
FedEL: Federated Elastic Learning for Heterogeneous
Devices

Letian Zhang
Middle Tennessee State University

Murfreesboro, TN 37132
letian.zhang@mtsu.edu

Bo Chen
Middle Tennessee State University

Murfreesboro, TN 37132
bc7b@mtmail.mtsu.edu

Jieming Bian
University of Florida

Gainesville, FL 32611
jieming.bian@ufl.edu

Lei Wang
University of Florida

Gainesville, FL 32611
leiwang1@ufl.edu

Jie Xu
University of Florida

Gainesville, FL 32611
jie.xu@ufl.edu

Abstract

Federated learning (FL) enables distributed devices to collaboratively train machine
learning models while maintaining data privacy. However, the heterogeneous hard-
ware capabilities of devices often result in significant training delays, as straggler
clients with limited resources prolong the aggregation process. Existing solutions
such as client selection, asynchronous FL, and partial training partially address
these challenges but encounter issues such as reduced accuracy, stale updates, and
compromised model performance due to inconsistent training contributions. To
overcome these limitations, we propose FedEL, a federated elastic learning frame-
work that enhances training efficiency while maintaining model accuracy. FedEL
introduces a novel window-based training process, sliding the window to locate
the training part of the model and dynamically selecting important tensors for
training within a coordinated runtime budget. This approach ensures progressive
and balanced training across all clients, including stragglers. Additionally, FedEL
employs a tensor importance adjustment module, harmonizing local and global
tensor importance to mitigate biases caused by data heterogeneity. The experiment
results show that FedEL achieves up to 3.87× improvement in time-to-accuracy
compared to baselines while maintaining or exceeding final test accuracy.

1 Introduction

Federated learning (FL) is a privacy-preserving machine learning paradigm where distributed clients,
such as mobile devices and IoT systems, collaboratively train a global model while keeping their data
local. Typically, FL involves devices performing local model training and sharing parameters with a
central server for global model updates. However, heterogeneous hardware capabilities among devices
lead to “straggler”, or slower clients, causing significant training delays as the server must wait for
their updates. This challenge hinders the scalability of FL, particularly in large-scale cross-device
scenarios.

Status Quo and Their Limitations. To address computational constraints, existing solutions fall into
three main categories: client selection, asynchronous FL, and partial training. Client Selection (Figure
1, top-left). Selecting a subset of devices for training based on specific criteria can mitigate delays.
However, significant differences in clients’ data distributions often leave stragglers underrepresented,
reducing the global model’s accuracy. Asynchronous FL (Figure 1, top-right). This approach decou-
ples local training from global aggregation, allowing stragglers to train independently. While this

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

reduces delays, the global model often relies on faster clients, leaving stragglers’ contributions infre-
quent and potentially outdated, which may harm convergence [44]. Partial Training (Figure 1 bottom
left). Techniques like width and depth scaling adjust the model architecture to accommodate varying
resources. Width scaling resizes convolutional layers, risking channel mismatches during aggregation
[18], while depth scaling limits training to early layers, leading to suboptimal task-specific features
and reduced performance [42]. These limitations highlight the need for a novel training paradigm
to overcome resource heterogeneity and enable high-performance FL in real-world deployments.

Round 1 Round 2

Round 2Round 1

Training Time

Small DNN Small DNN

Fa
st

Sl
ow

Training Time

Fa
st

Sl
ow

Fast Client
Slow Client

Round 1 Round 2

Training Time
Fast Client
Slow Client

Fa
st

Sl

ow

Neural Network Untrainable Trainable

Fa
st

Round 1 Round 2

Training Time

Slow Client
Fast Client

Sl
ow

Slow Client
Fast Client

Figure 1: Existing works vs. FedEL.

ElasticTrainer [14] introduces a method for
selecting important deep neural network
(DNN) tensors to meet runtime training re-
quirements on a single device. By focusing
on these key tensors, ElasticTrainer acceler-
ates training. When applied to FL, it offers
a potential solution for addressing strag-
glers by allowing each client to select im-
portant tensors based on its hardware capa-
bilities under a unified runtime constraint.
This ensures that all clients complete lo-
cal training within a similar timeframe, en-
abling synchronized global model aggrega-
tion. However, directly deploying Elastic-
Trainer in FL scenarios has two limitations:
Limitation#1 Limited Training Scope on
Slower Clients: Due to the chained rule
of DNN backward propagation, unselected
tensors still compute gradients to propa-
gate updates to the selected tensors. This
constrains the selected tensors on slower
devices to the back-end of the DNN, reduc-
ing training on the front-end feature extraction layers and degrading FL accuracy, especially with
heterogeneous data distributions. Limitation#2 Exacerbated Local Model Drift: Variations in data
distribution cause significant differences in tensor importance across clients. Training only the
important tensors amplifies local model drift, where client models diverge from the global model,
further reducing accuracy.

Overview of the Proposed Approach. Motivated by the above limitations, we propose
FedEL, a federated elastic learning framework that enhances federated training efficiency.
To address the first limitation, we propose a window-based training approach that divides the DNN
model into multiple blocks, ensuring that each part of the model is trained during FL rounds. Before
training, we use a tensor timing profiler to measure the training time for each tensor, which is then
aggregated into block-level training times. In each FL round, the window slides to include a set of
blocks based on the runtime budget and current training status. The sliding window process involves
moving the front edge to include deeper blocks and shrinking the end edge to exclude blocks that no
longer require training. ElasticTrainer is then modified to select important training tensors within
the selected window, allowing straggler clients to progressively train the crucial tensors of the entire
DNN model. To address the second limitation, we design a tensor importance adjustment module.
At the start of each FL round, the client estimates the global model’s tensor importance using the
global models from the current and previous rounds, along with the learning rate. This global tensor
importance is used to adjust the local tensor importance computed by ElasticTrainer, ensuring tensor
selection considers both local and global data distributions.

Evaluation. We implement FedEL on both a hardware testbed and software simulations. The
hardware testbed consists of ten NVIDIA Jetson devices connected wirelessly to a server. To simulate
large-scale scenarios, we extend the setup with a diverse client simulation. We evaluate FedEL using
various DNN models and four real-world FL datasets across three key tasks: image classification,
voice command recognition, and next-word prediction. Our results show that: (1) FedEL outperforms
baselines on the time-to-accuracy. Specifically, FedEL outperforms FedAvg by 3.87× in time-to-
accuracy while final test accuracy is on par with or even higher than FedAvg. (2) FedEL reduces
memory overhead and energy consumption during training compared to existing methods. (3)
Ablation studies confirm the necessity and importance of each key component in FedEL’s design.

2

2 Related Work

On-single-device training. Leveraging mobile and embedded computing for DNN model training has
gained attention [53]. Some studies reduce computation by quantizing or pruning gradient propagation
for certain neurons [4, 10, 36, 16]. Others use a two-stage paradigm, where the system prepares the
computing graph and generates a training plan before model training [33, 45, 39, 29, 9, 14]. Our work
builds on ElasticTrainer [14], which dynamically selects important tensors during training. However,
applying single-device methods directly to FL scenarios can be challenging due to heterogeneous
systems and data.
Heterogeneous federated learning. To address the challenges posed by low-end devices in FL,
three main training methodologies have been proposed: (1) client selection, (2) asynchronous FL,
and (3) partial training. Client selection methods [21, 25, 6, 42] evaluate the utility of each client
and select a subset to participate in FL rounds. For example, PyramidFL [25] ranks clients based on
utility. However, when slower clients have unique data, they may be infrequently selected, leading to
accuracy loss [26]. Asynchronous FL methods [50, 52, 30, 28] allow the global model to be updated
as soon as local models are received, bypassing slower clients. TimelyFL [50] adjusts workloads
based on client resources, increasing participation. However, this may lead to slower convergence and
accuracy issues, as model updates may arrive at different times, causing inconsistencies, particularly
with heterogeneous devices and data [44]. Partial training involves training part of the model by
scaling its width or depth [7, 5, 12, 3, 18, 34, 41]. HeteroFL [7] scales convolutional layers to match
devices’ available training time. Similar methods include Federated Dropout [5] and FjORD [12],
but these can disrupt model architecture and degrade performance. DepthFL [18] customizes models
based on client resource constraints, but the global model size is limited by the device with the largest
memory. Unlike existing methods, FedEL ensures all clients participate in FL rounds, allowing
clients with varying speeds to complete training of the full DNN model by sliding their windows.

3 Background and Motivation

To help better understand our design of FedEL, we first introduce how the ElasticTrainer can speed
up on-device DNN training with a small accuracy loss. Afterwards, we show the issues of using
ElasticTrainer directly in the heterogeneous federated learning framework, hence motivating our
federated elastic selection of the trainable DNN portion at runtime.

ElasticTrainer. The tensor selection problem in ElasticTrainer [14] is formulated as a constrained
optimization problem:

max
A

A · I, s.t. Tfw + Tbw(A) ≤ Tth. (1)

Here, A is a binary mask representing the selected tensors. I is the importance of tensors. Tfw is the
fixed forward propagation time, independent of tensor selection. Tbw(A) represents the backward
propagation time, which depends on the selected tensors involved in gradient computation. The
sum Tfw + Tbw(A) is the estimated training time constrained to a user-defined runtime threshold
Tth, aimed at accelerating training. For example, setting Tth to 50% of the full model training time
implies reducing the training time to half that of full model training. ElasticTrainer consists of two
modules: the tensor timing profiler and the tensor importance evaluator. The tensor timing profiler
creates an offline tensor-level backward computation time graph, preserving the execution order of
all tensors during backward propagation, from the output to the input layer. In the online training
phase, at the start of each fixed interval, the tensor importance evaluator evaluates the importance of
all tensors I . ElasticTrainer then uses dynamic programming to solve the optimization problem (1),
freezes unselected tensors, and trains only the selected tensors during each interval.

Federated Learning with ElasticTrainer. In FL, diverse hardware capabilities lead to significant
variations in local training times across clients. By employing ElasticTrainer with a uniform runtime
threshold Tth across all clients, it becomes theoretically feasible for all clients to participate in each
FL round, ensuring consistent training times regardless of hardware differences. Consider an FL
setup with N clients, starting from the same initial model. In each FL round r, the central server
distributes its current model to all clients. Each client n trains the model on its local data using
ElasticTrainer with the uniform Tth, then sends its model update wn,r to the server. The server
aggregates the updates as wr+1 =

∑N
n=1 cn(t) ⊙wn,r, yielding the global model for next round

r + 1, where (cn(t))k = (An(t))k∑
n∈N (An(t))k

denotes the k-th tensor selection of mask An(t) at training

3

round r. The updated global model wr+1 is broadcast to all clients for the next round. This process
iterates until a predefined maximum number of training rounds is reached.

