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2D-TPE: Two-Dimensional Positional Encoding Enhances Table
Understanding for Large Language Models

Anonymous Author(s)
∗

Abstract

Tables are ubiquitous across various domains for concisely repre-

senting structured information. Empowering large language mod-

els (LLMs) to reason over tabular data represents an actively ex-

plored direction. However, since typical LLMs only support one-

dimensional (1D) inputs, existing methods often flatten the two-

dimensional (2D) table structure into a sequence of tokens, which

can severely disrupt the spatial relationships and result in an in-

evitable loss of vital contextual information. In this paper, we first

empirically demonstrate the detrimental impact of such flattening

operations on the performance of LLMs in capturing the spatial

information of tables through two elaborate proxy tasks. Subse-

quently, we introduce a simple yet effective positional encoding

method, termed “2D-TPE” (Two-Dimensional Table Positional En-

coding), to address this challenge. 2D-TPE enables each attention

head to dynamically select a permutation order of tokens within

the context for attending to them, where each permutation repre-

sents a distinct traversal mode for the table, such as column-wise

or row-wise traversal. 2D-TPE effectively mitigates the risk of los-

ing essential spatial information while preserving computational

efficiency, thus better preserving the table structure. Extensive ex-

periments across five benchmarks demonstrate that 2D-TPE outper-

forms strong baselines, underscoring the importance of preserving

the table structure for accurate table comprehension. Comprehen-

sive analysis further reveals the substantially better scalability of

2D-TPE to large tables than baselines.
1
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1 Introduction

Tables are highly structured and rich in information, making them

indispensable and widely used in the real world. From financial

reports to scientific data, tables serve as an efficient means of orga-

nizing and presenting complex relationships and patterns. As large

language models (LLMs) continue to advance [1, 3, 46], and the

interest in developing LLM-based agents for completing specific

tasks grows [8, 19, 30, 45, 59], endowing LLMs with the ability to

accurately comprehend and reason over tabular data has emerged

as a crucial research direction [56, 58, 61].

A fundamental challenge for LLM-based table understanding lies

in the inherent mismatch between the two-dimensional (2D) struc-

ture of tables and the one-dimensional (1D) input format required

by LLMs. To bridge the gap, existing methods typically flatten the

tabular data into a sequence of tokens [61]. While this simple ap-

proach offers a straightforward way to adapt tabular data to existing

LLMs, it disregards the spatial relationships and contextual informa-

tion encoded within the layout of tables. Consequently, LLMs may

struggle to perform accurate analysis and reasoning over tabular

data, even for seemingly simple tasks. For example, we devise two

proxy tasks (as illustrated in Figure 1), namely Counting-Stars and
Locating-Values, to assess the capability of LLMs to identify specific

cells based on their positional relations to another cell, which is

a crucial foundation for table understanding (more details of the

tasks are presented in §3.3). Empirical evaluations demonstrate that

LLMs equipped with conventional 1D positional encodings perform

remarkably poorly on these tasks, achieving an accuracy of less

than 5% and 20% in 20×20 tables, respectively. The results highlight

the detrimental impact of flattening operations on preserving table

structures and underscore the need for more effective encoding

methods to facilitate LLMs’ perception of tabular data.

In this work, we present a novel positional encoding approach,

dubbed “2D-TPE” (Two-Dimensional Table Positional Encoding), de-

signed to effectively capture both semantic and spatial information

inherent in 2D tabular data while seamlessly accommodating 1D

textual data. Akin to tables, images also convey information through

points distributed across a 2D space, rendering spatial information

critically important [31]. However, recent advancements in vision-

language models (VLMs) employing 2D positional encoding [49]

are not readily transferable to the table understanding domain. This

is because tables exhibit a dynamic nature with varying sizes and

variable-length tokens within individual cells, in contrast to the

fixed-size patches used in image representations. Consequently, we

argue that tables should be treated as a unique modality, distinct

from both textual and image data, to fully leverage their inherent

structure and spatial relationships. In a nutshell, 2D-TPE enables

each attention head to dynamically select a permutation order for

perceiving the context, where each permutation represents a dis-

tinct traversal mode for the table, such as column-wise or row-wise

traversal. Through dynamic permutation selection, our approach

1
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allows for flexible and adaptive context perception, enabling the

model to explore various traversal patterns and capture the most

relevant spatial dependencies. This adaptability is particularly valu-

able in scenarios where the importance of specific dimensions or

relationships within the table may vary, ensuring that the model

can effectively focus on the most salient aspects of the data. In

this way, 2D-TPE can mitigate the risk of losing essential spatial

information while maintaining computational efficiency.

Specifically, 2D-TPE employs an architecture where each atten-

tion head mixes up the attention outputs calculated using different

permutation orders through a routing network that dynamically

determines the routing weights, thereby capturing diverse perspec-

tives of the spatial relationships between cells. We fine-tune the

model by combining the standard language modeling loss with an

auxiliary entropy minimization term, encouraging the model to dis-

tinctly leverage specific permutation orders for different attention

heads and tokens. In this paper, we demonstrate the effectiveness of

2D-TPE using row-wise and column-wise traversal modes. Never-

theless, the proposed framework is flexible and can readily accom-

modate more permutation orders, such as diagonal traversal. This

extensibility allows for systematic exploration of different inductive

biases and spatial encoding strategies, potentially unlocking further

performance gains in various table understanding tasks.

We conduct experiments with an open-source LLM on five bench-

marks, covering a wide range of table understanding tasks, includ-

ing question-answering, type annotation, relation extraction, and

entity linking. The evaluation results consistently demonstrate the

superiority of 2D-TPE over strong baselines employing the same

LLM, with most improvements (3 out of 5 tasks) exhibiting sta-

tistical significance (Sign-test, 𝑝-value < 0.05). Notably, 2D-TPE

exhibits exceptional robustness and scalability when confronted

with tables of varying sizes, maintaining stable performance even

when the table quadruples. These findings underscore the substan-

tial potential of 2D-TPE in tackling real-world challenges involving

large-scale tabular data. In stark contrast, the performance of 1D

positional encoding deteriorates significantly as table sizes increase,

highlighting their fragility in handling complex table structures.

Remarkably, 2D-TPE achieves an excellent balance between efficacy

and efficiency. Compared to vanilla Transformers, the additional

computational cost in terms of TFLOPs and memory usage is negli-

gible, with an increase of less than 2%. Furthermore, the inference

time per example only experiences a modest 13% increase. In sum-

mary, 2D-TPE paves the way for more effective and versatile table

understanding systems.

We summarize our contributions as follows:

I.We propose two proxy tasks to empirically demonstrate the detri-

mental impact of flattening 2D table structures into 1D sequences,

highlighting the loss of vital spatial information.

II. We introduce a versatile positional encoding method “2D-TPE,”

which enables LLMs to dynamically select different permutation

orders for perceiving the table’s context, efficiently and effectively

preserving the spatial relationships within the tabular data.

III. Through comprehensive experiments on five tabular tasks,

we show that our proposed 2D-TPE method outperforms strong

baselines. Further analysis illustrates a larger margin between 2D-

TPE and baselines for larger tables, revealing its better scalability.

2 Related Works

2.1 LLM-based Table Understanding

Numerous researchers have endeavored to harness the remarkable

capabilities of LLMs to tackle table understanding problems, in-

cluding table question answering [37, 64], table augmentation [13],

fact verification [2, 6], table interpretation [13] and table-to-text

generation [36], by converting tables into 1D sequences of tokens.

2.1.1 Instruction-Tuning for Table Understanding. To tailor LLMs

for table-related tasks, several studies have curated specialized tab-

ular datasets for instruction-tuning purposes [26, 29]. For instance,

Table-GPT [27] synthesized diverse instruction-completion pairs

from real tables. TableLlama [58] introduced the comprehensive

TableInstruct dataset, supporting varied tasks and showcasing a

model with broad generalization across benchmarks.

