

σ
E (G1,X1)∼DG,X ,
(G2,X2)∈Bα,β((G1,X1),ϵ)

[∥f(A1, X1)− f(A1, X2)∥2] +

E (G1,X1)∼DG,X ,
(G2,X2)∈Bα,β((G1,X1),ϵ)

[∥f(A1, X2)− f(A2, X2)∥2] .
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Table 3: Attacked classification accuracy (± standard deviation) of the models on different benchmark
node classification datasets after both structural attacks and node feature attacks application.

Dataset GCN GCN-Jaccard RGCN GNN-SVD GNNGuard ParsevalR GCORN
Cora 76.7 ± 1.2 76.7 ± 0.4 78.1 ± 0.6 65.9 ± 4.0 61.0 ± 0.4 77.6 ± 1.1 79.8 ± 0.7
CiteSeer 68.7 ± 0.3 71.5 ± 0.3 68.9 ± 0.8 68.3 ± 0.5 65.0 ± 0.3 70.9 ± 0.6 74.2 ± 0.3
PubMed 47.0 ± 0.4 49.4 ± 0.8 51.2 ± 0.4 47.7 ± 0.5 40.3 ± 0.3 49.7 ± 1.1 53.9 ± 0.8
CoraML 63.3 ± 0.0 32.2 ± 1.5 59.7 ± 1.4 53.8 ± 0.8 32.2 ± 1.5 65.4 ± 0.2 77.4 ± 1.1

We already established an upper-bound in Appendix C for each term of the previous inequality.
Therefore, we can have a new upper-bound for Advα,β,ϵ[f ]

Advα,β,ϵ[f ] ≤
1

σ

(
L∏

i=1

∥W (i)∥ϵ(
∑
u∈V

ŵu)
2

)
ϵ+

1

σ

(
L∏

i=1

∥W (i)∥∥X∥ϵ(1 + L

L∏
i=1

∥W (i)∥)

)
.

Following the assumption on the input feature space being bounded, i.e. ∃B > 0,∀X ∥X∥ ≤ B,
the inquality become

Advα,β,ϵ[f ] ≤
1

σ

(
L∏

i=1

∥W (i)∥

)(
(
∑
u∈V

ŵu)
2 +B(1 + L

L∏
i=1

∥W (i)∥)

)
ϵ.

Thus, the classifier f is d0,1-(ϵ, γ) robust where

γ =

(
L∏

i=1

∥W (i)∥

)(
(
∑
u∈V

ŵu)
2 +B(1 + L

L∏
i=1

∥W (i)∥)

)
ϵ/σ.

F.1 EXPERIMENTAL VALIDATION

We assessed the efficacy of our proposed method against both Structural and Node-feature-based
adversarial attacks simultaneously. This evaluation involved a combined evasion attack approach,
wherein two attacks were integrated. Initially, we generated the perturbed adjacency matrix by
employing a surrogate GCN model along with the "Mettack" (utilizing the ‘Meta-Self’ strategy)
(Zügner & Günnemann, 2019). Subsequently, we perturbed the node features using a random attack
strategy involving the injection of Gaussian noise N (0, I) into the features. This perturbation was
controlled by a scaling parameter ψ, which we identified as effective in prior experiments. For the
structural perturbations, we set the perturbation budget to 0.1E, while for the node features, ψ was
set to 5.0. We compared our method to the same considered defense benchmarks that were used in
Section 6.

G TIME AND COMPLEXITY ANALYSIS

Drawing from the original paper (Björck & Bowie, 1971), it has been established that the Bjorck
orthonormalization method will always converge, provided that the condition ∥WTW − I∥2 < 1
is met. In this section, we will begin by examining the connection between the selected order, the
number of iterations and the resulting performance and then present an empirical time analysis of the
proposed GCORN on various datasets.