Xavier Orin

Device

0

20

40

60

80

W
a
ll-

C
lo

c
k
 T

im
e
 (

m
in

) Full Model Training

ElasticTrainer

(a) Training time

0 50 100

Wall-clock time (hour)

20%

30%

40%

50%

60%

A
c
c
u
ra

c
y

Full Model Training

ElasticTrainer

(b) Accuracy

Figure 2: Average training time per FL round and
training accuracy evolution of FedAvg with full
model training and FedAvg with ElasticTrainer.

To validate this approach, we design the follow-
ing experiment. System Platform. We design a
FL system with 10 client devices, consisting of
5 NVIDIA Jetson Xavier NX kits (Xavier) [2]
and 5 NVIDIA Jetson Orin kits (Orin) [1]. All
devices connect to a PC via WiFi, with Orin of-
fering superior computational performance com-
pared to Xavier. Dataset and Model. We fo-
cus on an image classification task using the
CIFAR10 dataset [19] on VGG16 model [35],
implemented within the FedAvg framework [31].
ElasticTrainer [14] is used for local training, and
the dataset is partitioned non-iid using a Dirich-
let distribution (α = 0.1) [46]. Training Setup.
The runtime threshold Tth is set based on the full model training time of the faster Orin devices,
ensuring all clients complete local training within a similar timeframe.

Input Pred.

Label

Loss
1 2 3 4 5

𝑡𝑡𝑤𝑤1 𝑡𝑡𝑤𝑤2 𝑡𝑡𝑤𝑤3 𝑡𝑡𝑤𝑤4 𝑡𝑡𝑤𝑤5

𝑡𝑡𝑔𝑔5𝑡𝑡𝑔𝑔4𝑡𝑡𝑔𝑔3𝑡𝑡𝑔𝑔2

Forward pass Backward pass tensor
𝑡𝑡𝑤𝑤: Time of computing gradientTime of weight update 𝑡𝑡𝑔𝑔:

Latency when only training layer 2 and 4

Figure 3: Tensor selection in ElasticTrainer.

Limitations of FL with ElasticTrainer Figure 2a
illustrates the average training time per FL round
on Xavier and Orin using FedAvg with full model
training and FedAvg with ElasticTrainer. Due to
the disparity in computational performance between
Xavier and Orin, Xavier’s training time per round is
nearly twice as long as Orin’s when using FedAvg
with full model training. Consequently, Orin clients
must wait for Xavier clients to complete their training
before responding to the central server, leading to
longer idle times for the faster Orin clients. Figure 2a
also demonstrates that FedAvg with ElasticTrainer reduces this imbalance, enabling both Xavier and
Orin to complete each round of training in roughly the same time. However, as shown in Figure 2b,
the accuracy of FedAvg with ElasticTrainer is 40.03% lower compared to FL with full model training.
In the following sections, we explore in more detail how the direct deployment of ElasticTrainer in
FL underutilizes data and training efficiency. These insights are foundational to the design of FedEL.

0 5 10 15 20 25
Tensor

Xavier_1
Xavier_2
Xavier_3
Xavier_4
Xavier_5

Orin_1
Orin_2
Orin_3
Orin_4
Orin_5

Figure 4: Tensor selec-
tion in Xavier’s model
and Orin’s model.

0 5 10 15 20 25
Tensor

Xavier_1
Xavier_2
Xavier_3
Xavier_4
Xavier_5

Orin_1
Orin_2
Orin_3
Orin_4
Orin_5
Central 0.6

0.7

0.8

0.9

1.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Tensor impor-
tance of ten-device FL
and central training.

Limitation#1: Limited Training Scope on
Slower Clients. ElasticTrainer identifies the
most important tensors under a specified train-
ing time threshold Tth. However, the tensor
selection process is not straightforward due to
the dependencies inherent in backward propa-
gation. Even if a tensor is not selected, it must
compute and pass gradients to previous tensors,
contributing to the total training time. For ex-
ample, as illustrated in Figure 3, the backward
propagation time comprises two components:
(1) Gradient Computation Time tg: Time spent calculating the gradient of the current tensor to pass
to the previous tensor. (2) Weight Update Time tw: Time spent updating the tensor’s weights using
gradients from the subsequent tensor. If tensors 2 and 4 are selected, the total training time includes
both selected and unselected tensors, calculated as t5g + t4w + t4g + t3g + t2w. ElasticTrainer employs
a dynamic programming approach, starting from the last tensor and selecting important tensors in
reverse order until the accumulated weight update and gradient computation time reaches Tth.

Figure 4 demonstrates tensor selection across Xavier and Orin clients during one FL round. While
Orin clients (faster devices) can train nearly all tensors1, Xavier clients (slower devices) tend to focus
training on the back part of the DNN model. This leaves the front feature extractor layers largely
untrained due to the same Tth being applied across all devices. In FL settings with non-iid data, this

1Unselected tensors on Orin clients result from ElasticTrainer’s computational cost optimization process.

4

imbalance becomes critical. Xavier clients’ untrained feature extractor layers fail to adequately learn
essential features, weakening the global model’s ability to extract meaningful features. Consequently,
the overall accuracy of the FL system degrades.

Limitation#2: Exacerbated Local Model Drift. ElasticTrainer is optimized for centralized training,
where all data resides on a single device. However, FL involves distributed training, and recent studies
[37, 48, 49] have highlighted the local model drift challenge arising from non-iid data distribution
among clients. Non-iid data can bias tensor importance evaluation, as local models trained on
heterogeneous client datasets reflect varying data distributions. Figure 5 compares tensor importance
across ten FL clients and centralized training. In FL, tensor importance differs significantly between
clients and also the centralized training due to non-iid data. ElasticTrainer’s selective training
exacerbates this bias by freezing unselected tensors, intensifying local model drift. As a result, when
the central server aggregates these biased local models, the global model accuracy suffers compared
to full model training in FL.

4 FedEL Design

4.1 Sliding Window Training

To address Limitation#1, we propose dividing the DNN into multiple blocks and utilizing a window-
based scheme that ensures every part of the DNN model has the opportunity to be trained during
the FL local training rounds. Specifically, the DNN model is partitioned into B blocks, denoted as
[θ1, θ2, . . . , θB], based on its original architecture. Each block may consist of one or more layers,
preserving the inherent structural integrity of the model. For instance, in VGG16, which follows a
chain-like architecture, each layer can be treated as a separate block. In contrast, ResNet50 contains
residual structures, so each residual structure can be considered a block, while other layers outside
these structures can also be treated as individual blocks.

Offline Tensor Time Profiling. Before initiating the online training process, each client uses the
tensor timing profiler in ElasticTrainer to measure the training time for each tensor. This offline
tensor-level timing data is then aggregated into block-wise training times by summing the training
times of all tensors within each block. Assume block b contains a set Kb of tensors. The training
time T b of block b is computed as: T b =

∑
k∈Kb(tkg + tkw), where tkg is the time of computing the

gradient, and tkw is the time of updating weights for each tensor k ∈ Kb.

Input

Loss
Training round r: train window 1, freeze other blocks

Window 2

Input

Freezed tensorSelected tensor Forward pass Backward pass

Training round r + 1: train window 2, freeze other blocks

𝑏𝑏_1 𝑏𝑏_2 𝑏𝑏_3 𝑏𝑏_4 𝑏𝑏_5 𝑏𝑏_6 𝑏𝑏_7 𝑏𝑏_8 𝑏𝑏_9

Loss

𝑏𝑏_1 𝑏𝑏_2 𝑏𝑏_3 𝑏𝑏_4 𝑏𝑏_5 𝑏𝑏_6 𝑏𝑏_7 𝑏𝑏_8 𝑏𝑏_9

Window 1

Figure 6: Overview of window-based training
in FedEL.

Online Window-Based Training Using the block-
wise training time file, we first initialize the start-
ing window. The initial window begins with the
first block, θ1, and progressively includes subse-
quent blocks until the cumulative training time just
exceeds the user-specified runtime threshold Tth.
Specifically, the initial window consists of Θ0 =
{θ1, . . . , θm}, where

∑
b∈{1,...,m−1} T

b < Tth and∑
b∈{1,...,m} T

b ≥ Tth. At each FL round, the win-
dow slides, and ElasticTrainer is applied to train the
corresponding portion of the DNN model. Over time,
this approach ensures that the entire model is trained,
enabling complete feature extraction from the data.
However, as highlighted in Limitation #1, the blocks
outside the current window still require time to com-
pute gradients and pass them to the blocks within the
window. This dependency means the original output layer cannot serve as the final output for each
window. To address this, a lightweight output layer is attached to the last layer of the window, acting
as an early exit. This ensures independent training for each window and facilitates the completion
of the window-based training process. Example. Figure 6 illustrates the window-based training
process with early exits in FL. In round r, Window 1, comprising blocks 1, 2, and 3, is selected for
training, while the remaining blocks are frozen. The early exit of Window 1 serves as the output layer.
Inputs are forwarded through Window 1 to generate predictions, which are used to compute the loss
gradient. Backward propagation updates only the weights in Window 1, with other blocks entirely

5

excluded from forward and backward propagation. This approach applies ElasticTrainer to Window
1, significantly reducing training time. After round r, only Window 1’s updated weights are sent to
the global server for aggregation, and the updated global model is broadcast to all clients for the next
round. In round r + 1, Window 1 shifts to Window 2, now consisting of blocks 3, 4, and 5. These
blocks are trained while others remain frozen. The early exit of Window 2 acts as the output layer.
Inputs are forwarded through blocks 1–5 to produce predictions, but only the weights in blocks 3, 4,
and 5 are updated during backward propagation. Blocks after block 5 remain frozen, while blocks 1
and 2 participate in forward propagation to pass intermediate results to Window 2. ElasticTrainer
continues to optimize training within Window 2.

This iterative and cyclical training process ensures consistent training time across all clients while
allowing all parts of the DNN model to be trained, preserving model accuracy.

4.1.1 Sliding Window

We assume that the window has two boundaries: the Front Edge and the End Edge. All blocks
between these edges form the current training window. At the beginning of each FL round, clients
slide the window to determine the portion of the DNN model to train based on their training progress.

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round r

Front edge at r+1End edge at r+1

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round rWindow at round r+1

𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡
𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Window at round r + 1

1 2 3 4 5 7 8 96

Front edge

Window at round r

End edge

Gradient sum ≤ 𝐺𝐺𝑡𝑡𝑡

Window at round r + 1

1 2 3 4 5 7 8 96

𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡
𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Initial window

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round r

𝑇𝑇5 + 𝑇𝑇6 + 𝑇𝑇7 + 𝑇𝑇8 ≥ 𝑇𝑇𝑡𝑡𝑡

𝑇𝑇5 + 𝑇𝑇6 + 𝑇𝑇7 < 𝑇𝑇𝑡𝑡𝑡

Front edge at r+1

Window at round r+1
Front edgeEnd edge

Window at round r

1 2 3 4 5 7 8 96
𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡

𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Initial window

Window at round r+1

1 2 3 4 5 7 8 96

Front edgeEnd edge
Window at round r

End edge at r+1

(a) Front edge movement will con-
tain blocks that have accumulated
training time just above Tth.