2.1.2 Prompt Engineering for Table Understanding. LLMs have shown

a remarkable reasoning capacity [52] through the Chain of Thought

(CoT) prompting strategy [5, 53] that solves complex queries step

by step. Consequently, considerable research efforts have been

dedicated to developing various prompting techniques to improve

LLM performance in table understanding tasks. For example, Dater

[56] prompted the LLM to extract key sub-tables and decompose

questions into sub-questions. TaCo [63] used the CoT approach in

tabular LMs for mathematical queries. PROTRIX [54] introduced a

Plan-then-Reason framework for structured problem-solving and

step-by-step reasoning.

2.1.3 Tool Usage for Table Understanding. To address the struc-

tured nature and inherent logic of tabular data, several studies have

explored the integration of LLMs with auxiliary tools such as SQL

and Python interpreters, enabling precise calculations and location-

based operations. The text-to-SQL paradigm [34] translated natural

language queries into SQL for data retrieval and manipulation.

Binder [10] integrated Python tools for complex computations and

precise cell positioning in tables. ReAcTable [62] and Chain-of-Table

[51] interleaved reasoning and tool invocation, enabling LLMs to

dynamically use tools throughout the problem-solving process.

Orthogonal to the above studies, 2D-TPE takes a fundamentally

different approach by addressing the intrinsic challenge of preserv-

ing the 2D table structure when encoding tabular data into the 1D

input format required by LLMs.

2.2 Table Modeling

In addition to the efforts that directly transform tables into se-

quences as inputs for LLMs, some work focuses on designing model

architectures to better handle the 2D structure of tabular data.

HyTrel [4] transformed tabular data into hypergraphs to cap-

ture structural attributes but lacked compatibility with mainstream

LLMs. Recent studies have adapted attention mechanisms to ac-

commodate the inherently 2D structure of tabular data. TABERT

[57] layered column-wise self-attention on top of row-wise self-

attention, enhancing positional awareness among tokens. Stru-

BERT [47] employed a combination of horizontal and vertical self-

attention. TURL [13] and MATE [17] restricted attention to tokens

within the same row or column. TABLEFORMER [55] introduced

learnable biases to adjust attention scores based on token positions.

2
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Unlike these models, 2D-TPE efficiently encodes spatial relation-

ships within the standard self-attention framework, better aligning

with mainstream LLMs.

2.3 Positional Encodings

The attention mechanism in the vanilla Transformer [48] lacks the

ability to capture inter-token positional relationships. To overcome

this limitation, researchers have proposed absolute and relative

positional encodings to incorporate positional information.

2.3.1 Absolute Positional Encoding (APE).

1D APE. One intuitive approach is to map position indices into

learnable embeddings, as employed in the BERT [14] and GPT [41].

However, this method fails to generalize to positions that have not

been encountered during training, leading to substantial perfor-

mance degradation when the inference length exceeds the training

length [43]. To address the challenge, Vaswani et al. [48] introduced

the sinusoidal position embeddings that mapped a position index

𝑚 to a fixed embedding 𝑷𝑚 through a series of sinusoidal functions.

Under this formulation, for any position offset Δ𝑚 , the positional

embedding 𝑷𝑚+Δ𝑚
for the token𝑚 + Δ𝑚 can be represented as a

linear function of 𝑷𝑚 , thereby facilitating the model’s potentials to

generalize patterns based on relative positions.

2D APE. Prior research also attempted to encode 2D tabular

data using learnable embeddings. Among the efforts, TAPAS [21]

used multiple positional embeddings per table token to denote

row and column indices. TABBIE [24] combined outputs from two

Transformerswith unique positional embeddings to encode row and

column contexts. TUTA [50] introduced tree-based embeddings for

hierarchical table positions. Unlike 2D-TPE, the abovemethods with

learnable positional embeddings still potentially face the challenges

of length extrapolation.

2.3.2 Relative Positional Encoding (RPE).

1D RPE. RPE focuses on inter-token relative distances, enhancing
the model’s length extrapolation capability. The most commonly

employed RPE techniques are ALiBi [39] and RoPE[43], both of

which are applied on every self-attention layer without additional

trainable parameters. ALiBi introduced a linear bias to each atten-

tion term. RoPE modulated the query and key vectors using rotary

matrices derived from absolute position indices, with the attention

weights remaining solely contingent on the relative positional offset

between the query and key.

2D RPE. 2D RPE has been adapted for image encoding due to

images’ inherent 2D structure, requiring positional encodings for

patch sequences. Unified-IO-2 [31] adapted RoPE to 2D by dividing

the query and key vectors of attention heads and applying separate

rotary embeddings from horizontal and vertical coordinates. Al-

though effective for image tasks [20, 32], its application to tables is

limited by inability to distinguish tokens within the same cell and

independent dimensional attention processing, which may miss

inter-token positional patterns. This issue is less critical in fixed-

patch image encoding. In contrast, 2D-TPE uses varied permutation

orders of tokens to capture structural table information, overcoming

these issues and scaling to incorporate more permutation orders to

capture more structural information beyond horizontal and vertical

directions. While 2D-TPE in this study builds on RoPE, it can adapt

to other RPE techniques (e.g., ALiBi).

3 Background: 1D Positional Encoding

In this section, we introduce the background of 2D-TPE, including

the representative 1D positional encoding approach RoPE (§3.1),

which has been widely adopted in state-of-the-art LLMs such as

MiniCPM [23], Llama [46], etc; the limitation of 1D positional en-

coding for representing table structures (§3.2); and an empirical

investigation to demonstrate the limitation (§3.3).

3.1 Rotary Position Embedding

Let us consider a Transformer model with 𝐻 attention heads, each

with a dimension of 𝑑 . Given a sequence 𝑿 = (𝑥1, 𝑥2, · · · , 𝑥𝑀 )
as input, the query vector of the ℎ-th head for the token 𝑥𝑚 in a

certain layer is represented as 𝒒ℎ𝑚 ∈ R𝑑 , while the key and value

vectors of the same head for the token 𝑥𝑛 are 𝒌ℎ𝑛 ∈ R𝑑 and 𝒗ℎ𝑛 ∈ R𝑑 ,
respectively. The output 𝒐𝑚 of the self-attention module for 𝑥𝑚 is

computed as the concatenation of the outputs from 𝐻 heads:

𝒐𝑚 = 𝒐1𝑚 ⊕ 𝒐2𝑚 ⊕ · · · ⊕ 𝒐𝐻𝑚, (1)

where ⊕ denotes the vector concatenation operation, 𝒐ℎ𝑚 is aweighted

sum of the values of the ℎ-th head, where the weight assigned to

each value is computed by a compatibility function 𝑓 between the

query and the corresponding key:

𝒐ℎ𝑚 =
∑︁
𝑛⩽𝑚

𝑎ℎ𝑚,𝑛𝒗
ℎ
𝑛, (2)

𝑎ℎ𝑚,𝑛 =
exp

(
𝑓 (𝒒ℎ𝑚, 𝒌ℎ𝑛)

)∑
𝑗⩽𝑚 exp

(
𝑓 (𝒒ℎ𝑚, 𝒌ℎ𝑗 )

) . (3)

The core principle of RoPE is to integrate positional information

into the query and key in the compatibility function 𝑓 :

𝑓 (𝒒ℎ𝑚, 𝒌ℎ𝑛) = (𝒒̂ℎ𝑚)⊤ ˆ𝒌
ℎ
𝑛 = (𝑹𝑏,𝑑𝑚 𝒒ℎ𝑚)⊤ (𝑹𝑏,𝑑𝑛 𝒌ℎ𝑛) = (𝒒ℎ𝑚)⊤𝑹𝑏,𝑑𝑛−𝑚𝒌ℎ𝑛,

(4)

where 𝑹𝑏,𝑑𝑚 is a rotary matrix:

𝑹𝑏,𝑑𝑚 =


𝒓𝑏,𝑑
𝑚,1

O · · · O
O 𝒓𝑏,𝑑

𝑚,2
· · · O

O O · · · 𝒓𝑏,𝑑
𝑚,𝑑

2

 ∈ R𝑑×𝑑 , (5)

𝒓𝑏,𝑑
𝑚,𝑖

=

[
cos𝑚𝜃

𝑏,𝑑
𝑖

−sin𝑚𝜃
𝑏,𝑑
𝑖

sin𝑚𝜃
𝑏,𝑑
𝑖

cos𝑚𝜃
𝑏,𝑑
𝑖

]
, (𝑖 = 1, 2, · · · , 𝑑

2

) (6)

where 𝜃
𝑏,𝑑
𝑖

= 𝑏−
2(𝑖−1)

𝑑 and 𝑏 is a fixed base angle. It is noteworthy

that the compatibility score 𝑓 (𝒒ℎ𝑚, 𝒌ℎ𝑛) only depends on the relative

distance between the query and the key (i.e, 𝑛 −𝑚).

