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Abstract

Branched organoids exhibit increasingly complex morphologies as they progress from simple
spheroid states to highly ramified structures, making topology-preserving segmentation
essential for quantitative biological analysis. Capturing thin protrusions and maintaining
branch continuity remains challenging for classical UNet-based architectures, particularly
in brightfield imaging where fine structures are easily blurred or disconnected.

In this work, we present a multi-scale Inception-UNet designed to capture the het-
erogeneous spatial scales of branched organoids through parallel convolutional paths with
complementary receptive fields. As a model system, we analyze brightfield pancreatic duc-
tal adenocarcinoma (PDAC) organoids, a system known for strong morphological hetero-
geneity and invasive branching behavior (Randriamanantsoa, 2022), cultured using high-
throughput Patternoid assays (Kurzbach, 2025) that enable standardized imaging and ro-
bust quantitative analysis.

To assess segmentation quality beyond region overlap, we combine Dice with a structure-
aware skeleton-based Dice score that directly probes branch integrity and topological conti-
nuity. Across deterministic seeds and strictly separated organoid positions, the Inception-
UNet achieves the highest region-based Dice (0.8035 + 0.0076) and skeleton-based Dice
(0.2513 + 0.0156), and most importantly, the strongest preservation of branch continuity
compared to UNet and UNet++. These improvements become increasingly pronounced
with growing morphological complexity.

Overall, our results demonstrate that multi-scale feature extraction combined with
topology-aware evaluation substantially improves segmentation of branched organoids and
provides a robust foundation for downstream morphological and invasion-related analyses.
Keywords: semantic segmentation, organoid imaging, PDAC, multi-scale architectures,
UNet, topology preservation, skeleton-aware loss, brightfield microscopy, multi-seed evalu-
ation, branch morphology

1. Introduction

Branched organoids have emerged as an important model system for studying epithelial mor-
phogenesis, invasion, and structural organization. As these systems transition from compact
spheroids into highly ramified architectures, branch integrity and topological structure be-
come central descriptors of their biological behavior (Clevers, 2016; Boj, 2015). Pancreatic
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ductal adenocarcinoma (PDAC) organoids in particular exhibit pronounced morphological
heterogeneity and complex, invasive branching dynamics (Randriamanantsoa, 2022), mak-
ing them a demanding but informative benchmark for topology-preserving segmentation.

In this work, we analyze PDAC organoids imaged using high-throughput Patternoid as-
says (Kurzbach, 2025), which provide standardized 3D culture conditions and longitudinal
brightfield acquisition across large organoid populations. The resulting morphologies con-
tain both thin protrusions and broader structural compartments, requiring segmentation
methods that can jointly capture fine-scale and coarse-scale features.

Classical UNet architectures (Ronneberger et al., 2015) remain the dominant approach
for biomedical image segmentation, yet their single-scale convolutional blocks often struggle
to preserve thin branches in brightfield organoids. UNet++ (Zhou et al., 2018) improves
feature propagation through nested skip connections, while Inception-style multi-scale rep-
resentations (Szegedy et al., 2015) and residual designs (He et al., 2016) have proven effec-
tive for capturing heterogeneous spatial patterns in natural images. However, these ideas
have not been systematically adapted to branched organoid morphologies, where preserving
topological continuity is essential for downstream quantitative analysis.

To address these limitations, we introduce a multi-scale Inception-UNet that integrates
parallel convolutional paths with complementary receptive fields within each encoder stage.
This design allows the network to model both thin, elongated branches and larger morpho-
logical compartments simultaneously. Because region-based Dice (Long et al., 2015) does
not fully reflect structural fidelity, we complement it with a skeleton-based Dice score that
directly probes centerline continuity and branch preservation. All models are trained within
a deterministic multi-seed PyTorch pipeline (Paszke et al., 2019) to ensure reproducibility.

Under identical training and evaluation settings with strictly separated organoid po-
sitions, the Inception-UNet achieves the highest Dice and skeleton-based Dice among all
compared architectures and shows the clearest improvements in branch continuity. These
results highlight the importance of multi-scale feature extraction and topology-aware eval-
uation for analyzing the complex morphologies of branched organoids.