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round r

Front edge at r+1End edge at r+1

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round rWindow at round r+1

𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡
𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Window at round r + 1

1 2 3 4 5 7 8 96

Front edge

Window at round r

End edge

Gradient sum ≤ 𝐺𝐺𝑡𝑡𝑡

Window at round r + 1

1 2 3 4 5 7 8 96

𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡
𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Initial window

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round r

𝑇𝑇5 + 𝑇𝑇6 + 𝑇𝑇7 + 𝑇𝑇8 ≥ 𝑇𝑇𝑡𝑡𝑡

𝑇𝑇5 + 𝑇𝑇6 + 𝑇𝑇7 < 𝑇𝑇𝑡𝑡𝑡

Front edge at r+1

Window at round r+1
Front edgeEnd edge

Window at round r

1 2 3 4 5 7 8 96
𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡

𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Initial window

Window at round r+1

1 2 3 4 5 7 8 96

Front edgeEnd edge
Window at round r

End edge at r+1

(b) Front edge movement will re-
vert to the initial window when it
touches the end of DNN model.

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round r

Front edge at r+1End edge at r+1

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round rWindow at round r+1

𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡
𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Window at round r + 1

1 2 3 4 5 7 8 96

Front edge

Window at round r

End edge

Gradient sum ≤ 𝐺𝐺𝑡𝑡𝑡

Window at round r + 1

1 2 3 4 5 7 8 96

𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡
𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Initial window

1 2 3 4 5 7 8 96

Front edgeEnd edge

Window at round r

𝑇𝑇5 + 𝑇𝑇6 + 𝑇𝑇7 + 𝑇𝑇8 ≥ 𝑇𝑇𝑡𝑡𝑡

𝑇𝑇5 + 𝑇𝑇6 + 𝑇𝑇7 < 𝑇𝑇𝑡𝑡𝑡

Front edge at r+1

Window at round r+1
Front edgeEnd edge

Window at round r

1 2 3 4 5 7 8 96
𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 ≥ 𝑇𝑇𝑡𝑡𝑡

𝑇𝑇1 + 𝑇𝑇2 < 𝑇𝑇𝑡𝑡𝑡

Initial window

Window at round r+1

1 2 3 4 5 7 8 96

Front edgeEnd edge
Window at round r

End edge at r+1

(c) End edge movement will cull
out blocks once there are no impor-
tant tensors selected from them.

Figure 7: Front edge movement and end edge movement in window sliding.

Front Edge Movement. As illustrated in Figure 7a, the front edge moves forward to include deeper
blocks of the DNN model. Each movement adds blocks whose cumulative training time slightly
exceeds the user-defined runtime threshold Tth. For instance, in Figure 7a, when training round
r begins, the front edge (orange line) shifts to a deeper position (orange dashed line). Here, the
cumulative training time of blocks 5, 6, 7, and 8 meets or exceeds Tth, while the cumulative time
for blocks 5, 6, and 7 is below Tth. If the front edge reaches the end of the DNN model and the
cumulative training time of newly added blocks is still below Tth, this is also considered a front edge
movement. Once the front edge reaches the model’s end, as shown in Figure 7b, but FL training is
not yet complete, the window resets to the initial window for the next round.
End Edge Movement. The end edge moves to shrink the training window and freeze blocks that
no longer require training. This movement depends on the current training status. If blocks at the
window’s end are not selected in the previous FL round, the end edge excludes them from the window.
This adjustment occurs for two reasons: either the window is too large, preventing ElasticTrainer
from selecting important tensors within the threshold Tth, or ElasticTrainer determines no important
tensors exist in those blocks. For example, as shown in Figure 7c, if blocks 2 and 3 contain no
important tensors during training round r, the end edge will shift to block 4 in the next round.

4.1.2 Insert ElasticTrainer into Windows

To integrate ElasticTrainer into windows, we adapt its tensor selection module. In its original form, the
module uses dynamic programming to identify the optimal set of important tensors for local training,
starting from the last tensor and proceeding until the accumulated training delay, including weight
update time and gradient computation time, reaches the runtime threshold Tth. Our modification
adjusts the starting point of dynamic programming to begin at the tensor corresponding to the last
layer within the current window. Additionally, we introduce a new base case: if a tensor lies outside
the window’s range, the dynamic programming process halts and returns the selected important
tensors. This adjustment allows ElasticTrainer to be seamlessly applied to window-based training,
ensuring efficient and targeted training within each window.

6

4.2 Tensor Importance Adjustment

In Limitation #2, the tensor importance estimated by ElasticTrainer is biased due to the heterogeneous
data distribution across clients. To address this bias, we propose a strategy that leverages the global
model after aggregation to compute tensor importance. This global tensor importance is then used
in the subsequent local training round to adjust the tensor importance at the client side, thereby
improving training efficiency. After collecting the locally trained models from all connected clients,
the server aggregates these models to next round global model wr+1. The aggregated global model
is then broadcast back to the clients for the next round of training. ElasticTrainer calculates tensor
importance as ∂L

∂w∆w, where the loss gradient is multiplied by the tensor update. Upon receiving the
updated global model, clients compute the tensor importance of the global model using the formula:
Ig = wr+1−wr

ηn
· (wr+1 − wr) =

(wr+1−wr)
2

ηn
. Here, ηn is the learning rate for client n, wr+1−wr

ηn

estimates the global model’s loss gradient, and wr+1−wr represents the tensor updates in the global
model. The global tensor importance Ig is then used to adjust the local tensor importance for each
client as follows: In,r+1 = β · In,r+1 + (1− β) · Ig , where β ∈ [0, 1] is a balancing parameter that
determines the weighting between local and global importance. This adjustment ensures that local
tensor importance aligns better with global priorities, thus improving the overall training accuracy of
the model.

Due to page limitations, the complete algorithm and the theoretical convergence analysis of the
proposed method are provided in Appendices A and E.

5 Evaluation

5.1 Experiment Setup

Datasets, Models, and Tasks. To demonstrate FedEL’s effectiveness across tasks, datasets, and
models, we evaluate FedEL on four real-world datasets designed for FL applications at different
scales. Image Classification. VGG16 [35] model on CIFAR10 dataset [19] and Tiny ImageNet
dataset [23]. Speech Recognition. ResNet50 [11] model on Google command speech dataset [40].
Natural Language Processing. Lightweight Albert [22] model on Reddit dataset [32]. To follow the
realistic non-iid data in FL scenarios, we partition the datasets into different clusters using a Dirichlet
distribution with α equals 0.1. The Reddit datasets inherently exhibits non-iid characteristics.

Baselines. The following baselines are adopted for evaluation purposes: (1) FedAvg [31]. (2)
ElasticTrainer [14]. (3) HeteroFL [7]. (4) DepthFL [18]. (5) PyramidFL [25]. (6) TimelyFL [50]. (7)
FIARSE [41]. Detailed descriptions of these baseline methods are provided in the Appendix.

FL Setup. To evaluate FedEL’s effectiveness, we conduct experiments in two scenarios: a small-scale
practical edge device setup and a large-scale simulation. Small-scale Practical Edge Device Scenario:
FedEL is deployed on ten heterogeneous edge devices, comprising five NVIDIA Jetson Xavier NX
kits (Xavier) [2] and five NVIDIA Jetson Orin kits (Orin) [1], connected via WiFi to a central PC.
Due to the limited number of devices, we evaluate performance using only the CIFAR10 dataset.
Large-scale Simulation Scenario: To simulate a larger environment, we use tensor timing profiles
generated by ElasticTrainer’s offline tensor profiler on Orin as a baseline. From this profiling data,
we simulate four types of heterogeneous devices with scaled tensor training times, including devices
matching the baseline profiling time, devices with 1/2 of the profiling time, devices with 1/3 of the
profiling time, devices with 1/4 of the profiling time. A total of 100 clients are simulated, with each
randomly assigned a device type and corresponding processing time. This simulation is conducted
on a PC equipped with an NVIDIA 3090 GPU. For fair comparisons with baseline methods, unless
stated otherwise, the runtime threshold Tth is set to the full model training time of the fastest device,
and the balance parameter β is fixed at 0.6.

5.2 End-to-End Performance

FedEL accelerates training while maintaining high accuracy. Table 1 summarizes the final
accuracy and wall-clock training time of FedEL and its baselines. FedEL consistently outperforms
baselines under the same training rounds. Below is a detailed analysis of the results: FedAvg: FedEL
achieves comparable accuracy to FedAvg, which trains the full model, but reduces wall-clock training
time by 1.87×−3.87×. This efficiency arises because FedAvg waits for slower clients to complete

7

Table 1: Comparison of FedEL with baselines on time-to-accuracy.

Method
Image Classif. Speech Recog. NLP

10 Devices 100 Devices 100 Devices 100 Devices
Acc. ↑ Time Speedup Acc. ↑ Time Speedup Acc. ↑ Time Speedup Perp. ↓ Time Speedup

FedAvg [31] 56.13% 119.8h N/A 33.76% 563.1h N/A 58.04% 709.8h N/A 77.48 546.4h N/A
ElasticTrainer [14] 40.03% 64.8h 1.84× 27.65% 158.6h 3.55× 47.96% 184.3h 3.84× 81.02 176.2h 3.10×
HeteroFL [7] 53.44% 80.1h 1.49× 30.56% 248.2h 2.26× 51.47% 265.9h 2.66× 80.11 206.1 2.65×
DepthFL [18] 54.89% 77.3h 1.54× 34.14% 198.3h 2.83× 54.23% 207.4h 3.42× 78.08 212.4h 2.57×
PyramidFL [25] 56.24% 115.7h 1.03× 34.70% 497.4h 1.13× 58.12% 587.4h 1.21× 77.68 418.2h 1.31×
TimelyFL [50] 53.74% 66.3h 1.81× 33.53% 198.1h 2.84× 56.49% 193.2h 3.67× 80.91 177.6h 3.07×
FIARSE [41] 56.48% 71.9h 1.66× 33.98% 191.5h 2.94× 58.13% 198.2h 3.58× 77.31 191.0h 2.86×
FedEL 56.51% 63.8h 1.87× 34.96% 156.8h 3.59× 58.26% 183.3h 3.87× 77.23 174.5h 3.13×

training, whereas FedEL dynamically selects portions of the DNN for slower clients, enabling all
clients to complete local training in roughly the same time. ElasticTrainer: While ElasticTrainer
speeds up training by up to 3.84× compared to FedAvg, it sacrifices over 28.6% accuracy across
four datasets. As noted in Section 3, ElasticTrainer’s focus on selecting important tensors only from
the back of the DNN on slower clients limits global model feature extraction. FedEL addresses this
limitation, achieving 1%− 2% faster training time than ElasticTrainer by leveraging window sliding
to reduce tensor selection overhead, while maintaining high accuracy. HeteroFL: FedEL improves
accuracy by 5.7%-14.4% compared to HeteroFL. The uneven scaling of convolutional layers in
HeteroFL compromises parameter training and degrades the model’s architecture [18]. Furthermore,
HeteroFL requires complex global aggregation for mismatched parameters, increasing training time.
DepthFL: DepthFL partitions models into sub-models for slower clients and uses self-distillation for
knowledge transfer. However, its slower training and reliance on training only the front layers of the
DNN for slower clients weaken the global model’s ability to learn from their data. FedEL outperforms
DepthFL with up to 7.1% higher accuracy. PyramaidFL: PyramaidFL synchronizes fast and slow
clients by allowing fast clients to train for more epochs, accelerating convergence but not reducing
total training time. FedEL achieves 1%-2% higher accuracy than PyramaidFL by ensuring balanced
participation of slower clients. TimelyFL: FedEL achieves up to 5% higher accuracy compared
to TimelyFL. The heterogeneity-aware asynchronous approach in TimelyFL reduces participation
rates for slower clients, leading to accuracy loss in heterogeneous data environments. FedEL, by
contrast, ensures balanced participation across clients, preserving accuracy. FIARSE: FIARSE does
not account for the dependency of backward gradient propagation. Specifically, its output layer is
fixed as the last layer of the network structure. This results in the unselected tensors in FIARSE need
to compute and propagate gradients to previously selected tensors.