3.2 Limitation for Encoding Table Structures

1D positional encoding techniques have demonstrated their effi-

cacy in various natural language processing tasks. However, when

confronted with the intricate structure of tables, these methods ex-

hibit a significant limitation—the loss of crucial spatial information.

3
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877 291 533

777 790 404

800 900

399 733 701

301 600 311

422

400

Table

Question What stars are in the same row and column 
as the number {3}?

Answer [2    , 8    , 1    , 1    , 1    , 3   ]

What is the value {5} columns to the {right} 
of and {4} rows {below}    ?

923

(a) Counting-Stars (b) Locating-Values

{} is replaced with the corresponding value in each example.

Figure 1: Illustration for the proposed two proxy tasks.

This deficiency can potentially result in suboptimal representations,

thereby complicating many fundamental table understanding tasks.

Specifically, when flattening a table into a 1D sequence, regard-

less of the traversal method used, the original spatial proximity

of the table is compromised. For example, when using row-wise

traversal, the relative distance between a cell and its vertically

adjacent cells increases from an immediate proximity of 1 to the

number of columns, and vice versa for column-wise traversal. Con-

sequently, the model is burdened with the task of counting to de-

termine whether cells are in the same row or column, potentially

leading to a substantial loss of spatial information, particularly for

large tables with greater distances between related cells.

3.3 Struggling with Table Understanding

To quantitatively demonstrate the limitation imposed by 1D posi-

tional encoding techniques, we devise two proxy tasks: Counting-
Stars and Locating-Values. We aim to gain deeper insights into

the weaknesses of 1D positional encoding for table understanding,

thereby motivating the development of more robust and effective

solutions that can leverage the spatial information in tables.

3.3.1 Design Principles. We craft the two tasks to assess the capa-

bility of LLMs to identify row and column information, which is

fundamental for table understanding [44]. As illustrated in Figure 1,

Counting-Stars evaluates the parallel lookup capability from the per-

spectives of both rows and columns, while Locating-Values targets
the serial lookup capability, which demands multi-hop reasoning

to locate an intermediate cell based on relative positional offsets.

3.3.2 Task Description. We describe the tasks in detail as follows:

Counting-Stars. Given a table and a reference number, the model

must identify all cells containing a designated star symbol that are

in the same row or column as the reference. This task requires

thorough understanding of positional relationships across both di-

mensions of the table. We assess performance using the accuracy of

the output list, with the order of elements being inconsequential. As

exemplified in Figure 1 (a), we first fill the tables with stars, using

numbers randomly selected from 1 ∼ 9 (with repetition allowed)

and appended with a star symbol. Each row and column must con-

tain 1 ∼ 3 starred cells. For the remaining cells, we populate them

Table 1: Accuracy (%) on the proposed Counting-Stars and
Locating-Values tasks with different table sizes, where 𝑛 × 𝑛

means the table have 𝑛 rows and 𝑛 columns.

Tasks Methods 10×10 15×15 20×20

Counting-Stars

Row-wise Traversal 90.46 6.05 0.05

Column-wise Traversal 86.45 12.50 2.20

Constrained Attention 0.00 0.00 0.00

2D-TPE 99.65 98.70 89.75

Locating-Values

Row-wise Traversal 87.55 33.15 18.79

Column-wise Traversal 90.25 37.25 15.70

Constrained Attention 82.80 21.75 0.55

2D-TPE 92.50 61.50 54.70

with unique integers uniformly sampled from the range 0 ∼ 999,

ensuring that non-starred integers are unique, with one randomly

selected as the reference number.

Locating-Values. Given a table and a lookup instruction, the

model should output the target value from the table by follow-

ing the provided instruction. We format the instruction as “What

is the value 𝑐 columns to the right/left of and 𝑟 rows below/above

★?” (𝑟 ≠ 0, 𝑐 ≠ 0). This formulation necessitates two-hop reason-

ing: identifying the correct row and then the specific column (or

vice versa) to locate the target cell. We use accuracy for evaluation.

Figure 1 (b) shows an example. Tables are populated with unique

integers in 0 ∼ 999, with one cell designated by a star. The values

of 𝑟 , 𝑐 , and the locating directions are randomly assigned. And the

target cell always falls within the table’s boundaries.

3.3.3 Evaluated Methods. To comprehensively evaluate the effi-

cacy of 1D positional encodings for table understanding, we inves-

tigate three distinct methods: (1) Row-wise Traversal: It encodes

token positions within a table by traversing sequentially across

rows, assigning incremental positional encodings to each token en-

countered; (2) Column-wise Traversal: It employs a column-wise

traversal strategy; And (3) Constrained Attention: It permits

each token in the table to attend only to tokens residing within the

same row or column based on row-wise traversal, while tokens in

the text are able to attend to all others [13, 17]. We implement all the

above methods based on MiniCPM [23] with causal self-attention

and 1D RoPE. Furthermore, we also report the performance of the

proposed 2D-TPE for reference. Details of 2D-TPE are left until §4.

3.3.4 Experimental Setup. We design three settings that encompass

tables with varying sizes, specifically 10 × 10, 15 × 15, and 20 × 20,

to investigate the scalability of the methods in handling tables of

different sizes. For each setting, we automatically construct the

training/validation/test data with 10,000/2,000/2,000 examples.

3.3.5 Results and Insights. As presented in Table 1, the results

clearly demonstrate: (1) 1Dpositional encodingmethods achieve

significantly lower accuracy than 2D-TPE across both tasks;

and (2) the performance gap between 2D-TPE and 1D meth-

ods widens as the table size increases. 1D methods even exhibit

a near-complete loss of ability to accurately locate cells in 20 × 20

tables for Counting-Stars. This finding underscores the severe im-

pact of losing 2D spatial information when using 1D positional

encodings. While the constrained attention method attempts to
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Country National Day

United States 07/04

Question : _When … _USA ? <SEP> Country | _National _Day <ROW> — | — <ROW> United _States | _07 / 04 <ROW> <COL> <COL> <COL> <COL> Answer :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 1 2 3 4 5 6 7 12 16 17 23 8 13 18 24 9 10 14 19 20 21 25 11 15 22 26 27 28

Table:

Question: When is the National Day of USA?

“<SEP>”: Separator between Table and Question “—” / “|”: Separator between Rows/Columns “<ROW>”/“<COL>”: Row/Column Ending

Token Sequence	𝑥#
Row-wise Position Indices 𝑝#,!

Coumn-wise Position Indices 𝑝#,"

Hidden States 𝒉!

𝒒!"𝑊gate𝑊up

𝑊down

SiLU

⨀

Router

𝒌!" 𝒗!"