G.1 ON THE EFFECT OF ORDER/ITERATIONS

As per the projection equation 5, it appears that a higher order/iteration generally results in a more
precise projection of the weight matrix. In our study, we gauge the accuracy of the approximation
by assessing the model’s performance in the absence of adversarial attacks, as well as under attack.
Although our experiments demonstrate that employing the first order with a restricted number of
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iterations can produce satisfactory outcomes, we believe that an hyper-parameter analysis should be
conducted. Consequently, we evaluate the influence of modifying the order (while maintaining a
constant number of iterations) on the resulting accuracy in Table 4.

Table 4: Performance of GCN and our proposed GCORN model, for different used approximation
orders, on the Cora dataset.

GCN GCORN(1 ORD) GCORN(2 ORD) GCORN(3 ORD)

TRAINING TIME (IN S) 2.8 ± 0.01 4.8 ± 0.07 8.7 ± 0.07 10.9 ± 0.08
ACCURACY W/O ATTACK 79.2 ± 1.6 78.8 ± 1.3 79.8 ± 0.9 80.8 ± 1.1
ACCURACY W. ATTACK 68.4 ± 1.9 77.1 ± 2.1 78.3 ± 1.1 78.6 ± 0.4

Table 4 shows both clean and attacked accuracy of the GCN and our proposed GCORN and the corre-
sponding standard deviations for different orders. We observe that using higher order approximations
generally leads to enhanced accuracy and robustness, albeit at the expense of increased running time.
Therefore, the choice of order hyperparameter employed in the approximation must be carefully
tuned for each application to find the best trade-off between robustness,accuracy and training time. In
our experiments, we found that an approximation of order 1 yielded adequate and satisfactory results.

G.2 ON TRAINING TIME

In line with the above, we also investigate the training time of our model compared to that of a
standard GCN. To conduct this experiment, we held the order and number of iterations constant and
utilized identical architectures and hyperparameters for both models (see Appendix L).

Table 5: Mean training time analysis (in s) of a our GCORN in comparison to the other benchmarks.

DATASET GCN GCN-K AIRGNN RGCN GCORN

CORA 2.8 1.8 2.6 3.2 4.8
CITESEER 2.4 5.8 2.9 2.4 4.6
PUBMED 5.9 8.9 7.4 14.5 7.3
CS 6.1 12.1 12.4 13.8 15.5
OGBN-ARXIV 77.8 185.8 68.1 161.6 78.4

The mean training time are presented in Table 5, indicating a trade-off between the improved
robustness provided by the GCORN model and its slightly longer training time compared to the GCN
model and other available methods.

H MORE DETAILS ABOUT THE ESTIMATION OF OUR ROBUSTNESS MEASURE

We begin by providing the pseudocode of the algorithm used to estimate our robustness measure.

Algorithm 1: Estimation of Advα,βϵ [f ].

Inputs: Sphere Radius : ϵ > 0, Number of Samples Lmax, Number of Input Graphs |D|;
Initialize Adv = 0;
foreach [Gi, Xi] ∈ D do

Initialize Advi = 0;
foreach l = 1, . . . , Lmax do

1. Sample a distance r ∈ [0, ϵ] from the prior distribution pϵ (see Appendix I);
2. Uniformly sample Zl ∈ Rn×K from Sr (see Appendix H);
3. Choose X̃l = Xi + Zl;
4. Update

Advi ← Advi + 1{dY(f(G̃l, X̃l), f(G,X)) > σ};
end foreach
Advi = Advi/Lmax; Adv = Adv +Advi;

end foreach
Return Adv/|D| ;
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We now detail how to uniformly sample from the set Sr defined by,

Sr = {Z ∈ Rn×D | max
1≤i≤n

∥Zi∥p= r},

where r ∈ [0, ϵ]. The set Sr can also be defined in the following way,

Z ∈ Sr ⇔ max
1≤i≤n

∥Zi∥p= r

⇔
{

∃i0 ∈ {1, . . . , n} ∥Zi0∥p= r,
∀i ∈ {1, . . . , n} ∥Zi∥p≤ r.