Our contributions are threefold:

e We introduce a multi-scale Inception-UNet architecture tailored to the branched mor-
phology of PDAC organoids cultured in high-throughput Patternoid assays, and eval-
uate it within a deterministic multi-seed analysis pipeline with strictly separated
organoid positions.

e We establish a topology-aware evaluation protocol that combines region-based Dice
with a skeleton-based Dice metric to specifically probe branch continuity and struc-
tural integrity beyond conventional overlap measures.

e We provide an initial analysis of a skeleton-aware auxiliary loss that augments stan-
dard region-based supervision with topology-focused signals, illustrating how explicit
branch-aware objectives can further enhance structural fidelity.

1.1. Dataset

We analyze brightfield microscopy data of pancreatic ductal adenocarcinoma (PDAC) organoids,
a system known for strong morphological heterogeneity and invasive, branched growth
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patterns (Randriamanantsoa, 2022). The dataset is generated using the Patternoid high-
throughput culture and imaging platform (Kurzbach, 2025), which enables standardized
organoid formation, longitudinal acquisition, and consistent brightfield imaging across large
numbers of samples.

Each organoid is recorded as an hourly time-lapse sequence, with every time point
captured as a brightfield z-stack comprising approximately 100 slices to cover the full ax-
ial extent of the culture. For segmentation analysis, each stack is converted into a 2D
standard-deviation (STD) projection computed over the in-focus portion of the z-stack.
This projection enhances local intensity variations and improves the visibility of thin, elon-
gated branches that are often indistinct in raw brightfield slices.

The dataset includes organoids spanning three established PDAC morphological sub-
types (Boj, 2015; Clevers, 2016), ranging from compact cystic structures to highly branched
invasive phenotypes. Since our task is binary semantic segmentation (foreground vs. back-
ground), all subtypes are pooled to maximize morphological diversity and support general-
izable topology-aware learning. Representative examples are shown in Figure 1.

Figure 1: Representative standard-deviation (STD) projections of brightfield z-stacks of
PDAC organoids imaged in Patternoid assays. Top row: Example organoids at
four representative time windows (seeding, early phase around day 1, around
day 2, and late/endpoint phase), illustrating the progression from compact
spheroid-like structures to highly branched invasive morphologies. Bottom row:
Zoomed late-stage organoid shown as raw STD projection (left), corresponding
ground-truth mask (center), and overlay (right), with red arrows highlighting thin
branches and complex regions that are particularly challenging to segment. Scale
bar: 50 pm.

To avoid temporal and positional leakage, we enforce strict separation of organoid po-
sitions: all time points from a given organoid are assigned to exactly one of the training,
validation, or test sets. Evaluation is therefore performed on entirely unseen organoids
rather than additional time points of already observed ones.

Manual pixel-wise annotations were generated by trained experts on the projected im-
ages. The final dataset comprises distinct annotated training, validation, and test sets
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that jointly cover early, intermediate, and late stages of organoid development. The exact
number of images per split is reported in Section 2.

1.2. Preprocessing

Each brightfield z-stack is first rigidly registered to correct for sample drift and stage motion,
ensuring spatial alignment across slices. We then restrict the stack to in-focus slices with
sufficient structural contrast and compute a 2D standard-deviation (STD) projection per
time point. This enhances high-frequency intensity variations and makes thin, elongated
branches more visible than in raw slices or mean-intensity projections.

Projected frames are cropped to regions containing the organoid of interest, normalized,
converted to 8-bit grayscale, and resized or cropped to a fixed resolution of 128 x 128
pixels. Data augmentation consists of random flips, small rotations, and mild brightness or
contrast changes, restricted to transformations that preserve organoid topology. The same
preprocessing and augmentation pipeline is applied to all model architectures.

1.3. Inception-UNet Architecture

Our model builds on the classical UNet encoder—decoder topology with skip connections,
but replaces the standard encoder blocks with multi-scale Inception modules that capture
features at different spatial scales (Figure 2). The network follows a contracting path that
reduces spatial resolution while increasing feature dimensionality, and an expanding path
that progressively restores spatial detail.

Each Inception encoder block comprises four parallel branches:

1. a1 x 1 convolution for channel projection,
2. a standard 3 x 3 convolution (d = 1) for local context,

3. a dilated 3 x 3 convolution with depth-dependent dilation d € {2,4} for mid- and
long-range context,

4. an asymmetric 1 x 7 followed by 7 x 1 convolution to further expand the receptive
field at moderate parameter cost.

The branch outputs are concatenated and passed through a squeeze-and-excitation (SE)
block with global pooling and channel-wise gating, allowing the model to emphasize infor-
mative scales adaptively. A final 1 x 1 convolution fuses the reweighted features, which are
then forwarded to the next encoder stage and to the decoder via skip connections.