FedAVG

Elastic
Trainer

HeteroFL

DepthFL

Tim
ely

Pyramid

FIARSE
FedEL

0

2

4

6

8

M
e

m
e

ry
 (

G
B

)

Figure 8: Memory over-
head.

FedAVG

Elastic
Trainer

HeteroFL

DepthFL

Tim
ely

Pyramid

FIARSE
FedEL

0

2

4

6

P
o

w
e

r
(W

)

0

0.5

1

1.5

2

2.5

E
n

e
rg

y
 (

M
J
)

Figure 9: Power/energy
consumption.

FedEL reduces the memory and energy
consumption. Figures 8 and 9 compare
FedEL with baselines in terms of mem-
ory usage, power consumption, and energy
consumption, as measured using the Jetson
Power GUI on Xavier and Orin devices.
Since the differences in measurements be-
tween the two devices are negligible, we
present the averaged results to save space.
As shown in Figure 8, FedEL reduces mem-
ory usage by up to 32.7% compared to Fe-
dAvg. This improvement stems from train-
ing only a portion of the DNN model while freezing unselected layers and tensors, which minimizes
memory allocation required for gradient backpropagation. In Figure 9, we observe little variation in
power consumption across methods, as both Orin and Xavier operate at full power when their GPUs
are active. However, for the same set of computational tasks, FedEL significantly reduces energy
consumption. FedEL achieves an average reduction of 49.59% in total energy usage compared to
FedAvg, primarily because it completes training in nearly half the time required by FedAvg.

FedEL can adaptively select important tensors. FedEL’s performance is driven by its dynamic
sliding-window mechanism and elastic tensor selection at runtime. We analyze these adaptive
behaviors using a large-scale 100-device scenario with the Tiny ImageNet dataset. Figure 10
showcases representative devices from each of the four device types. As observed, the number of
windows required to train the full model varies across devices due to their differing computational
capabilities. Within each window, tensor selection is dynamically adjusted based on importance. For
instance, if a tensor at the front is critical for model performance, FedEL can adaptively skip updating

8

0 5 10 15 20 25
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(a) Orin

0 5 10 15 20 25
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(b) 1/2 Orin

0 5 10 15 20 25
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(c) 1/3 Orin

0 5 10 15 20 25
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(d) 1/4 Orin

Figure 10: Tensor selections during different FL rounds

a few less important tensors (with higher indices) to maintain the desired training speedup while
preserving model effectiveness.

5.3 Ablation

We analyze how parameter settings influence FedEL using the small-scale practical 10-device scenario
with the CIFAR10 dataset for image classification. Additional results can be found in the Appendix.

Impact of balancing parameter β. The balancing parameter β in FedEL determines the weighting
between local and global tensor importance during adjustment. Figure 11 shows how varying β affects
time-to-accuracy performance. A larger β overemphasizes local tensor importance, reducing the
influence of global model variations, while a smaller β focuses solely on global variations, neglecting
local data heterogeneity. As shown in Figure 11, when β = 1 (fully local focus) or β = 0 (fully
global focus), FedEL’s accuracy falls below that of FedAvg. In contrast, moderate values of β (e.g.,
β = 0.6 or β = 0.4) outperform FedAvg by balancing local data heterogeneity with global model
variations. This balance allows FedEL to effectively capture both local and global tensor importance,
enhancing accuracy.

0 50 100

Wall-clock time (hour)

20%

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

Figure 11: Impact of β.

0 50 100

Wall-clock time (hour)

20%

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

T
th

 = 0.5T
Orin

T
th

 = 0.7T
Orin

T
th

 = T
Orin

Figure 12: Impact of
Tth.

Impact of runtime threshold Tth. To en-
sure a fair comparison with other baselines,
we set the training time threshold Tth equal
to the full model training time of the Orin
(i.e., TOrin). We vary Tth to examine its
impact on FedEL’s performance, with the
experiment stopping once the training time
reaches the predefined value. As shown
in Figure 12, a smaller Tth slows down
convergence. This is because slow clients
must train the entire model, leading to more
sliding-window movements, while fast clients also perform additional window sliding, increasing the
overall training time and reducing efficiency.

0 50 100

Wall-clock time (hour)

30%

40%

50%

60%

A
c
c
u
ra

c
y

FedAvg

FedEL-C

FedEL

Figure 13: Time-to-
accuracy of FedAvg,
FedEL-C and FedEL.

0 5 10 15 20 25
Tensor

FedEL-C

FedEL

Figure 14: Tensor
selection illustration in
FedEL-C and FedEL.

Sliding Window. The sliding window con-
sists of two processes: the front edge move-
ment and the end edge movement, which
define the window size and the range of se-
lected important tensors. In each FL round,
the front edge includes blocks with accu-
mulated training time just above the run-
time threshold Tth. As shown in Figure 12,
reducing Tth slows convergence, as more
rounds are required to train the full model.
The end edge movement reduces the win-
dow size by excluding unselected blocks.
To assess its effectiveness, we compare it with a scenario where the end edge is directly moved to the
current front edge (FedEL-C). As shown in Figure 13, FedEL-C results in lower accuracy than FedEL.
The tensor selection examples in Figure 14 explain this: FedEL-C treats each window independently
and does not adjust training tensors between consecutive windows, leading to accuracy degradation.

9

6 Conclusion

We introduced FedEL, a progressive training approach to address client heterogeneity in FL. To
overcome the limitations of directly selecting important tensors, we propose two innovations: sliding-
window training and local tensor importance adjustment. Sliding-window training enables FedEL
to train the full DNN model by adjusting the front and end edges of the training window. Local
tensor importance adjustment selects important tensors based on both local client data and global data
importance. The results show that FedEL reduces wall clock training time (speeding up by 1.87× to
3.87×) while achieving comparable or better accuracy and perplexity across various FL applications
and DNN models.

7 Acknowledgments

The work of Letian Zhang and Bo Chen is partially supported by NSF under grant 2348279 and also
supported by MTSU Stark Land project. The work of Jieming Bian, Lei Wang and Jie Xu is partially
supported by NSF under grants 2433886, 2505381 and 2515982.

References
[1] Nvidia jetson orin. https://developer.nvidia.com/embedded/learn/

get-started-jetson-orin-nano-devkit

[2] Nvidia jetson xavier nx. https://developer.nvidia.com/embedded/learn/
get-started-jetson-xavier-nx-devkit

[3] Alam, S., Liu, L., Yan, M., Zhang, M.: Fedrolex: Model-heterogeneous federated learning
with rolling sub-model extraction. Advances in neural information processing systems 35,
29677–29690 (2022)

[4] Alistarh, D., Grubic, D., Li, J., Tomioka, R., Vojnovic, M.: Qsgd: Communication-efficient sgd
via gradient quantization and encoding. Advances in neural information processing systems 30
(2017)

[5] Caldas, S., Konečny, J., McMahan, H.B., Talwalkar, A.: Expanding the reach of federated
learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210 (2018)

[6] Cho, Y.J., Wang, J., Joshi, G.: Towards understanding biased client selection in federated
learning. In: International Conference on Artificial Intelligence and Statistics. pp. 10351–10375.
PMLR (2022)

[7] Diao, E., Ding, J., Tarokh, V.: Heterofl: Computation and communication efficient federated
learning for heterogeneous clients. arXiv preprint arXiv:2010.01264 (2020)

[8] Fang, Y., Loparo, K.A., Feng, X.: Inequalities for the trace of matrix product. IEEE Transactions
on Automatic Control 39(12), 2489–2490 (1994)

[9] Gim, I., Ko, J.: Memory-efficient dnn training on mobile devices. In: Proceedings of the 20th
Annual International Conference on Mobile Systems, Applications and Services. pp. 464–476
(2022)

[10] Goli, N., Aamodt, T.M.: Resprop: Reuse sparsified backpropagation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1548–1558 (2020)

[11] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
(2016)

[12] Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I., Venieris, S., Lane, N.: Fjord: Fair and
accurate federated learning under heterogeneous targets with ordered dropout. Advances in
Neural Information Processing Systems 34, 12876–12889 (2021)

10

https://developer.nvidia.com/embedded/learn/get-started-jetson-orin-nano-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-orin-nano-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-xavier-nx-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-xavier-nx-devkit

[13] Hu, X., Chen, Z., Feng, C., Min, G., Quek, T.Q., Yang, H.H.: Sparsified random partial model
update for personalized federated learning. IEEE Transactions on Mobile Computing (2024)

[14] Huang, K., Yang, B., Gao, W.: Elastictrainer: Speeding up on-device training with runtime
elastic tensor selection. In: Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services. pp. 56–69 (2023)

[15] Ilhan, F., Su, G., Liu, L.: Scalefl: Resource-adaptive federated learning with heterogeneous
clients. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 24532–24541 (2023)

[16] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D.:
Quantization and training of neural networks for efficient integer-arithmetic-only inference. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2704–2713
(2018)

[17] Jiang, Y., Wang, S., Valls, V., Ko, B.J., Lee, W.H., Leung, K.K., Tassiulas, L.: Model pruning
enables efficient federated learning on edge devices. IEEE Transactions on Neural Networks
and Learning Systems 34(12), 10374–10386 (2022)

[18] Kim, M., Yu, S., Kim, S., Moon, S.M.: Depthfl: Depthwise federated learning for heterogeneous
clients. In: The Eleventh International Conference on Learning Representations (2023)

[19] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

[20] Lai, F., Dai, Y., Singapuram, S., Liu, J., Zhu, X., Madhyastha, H., Chowdhury, M.: Fedscale:
Benchmarking model and system performance of federated learning at scale. In: International
conference on machine learning. pp. 11814–11827. PMLR (2022)

[21] Lai, F., Zhu, X., Madhyastha, H.V., Chowdhury, M.: Oort: Efficient federated learning via
guided participant selection. In: 15th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 21). pp. 19–35 (2021)