Softmax⊘

Rank by 𝑝!,$ Rank by 𝑝!,%

𝒐!,$" 𝒐!,%"

Causal Self-Attention with RoPE

⨂

Head 𝒉

…

Country National Day

United States 07/04

Question : _When … _USA ? <SEP> Country | _National _Day <ROW> — | — <ROW> United _States | _07 / 04 <ROW> <COL> <COL> <COL> <COL> Answer :

0 1 2 … 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 1 2 … 8 9 10 11 16 20 21 27 12 17 22 28 13 14 18 23 24 25 29 15 19 26 30 31 32

Question:

Table:

When is the National Day of USA?

“<SEP>”: Separator between Table and Question “—” / “|”: Separator between Rows/Columns “<ROW>”/“<COL>”: Row/Column Ending

𝑥#
𝑝#,!
𝑝#,"

Hidden States 𝒉!

𝒒!"

𝐌
𝐋𝐏

𝒌!"

𝒗!"

Rank by 𝑝!,$

Rank by 𝑝!,%

𝒐!,$"

𝒐!"
Causal 

Self-Attention 
with RoPE

⨂

𝒐!,%"

Softmax
⊘

Router

…

A Certain Layer

Figure 2: Overview of 2D-TPE. 𝑥𝑚 : the 𝑚-th token in the sequence; 𝑝𝑚,1/𝑝𝑚,2: the position index for the token 𝑥𝑚 using

row/column-wise traversal. The indices in the same color mean that their corresponding tokens are in the same row/column

when using 𝑝𝑚,1/𝑝𝑚,2, respectively.

explicitly define rows and columns for each cell, its poor perfor-

mance suggests a significant mismatch between this approach and

the inherent attention mechanism employed during the pretraining

of LLMs. The 2D-TPE method, on the other hand, leverages the

spatial structure of tables in a more natural and effective manner.

In summary, the elaborate tasks serve as a rigorous testbed for

evaluating the table understanding abilities, shedding light on the

limitations of 1D positional encoding methods in capturing the

inherent spatial information within tables. Their poor performance

motivates us to design 2D positional encoding methods.

4 Methodology

Inspired by the previous analysis, we propose 2D-TPE by extend-

ing RoPE to encode 2D positional information. In this way, we

can leverage its existing strengths while enabling LLMs to better

perceive and reason about tabular data structures.

Formally, we define table understanding tasks as follows: Given a

question𝑄 and a table𝑇 , the model should generate an answer𝐴 to

the question 𝑄 by comprehending the information presented in 𝑇 .

To address the problem, we are inspired by the Mixture-of-Expert

approach [25] to allow each attention head to perceive contextual

information from various perspectives by dynamically selecting a

permutation order over the table. Furthermore, we define a training

objective (§4.2) to optimize the model. Our approach incorporates

a carefully curated set of candidate permutation orders (§4.3), fa-

cilitating efficient exploration of the 2D table structure. Figure 2

provides an overview of the 2D-TPE framework.

4.1 Model Architecture

The model can perceive 2D information through multiple permuta-

tion orders over the table. To this end, we first concatenate the

question 𝑄 , the table 𝑇 , and a text-form instruction “Answer:”

into a sequence of 𝑀 tokens, denoted as 𝑋 = (𝑥1, 𝑥2, · · · , 𝑥𝑀 )2.
Subsequently, we define the positional encodings for 𝑋 as 𝑃 =

(𝒑
1
,𝒑

2
, · · · ,𝒑𝑀 ), where 𝒑𝑚 = (𝑝𝑚,1, 𝑝𝑚,2, · · · , 𝑝𝑚,𝐽 ) is a vector,

2
The order of tokens in 𝑋 are inessential since we specify the position of each token

𝑥𝑚 explicitly in 𝑃 as 𝒑𝑚 .

and 𝑝𝑚,𝑗 corresponds to the position index of 𝑥𝑚 in the 𝑗-th per-

mutation order.

Taking 𝑋 into the model, we calculate the attention output 𝒐ℎ𝑚
of the ℎ-th head for 𝑥𝑚 in a certain self-attention layer as a mixture

of attention outputs derived using different permutation orders:

𝒐ℎ𝑚 =

𝐽∑︁
𝑗=1

𝑟ℎ𝑚,𝑗 𝒐
ℎ
𝑚,𝑗 , (7)

where 𝑟ℎ
𝑚,𝑗

and 𝒐ℎ
𝑚,𝑗

are the routing weight and attention output

corresponding to the 𝑗-th permutation order, respectively. We in-

troduce an additional routing network to each self-attention layer

to calculate the routing weights:

𝑟ℎ𝑚,𝑗 = Softmax(MLP(𝒉ℎ𝑚))
��
𝑗
, (8)

where the MLP network projects the hidden state 𝒉ℎ𝑚 ∈ R𝑑 of the

ℎ-th head for the token 𝑥𝑚 into logits over 𝐽 permutation orders
3
:

MLP(𝒉ℎ𝑚) =𝑾
down

(SiLU(𝑾up𝒉
ℎ
𝑚) ⊙ (𝑾gate𝒉

ℎ
𝑚)), (9)

where 𝑾up ∈ R4𝑑×𝑑
, 𝑾gate ∈ R4𝑑×𝑑

and 𝑾
down

∈ R𝐽 ×4𝑑
are

trainable weights, and SiLU is the activation function [18]. The

design of the MLP network is aligned with the Llama models [46].

The attention output of the 𝑗-th permutation order is calculated

using the standard causal self-attention network with 1D RoPE:

𝒐ℎ𝑚,𝑗 =
∑︁

𝑝𝑛,𝑗⩽𝑝𝑚,𝑗

𝑎ℎ𝑚,𝑛,𝑗𝒗
ℎ
𝑛, (10)

𝑎ℎ𝑚,𝑛,𝑗 =
exp

(
(𝒒ℎ𝑚)⊤𝑹𝑏,𝑑𝑝𝑛,𝑗−𝑝𝑚,𝑗

𝒌ℎ𝑛
)∑

𝑝𝑖,𝑗⩽𝑝𝑚,𝑗
exp

(
(𝒒ℎ𝑚)⊤𝑹𝑏,𝑑𝑝𝑖,𝑗−𝑝𝑚,𝑗

𝒌ℎ𝑖
) , (11)

where 𝑎ℎ
𝑚,𝑛,𝑗

denotes the attention score between 𝑥𝑚 and 𝑥𝑛 in the

𝑗-th permutation order. As the attentive fields of different attention

heads vary depending on the traversal modes, we re-rank the query,

key, and value by the ascending order of token positions within

each mode before applying the causal self-attention module. By

3
We obtain 𝒉ℎ𝑚 by splitting the hidden state 𝒉𝑚 into ℎ heads.
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this means, each head can efficiently attend to the appropriate

contextual information.

4.2 Training Objective

The standard language modeling loss aims to minimize the negative

log-likelihood of ground-truth answers as follows:

Lnll = −log𝑃 (𝐴|𝑄,𝑇 ) . (12)

Furthermore, in order to encourage the model to select a specific

permutation order for each attention head and each token more

distinctly, we introduce an auxiliary loss to sharpen the distribution

of router weights by minimizing its entropy [7]:

Lent =
1

𝑀𝐻

𝑀∑︁
𝑚=1

𝐻∑︁
ℎ=1

𝐸ℎ𝑚, (13)

𝐸ℎ𝑚 = −
𝐽∑︁
𝑗=1

𝑟ℎ𝑚,𝑗 log 𝑟
ℎ
𝑚,𝑗 . (14)

In this way, the model can utilize information from one permutation

order without interference from blending all. In summary, we train

the model using the following objective:

L = Lnll + 𝜆Lent, (15)

where 𝜆 is a tunable hyper-parameter.