Since the position of i0 within {1, . . . , n} do not matter in the previous equivalence, we can uniformly
sample i0 ∈ {1, . . . , n}, such that ri0 = ∥Zi0∥p= r and that the other index i ∈ {1, . . . , n} \ {i0}
should satisfy ri = ∥Zi∥p≤ r, i.e., Zi ∈ BK(r) = {x ∈ RK |∥x∥p≤ r}. We will use another time
Stratified Sampling where we start by sampling {ri}i̸=i0 within [0, r]. Using the Lemma 5.1, we can
directly sample {ri}i̸=i0 from the probability distribution

∀i ∈ {1, . . . , n} \ {i0}, p(ri) = K
1

r

(ri
r

)K−1

.

Once we know the values of {ri}i, the problem boils down to sampling n vectors {Zi}1≤i≤n from
RK , such that

∀i ∈ {1, . . . , n}, ∥Zi∥p= ri. (16)

For that, we have to consider the two cases p <∞ and p = ∞

H.1 CASE WHERE p <∞

In this case, Equation 16 can be written as follows

∀i ∈ {1, . . . , n}, ∥Zi∥p= ri ⇔ ∀i ∈ {1, . . . , n},
K∑
j=1

|Zi,j |p = rpi ,

⇔ ∀i ∈ {1, . . . , n},
K∑
j=1

(
|Zi,j |
ri

)p

= 1. (17)

To satisfy Equation (17), we randomly uniformly partition the [0, 1] into K parts. To do so, for each
i ∈ {1, . . . , n}, we randomly sample D − 1 element from uniform distribution U [0, 1]; Let’s denote
[p

(i)
1 , . . . , p

(i)
K−1] the sorted list of sampled elements. We directly choose

Oi,j =


1− p

(i)
j−1 if j = K,

p
(i)
j if j = 0,

p
(i)
j − p

(i)
j−1 otherwise .

The matrix O = (Oi,j)1≤i≤n,1≤j≤D satisfy

∀i ∈ {1, . . . , n},
K∑
j=1

Oi,j = 1.

Figure 2 gives insight into the previously introduced concept of randomly partitioning in the case of
the set [0, 1] into K = 4.
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0 1

p1 p2 p4

O1 O2 O3 O4

Figure 2: A toy example on how to randomly partition the set [0, 1] into K = 4 parts such as the sum
of the parts lengths is 1. We first uniformly sample 3 elements from [0, 1] and reorder them [p1, p2, p3].
And subsequently, we consider O1 = [0, p1], O2 = [p4, p3], O3 = [p4, p3], O4 = [1, p4]

Based on the previous elements, we can choose Z such that

∀i, j,
(
|Zi,j |
ri

)p

= Oi,j ⇔ ∀i, j, |Zi,j | = ri ×O1/p
i,j . (18)

Equation 18 is invariant with respect to the sign of Zi,j , hence, we use the following

∀i, j, Zi,j = ui,j × ri ×O1/p
i,j ,

where ui,j is sampled from the discrete uniform distribution U{−1,1}.

We recall that for p = 1, the distance d0,1([G,X], [G̃, X̃]) = maxi∈{1,...,n}∥Xi − X̃i∥p defined in

Equation 7 matches with the infinity matrix distance d∞ : (A,B) 7→
∑

X ̸=0
∥AX−BX∥∞

∥X∥∞
as shown

in Nagisa (2022). Therefore, from the Theorem 4.1, the upper-bound of the expected vulnerability
Advα,βϵ [f ] is γ =

∏L
i=1∥W (i)∥∞ϵŵG/σ.

H.2 CASE WHERE p = ∞

In this case, Equation 16 can be written as follows

∀i ∈ {1, . . . , n}, ∥Zi∥∞= ri ⇔ ∀i ∈ {1, . . . , n}, max
1≤j≤K

|Zi,j | = ri

⇔ ∀i ∈ {1, . . . , n},
{

∃j0 ∈ {1, . . . ,K} |Zi,j0 | = ri,
∀j ∈ {1, . . . ,K} |Zi,j0 | ≤ ri.