[22] Lan, Z.: Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942 (2019)

[23] Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)

[24] Lee, R., Fernandez-Marques, J., Hu, S.X., Li, D., Laskaridis, S., Hospedales, T., HuszĂˇr, F.,
Lane, N.D., et al.: Recurrent early exits for federated learning with heterogeneous clients. arXiv
preprint arXiv:2405.14791 (2024)

[25] Li, C., Zeng, X., Zhang, M., Cao, Z.: Pyramidfl: A fine-grained client selection framework for
efficient federated learning. In: Proceedings of the 28th Annual International Conference on
Mobile Computing And Networking. pp. 158–171 (2022)

[26] Li, J., Chen, T., Teng, S.: A comprehensive survey on client selection strategies in federated
learning. Computer Networks p. 110663 (2024)

[27] Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in
heterogeneous networks. Proceedings of Machine learning and systems 2, 429–450 (2020)

[28] Liao, Y., Xu, Y., Xu, H., Chen, M., Wang, L., Qiao, C.: Asynchronous decentralized federated
learning for heterogeneous devices. IEEE/ACM Transactions on Networking (2024)

[29] Lin, J., Zhu, L., Chen, W.M., Wang, W.C., Gan, C., Han, S.: On-device training under 256kb
memory. Advances in Neural Information Processing Systems 35, 22941–22954 (2022)

[30] Liu, J., Che, T., Zhou, Y., Jin, R., Dai, H., Dou, D., Valduriez, P.: Aedfl: efficient asynchronous
decentralized federated learning with heterogeneous devices. In: Proceedings of the 2024 SIAM
International Conference on Data Mining (SDM). pp. 833–841. SIAM (2024)

[31] McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics. pp.
1273–1282. PMLR (2017)

11

[32] Okon, E., Rachakonda, V., Hong, H.J., Callison-Burch, C., Lipoff, J.B.: Natural language
processing of reddit data to evaluate dermatology patient experiences and therapeutics. Journal
of the American Academy of Dermatology 83(3), 803–808 (2020)

[33] Patil, S.G., Jain, P., Dutta, P., Stoica, I., Gonzalez, J.: Poet: Training neural networks on tiny
devices with integrated rematerialization and paging. In: International Conference on Machine
Learning. pp. 17573–17583. PMLR (2022)

[34] Setayesh, M., Li, X., Wong, V.W.: Perfedmask: Personalized federated learning with optimized
masking vectors. In: The Eleventh International Conference on Learning Representations (2023)

[35] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556 (2014)

[36] Sun, X., Ren, X., Ma, S., Wang, H.: meprop: Sparsified back propagation for accelerated
deep learning with reduced overfitting. In: International Conference on Machine Learning. pp.
3299–3308. PMLR (2017)

[37] Tan, Y., Long, G., Liu, L., Zhou, T., Lu, Q., Jiang, J., Zhang, C.: Fedproto: Federated prototype
learning across heterogeneous clients. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 36, pp. 8432–8440 (2022)

[38] Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem
in heterogeneous federated optimization. Advances in neural information processing systems
33, 7611–7623 (2020)

[39] Wang, Q., Xu, M., Jin, C., Dong, X., Yuan, J., Jin, X., Huang, G., Liu, Y., Liu, X.: Melon:
Breaking the memory wall for resource-efficient on-device machine learning. In: Proceedings
of the 20th Annual International Conference on Mobile Systems, Applications and Services. pp.
450–463 (2022)

[40] Warden, P.: Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209 (2018)

[41] Wu, F., Wang, X., Wang, Y., Liu, T., Su, L., Gao, J.: Fiarse: Model-heterogeneous federated
learning via importance-aware submodel extraction. arXiv preprint arXiv:2407.19389 (2024)

[42] Wu, Y., Li, L., Tian, C., Chang, T., Lin, C., Wang, C., Xu, C.Z.: Heterogeneity-aware memory ef-
ficient federated learning via progressive layer freezing. In: 2024 IEEE/ACM 32nd International
Symposium on Quality of Service (IWQoS). pp. 1–10. IEEE (2024)

[43] Xie, K., Lu, S., Wang, M., Wang, Z.: Elbert: Fast albert with confidence-window based early
exit. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). pp. 7713–7717. IEEE (2021)

[44] Xu, C., Qu, Y., Xiang, Y., Gao, L.: Asynchronous federated learning on heterogeneous devices:
A survey. Computer Science Review 50, 100595 (2023)

[45] Xu, D., Xu, M., Wang, Q., Wang, S., Ma, Y., Huang, K., Huang, G., Jin, X., Liu, X.: Mandheling:
Mixed-precision on-device dnn training with dsp offloading. In: Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking. pp. 214–227 (2022)

[46] Xu, J., Chen, Z., Quek, T.Q., Chong, K.F.E.: Fedcorr: Multi-stage federated learning for label
noise correction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 10184–10193 (2022)

[47] Xu, Z., Yu, F., Xiong, J., Chen, X.: Helios: Heterogeneity-aware federated learning with
dynamically balanced collaboration. In: 2021 58th ACM/IEEE Design Automation Conference
(DAC). pp. 997–1002. IEEE (2021)

[48] Ye, R., Ni, Z., Xu, C., Wang, J., Chen, S., Eldar, Y.C.: Fedfm: Anchor-based feature matching
for data heterogeneity in federated learning. IEEE Transactions on Signal Processing (2023)

12

[49] Ye, R., Xu, M., Wang, J., Xu, C., Chen, S., Wang, Y.: Feddisco: Federated learning with
discrepancy-aware collaboration. In: International Conference on Machine Learning. pp. 39879–
39902. PMLR (2023)

[50] Zhang, T., Gao, L., Lee, S., Zhang, M., Avestimehr, S.: Timelyfl: Heterogeneity-aware
asynchronous federated learning with adaptive partial training. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5064–5073 (2023)

[51] Zhou, H., Lan, T., Venkataramani, G.P., Ding, W.: Every parameter matters: Ensuring the
convergence of federated learning with dynamic heterogeneous models reduction. Advances in
Neural Information Processing Systems 36, 25991–26002 (2023)

[52] Zhou, Y., Pang, X., Wang, Z., Hu, J., Sun, P., Ren, K.: Towards efficient asynchronous federated
learning in heterogeneous edge environments. In: IEEE INFOCOM 2024-IEEE Conference on
Computer Communications. pp. 2448–2457. IEEE (2024)

[53] Zhu, S., Voigt, T., Rahimian, F., Ko, J.: On-device training: A first overview on existing systems.
ACM Transactions on Sensor Networks 20(6), 1–39 (2024)

13

A The Algorithm of FedEL

In this paper, we introduce the sliding window training to address the first limitation and tensor
importance adjustment to overcome the second limitation. We present a comprehensive window-based
important tensor selection scheme implemented by FedEL, as outlined in Algorithm 1. Specifically,
prior to the FL process, each client performs offline tensor time profiling for the DNN model (Lines
3-5), which is done only once. In each online FL round, once the client receives the broadcasted
global model, it evaluates the tensor importance for the current global model (Line 8), calculates the
global tensor importance (Line 9), and adjusts the local tensor importance accordingly (Line 10).
Based on the previous round’s training status, FedEL then slides or resets the window to ensure the
entire DNN model is trained (Line 11). Once the window is fixed, ElasticTrainer is applied within
the window to select important tensors, freeze unselected ones, and train only the selected tensors
(Lines 12-13). Finally, the server aggregates the models from all clients and broadcasts the updated
global model for the next FL round.

Algorithm 1 FedEL

1: Input: Client set N , training time threshold Tth, balance parameter β, DNN model w.
2: Output: Trained model.

▷ Offline and only once
3: for Each client n: do
4: TensorTimeProfiling(w).
5: end for

▷ Online
6: for Each FL round r: do
7: for Each client n: do
8: In,r = TensorImportanceEvaluation(wr)

▷ Tensor Importance adjustment
9: Ig = GetGlobalTensorImportance(wr,wr−1, ηn)

10: In,r = AdjustLocalTensorImportance(In,r, β, I
g)

▷ Window Sliding
11: Θn,r = SlideWindow(wr, Tth,Θn,r−1)

▷ Elastic Training
12: An,r = SelectImportantTensor(Θn,r, Tth, In,r)
13: wn,r = TrainImportantTensor(An,r,wr)
14: end for
15: wr+1 = Aggregate(wn,r) ▷ Server side
16: end for

B Detailed Datasets and Baselines

Baselines. The following baselines are adopted for evaluation purposes:

(1) FedAvg [31] is the classic generic FL algorithm without accounting for system heterogeneity.
Each client trains the same full DNN model.

(2) ElasticTrainer [14] is directly deployed into the local training clients of FedAvg framework.

(3) HeteroFL [7] facilitates training across heterogeneous devices by scaling the channels of convo-
lutional layers to cater to diverse computation constraints.

(4) DepthFL [18] segments the model into sub-models of varying depths, distributing them to clients
according to their computing capabilities.

(5) PyramidFL [25] aims to enhance time-to-accuracy by considering both data and system hetero-
geneity during binary client selection.

(6) TimelyFL [50] is a heterogeneity-aware asynchronous FL framework with adaptive partial
training.

(7) FIARSE [32] dynamically masks the unimportant layers with adaptive partial training.

14

Datasets, Models, and Tasks. To demonstrate FedEL’s effectiveness across tasks, datasets, and ML
models, we evaluate FedEL on four real-world datasets designed for FL applications at different
scales. To follow the realistic non-iid data in FL scenarios, we partition the datasets into different
clusters using a Dirichlet distribution with α equals 0.1.
• Image Classification. The CIFAR10 dataset [19] consists of 60,000 colored images in 10 classes.
The Tiny ImageNet dataset [23] contains 100000 images of 200 classes colored images. We evaluate
the dataset with VGG16 [35] model.
• Speech Recognition. The Google Command speech dataset [40] covers 105,829 audio commands
recordings. The data set is composed of 35 common words from the everyday vocabulary, such as
”Yes”, ”No”, ”Up”, and ”Down”. We evaluate the datasets with ResNet50 [11] model for a 35-class
keyword spotting task.
• Natural Language Processing. Reddit [32] consists of comments from 1,660,820 users in the
Reddit forum. In this dataset, we filter the users with less than 20 words in total and restrict to the
30k most frequently used words, as the same settings in the previous work [20]. Then, we fine turn
the lightweight Albert [22] model for the next-word-prediction task. The performance is evaluated by
the perplexity loss, which lower is better. It’s worth noting that Reddit datasets inherently exhibits
non-iid characteristics. We follow [43] to generate the blocks of the lightweight Albert model.

0 50 100

Wall-clock time (hour)

20%

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

(a) CIFAR10

0 200 400 600

Wall-clock time (hour)

0%

10%

20%

30%

40%

A
c
c
u

ra
c
y

FedAvg

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

(b) Tiny ImageNet

0 200 400 600 800

Wall-clock time (hour)

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

(c) Google Speech

0 200 400 600

Wall-clock time (hour)

75%

80%

85%

90%

A
c
c
u

ra
c
y

FedAvg

 = 0

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

(d) Reddit

Figure 15: Impact of balancing parameter β on four tasks.