4.3 Candidate Permutation Orders

Using proper permutation orders as candidates in 2D-TPE is a

crucial consideration. Let us first investigate tokens within the

table. One can traverse a table following different orders, such as

row-wise, column-wise, diagonal, Hilbert-curve [22], and Z-order-

curve [16] traversals, each of which induces distinct position indices

and representing varying inductive biases regarding the proximity

of cells within the table. In this paper, we illustrate the effect of

2D-TPE using two representative traversal modes to obtain the

permutation orders (i.e., 𝐽 = 2 in Equation 7): row-wise and column-

wise traversals, both proceeding from top-left to bottom-right. This

choice can be readily extended to accommodate other traversal

modes, which is left for future work. Note that the relative distances

between tokens in the same cell (e.g., “United” and “_States” in

Figure 2) always remain the same regardless of permutation orders.

For tokens in the text interleaved with tables, we maintain their

position indices consistent with the incremental position index

along the text sequence in all permutation orders. During the gen-

eration process, we also incrementally assign position indices to

generated tokens. Such design ensures that the attention mech-

anism between tokens within the text remains equivalent to the

standard 1D RoPE, maintaining consistency with mainstream LLMs.

Through this systematic exploration of permutation orders, we

aim to provide a principled framework for applying 2D-TPE to

various scenarios involving both text and tabular data.

5 Experiments

5.1 Experimental Setup

5.1.1 Evaluation Benchmarks. To rigorously evaluate the perfor-

mance of 2D-TPE, we conduct experiments on five diverse table un-

derstanding tasks, as summarized in Table 2. We curate all datasets

from TableInstruct [58] and maintain only those examples with

correct table structures and lengths not exceeding 4,096 tokens

counted using the MiniCPM tokenizer [23].

As for the evaluation metrics, we adopt the official evaluation

scripts for all datasets. Specifically, we use accuracy (ACC for short)

for evaluation on HiTab and the entity-linking subset in TURL; use

accuracy, recall [38], and Micro F1 for the relation extraction and

column type annotation subsets in TURL. For FeTaQA, which has

free-form answers, we use BLEU-4 [35] and ROUGE [28].

5.1.2 Baselines. We compare 2D-TPE against several aforemen-

tioned strong baselines using conventional 1D RoPE, including

Row-wise Traversal, Column-wise Traversal, and Constrained Atten-
tion. Additionally, we compare 2D-TPE with TABBIE [24], which

integrates row and column embeddings for enhanced table repre-

sentations, and Multimodal Rotary Position Embedding (M-RoPE),

originally used in Qwen2-VL [49] to jointly capture image and text

positional information. We adapt M-RoPE to tabular data by de-

composing the RoPE positional embeddings into three independent

components for row, column, and cell positions.

5.1.3 Implementation Details. We train TABBIE on each dataset

according to the settings described in [24] and implement 2D-TPE

and other baselines by fine-tuning MiniCPM-2B-SFT [23] on each

dataset, selected for its impressive performance [60] and ease of

industrial deployment. We set the hyper-parameter 𝜆 in Eq. 15 to

1, the batch size to 64, the learning rate to 2e-5, the length limits

to 4,096 and the warm-up steps to 3% of 2 epochs. Appendix B

further describes the influence of hyper-parameter settings in detail.

We employ DeepSpeed with ZeRO-2 [42] and Flash-attention-2

[11] for all methods, except Constrained Attention that modifies

the attention mask, and thus becomes incompatible with Flash-

Attention. We use greedy decoding for inference.

5.2 Results

As shown in Table 3, 2D-TPE is superior to baselines across five

datasets, particularly onHiTab, where tables are significantly

larger than others. The results reveal the importance of effectively

leveraging spatial information. Notably, different datasets may re-

quire information in distinct dimensions. For example, Row-wise
Traversal significantly outperforms other baselines on HiTab. Con-

versely, Column-wise Traversal excels in RelExtra. However, these

baselines are inherently limited by their 1D perception of the table.

Although M-RoPE achieved moderate performance on EntLink,

FeTaQA, and ColType, it exhibited the poorest results on the HiTab

dataset. This discrepancy may be because answers can solely be de-

rived from the corresponding tables on HiTab, unlike other datasets

that may rely on supplementary information from the questions.

Consequently, M-RoPE’s ability to comprehend table structures

based on questions may be limited. In contrast, 2D-TPE allows for

token-wise selection of the more valuable spatial dimension.

We notice that the superiority of 2D-TPE over baselines on RelEx-

tra is less pronounced than on other tasks. Manual inspection re-

veals that many questions for this task are sufficiently informative

to induce answers without extensive reasoning over the tables. On

the other hand, the performance gains observed on these bench-

marks are less substantial than those witnessed in our proposed
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Table 2: Statistics of evaluation benchmarks.

Task Dataset Training Validation Test Avg. # Row Avg. # Column Avg. Table Length Avg. Question Length

Hierarchical Table QA HiTab [9] 7K 0.5K 1K 21.9 8.5 1,294 23

Column Type Annotation

TURL [13]

20K 1K 2K 13.3 5.7 546 1,814

Relation Extraction 54K 1K 1K 19.3 5.5 829 2,307

Entity Linking 20K 1K 1K 21.0 4.9 803 996

Highlighted Cells QA FeTaQA [33] 7K 0.5K 2K 14.7 6.1 719 100

Table 3: Experiment results of different methods. ↑means the larger scores indicate a better performance. We highlight the

best result in bold and underline the second best. * indicates that 2D-TPE significantly outperforms the baseline (𝑝 < 0.05 with

Sign Test). “EntLink”, “RelExtra,” and “ColType” refer to the entity linking, relation extraction, and column type annotation

subsets in the TURL dataset, respectively.

Method

HiTab (%) ↑ EntLink (%) ↑ FeTaQA (%) ↑ RelExtra (%) ↑ ColType (%) ↑
ACC ACC BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L ACC Recall F1 ACC Recall F1

Row-wise Traversal 66.31* 82.58* 64.51 62.22 39.57 53.42 96.56 90.85 93.62 86.53* 82.48 84.46*

Column-wise Traversal 60.52* 82.91* 64.18 61.85* 38.74* 53.08* 96.67 91.28 93.90 87.65* 82.78 85.15

Constrained Attention 22.66* 82.22* 64.76* 62.34 39.41 53.46 84.53* 79.42* 81.90* 83.29* 81.14* 82.20*

TABBIE 62.21* 73.78* 63.17* 61.37* 38.50* 52.74* 95.15* 89.66* 92.32* 88.07* 80.24* 83.98*

M-RoPE 14.39* 83.33* 64.62 62.46 39.62 53.65 95.75* 90.09* 92.83* 88.83* 81.77* 85.16

2D-TPE 68.19 84.10 65.70 63.54 40.59 54.71 96.83 91.66 94.18 89.79 83.77 86.68

Table 4: Statistics and results for size scaling on HiTab, where

𝑛 + 𝑛 means inserting 𝑛 table(s) to the left and right of the

original one, respectively. Val is short for validation.

Setting 0+0 1+1 2+2

Data Statistics

# Train/Val/Test 3K/0.3K/0.6K 3K/0.3K/0.6K 3K/0.3K/0.6K

Avg. # Row 11.9 11.9 11.9

Avg. # Column 8.1 21.9 35.8

Avg. # Table Length 657 1,647 2,637

Avg. # Question Length 23 23 23

Accuracy (%)

Row-wise Traversal 57.65 34.40 27.52

Column-wise Traversal 30.12 25.38 24.46

Constrained Attention 11.01 7.95 6.73

2D-TPE 59.48 56.73 54.13

proxy tasks in §3.3. This discrepancy may be attributed to the dis-

tinctiveness of rows and columns in these benchmarks: individual

rows or columns possess unique identifiers or highly distinguish-

ing features (e.g., “Date” vs. “Name”). This inherent distinctiveness

facilitates easier cell location, potentially diminishing the advan-

tages gained from preserving spatial relationships. Despite these

considerations, the consistent improvement demonstrated by 2D-

TPE across various tasks underscores its effectiveness in enhancing

table structure perception.