(19)

For each i ∈ {1, . . . , n}, we randomly select j0 ∈ {1, . . . ,K} to satisfy |Zi,j0 | = ri. For the other
j ̸= j0, we uniformly sample the value of |Zi,j | from U[0,ri]. These equations are invariant with
respect to the sign of Zi,j , therefore, we choose,

∀i, j, Zi,j = ui,j × |Zi,j |,
where ui,j is sampled from the discrete uniform distribution U{−1,1}.

I PROOF OF LEMMA 5.1

Lemma. Let RK be the real finite-dimensional space and ϵ a positive real number. If R(p) is the
random variable indicating the maximum of the Lp norms values inside the ball of radius ϵ, i.e.,
Bϵ =

{
Z ∈ Rn×K : maxi∈{1,...,n}∥Zi∥p≤ ϵ

}
. Then, for every p > 0, the density distribution of

R(p) does not depends on p and is defined as follows,

pϵ(r) = K 1
ϵ

(
r
ϵ

)K−1
1{0 ≤ r ≤ ϵ}.

Proof. Using the following equivalence

∃Z ∈ Rn,K max
1≤i≤n

∥Zi∥p= r ⇔ ∃T ∈ RK , ∥T∥p= r.

We deduce that the density pϵ do not depend on n, and therefore we can set n = 1 for this proof.
Therefore,

Bϵ =
{
Z ∈ RK |∥Z∥p≤ ϵ

}
.
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We start by calculating the volume of the K−sphere of radius r for any real finite-dimensional space
RK where K > 2 is an integer.

SK(r) = {x ∈ RK |∥x∥p= r}.
Let’s denote the volume of SK(r) by VK(r).
Using Fubini Theorem, we have

VK(r) =

∫ r

−r

VK−1
(
(rp − |x|p)1/p

)
dx

= r

∫ 1

−1

VK−1
(
r (1− |x|p)1/p

)
dx

= r

∫ 1

−1

rK−1VK−1
(
(1− |x|p)1/p

)
dx

= rK
∫ 1

−1

VK−1
(
(1− |x|p)1/p

)
dx

= rKVK(1).

(20)

Thus, the surface Lp ball in RK of radius r is

SK(r) =
dVK(r)

dr
(21)

= KrK−1VK(1). (22)

Consequently the density distribution of R(p) could be written as

pϵ(r) =
Sp
K(r)

Vp
K(ϵ)

1{0 ≤ r ≤ ϵ}

=
1

Vp
K(ϵ)

dVp
K(r)

dr
1{0 ≤ r ≤ ϵ}

= a
1

ϵ

(r
ϵ

)K−1

1{0 ≤ r ≤ ϵ}. (23)

We note that the previous quantity doesn’t depend on p.

J ADDITIONAL RESULTS

J.1 NODE CLASSIFICATION

To further understand the relationship between robustness and input sensitivity, from which we
derived the upper bound for GNNs and specifically GCNs, we empirically validate the trade-off
between robustness and input perturbation. We hence compare the difference in the output of each
model when subjected to random perturbations with varying attack budgets. The results of this study
are presented in Figure 3. The figure displays the results for both Cora and CiteSeer datasets in both
absolute (left figure) and log-scale (right figure) format. The results demonstrate that the GCN is
highly sensitive to perturbations in comparison to the proposed approach in terms of the difference in
output. These findings provide validation for the stability of GCORN against input perturbations, and
by extension, adversarial attacks.

We additionally considered two defense techniques benchmarks: (1) ElasticGNN (Liu et al., 2021b)
which proposes a novel and general message passing scheme into GNNs to enhance the local
smoothness adaptivity of GNNs via ℓ1-based graph smoothing and (2) EvenNet (Lei et al., 2022)
which proposes a spectral GNN corresponding to even-polynomial graph filter with the main idea
being that ignoring odd-hop neighbors improves the underlying robustness. For this additional
evaluation, we consider similar attacks techniques as the one from Table 1.
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Figure 3: Difference (in average and standard deviation) in output for the GCN and our GCORN
when subject to random perturbations with different attack budgets for both (a) Cora and (b) CiteSeer.
The right-hand side plots are on the log-scale.