0 50 100

Wall-clock time (hour)

20%

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

T
th

 = 0.5T
Orin

T
th

 = 0.7T
Orin

T
th

 = T
Orin

(a) CIFAR10

0 200 400 600

Wall-clock time (hour)

0%

10%

20%

30%

40%

A
c
c
u

ra
c
y

FedAvg

T
th

 = 0.5T
Orin

T
th

 = 0.7T
Orin

T
th

 = T
Orin

(b) Tiny ImageNet

0 200 400 600 800

Wall-clock time (hour)

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

T
th

 = 0.5T
Orin

T
th

 = 0.7T
Orin

T
th

 = T
Orin

(c) Google Speech

0 200 400 600

Wall-clock time (hour)

75%

80%

85%

90%

A
c
c
u

ra
c
y

FedAvg

T
th

 = 0.5T
Orin

T
th

 = 0.7T
Orin

T
th

 = T
Orin

(d) Reddit

Figure 16: Impact of runtime threshold Tth on four tasks.

0 50 100

Wall-clock time (hour)

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

FedEL-C

FedEL

(a) CIFAR10

0 200 400 600

Wall-clock time (hour)

0%

10%

20%

30%

40%

A
c
c
u

ra
c
y

FedAvg

FedEL-C

FedEL

(b) Tiny ImageNet

0 200 400 600 800

Wall-clock time (hour)

30%

40%

50%

60%

A
c
c
u

ra
c
y

FedAvg

FedEL-C

FedEL

(c) Google Speech

0 200 400 600

Wall-clock time (hour)

75%

80%

85%

90%

A
c
c
u

ra
c
y

FedAvg

FedEL-C

FedEL

(d) Reddit

Figure 17: Time-to-accuracy of FedAvg, FedEL-C and FedEL on four tasks.

B.1 Ablation

In the Ablation section of the main paper, we analyze the effect of parameter settings on FedEL using
the CIFAR10 dataset. Here, we show the remaining ablation results for other three tasks in a large
100-device scenario.

Impact of balancing parameter β. Figure 15 illustrates the impact of varying β on time-to-accuracy
performance across the Tiny ImageNet, Google Speech, and Reddit datasets. In FedEL, the balancing

15

parameter β controls the trade-off between local and global tensor importance during adjustment.
A larger β places greater emphasis on local tensor importance, reducing the influence of global
model variations. Conversely, a smaller β prioritizes global variations while neglecting local data
heterogeneity. When β = 1 (fully local) or β = 0 (fully global), FedEL achieves lower accuracy
than FedAvg. However, with moderate values (β = 0.4 or β = 0.6), FedEL outperforms FedAvg by
effectively balancing local heterogeneity with global model updates. This balance enables FedEL to
capture both local and global tensor importance, leading to improved accuracy.

Impact of runtime threshold Tth. Figure 16 illustrates how varying the runtime threshold Tth affects
performance across three additional tasks in a 100-device scenario. To ensure a fair comparison with
baseline methods, we set Tth equal to the full model training time on fastest device. We then vary
Tth to analyze its impact, stopping the experiment once the total training time reaches the predefined
limit. As shown in Figure 16, a smaller Tth slows convergence. This occurs because slow clients
must train the entire model, requiring more sliding-window movements and fast clients also perform
additional window sliding, increasing overall training time and reducing efficiency.

Sliding Window. The sliding window operates through two processes. Front edge movement:
Expands the window by including blocks until their cumulative training time slightly exceeds Tth.
End edge movement: Shrinks the window by excluding unselected blocks. As shown in Figure 17,
reducing Tth results in slower convergence, as more rounds are required to train the full model. To
evaluate the effectiveness of end edge movement, we compare it with a variant called FedEL-C,
where the end edge is immediately shifted to the current front edge. Figure 17 shows that FedEL-C
leads to lower accuracy than FedEL, highlighting the importance of gradual end edge adjustments for
maintaining model performance. This is because FedEL-C treats each window independently and
does not adjust training tensors between consecutive windows, leading to accuracy degradation.

B.2 Important Tensor Selection

In the main paper, we demonstrated tensor selection in a large-scale scenario with 100 devices,
using the VGG16 model on the Tiny ImageNet dataset. Here, we present tensor selection results
for additional tasks. Figure 18 illustrates tensor selection on VGG16 with the CIFAR10 dataset for
representative Orin and Xavier devices. Figure 19 shows results for ResNet50 on the Google speech
dataset, using representative devices from each of the four device types. Figure 20 presents tensor
selection for fine-tuning the Albert model on the Reddit dataset. Specifically, we freeze the pre-trained
albert-base-v2 model and train only the newly added output layers. As observed, the number of
windows required to train the full model varies across devices due to their differing computational
capabilities. Within each window, tensor selection is dynamically adjusted based on importance.
For instance, if a tensor in an earlier layer is critical for model performance, FedEL can adaptively
skip updating certain less important tensors (with higher indices). This ensures an optimal balance
between training speedup and model effectiveness.

0 5 10 15 20 25
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(a) Orin

0 5 10 15 20 25
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(b) Xavier

Figure 18: Tensor selection of CIFAR10 dataset.

16

0 30 60 90 120 150 180 210
Tensor

0
1
2
3
4
5
6
7
8
9

10

FL
 R

ou
nd

(a) Orin

0 30 60 90 120 150 180 210
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(b) 1/2 Orin

0 30 60 90 120 150 180 210
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(c) 1/3 Orin

0 30 60 90 120 150 180 210
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(d) 1/4 Orin

Figure 19: Tensor selection of Google Speech dataset.

0 30 60 90 120
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(a) Orin

0 30 60 90 120
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(b) 1/2 Orin

0 30 60 90 120
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(c) 1/3 Orin

0 30 60 90 120
Tensor

0
1
2
3
4
5
6
7
8
9

FL
 R

ou
nd

(d) 1/4 Orin

Figure 20: Tensor selection of Reddit dataset.

17

B.3 How much does the training time deviate from the target time Tth?

The differences in model architectures contribute to deviations between FedEL’s training time and
Tth. The table 2 presents the per-round average training time of FedEL compared to Tth. As
observed, for convolutional networks (i.e., VGG16 and ResNet50), the deviation ranges from 3.2%
to 6.8%, whereas for the LLM model (i.e., Albert), the deviation is 18.9%. Despite these variations,
FedEL significantly accelerates training compared to FedAvg full-model training, achieving a 1.87×
speedup in a small-scale practical edge device scenario and a 3.13× to 3.87× speedup in a large-scale
simulation scenario.

Table 2: Deviation between the training time and Tth.
CIFAR10 Tiny ImageNet Google speech Reddit

FedEL 38.2min 45.1min 54.9min 48.6min
Tth 36.0min 42.2min 53.2min 40.9min

Difference 6.1% 6.8% 3.2% 18.9%
FedAvg 71.8min 161.9min 212.9min 152.1min
Speedup 1.87× 3.59× 3.87× 3.13×

B.4 FedEL with particular algorithms which try to address any data non-IIDness.

To assess FedEL’s compatibility with aggregation algorithms beyond FedAvg, we integrated it with
FedProx [27] and FedNova [38], both designed for non-IID data scenarios. Following their official
implementations, we modified local updates and global aggregation to incorporate FedEL’s adaptive
tensor selection.

The table below compares the performance of FedProx/FedNova with and without FedEL on CIFAR10
dataset. As shown, FedEL is not restricted to FedAvg; it can be seamlessly integrated into other FL
aggregation methods, leveraging their advantages while mitigating their limitations, particularly in
heterogeneous device environments.

Table 3: Time-to-accuracy for combining FedProx and FedNova with our FedEL.
Method Acc Time Speedup
FedProx 56.1% 82.3h N/A

FedProx + FedEL 56.6% 45.4h 1.81×
FedNova 66.3% 84.7h N/A

FedNova + FedEL 66.1% 47.8h 1.77×

B.5 Statistical Comparison.

To confirm the significance of our accuracy improvements, we provide a detailed statistical analysis,
including confidence intervals. As shown in our box plot Figure 21, the confidence intervals indicate
that our method maintains or exceeds accuracy with statistically significant improvements over
baseline methods.

Fed
Avg

Elas
tic

Tra
ine

r

Hete
roF

L

Dep
thF

L

Pyra
midF

L

Tim
ely

FL

FIARSE
Fed

EL

40

45

50

55

Ac
cu

ra
cy

 (%
)

(a) CIFAR10

Fed
Avg

Elas
tic

Tra
ine

r

Hete
roF

L

Dep
thF

L

Pyra
midF

L

Tim
ely

FL

FIARSE
Fed

EL

28

30

32

34

Ac
cu

ra
cy

 (%
)

(b) Tiny ImageNet

Fed
Avg

Elas
tic

Tra
ine

r

Hete
roF

L

Dep
thF

L

Pyra
midF

L

Tim
ely

FL

FIARSE
Fed

EL

47.5

50.0

52.5

55.0

57.5

Ac
cu

ra
cy

 (%
)

(c) Google Speech

Fed
Avg

Elas
tic

Tra
ine

r

Dep
thF

L

Pyra
midF

L

Tim
ely

FL

FIARSE
Fed

EL

76

78

80

82

Pe
rp

le
xi

ty

(d) Reddit

Figure 21: Accuracy statistical comparison.

18

Table 4: The value of the O1 term in the theoretical convergence upper bound for FedEL is analyzed
for both cases: with and without rollback.

Method O1 mean O1 std
Rollback 63.06 8.62

Not Rollback 78.18 2.62

Table 5: Partition rate = 25%

Method Image Classif. Speech Recog. NLP
Acc. / Time / Speedup Acc. / Time / Speedup Acc. / Time / Speedup

FedAvg 33.76% / 563.1h / N/A 58.04% / 709.8h / N/A 77.48 / 546.4h /N/A
ElasticTrainer 27.65% / 158.6h / 3.55× 47.96% / 184.3h / 3.84× 81.02 / 176.2h / 3.10×
HeteroFL 30.56% / 248.2h / 2.26× 51.47% / 265.9h / 2.66× 80.11 / 206.1h / 2.65×
DepthFL 34.14% / 198.3h / 2.83× 54.23% / 207.4h / 3.42× 78.08 / 212.4h / 2.57×
PyramidFL 34.70% / 497.4h / 1.13× 58.12% / 587.4h / 1.21× 77.68 / 418.2h / 1.31×
TimelyFL 33.53% / 198.1h / 2.84× 56.49% / 193.2h / 3.67× 80.91 / 177.6h / 3.07×
FIARSE 33.98% / 191.5h / 2.94× 58.13% / 198.2h / 3.58× 77.31 / 191.0h / 2.86×
FedEL 34.96% / 156.8h / 3.59× 58.26% / 183.3h / 3.87× 77.23 / 174.5h / 3.13×

B.6 Does the method rolling back blocks if necessary?