The decoder follows a standard UNet design with upsampling (transpose convolutions or
bilinear upsampling followed by a 3 x 3 convolution), concatenation with the corresponding
encoder features, and two 3 x 3 refinement convolutions with non-linear activations. All
convolutional layers are followed by batch normalization and a rectified linear unit (ReLU),
except for the final 1 x 1 layer that maps to a single-channel logits map; a pointwise sigmoid
is applied at inference to obtain foreground probabilities. Encoder—decoder depth and
base channel width are matched for UNet, UNet-++, and Inception-UNet to ensure a fair
architectural comparison.
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Figure 2: Overview of the proposed Inception-UNet. Each encoder stage uses a multi-
scale Inception block with four parallel branches (1x1, 3x3, dilated 3x3, and
asymmetric 1x7-7x1). Outputs are concatenated, reweighted by an SE block,
and fused with a 1x1 convolution. The decoder follows the standard UNet design
with upsampling, skip connections, and 3x3 refinement convolutions.

1.4. Structure-Aware Evaluation

Conventional region-based metrics such as Dice or Intersection-over-Union (IoU) primarily
quantify area overlap between prediction and ground truth. While widely used in biomedical
image segmentation, they are largely insensitive to topological errors and failures in thin
or elongated structures. For branched PDAC organoids, such errors can directly distort
downstream analyses of branch length, continuity, and growth trajectories.

To better capture structural fidelity, we complement region-based Dice with a skeleton-
based Dice score. This metric evaluates the agreement between centerline representations
of the predicted and ground-truth masks and thus focuses on the continuity of narrow
branches rather than on area overlap alone. Skeletons are computed by applying a mor-
phological thinning operation to the binary ground-truth and predicted masks (e.g. via
standard skeletonization algorithms).

Let Sgt and Spreqa denote the binary skeletons of the ground-truth and predicted seg-
mentations, respectively. The skeleton-based Dice score is defined as

Q‘Sgt ﬂSpred‘
|Set| + | Spred| + €

Dicegkel = (1)
where ¢ is a small constant to ensure numerical stability. This formulation penalizes breaks,
discontinuities, and missing branches, which have little effect on the standard Dice but are
critical for faithfully capturing organoid morphology.

In practice, skeleton-based Dice reveals structural differences between models that region
- based metrics may obscure, highlighting cases where segmentations have similar area
overlap but differ substantially in the connectivity of thin protrusions. All models in this
study are therefore assessed using both region-based Dice and skeleton-based Dice to provide
a more topology-aware view of segmentation performance.
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1.5. Exploratory Skeleton-Aware Loss

While our primary analysis relies on region-based Dice and skeleton-based Dice at evalua-
tion time, we also ask whether explicit structural supervision during training can further
improve branch continuity. To this end, we explore a lightweight skeleton-aware loss that
augments conventional region-based objectives with an auxiliary term computed on organoid
skeletons.

Let Mgy and Mp.eq denote the ground - truth and predicted masks, and let Sy =
Skel(Mgt) and Spreq = Skel(Mpreq) denote their corresponding skeletons obtained via mor-
phological thinning. The skeleton-aware term is defined as

Eskel = BCE (Spreda Sgt) ) (2)

where BCE denotes pixel-wise binary cross-entropy. This term penalizes discrepancies be-
tween predicted and reference centerlines and explicitly encourages continuity in thin or
elongated branches that may be underrepresented in purely region-based supervision.

The overall training loss is given by

L = o Lpice + B LBCE + ¥ Lskel, (3)

with weighting coefficients «, (3, and v chosen empirically. In this work, we treat this
formulation as an exploratory extension rather than a fully tuned objective: the goal is
to assess whether adding topology-focused supervision can provide measurable gains in
continuity-based metrics.

Initial results indicate that the skeleton-aware loss can yield consistent improvements
in skeleton-based Dice, with smaller or model-dependent effects on region-based Dice. A
more systematic study of topology-aware loss design and hyperparameter choices is left for
future work.

1.6. Training Procedure

All models are trained and evaluated under a multi-seed protocol using seeds {0, 1,2}.
For each seed, we initialize all relevant random number generators in Python, NumPy,
and PyTorch to control stochastic components such as weight initialization, data shuffling,
and augmentation. To keep training efficient on our hardware, we allow multi-threaded
backends and tune the number of CPU workers to saturate the available cores, which yields
numerically stable but not strictly bitwise-identical runs.