Table 6: Attacked classification accuracy (± standard deviation) of the models on different benchmark
node classification dataset after the attack application.

Attack Dataset ElasticGNN EvenNet GCORN

Random
(ψ = 0.5)

Cora 72.5 ± 2.4 69.7 ± 1.8 77.1 ± 1.8
CiteSeer 58.9 ± 2.3 48.6 ± 1.6 67.8 ± 1.4
PubMed 70.5 ± 0.6 68.8 ± 1.6 73.1 ± 1.1

Random
(ψ = 0.5)

Cora 54.4 ± 2.4 48.9 ± 2.1 57.6 ± 1.9
CiteSeer 43.8 ± 2.0 39.7 ± 4.2 57.3 ± 1.7
PubMed 56.8 ± 2.1 58.5 ± 3.2 65.8 ± 1.4

PGD
Cora 64.7 ± 1.6 57.6 ± 3.6 71.1 ± 1.4
CiteSeer 50.8 ± 3.2 37.1 ± 3.3 65.6 ± 1.4
PubMed 64.6 ± 1.5 61.0 ± 4.1 72.3 ± 1.3

J.2 GRAPH CLASSIFICATION

In this section, we present the result of our GCORN on the graph classification task using both
empirical and our proposed probabilistic evaluation. Details about the experimental setting for this
task are provided in Appendix L. Note that for the random attack, we used ψ = 0.5 and for the
gradient-based, we used a budget δ = 0.2. Table 7 reports the average accuracy and the corresponding
standard deviation for both clean and attacked accuracy.
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Table 7: Classification accuracy (± standard deviation) of the models on different benchmark graph
classification dataset before (clean) and after the attack. The higher the accuracy (in %) the better.

Attack PROTEINS D&D NCI1

GCN GCORN GCN GCORN GCN GCORN

Clean 73.4 ± 2.8 74.1 ± 1.9 75.8 ± 3.6 76.4 ± 4.1 75.7 ± 2.2 74.8 ± 1.7
Random 66.7 ± 2.5 71.7 ± 2.8 70.9 ± 3.2 75.1 ± 4.8 67.1 ± 2.6 71.8 ± 2.1
PGD 56.7 ± 2.8 65.4 ± 3.1 61.8 ± 4.1 68.6 ± 4.3 54.9 ± 2.9 62.4 ± 2.1

K EXPERIMENTAL RESULTS ON GIN

To showcase our method’s versatility beyond the considered GCN framework and confirm the GIN-
related results outlined in Theorem 4.3, we conducted similar experiments to those presented in Table
1. However, this time, we employed GIN as the message-passing scheme. In this perspective, we
used the same previously considered node features attacks, notably: (i) The baseline random attack
injecting Gaussian noise N (0, I) to the features with a scaling parameter ψ controlling the attack
budget; (ii) The white-box Proximal Gradient Descent (Xu et al., 2019a), which is a gradient-based
approach to the adversarial optimization task with a chosen attack budget of 15%.

Table 8: Attacked classification accuracy (± standard deviation) of the models on different benchmark
node classification dataset using Graph Isomorphism Network after the attack application.

Model Cora CiteSeer PubMed

Random (ψ = 0.5) GIN 67.8 ± 1.3 50.1 ± 0.3 72.8 ± 0.4
GIORN 71.8 ± 0.8 60.8 ± 0.5 74.3 ± 0.7

Random (ψ = 1.0) GIN 54.5 ± 0.9 45.1 ± 0.4 67.3 ± 0.6
GIORN 66.7 ± 1.2 54.4 ± 0.8 68.9 ± 1.1

PGD GIN 61.4 ± 1.4 44.1 ± 0.5 70.6 ± 0.4
GIORN 69.5 ± 0.6 58.3 ± 0.6 73.1 ± 1.6

L DATASETS AND IMPLEMENTATION DETAILS

For all the used models, the same number of layers, hyperparameters, and activation functions were
used. The models were trained using the cross-entropy loss function with the Adam optimizer,
the number of epochs and learning rate were kept similar for the different approaches across all
experiments.