The rollback mechanism in sliding window training ensures that earlier layers can be retrained,
allowing the model to refine learned representations rather than reinforcing suboptimal updates. This
is particularly beneficial because deeper layers rely on feature representations from earlier layers. If
earlier layers contain suboptimal representations, they can propagate errors throughout the network.
By rolling back, the model can correct these errors and improve generalization, leading to more stable
and effective learning.

In the convergence theorem of FedEL (Appendix E), tensor selection introduces an additional bias
term O1. To analyze the impact of rollback, we designed two training scenarios:

1. Sliding window training with rollback, where layers can be revisited and updated.

2. Sliding window training without rollback, where the window shifts forward after a fixed number
of rounds without revisiting earlier layers.

Table 4 presents the statistical values of the bias term O1 for both cases. As shown, the average value
of O1 is smaller when rollback is allowed, compared to when it is not. This provides theoretical
evidence that rolling back layers reduces the upper bound of convergence, leading to more stable and
efficient training.

C The Improvements and Clarifications from NeurIPS Rebuttal

C.1 Client Partitioning Scripts

• CIFAR-10 (10-client hardware deployment): We use full participation, where all 10 NVIDIA
devices join every training round. This setting reflects a small-scale real-world deployment
with stable device availability.

• Tiny-ImageNet, Google Speech Commands, and Reddit (100-client simulation): We adopt
partial participation, where 25 clients are randomly selected out of 100 in each round (i.e.,
25% participation rate). This follows common practice in large-scale FL simulations and
models realistic device availability constraints.

To evaluate the impact of lower participation, we conducted experiments with a 10% participation rate.
As shown in Table 5 and 6, all methods experienced slower convergence, leading to longer training
time while maintaining similar accuracy. However, FedEL consistently achieves the highest accuracy
and best efficiency across all tasks, confirming its advantage even under sparse client participation.

19

Table 6: Partition rate = 10%

Method Image Classif. Speech Recog. NLP
Acc. / Time / Speedup Acc. / Time / Speedup Acc. / Time / Speedup

FedAvg 33.75% / 782.4h / N/A 58.01% / 987.3h / N/A 77.45 / 764.2h / N/A
ElasticTrainer 27.62% / 220.4h / 3.55× 47.94% / 255.3h / 3.87× 81.01 / 232.0h / 3.29×
HeteroFL 30.52% / 344.8h / 2.27× 51.45% / 392.2h / 2.52× 80.09 / 288.7h / 2.65×
DepthFL 34.12% / 275.7h / 2.84× 54.21% / 310.5h / 3.18× 78.07 / 298.9h / 2.56×
PyramidFL 34.68% / 711.3h / 1.10× 58.10% / 805.1h / 1.23× 77.66 / 628.3h / 1.22×
TimelyFL 33.50% / 278.4h / 2.81× 56.45% / 267.2h / 3.69× 80.89 / 233.3h / 3.28×
FIARSE 33.96% / 269.2h / 2.91× 58.11% / 271.4h / 3.64× 77.28 / 251.6h / 3.04×
FedEL 34.94% / 220.1h / 3.56× 58.24% / 257.0h / 3.96× 77.21% / 226.0h / 3.38×

Table 7: Performance under different Jetson power modes.

Method Acc. Time
FedAvg 58.21% 550.2h
FedEL 59.35% 174.3h

C.2 Jetson Power Modes

In our experiments, Jetson devices ran in MAXN mode to ensure consistency. We reran experiments
under varied power settings (10W, 15W, MAXN). We measured training times under each mode
and used this variability in the FedEL scheduling process. As shown in the Table 7, FedEL still
outperforms FedAvg in both accuracy and training time. These results confirm that FedEL remains
effective even in more diverse and realistic hardware environments.

C.3 Communication and System Overhead

To clarify, our method does not add extra communication cost—in fact, it reduces it compared to
FedAvg. This is because FedEL only uploads selected important tensors rather than the full model.
As shown in the table, FedEL results in: 1. Lower communication time per round than FedAvg. 2.
Communication taking up only a small part of the total training time. We also measured the runtime
of FedEL’s system modules (e.g., sliding window, tensor importance update, and selection). As
shown in Table 8, the added overhead is minimal and has negligible effect on overall training time.

C.4 Discussing potential extensions of our work to handle communication heterogeneity and
integration with differential privacy.

Our study focuses on computational heterogeneity, a dominant bottleneck in mobile edge environ-
ments. In practice, training time on mobile devices far exceeds communication time, especially with
modern 5G/WiFi networks. For example, ResNet50 (97.7 MB) takes 0.28–1.3 minutes to transmit
over 10-45 Mbps uplink (e.g., AT&T, 2024), while training on an NVIDIA Jetson Xavier takes 38.3
minutes, making communication relatively negligible in our setting. Nonetheless, our method can
incorporate communication heterogeneity. During offline profiling, we estimate tensor sizes. If client
bandwidth is known, the tensor selection can be extended to:

max
A

A · I, s.t. Tfw + Tbw(A) + Ttx(A) ≤ Tth. (2)

where Ttx(A) estimates transmission time. This enables FedEL to jointly optimize computation
and communication under a unified latency constraint. Our method is fully compatible with privacy-
preserving techniques like Differential Privacy (DP) and Secure Aggregation (SA), as FedEL operates
at the system level and does not modify or interfere with model encryption or privatization.

C.5 Detailing how our approach can be adapted for transformer models.

As detailed in Section B of our Supplementary Material, our implementation for Albert follows
the block design from [43], placing early exits after each encoder-classifier stack. This supports

20

Table 8: System overhead.

Method Communication Tensor processing Average round time
FedAvg 2.45 min (3.2%) N/A 75.43 min
FedEL 1.09 min (2.7%) 0.97 min (2.4%) 40.34 min

variable-depth execution and is fully compatible with our sliding window mechanism. Regarding
shared-weight layers, such as embeddings and grouped attention heads, we handle them as follows:
(1) Shared Embeddings: We profile the shared tensor as a single unit. Backward time is traced from
the output back to the shared embedding, reflecting its impact on both input and output. The weight
update time is counted only once since the tensor is updated once per iteration.
(2) Grouped Attention Heads: For attention layers with multiple trainable projections (query, key,
value, output), we treat each as a separate tensor and profile their backward time individually. If some
projections are shared, we track their computation cost jointly during backpropagation.

C.6 More Related Works

Recurrent Early Exits (ReeFL) [24]: ReeFL enables early exits in LLMs during FL. Our method
FedEL can work with ReeFL by applying tensor selection inside each early-exit block. We combined
both by inserting exits into transformer layers and applying FedEL within each. As shown below,
FedEL+ReeFL reduces training time while maintaining accuracy, confirming that the two approaches
are complementary.
ScaleFL [15]: ScaleFL adapts model width/depth based on device profiles, but uses static selection via
a meta-scheduler. In contrast, FedEL dynamically selects tensors in each round based on importance,
allowing finer control and better adaptability.
NeurIPS 2023 [51] offers convergence guarantees but applies global pruning without local data or
neuron importance awareness, limiting its adaptability at the client level.
TNNLS 2022 [17] supports distributed pruning but incurs significant communication overhead due to
the need to transmit importance scores and pruning decisions each round.
DAC 2021 (Helios) [47] enables dynamic model adaptation but requires frequent communication and
additional optimization overhead, especially for straggler mitigation.
TMC 2024 [13] does not perform partial training; instead, it trains the full model and uploads only a
subset of parameters, which is orthogonal to our focus on efficient local training.
In contrast, FedEL performs lightweight, local tensor selection using an importance-based mecha-
nism, incurs no extra communication, supports fine-grained dynamic adaptation, and avoids heavy
optimization—offering a practical and scalable solution to device heterogeneity.

D Limitation

To evaluate the effectiveness of FedEL, we conduct experiments in two settings: a small-scale
practical setup using real edge devices, and a large-scale simulation. Due to hardware limitations,
the practical setup includes only two types of edge devices. The large-scale simulation is then
designed based on system measurements collected from these two devices. While this approach
demonstrates promising results, it may face challenges when scaled to real-world environments with
more extreme heterogeneity in client computational resources. Additionally, this work does not
account for variations in client network bandwidth, which we plan to explore in future work.

E Convergence Theorem.

We consider one server and N edge devices. Each device n ∈ N = {1, 2, . . . N} has its own set of
local data samples Dn. In a supervised learning setting each device aims to find a learning model
θn ∈ Rd, where dθ denote the dimensions of the model. A mask An ∈ {0, 1}dθ is selected for each
device n ∈ N based on the ElasticTrainer. During local update, each device n only updates those
parameters in the global model that correspond to non-zero values of the masking vector Am.

21

Let wi
n denote the local model of device n at the beginning of local update iteration i in training

round t. The local model of device n is updated using SGD as follows:
wi+1

n (t) = wi
n(t)− η(t)An(t)⊙∇fn(w

i
n(t), b

i
n(t)), i = 1, . . . , τ (3)

where ⊙ denotes the element-wise product, η(t) is the learning rate, fn(·) is the loss function and
bin(t) is the local batch sample chosen uniformly at random from the local dataset. After performing
τ local update iterations, each device n sends its final model to the server.

wn(t) = wg(t)− η(t)An(t)⊙
τ∑

i=1

∇fn(w
i
n(t), b

i
n(t)) (4)

In the aggregation step, we consider that the server aggregates the received final local models by
taking the masking vectors of the devices into account. The global model for the next communication
round can thus be determined through stable aggregation of unfrozen parameters, as follows:

wg(t+ 1) =
∑
n∈N

cn(t)⊙wn(t) (5)

where (cn(t))k = (An(t))k∑
n∈N (An(t))k

denotes the k-th tensor selection of mask An(t) at training round
t. Using (cn(t))k in (5) indicates that the server only aggregates the updated parameters from the
participating devices.

The analysis relies on the following assumptions, which are commonly used for obtaining the
convergence rate of different FL algorithms in the literature.
Assumption E.1. The function fn(w), n ∈ N is L-smooth and satisfies:

||∇fn(w
i
n(t)||2 ≤ 2L(fn(w

i
n(t)− f∗

n), n ∈ N , i = 1, . . . , τ,∀t (6)
where f∗

n denotes the minimum value of fn(w).
Assumption E.2. ∇fn(w

i
n(t), b

i
n(t)) is an unbiased stochastic gradient of function fn(w). The

variance of the masked stochastic gradients is bounded for each device n ∈ N . We have
E||cn(t)⊙∇fn(w

i
n(t), b

i
n(t))− cn(t)⊙∇fn(w

i
n(t)||2 ≤ ξ2n, n ∈ N , i = 1, . . . , τ,∀t (7)

Assumption E.3. The expected squared L2-norm of the masked stochastic gradients for all the
devices is uniformly bounded. We have

E||An(t)⊙∇fn(w
i
n(t), b

i
n(t))||2 ≤ G2, n ∈ N , i = 1, . . . , τ,∀t (8)

Lemma E.4. The following inequality holds for any vectors x and z ∈ Rd, for which there exists
Q > 0 satisfying |mink(x⊙ z)k| ≤ Q, and for any vector y ∈ Rd.