We use the Adam optimizer with an initial learning rate selected via hyperparameter
search. Hyperparameters are tuned using Optuna (Akiba et al., 2019) on a validation-based
objective, with UNet serving as the reference architecture. The search space includes the
initial learning rate, the batch size, and the base number of feature channels in the first
encoder layer. Each Optuna trial is trained with seeds {0, 1,2} for a reduced number of
epochs, and the mean validation Dice across these seeds is used as the trial score. The
best-performing configuration from this search—a small learning rate, a batch size of two,
and a base width of 64 channels—is then fixed and used for all subsequent experiments with
UNet, UNet++, and the proposed Inception-UNet to ensure a fair comparison.

Full training is performed for a fixed number of 75 epochs for each model and seed,
without early stopping. All models are trained with a composite loss consisting of Dice
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and binary cross-entropy (BCE); in the exploratory skeleton-aware setting, the skeleton-
based BCE term described in Section 1.5 is added with a small weight. Training and
validation splits are defined at the level of organoid positions to prevent temporal leakage.
After training, we select the checkpoint with the best validation Dice for each seed and
report mean and standard deviation over the three seeds on the held-out test set. Test-time
predictions are binarized using a fixed probability threshold of 0.5 for all models and seeds.

1.7. Baseline Models

We compare the proposed Inception-UNet against two widely used architectures for biomed-
ical image segmentation: the classical UNet and the nested UNet++. All baselines are
matched to the proposed model in depth, encoder—decoder layout, and channel width to
ensure that differences in performance primarily reflect architectural design rather than
model capacity or training hyperparameters.

UNet. The standard UNet follows a five-level encoder—decoder structure with symmetric
skip connections (Ronneberger et al., 2015). Each encoder stage applies two 3 x 3 convolu-
tions with ReLLU activations and 2 x 2 max-pooling for downsampling; the decoder mirrors
this using transposed convolutions for upsampling, followed by two 3 x 3 convolutions and a
final 1 x 1 layer to produce a single-channel logits map. Batch normalization is applied after
each convolution, and the base number of feature channels is chosen via the hyperparameter
search described in Section 1.6 and reused across all models.

UNet++. UNet++ extends UNet by introducing nested dense skip connections that
refine encoder features before fusion in the decoder (Zhou et al., 2018). This design aims to
reduce the semantic gap between encoder and decoder representations and to improve the
propagation of fine structural details. Apart from the modified skip topology, encoder and
decoder blocks are kept identical to those of the standard UNet to maintain architectural
comparability.

Training Conditions. UNet, UNet++, and Inception-UNet are all trained under identi-
cal conditions, including optimizer and learning-rate settings, batch size, data augmentation,
composite Dice+BCE loss (with optional skeleton-aware term), train/validation/test splits,
and the deterministic multi-seed protocol. This setup enables a fair comparison focused on
architectural effects.

2. Results

2.1. Quantitative Evaluation

We evaluate UNet, UNet++, and the proposed Inception-UNet on the held-out test set
using region-based Dice and the structure-aware skeleton-based Dice (Section 1.4). All
values are reported as mean + standard deviation across three deterministic seeds.

Table 77 summarizes the results. Across seeds, the Inception - UNet attains the highest
overall Dice, followed by UNet and UNet++. Absolute differences remain moderate but are
consistent, indicating that the multi-scale encoder yields more reliable overlap performance
across organoid morphologies.
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Figure 3: Qualitative comparison of segmentation performance. Top: Raw brightfield im-
age with the corresponding ground-truth mask overlaid. Bottom: Predicted
segmentation masks for the same sample generated by UNet (left), UNet-+-+
(center), and the proposed Inception-UNet (right). Compared to the baselines,
the Inception-UNet more faithfully preserves thin branches and overall topologi-
cal continuity. Scale bar: 50 pm.

Table 1: Region-based Dice across time windows (mean £ std over three deterministic

seeds).
Model 1-12h 24-30h 48-55h 60-70h
UNet 0.828 £ 0.014 0.779 £ 0.003 0.775 £ 0.004 0.760 £ 0.005
UNet++ 0.846 + 0.008 0.782 £ 0.000 0.717 £ 0.014 0.705 £ 0.008

Inception U-Net 0.817 £ 0.010 0.790 £ 0.005 0.814 + 0.004 0.777 £+ 0.009

Skeleton-based Dice reveals clearer separations between architectures. It penalizes dis-
continuities and missing branches that standard Dice largely overlooks, and consistently
ranks the Inception-UNet highest. This indicates that the proposed model not only improves
region overlap but also better preserves thin, elongated structures and branch continuity
compared to UNet and UNet++.