L.1 NODE CLASSIFICATION

Characteristics and information about the datasets utilized in the node classification part of the study
are presented in Table 10. As outlined in the main paper, we conduct experiments on a set of citation
networks, including Cora, CiteSeer, and PubMed (Sen et al., 2008), as well as the Amazon Co-author
network of authors from the Computer Science (CS) domain (Shchur et al., 2018). For Cora, CiteSeer,
and PubMed, we adhere to the train/valid/test splits provided by the datasets. For the CS dataset, we
adopt the same methodology as used in Yang et al. (2016), by randomly selecting 20 nodes from each
class to form the training set and 500/1000 nodes from the remaining for the validation and test sets.

In all of the experiments, the models employed a 2-layer convolutional architecture (consisting of
two iterations of message passing and updating) stacked with a Multi-Layer Perception (MLP) as
a readout. The intent was to compare the models in an iso-architectural setting, to ensure a fair
evaluation of their robustness. All experiments were conducted using the Adam optimizer (Kingma
& Ba, 2015) and the same hyperparameters, including a learning rate of 1e-2, 300 epochs, and a
hidden feature dimension of 16. For the OGB dataset, we used 512 as a hidden feature dimension.
To account for the impact of random initialization, each experiment was repeated 10 times, and the
mean and standard deviation of the results were reported. We finally note that for the AIRGNN, we
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Table 9: Statistics of the node classification datasets used in our experiments.

DATASET #FEATURES #NODES #EDGES #CLASSES

CORA 1433 2708 5208 7
CITESEER 3703 3327 4552 6
PUBMED 500 19717 44338 3
CS 6805 18333 81894 15
OGBN-ARXIV 128 31971 71669 40

Table 10: Statistics of the graph classification datasets used in our experiments.

DATASET #GRAPHS #NODES #EDGES #CLASSES

DD 1178 284.32 715.66 2
NCI1 4110 29.87 32.30 2
PROTEINS 1113 39.06 72.82 2

set K = 2 so as to have the same number of propagation as the other benchmarks. For our proposed
GCORN, we tuned the iteration numbers for the different datasets and this was also done for the
Parseval Regularization (ParselR) to find the best regularization parameter.

L.2 GRAPH CLASSIFICATION

We additionally emperically evaluated our proposed method GCORN using both probabilistic eval-
uation and the classical experimental evaluation. We used benchmark datasets derived from bioin-
formatics and chemoinformatics (PROTEINS, NCI1, D&D) (Morris et al., 2020). The framework
proposed by Errica et al. (2020) was used to evaluate the performance of the models on this task.
We therefore performed a 10-fold cross-validation using the same folds as provided by the paper to
obtain an estimate of the generalization performance of each method.

Similar to node classification, we employed a 2-layer convolutional architecture (consisting of two
iterations of message passing and updating) stacked with a Multi-Layer Perception (MLP) as a
readout using the Adam Optimizer.

L.3 IMPLEMENTATION DETAILS

Our implementation is available in the supplementary materials (and will be publicly available
afterwards). It is built using the open-source library PyTorch Geometric (PyG) under the MIT
license (Fey & Lenssen, 2019). We leveraged the publicly available implementation of the different
benchmarks from their available repositories : From GCN-k 1, for AIRGNN 2, for GNNGuard 3 and
for RGCN we used the implementation from the DeepRobust package. Note that we additionally
utilized the PyTorch DeepRobust package4 to implement the adversarial attacks used in this study.
The experiments have been run on both a NVIDIA A100 GPU and a RTX A6000 GPU.

L.4 IMPLEMENTATION DETAILS OF OUR EMPIRICAL ROBUSTNESS ESTIMATION

We considered the input distance defined in Equation (7) with p = 2, we fixed the radius ϵ = 10
and the number of sampling per graph at Lmax = 100. For each graph G, the output distance dY
has been re-scaled to the interval [0, 1] by normalization using a factor of 2

√
NG where NG is the

number of nodes in the graph G (See Appendix M).