5.3 Analysis

To gain deeper insights into the effectiveness and mechanics of

our proposed 2D-TPE method, we conduct a comprehensive anal-

ysis encompassing several key aspects: investigation of its scal-

ability regarding table sizes (§5.3.1), and the validation of its de-

sign choices (§5.3.2), its performance when based on larger mod-

els (§5.3.3), , and efficiency (§5.3.4).

5.3.1 Size Scaling. To assess the robustness and scalability of 2D-

TPE, we conducted size scaling experiments on HiTab. The goal

was to determine how well 2D-TPE and other approaches manage

tables of increasing complexity and size, crucial for real-world

applications with varying table dimensions.

Specifically, we systematically expanded each original table by

adding additional tables to both sides, considering three configu-

rations: the original “0+0”, one table on each side “1+1”, and two

tables on each side “2+2”, with unchanged questions and answers.

More details are in Appendix A. This method tracks performance

as table width grows. As Table 4 shows, average column numbers

increased from 8.1 to 21.9 and 35.8, and average table lengths (in

tokens) rose from 657 to 1,647 and 2,637, respectively.

Table 4 shows 2D-TPE’s superior performance and scala-

bility over baselines. While all baselines show a significant ac-

curacy drop with larger tables, 2D-TPE remains relatively stable.

In contrast, the row-wise traversal method, initially comparable to

2D-TPE, dropped dramatically from 57.65% to 27.52% in the “2+2”

setting. Similar trends are observed with other methods. 2D-TPE’s

consistent performance across various table sizes highlights its

versatility for diverse table understanding tasks.

Furthermore, Figure 3 illustrates the growing advantage of

2D-TPE over three representative baselines as the number of

rows or columns increases across three realistic datasets (see

Appendix A for full dataset and baseline results). For instance, on

FeTaQA, Row-wise Traversal exhibits a mere 0.15% decrease in BLEU-

4 score compared to 2D-TPE when the table comprises fewer than

4 columns. However, this gap amplifies to a substantial 2.40% as the

number of columns exceeds 8. Similarly, the M-RoPE baseline on

the ColType dataset initially lags behind 2D-TPE by 1.84% in the F1

score for tables with fewer than 15 rows, but this deficit exacerbates

to 3.13% for tables with more than 30 rows, emphasizing the efficacy

of 2D-TPE in dealing with larger tables.
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Figure 3: Performance advantages (Δ) of 2D-TPE over three representative baselines varying with the number of rows or

columns. The thresholds for stratifying tables are determined to ensure a balanced distribution of data volumes.

Table 5: Results (%) of the ablation study.

Method

HiTab EntLink FeTaQA RelExtra ColType

ACC ACC BLEU-4 F1 F1

2D-TPE 68.19 84.10 65.70 94.18 86.68

w/o Lent 66.78 83.96 65.53 94.15 84.41

w/o router 67.79 83.61 65.34 93.95 84.49

Table 6: Results (%) on Llama-3-8B-Instruct. The italic results
are directly taken from Zhang et al. [58].

Method

HiTab FeTaQA RelExtra

ACC BLEU-4 F1

Row-wise Traversal 70.75 66.83 93.25

Column-wise Traversal 62.52 66.98 93.44

Constrained Attention 16.86 66.17 91.79

TABBIE 62.21 63.17 92.32

M-RoPE 32.80 66.70 93.52

TableLlama 64.71 39.05 91.95
GPT-4 48.40 21.70 52.95

2D-TPE 71.39 67.31 93.81

5.3.2 Ablation Study. We verify the effectiveness of the router and

the auxiliary loss Lent by removing them from 2D-TPE, respec-

tively. When removing the router, we set 𝑟ℎ
𝑚,𝑗

to 1 in Eq. 7.

As observed in Table 5, removing the router leads to significant

performance degradation on all tasks, indicating that interference

between information from different orders hinders the model’s

ability to use spatial information effectively. Additionally, removing

Lent also leads to performance drops, particularly on HiTab and

ColType, indicating that the loss helps the model to distinguish

spatial information from different orders explicitly. These results

suggest that sharper order selections are needed to clarify the focus

of each token to accurately understand table structures.

5.3.3 Scaling to Larger Models. To more convincingly demonstrate

2D-TPE’s effectiveness, we replace the base model with Llama-3-8B-

Instruct [15], supporting up to 8,096 tokens, and maintain settings

from §5.1.3. Furthermore, we involve TableLlama (7B) [58] and

GPT-4 as additional baselines. Due to resource limitations, we do

not present the results for EntLink and ColType.

As shown in Table 6, our method still outperforms existing meth-

ods when built upon larger models, indicating the strong scalability

of 2D-TPE to integrate information from multiple dimensions for

perceiving and understanding table structures.

Table 7: Efficiency investigation of 2D-TPE compared with

the vanilla Transformer with Row-/Column-wise traversal.

The subscripts indicate the factor by which 2D-TPE is larger

than the vanilla Transformer.

Model Parameter TFLOPs Memory (GB) Time (Second)

Vanilla 2.7B 13.65 6.83 0.45

2D-TPE 2.7B+0.05% 13.89+1.7% 6.95+1.8% 0.51+13%

5.3.4 Efficiency. For efficiency evaluation, Table 7 reports the pa-

rameters, inference TFLOPs,memory usage, and average per-example

inference time of 2D-TPE and the vanilla Transformer. We calcu-

late TFLOPs using DeepSpeed FLOPs profiler [12], and memory

consumption using PyTorch toolkits [40].

The results demonstrate the comparable computational efficiency

of 2D-TPE with the vanilla Transformer, with almost the same num-

ber of parameters, only a negligible increase in inference TFLOPs

andmemory usage (⩽ 2% for both). Moreover, the average inference

time of 2D-TPE is only marginally higher (∼13%) than that of the

vanilla Transformer. These efficiencymetrics highlight the computa-

tional feasibility of incorporating 2D-TPE into existing Transformer-

based architectures, without incurring significant computational

overhead. Notably, the minimal additional computational cost of

2D-TPE is well justified by its substantial performance gains in

capturing table structures, as shown in our extensive experiments.

5.4 Case Study

Appendix C presents several illustrative cases for the proposed

proxy tasks and evaluation benchmarks, providing empirical in-

sights into the efficacy, principle, and advantages of 2D-TPE.

6 Conclusion

In this work, we introduced 2D-TPE, a novel two-dimensional po-

sitional encoding method designed to enhance LLMs’ ability to

reason over tabular data. By enabling the dynamic selection of

permutation orders for context perception, 2D-TPE effectively pre-

serves the spatial relationships within table structures, addressing

a critical limitation of conventional flattening approaches. Our

extensive experiments across various tabular tasks demonstrate

the superiority of 2D-TPE over strong baselines, underscoring the

importance of maintaining structural integrity in table representa-

tion. Future work may explore additional permutation orders and

extend the application of 2D-TPE to other structured data types,

further enhancing the capabilities of LLMs in processing complex,

multi-dimensional information.
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A Details for Size Scaling

To evaluate the robustness and scalability of the proposed 2D-TPE

method, we devised a systematic approach to generate increasingly

complex table structures by expanding the original tables. This

process, illustrated in Figure 4, involves concatenating additional

tables from other examples to the left and right sides of the original

table, effectively increasing its width.

We considered three settings: the original table (denoted as

“0+0”), inserting one table on each side (“1+1”), and inserting two

tables on each side (“2+2”). This expansion strategy allows us to

methodically increase the table dimensions while preserving the

original questions and answers, enabling a controlled analysis of

how different approaches handle tables of varying complexity.

Figure 4 elegantly depicts the construction process, with the

original table at the center and the concatenated tables represented

by different colors. The table set contains all tables from the HiTab

training set except the original table. The “Truncated”/“Repeated”

operation indicates truncating/repeating the table into the same

number of columns as the original table. This systematic approach

ensures a fair comparison across different table sizes, providing valu-

able insights into the scalability and adaptability of the proposed

method in handling real-world scenarios where table dimensions

can vary significantly.