2.2. Analysis of Structural Fidelity

Standard Dice captures region overlap but overlooks topological defects such as broken or
discontinuous branches. As illustrated in Figure 77, UNet and UNet++ frequently exhibit
small gaps in thin protrusions, whereas the Inception-UNet produces skeletons that follow
ground - truth centerlines more closely and maintain branch connectivity more reliably.
Skeleton-based Dice quantifies these differences and reveals structural discrepancies that
are largely invisible to region-based metrics.
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Table 2: Skeleton-based Dice across time windows (mean + std over three deterministic

seeds).
Model 1-12h 24-30h 48-55h 60-70h
UNet 0.184 £ 0.022 0.247 & 0.003 0.270 £ 0.011 0.245 £+ 0.011
UNet++ 0.220 £ 0.012 0.255 £ 0.004 0.251 £ 0.011 0.240 £ 0.001

Inception U-Net 0.185 &£ 0.008 0.263 £ 0.013 0.303 £ 0.032 0.280 £ 0.009

2.3. Stability Across Seeds

All models show low seed-to-seed variation (< 1% Dice and similarly small for Skeleton-
Dice), indicating numerically stable training. The performance ranking remains consistent
across seeds, with Inception-UNet leading both Dice and Skeleton-Dice and UNet++ show-
ing slightly higher variability in highly branched morphologies.

2.4. Ablation: Architecture vs. Structure-Aware Metrics

Region-based Dice yields small differences between architectures, reflecting its sensitivity to
thick organoid regions. Skeleton-based Dice, in contrast, amplifies architectural distinctions
and consistently favors the Inception-UNet, demonstrating that its multi-scale encoder more
effectively preserves thin branches and topological continuity.

2.5. Exploratory Skeleton-Aware Loss

We also tested an auxiliary skeleton-aware loss that adds BCE supervision on centerlines.
Preliminary results indicate modest improvements in Skeleton-Dice, particularly in thin
branches, while region-based Dice remains unchanged. Although exploratory, these findings
highlight the potential of topology-focused objectives for future segmentation pipelines.

3. Discussion

The results of this study demonstrate that accurate and topology-preserving segmentation
of highly branched PDAC organoids from brightfield microscopy is feasible, despite low
contrast and limited annotated data. While region-based Dice remains the standard metric
in biomedical image segmentation, our structure-aware evaluation clearly shows that models
with similar Dice scores can differ substantially in their ability to preserve thin branches,
maintain connectivity, and reconstruct the underlying topology.

Within this setting, the proposed Inception-UNet achieves the highest overall region-
based Dice and skeleton-based Dice across deterministic seeds, and shows the strongest
gains in later, highly branched stages. This indicates that the multi-scale encoder with
parallel receptive fields is well suited to the heterogeneous spatial scales present in organoid
morphologies. In contrast, UNet++ does not offer clear advantages under the constraints of
this dataset, suggesting that nested skip refinements are less effective when fine structural
cues are weak or scarce in brightfield projections.
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An important outcome of this work is the combination of a deterministic multi-seed
training protocol with topology-aware evaluation. The low variance across seeds confirms
that the pipeline is numerically stable and that observed differences between architectures
are robust rather than driven by stochastic effects. At the same time, skeleton-based Dice
exposes structural discrepancies that are largely invisible to area-based overlap metrics,
highlighting the need for topology-aware assessment in applications where branch integrity
is critical.

Overall, this study establishes a reproducible, topology-aware benchmark for bright-
field PDAC organoid segmentation and presents a multi-scale Inception-UNet that learns
to segment complex branching morphologies while better preserving topological structure.
As future work explores richer topology-preserving objectives and additional datasets, we
expect such architectures and evaluation protocols to become a foundation for downstream
analyses of organoid growth, invasion, and morphodynamic behavior.

4. Outlook

Future work will focus on developing topology-preserving evaluation measures beyond Dice
and Skeleton-Dice to more precisely quantify branch integrity and subtle structural defects
in complex organoid morphologies.

10
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Figure 4: Boxplot comparison of region-based Dice (left) and skeleton-based Dice (right)

for UNet, UNet++, and Inception-UNet across four time windows (1-12h, 24—
30h, 48-55h, 60-70h). Each box summarizes per-sample test performance over
three deterministic seeds. Skeletonfg)ased Dice reveals clearer differences between
models, with Inception-UNet showing the strongest branch preservation in the
later windows.
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