1https://github.com/ChangminWu/RobustGCN
2https://github.com/lxiaorui/AirGNN
3https://github.com/mims-harvard/GNNGuard
4https://github.com/DSE-MSU/DeepRobust
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M RESULTS OF THE EMPIRICAL ESTIMATION OF OUR ROBUSTNESS
MEASURE

M.1 NORMALIZATION OF THE OUTPUT DISTANCE dY

The distance dY is defined as follows,

dY(f(G̃, X̃), f(G,X)) = ∥f(G̃, X̃)− f(G,X)∥2.

Let’s put Q = (Qi,j)0≤i≤NG
0≤i≤C

= f(G̃, X̃) − f(G,X), where NG is the number of nodes in the

graph and C the number of classes, i.e. output dimension. Since, the last layer of f is a Sigmoid
function, all the element of the matrix f(G̃, X̃) and f(G,X) are bounded between 0 and 1, thus,
∀i, j, |Qi,j | ≤ ∥f(G̃, X̃)∥∞+∥f(G,X)∥∞≤ 2, i.e. ∥Q∥∞≤ 2. Therefore, we have

dY(f(G̃, X̃), f(G,X)) = ∥S∥2

= sup
x ̸=0

∥Sx∥2
∥x∥2

,

= sup
x ̸=0

(∑NG

i=1

(∑C
j=1Qi,jxj

)2)1/2

∥x∥2

≤ ∥Q∥∞sup
x ̸=0

(∑NG

i=1

(∑C
j=1 xj

)2)1/2

∥x∥2

= ∥Q∥∞
√
NG sup

x̸=0

(∑C
j=1 xj

)2
∥x∥2

= ∥Q∥∞
√
NG sup

x̸=0

∥x∥2
∥x∥2

= ∥Q∥∞
√
NG ≤ 2

√
NG.

Thus,

0 ≤ 1

2
√
NG

dY(f(G̃, X̃), f(G,X)) ≤ 1.

M.2 THE EFFECT OF SAMPLING ON THE EMPIRICAL ESTIMATION OF Advα,βϵ [f ]

The provided robustness evaluation is based on an estimation related to a sampling strategy. Con-
sequently, the quality of our evaluation is dependent on the number of generated samples. In what
follows we aim to shed light on the effect of the chosen number of samples on our estimation.

Previous work (Niederreiter, 1992; Tezuka, 2012) has proven the intricate link between the discrep-
ancy of samples and the estimation errors. Discrepancy, particularly in the context of quasi-Monte
Carlo methods, assesses how effectively a set of points covers a given space. A high discrepancy
signifies the presence of volumes with varying point densities—some with high density and others
with low density. Conversely, a low discrepancy indicates a more uniform distribution of points,
resulting in smaller estimation errors for Advα,βϵ [f ].

We use this concept to understand the possible variation of our estimation within our considered input
graph’s neighborhood. In this perspective, we measure the discrepancy by computing the probability
to find a ball of radius r << ϵ, included in Bϵ =

{
Z ∈ RK |∥Z∥p≤ ϵ

}
, which does not contain any

of the Lmax samples {Z1, . . . , ZLmax
}. We denote by Br the set of balls of radius r, i.e. we have:

B ∈ Br ⇔ ∃T ∈ RK , B =
{
Z ∈ RK |∥Z − T∥p≤ ϵ

}
.

29



Published as a conference paper at ICLR 2024

For any B ∈ Br such that B ⊂ Bϵ, the probability that none of the Lmax samples belongs to B is

P(∀i ∈ {1, . . . , Lmax}, Zi /∈ B) =

Lmax∏
i=1

P(Zi /∈ B})

= P(Z1 /∈ B)Lmax

= (1− P(Z1 ∈ B))
Lmax

=

(
1− VK(r)

VK(ϵ)

)Lmax

=

(
1−

(r
ϵ

)K)Lmax

.