It is noteworthy that the number of examples for training, valida-

tion, and testing in the size scaling experiments is less than that of

the original HiTab test set. This is because we only retained exam-

ples with a sequence length not exceeding 4,096 in the “2+2” setting,
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ensuring computational feasibility while preserving a diverse and

challenging evaluation set.

Moreover, Table 8 provides a detailed display of 2D-TPE outper-

forming the complete baselines across five datasets as the number

of rows or columns increases. Almost all baselines increasingly lag

behind 2D-TPE with the growth in rows or columns, demonstrating

the scalability and effectiveness of 2D-TPE, particularly in handling

larger datasets.

B Hyper-parameter Sensitivity

Figure 5 illustrates the influence of the hyper-parameter 𝜆 from

Eq. (15) on our method’s performance. Notably, as 𝜆 surpasses 1,

a significant performance decline is observed with increasing 𝜆,

suggesting that Lent should not excessively impact the model’s

standard training loss. Additionally, when Lent is too small, the

performance slightly lags compared to 𝜆 = 1, indicating that Lent

helps the model better differentiate information from two dimen-

sions to enhance understanding of table structures. For simplicity,

we fix 𝜆 to 1 in our experiments.

C Case Study

We present cases for several representative tasks to illustrate the

advantages of 2D-TPE in capturing tabular structures.

C.1 Counting-Stars

The task requires LLMs to identify all cells that contain a designated

star symbol within the same row or column as a specified reference

cell. Table 9 presents a specific case with a 20×20 table from the test

set. The question is, “What stars are in the same row and column as

the number 377?” The answers provided by different methods are:

• 2D-TPE: [3★, 4★, 2★, 9★], ✓
• Row-wise Traversal: [1★, 1★, 3★], ×
• Column-wise Traversal: [1★, 4★, 2★, 9★], ×
• Constrained Attention: [3★, 9★, 2], ×

This case study highlights the limitations of existing approaches.

The Row-wise Traversal and Column-wise Traversal methods can

only identify stars along their respective spatial dimensions, com-

pletely failing to capture information from the other dimension.

Furthermore, the Constrained Attention approach struggles due to

its attention pattern deviating significantly from the vanilla Trans-

former architecture. In contrast, our proposed 2D-TPE method

accurately identifies all star symbols in the same row and column

as the reference cell (377), demonstrating its robust reasoning ca-

pabilities and effective preservation of the two-dimensional table

structure.

C.2 Locating-Values

The Locating-Values task serves as a rigorous test for evaluating

the multi-hop reasoning capabilities of various methods. This task

requires locating the value of a cell that is a specified number

of rows and columns away from a given reference cell. Table 10

presents a compelling case from the test set for the Locating-Values

task. The given question is: “What is the value 3 columns to the

right of and 13 rows below ★?” This query demands precise spatial

reasoning and the ability to integrate information from both row

Medal Name Sport Date
Gold Tony Judo Sep 30

Table Set

0+0 (Original Table)

1+10+0

Unchanged

Truncated Truncated

Repeated

1+1

2+2

Figure 4: Table expansion for size scaling.
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Figure 5: Impact of the hyper-parameter 𝜆. Specifically, we

plot the change in ACC for datasets HiTab and EntLink,

BLEU-4 for FeTaQA, and F1 for RelExtra and ColType as

𝜆 varies.

and column dimensions accurately. Different methods produced

the following answers:

• 2D-TPE: 360, ✓, highlighted in yellow in Table 10

• Row-wise Traversal: 481, ×, highlighted in red

• Column-wise Traversal: 214, ×, highlighted in red

• Constrained Attention: 166, ×, highlighted in red

This case study illustrates the effectiveness of 2D-TPE in integrat-

ing information from both row and column dimensions, enabling

accurate value localization. In contrast, Row-wise Traversal and
Column-wise Traversal exhibit significant limitations in handling

such complex tasks due to their focus on a single dimension. Simi-

larly, Constrained Attention struggles to provide correct answers in

tasks requiring precise spatial reasoning.

C.3 Case Study on Evaluation Benchmarks

We use an example from the HiTab test set to illustrate a case study

on evaluation benchmarks. As shown in Table 11, HiTab is a hier-

archical table dataset where solving problems requires reasoning

11
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Table 8: Results of 2D-TPE surpassing baselines with increasing rows and columns across various datasets. RT represents

Row-wise Traversal, CT stands for Column-wise Traversal, and CA denotes Constrained Attention.

Method HiTab ACC (%) ↑ EntLink ACC (%) ↑ FeTaQA BLEU-4 (%) ↑ RelExtra F1 (%) ↑ ColType F1 (%) ↑
Row 0-15 15-30 >30 0-16 16-24 >24 0-15 15-30 >30 0-15 15-25 >25 0-15 15-30 >30

RT 0.28 2.10 5.39 0.48 0.40 3.05 1.48 0.83 0.02 0.64 0.13 0.93 2.61 1.24 0.96

CT 3.50 6.94 18.86 1.86 1.58 0.34 1.57 1.36 2.02 0.03 0.50 1.81 1.74 0.68 2.12

CA 45.10 44.12 48.82 2.54 4.74 0.00 0.97 0.67 2.56 11.78 12.05 16.98 4.79 3.30 4.84

TABBIE 4.48 4.63 11.78 5.75 8.30 15.76 2.72 2.06 3.56 1.86 1.26 3.27 3.15 1.12 2.88

M-RoPE 56.44 50.84 52.19 2.03 2.37 -1.19 1.55 0.33 0.50 1.66 0.20 1.49 1.84 0.05 3.13

Method HiTab ACC (%) ↑ EntLink ACC (%) ↑ FeTaQA BLEU-4 (%) ↑ RelExtra F1 (%) ↑ ColType F1 (%) ↑
Column 0-3 3-7 >7 0-4 4-7 >7 0-4 4-8 >8 0-4 4-7 >7 0-4 4-8 >8

RT 0.93 2.24 1.65 0.00 2.34 2.05 0.15 1.69 2.40 0.34 0.55 1.15 1.72 2.23 3.66

CT 1.87 7.70 8.56 0.42 0.79 4.62 0.78 1.90 2.31 0.17 0.37 0.20 2.41 1.01 1.69

CA 39.25 44.12 48.05 2.94 1.05 2.56 0.83 0.91 1.50 12.38 12.33 11.79 2.96 5.48 3.55

TABBIE 2.80 5.60 6.91 7.76 11.81 10.77 1.87 3.14 1.85 1.90 1.39 3.59 1.50 3.49 2.20

M-RoPE 52.34 50.42 57.66 1.47 0.39 0.51 0.75 1.26 1.34 0.98 1.39 2.11 1.85 1.55 0.43

Table 9: A case for Counting-Stars.