To reach a low discrepancy, we need to reduce the aforementioned probability, i.e. upper-bounding
the probability P(∀i ∈ {1, . . . , Lmax}, Zi /∈ B) with a small α within ]0, 1], e.g. α = 0.05.

P(∀i ∈ {1, . . . , Lmax}, Zi /∈ B) ≤ α⇔
(
1−

(r
ϵ

)K)Lmax

≤ α (24)

⇔ Lmaxlog

(
1−

(r
ϵ

)K)
≤ log(α) (25)

⇔ Lmax ≥ log(α)

log
(
1−

(
r
ϵ

)K) . (26)

Therefore, to reach a low discrepancy and hence reduce the estimation error, Equation 26 provides a
theoretical guarantee for the minimum required number of samples. The given lower-bound is an
increasing function in respect to ϵ, thus, we may need fewer samples if we consider a smaller input
graph’s neighborhood.

We also empirically investigate how the robustness measure Advα,βϵ [f ] varies due to sampling. To do
so, for a fixed number of samples, we empirically estimate Advα,βϵ [f ] 10 different times using the
Algorithm 1. We report the mean and the standard deviation of Advα,βϵ [f ] for each fixed number of
samples. As noticed for the dataset Cora, we have a consistent estimation of Advα,βϵ [f ] with different
number of samples. Moreover, the variance becomes almost constant with only 40 samples. Thus,
with only a few number of samples, we can statistically significant estimation of Advα,βϵ [f ].
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Figure 4: The Values of Advα,βϵ [f ] for the dataset Cora. The dotted line and the shaded region
represent respectively the mean value and the standard deviation of Advα,βϵ [f ].

M.3 EMPIRICAL VALIDATION OF THE TIGHTNESS OF THE COMPUTED THEORETICAL
UPPER-BOUND

In this section, we study the tightness of the theoretical upper-bound γ =
∏L

i=1∥W (i)∥∞ϵŵG/σ of
Theorem 4.1. For that, we use our empirical estimation of Advα,βϵ [f ], i.e. using Algorithm 1.

We calculated both its theoretical upper-bound and the estimated robustness evaluation for different
values of σ. The results are provided in Figure 5. As shown in Appendix M.1, the maximum
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possible value of σ is 2
√
NG, thus, we plot the values of Advα,βϵ [f ] and the upper-bound γ as a

function of σ/(2
√
NG). Notably, these experimental findings affirm the tightness of the theoretically

computed bound. This tightness explains our considered link between reducing the upper-bound and
the robustness enhancement as experimentally seen in Table 1 and 2.
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Figure 5: The Values of Advα,βϵ [f ] and the theoretical upper-bound γ (c.f. Theorem 4.1) for the
dataset Cora using different values of σ. For this experiment, we used the values ϵ = 0.1 and
Lmax = 100.

M.4 ADDITIONAL RESULTS OF THE EMPIRICAL ESTIMATION FOR THE NODES
CLASSIFICATION TASK

In Figure 6, we report the values of Advα,βϵ [f ] of our GCORN and the baselines for the datasets
CiteSeer, PubMed and CS. We used the same setting previously described in Section 5. For the dataset
CiteSeer and PubMed, we notice that GCORN method yielded the lowest Adversarial Robustness
value, indicating that GCORN exhibits greater robustness against adversarial examples.
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Figure 6: The Values of Advα,βϵ [f ] for the dataset CiteSeer, PubMed and CS.
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M.5 ADDITIONAL RESULTS OF THE EMPIRICAL ESTIMATION FOR THE GRAPHS
CLASSIFICATION TASK

In Figures 7, we report the values of Advα,βϵ [f ] for the datasets DD, NCI and Proteins. We observe
that GCORN and the two other baselines exhibit nearly identical values of Ad Advα,βϵ [f ].
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Figure 7: The Values of Advα,βϵ [f ] for the dataset CiteSeer, PubMed and CS.
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