337 229 8★ 575 1 764 967 880 540 979 932 5★ 935 813 480 829 685 9★ 522 365

377 960 436 413 470 330 433 776 62 326 335 777 906 985 215 3★ 987 640 434 61

479 1★ 793 7★ 462 210 97 1★ 908 675 912 493 304 671 416 983 458 515 954 614

7 195 825 949 962 278 692 123 474 681 516 7★ 919 589 8★ 178 282 530 783 5★

411 893 1★ 41 2★ 531 6 770 769 157 743 174 707 701 403 191 276 443 1★ 316

796 127 901 865 528 974 502 313 518 71 565 684 486 34 752 400 803 4★ 444 253

24 401 538 773 922 924 968 972 7★ 2★ 978 420 448 471 35 861 896 3★ 379 652

150 38 843 527 818 50 226 963 943 676 6★ 789 152 428 1★ 79 617 265 175 249

4★ 388 981 69 546 33 814 132 660 476 315 693 231 654 243 452 677 146 5★ 148

2★ 1★ 17 520 993 135 236 172 699 7★ 720 618 610 72 947 384 217 627 651 39

581 874 22 862 496 887 914 232 832 672 756 378 30 8★ 254 582 8★ 872 6★ 32

9★ 563 495 457 111 6★ 8★ 584 980 237 392 439 524 995 110 288 161 583 824 807

994 368 722 406 988 5★ 279 534 257 833 702 782 989 831 8★ 899 2★ 511 203 328

103 742 842 630 8★ 349 7★ 781 812 792 119 285 556 2★ 289 658 567 381 442 166

482 594 601 398 628 7★ 826 736 656 372 1★ 679 598 158 881 3★ 645 29 117 418

353 408 2★ 332 964 469 704 268 3★ 312 389 688 4★ 871 44 306 139 192 606 317

258 751 678 566 6★ 984 228 625 248 6★ 591 255 5★ 245 118 491 114 551 877 855

206 790 194 5★ 143 631 510 996 149 561 405 219 290 147 274 4★ 5★ 66 758 370

920 760 160 2★ 532 759 5★ 6★ 354 63 725 52 931 969 23 16 196 42 422 915

281 473 181 76 905 991 956 965 6★ 595 700 3★ 990 4★ 870 202 51 834 999 464

Table 10: A case for Locating-Values.

135 493 589 262 865 329 121 250 925 478 474 55 345 503 298 765 727 294 687 414

919 786 514 549 784 290 463 88 370 445 871 838 491 95 314 609 716 946 240 344

886 600 22 688 432 825 909 288 763 124 902 690 58 339 922 430 821 680 647 372

878 834 879 726 458 683 313 448 483 550 497 74 282 229 14 116 807 617 852 485

993 13 776 962 173 223 166 189 711 513 677 401 571 440 415 419 976 38 125 826

507 947 955 927 184 753 47 559 452 330 132 762 204 593 130 183 529 268 662 707

725 263 969 644 920 83 234 438 980 65 692 369 5 757 159 766 ★ 54 348 918

70 123 625 498 97 340 957 556 645 32 819 951 718 209 253 201 710 813 720 939

145 817 629 963 862 568 869 239 895 199 940 850 661 526 913 742 621 412 274 811

469 932 310 560 639 473 306 733 416 767 541 266 238 73 626 908 722 901 193 752

891 646 252 270 495 364 208 163 244 839 24 462 101 565 235 34 540 164 4 297

924 673 616 570 110 281 476 814 979 930 393 734 952 90 881 772 567 18 272 992

92 696 751 35 758 760 543 428 883 701 349 133 890 859 309 273 592 806 931 354

332 109 328 590 233 8 136 533 800 875 861 226 16 311 451 49 36 187 611 634

283 122 907 975 603 105 185 259 597 477 104 146 308 770 615 591 731 780 873 632

320 538 387 594 160 695 276 561 470 446 845 321 480 601 870 388 376 394 433 465

247 377 312 759 554 241 39 755 608 443 291 479 652 596 40 152 983 117 481 214

427 675 944 425 557 386 897 997 409 144 967 794 522 219 889 773 141 853 28 888

395 186 6 779 519 112 508 866 749 546 490 833 456 950 176 670 472 3 30 76

974 358 798 383 679 764 799 659 453 846 502 966 985 181 517 216 374 248 72 360

based on both row and column headers, thus necessitating the in-

tegration of information from two dimensions. In this example,

2D-TPE accurately identifies the row header “15 to 24 years-not

a visible minority” and the column header “total-female,” thereby

correctly locating the target cell. The effectiveness of 2D-TPE can

be attributed to its dynamic routing mechanism, which enables

each attention head to adaptively select the most appropriate per-

mutation order for perceiving the context. This flexible routing

strategy allows the model to seamlessly integrate information from

both dimensions, facilitating accurate table comprehension.

In contrast, baselines that rely on fixed traversal orders, such as

Row-wise Traversal and Column-wise Traversal, suffer from localiza-

tion errors due to the loss of spatial information. These methods

fail to capture the hierarchical structure of the table, leading to

suboptimal performance. Furthermore, Constrained Attention strug-

gles because of the significant gap between the imposed attention

patterns and the model’s original attention mechanism, which can

hinder its ability to effectively reason over tabular data.

The superior performance of 2D-TPE indicates the importance

of preserving the table structure for accurate table comprehen-

sion. By dynamically routing information flow through adaptive

permutation orders, our method effectively mitigates the risk of

losing essential spatial information while preserving computational

efficiency, thus better preserving the table structure. This novel

approach represents a significant advancement in enabling large

language models to reason over tabular data, paving the way for

further developments in this actively explored direction.

C.4 Router Weights

To investigate how 2D-TPE utilizes the two permutation orders,

we fine-tuned MiniCPM-2B-SFT on 10,000 4×4 table data in the

Counting-Stars task and randomly selected a sample from 2,000 test

set entries. The visualization of the table and the question is shown

in Figure 6(a). For the 23rd head, at layer 2, “246” allocates a larger

proportion of router weights ( specifically 51.17%) to column-wise

traversal, focusing on column-level information, as illustrated in

the attention map shown in Figure 6(b). Here, “6” primarily attends

to “1★”, “9★”, and “4★”, the stars in the same column as “246”. By

layer 27, “246” shifts its focus to row-level information by allocating

52.34% of router weights to row-wise traversal. It distributes most

of its attention to “9★” and “1★” in the same row, as depicted in the

attention map of Figure 6(c).

This case indicates that 2D-TPE enables themodel to dynamically

adjust its focus between row-wise and column-wise information

12
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Table 11: A Case from the HiTab Test Set. The text between “[TLE]” and “TAB” is the caption for the table.

Table [TLE] The table caption is this table displays the results of prevalence of low income. the information is grouped

by low income (appearing as row headers), total, canadian-born, immigrant, female and male, calculated using

percentage units of measure (appearing as column headers). [TAB]

low income

total canadian-born immigrant

female male female male female male

percentage

total age groups

visible minority 21.9 21.1 19.3 18.5 22.0 21.0

not a visible minority 14.3 12.2 14.2 12.2 14.3 12.3

under 15 years

visible minority 25.4 25.2 22.3 21.8 34.3 36.2

not a visible minority 15.2 15.2 14.9 14.9 26.1 25.7

15 to 24 years

visible minority 26.3 26.2 18.6 17.9 29.2 28.6

not a visible minority 15.8 13.7 15.4 13.3 20.8 18.7

25 to 54 years

visible minority 20.7 19.3 12.6 11.1 21.3 19.8

not a visible minority 12.7 11.2 12.5 10.9 14.3 13.7

55 to 64 years

visible minority 17.1 16.8 17.3 16.9 17.0 16.7

not a visible minority 14.4 13.2 14.5 13.2 13.4 13.1

65 years and over

visible minority 17.3 14.3 15.1 9.8 17.4 14.4

not a visible minority 16.2 9.5 17.1 10.0 12.9 7.4

Question what was the prevalence of low income among not a visible minority women aged 15 to 24?

Answer 15.8

Answers provided by

different methods

2D-TPE: 15.8 ✓
Row-wise Traversal: 14.3 ×
Column-wise Traversal: 14.3 ×
Constrained Attention: 12.7 ×

Layer 27 Head 23Layer 2 Head 23

Column-wise (b) Row-wise (c)

Table

Question

What stars are in the 

same row and column 

as the number 246?

(a)

4
2

6
62 41 9 4

2

6
4

2 4 619

Figure 6: Analysis of spatial attention distribution in the fine-tuned model for the Counting-Stars task.

processing. This adaptive behavior suggests that the model learns

to leverage both dimensions of the table structure effectively, de-

pending on the specific requirements of each layer and the nature

of the task at hand. In conclusion, this analysis provides valuable

insights into how 2D-TPE facilitates a more comprehensive and

adaptable approach to table structure perception.
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