⟨x, y ⊙ z⟩ ≤ max
k

(y)k⟨x, z⟩+Q

(
dmax

k
(y)k −

d∑
k=1

(y)k

)
(9)

where ⟨·, ·⟩ denotes the inner product operator in Rd.

Proof. Given vectors x, y, and z, we form diagonal matrices X, Y and Z, respectively. Note that
wee can write ⟨z, y ⊙ z⟩ as the form of the trace of matrices X, Y and Z product, i.e., ⟨z, y ⊙ z⟩ =
Tr(XY Z). By using Theorem 3 in [8], we have the following inequality:

Tr(XY Z) ≤ λ1(Y)Tr(XZ)− λd(XZ)(dλ1(Y)− Tr(Y)) (10)
where λ1(Y) and λd(XZ) are the largest eigenvalue of matrix Y and the smallest eigenvalue of
matrix XZ, respectively. Since the considered matrices are diagonal, we have λ1(Y) = maxk(y)k
and λd(XZ) = mink(x⊙ z)k. Hence, we have

⟨x, y ⊙ z⟩ ≤ max
k

(y)k⟨x, z⟩+min
k

(x⊙ z)k

(
dmax

k
(y)k −

d∑
k=1

(y)k

)
(11)

≤ max
k

(y)k⟨x, z⟩+Q

(
dmax

k
(y)k −

d∑
k=1

(y)k

)
(12)

Since dmaxk(y)k −
∑d

k=1(y)k ≥ 0, by considering |mink(x ⊙ z)k| ≤ Q, Lemma E.4 is proved
using the second inequality.

22

We define the term γn(t) = maxk(cn(t))k to quantify the degree of device heterogeneity in the
network. Note that in the full device participation scenario, 1

N ≤ γn(t) ≤ 1, n ∈ N . Then, the
following Theorem E.5 shows that the convergence bound of employing the masks to address the
device heterogeneity issue in FL. Then, the following Theorem E.5 shows that employing the masks to
address the device heterogeneity issue in FL leads to a bias term in the convergence bound. However,
it does not affect the convergence rate, which is similar to the observation in paper [41].

Theorem E.5. Under Assumptions 1-3, and for smooth and non-convex loss functions, if the total
number of communication rounds T is pre-defined and the learning rate η(t) is smart enough such
that η(t) = η ≤ 1

LN2τ , we have

1

T

T∑
t=1

E||∇F (wg(t))||2 ≤ 2

ητT
(F (wg(1))− F ∗) + LNτη

N∑
n=1

ξ2n

+2Ψ

N∑
n=1

(
dθγn(t)−

dθ∑
k=1

(cn(t))k

)
︸ ︷︷ ︸

O1

+L2η2G2 (τ − 1)(2τ − 1)

6
(13)

where Ψ is a constant satisfying maxk(∇fn(w
i
n(t),)⊙∇F (wg(t)))k ≤ Ψ,∀n, i, t. F ∗ = F (w∗),

where w∗ is the global optimal weight. L, ξ2n and G are constants defined in Assumptions 1-3.

Proof. Considering the smoothness of fn(w), n ∈ N , in each training round t ≥ 1, we have

EF (wg(t+ 1)) ≤ EF (wg(t)) + E⟨wg(t+ 1)−wg(t),∇F (wg(t))⟩+
L

2
E∥wg(t+ 1))−wg(t))∥2

(14)

We first find an upper bound for ∥wg(t+ 1))−wg(t))∥2 as follows:

E∥wg(t+ 1)−wg(t)∥2
(a)
= η2(t)E

∥∥∥∥∥
N∑

n=1

cn(t)⊙
τ∑

i=1

∇fn(w
i
n(t), b

i
n(t))

∥∥∥∥∥
2

(b)
= η2(t)E

∥∥∥∥∥
N∑

n=1

τ∑
i=1

cn(t)⊙∇fn(w
i
n(t), b

i
n(t))− cn(t)⊙ fn(w

i
n(t))

∥∥∥∥∥
2

︸ ︷︷ ︸
M1

+ η2(t)

∥∥∥∥∥
N∑

n=1

τ∑
i=1

cn(t)⊙ fn(w
i
n(t))

∥∥∥∥∥
2

︸ ︷︷ ︸
M2

(15)

where equality (a) results from (4) and (5). Equality (b) is obtained via basic equality E∥z∥2 =
E∥z − Ez∥2 + ∥Ez∥2 for any random vector z. By using Assumption E.2, we have obtain an upper
bound of M1 as follows:

M1 = E

∥∥∥∥∥
N∑

n=1

τ∑
i=1

cn(t)⊙∇fn(w
i
n(t), b

i
n(t))− cn(t)⊙ fn(w

i
n(t))

∥∥∥∥∥
2

≤ Nτ

N∑
n=1

τ∑
i=1

E
∥∥cn(t)⊙∇fn(w

i
n(t), b

i
n(t))− cn(t)⊙ fn(w

i
n(t))

∥∥2
≤ Nτ2

N∑
n=1

ξ2n (16)

23

By considering the convexity of ∥ · ∥2 and by using γn(t) = maxk(cn(t))k, we can obtain an upper
bound of M2 as follows:

M2 =

∥∥∥∥∥
N∑

n=1

τ∑
i=1

cn(t)⊙ fn(w
i
n(t))

∥∥∥∥∥
2

≤ Nτ

N∑
n=1

τ∑
i=1

∥∥cn(t)⊙ fn(w
i
n(t))

∥∥2
≤ Nτ

N∑
n=1

τ∑
i=1

γ2
n(t)

∥∥fn(wi
n(t))

∥∥2 (17)

By combining (15), (16) and (17), we have the following inequality:

E∥wg(t+ 1)−wg(t)∥2 ≤ Nτ2η2(t)

N∑
n=1

ξ2n +Nτη2(t)

N∑
n=1

τ∑
i=1

γ2
n(t)

∥∥fn(wi
n(t))

∥∥2 (18)

Now, we aim to obtain an upper bound of E⟨wg(t+ 1)−wg(t),∇F (wg(t))⟩. We have

E⟨wg(t+ 1)−wg(t),∇F (wg(t))⟩

(a)
= E

〈
−η(t)

N∑
n=1

τ∑
i=1

cn(t)⊙∇fn(w
i
n(t), b

i
n(t)),∇F (wg(t))

〉
(b)
= η(t)E

N∑
n=1

τ∑
i=1

〈
cn(t)⊙∇fn(w

i
n(t)),−∇F (wg(t))

〉
(c)

≤ η(t)E
N∑

n=1

τ∑
i=1

−γn(t)
〈
∇fn(w

i
n(t)),∇F (wg(t))

〉
+ η(t)τΨ

N∑
n=1

(
dθγn(t)−

dθ∑
k=1

(cn(t))k

)
(d)

≤ −η(t)

τ∑
i=1

E

〈
1

N

N∑
n=1

∇fn(w
i
n(t)),∇F (wg(t))

〉
+ η(t)τΨ

N∑
n=1

(
dθγn(t)−

dθ∑
k=1

(cn(t))k

)
(19)

where equality (a) results from (4) and (5). Equality (b) follows from E∇fn(w
i
n(t), b

i
n(t)) =

∇fn(w
i
n(t)). Inequality (c) holds by using Lemma E.4. Inequality (d) follows from γn(t) ≥ 1

N .

To find an upper bound for −E
〈

1
N

∑N
n=1 ∇fn(w

i
n(t)),∇F (wg(t))

〉
, we first represent it as fol-

lows:

− E

〈
1

N

N∑
n=1

∇fn(w
i
n(t)),∇F (wg(t))

〉

=
1

2
E

∥∥∥∥∥ 1

N

N∑
n=1

(∇fn(w
i
n(t))−∇fn(wg(t)))

∥∥∥∥∥
2

− 1

2
E

∥∥∥∥∥ 1

N

N∑
n=1

∇fn(w
i
n(t))

∥∥∥∥∥
2

− 1

2
E ∥∇fn(wg(t))∥2

(20)

Then, E
∥∥∥ 1
N

∑N
n=1(∇fn(w

i
n(t))−∇fn(wg(t)))

∥∥∥2 is bounded as follows:

E

∥∥∥∥∥ 1

N

N∑
n=1

(∇fn(w
i
n(t))−∇fn(wg(t)))

∥∥∥∥∥
2

(a)

≤ 1

N

N∑
n=1

E
∥∥∇fn(wg(t))−∇fn(w

i
n(t))

∥∥2
(b)

≤ L2

N

N∑
n=1

E
∥∥wg(t)−wi

n(t)
∥∥2 (21)

24

where inequality (a) results from the convexity of ∥ · ∥2. Inequality (b) results from Assumption E.1.
Now, we aim to bound E∥wg(t)−wi

n(t)∥2 for i = 2, . . . τ . By using (3), we have

E∥wg(t)−wi
n(t)∥2

= E

∥∥∥∥∥∥η(t)An(t)⊙
i−1∑
j=1

∇fn(w
j
n(t), b

j
n(t))

∥∥∥∥∥∥
2

≤ η2(t)(i− 1)

i−1∑
j=1

E
∥∥An(t)⊙∇fn(w

j
n(t), b

j
n(t))

∥∥2
≤ η2(t)(i− 1)2G2 (22)

where the last inequality results from Assumption E.3, By combining (21) and (22), we have

E

∥∥∥∥∥ 1

N

N∑
n=1

(∇fn(w
i
n(t))−∇fn(wg(t)))

∥∥∥∥∥
2

≤ L2η2(t)(i− 1)2G2 (23)

By combining (14) and (14) to (23), we have

EF (wg(t+ 1)) ≤ EF (wg(t)) +
L

2
Nτ2η2(t)

N∑
n=1

ξ2n + η(t)τΨ

N∑
n=1

(
dθγn(t)−

dθ∑
k=1

(cn(t))k

)

− η(t)τ

2
E ∥∇F (wg(t))∥2 + L2η3(t)G2 τ(τ − 1)(2τ − 1)

12

− η(t)

2

N∑
n=1

τ∑
i=1

(
1

N
− LNτγ2

n(t)η(t)

)
∥∇F (wg(t))∥2 (24)

Since η(t) = η ≤ 1
LN2τ , we have last term −η(t)

2

∑N
n=1

∑τ
i=1

(
1
N − LNτγ2

n(t)η(t)
)
∥∇F (wg(t))∥2 ≤

0. By rearranging the terms in (24), we obtain

E ∥∇F (wg(t))∥2 ≤ 2

ητ
(EF (wg(t))− EF (wg(t+ 1))) + LNτη

N∑
n=1

ξ2n

+ 2Ψ

N∑
n=1

(
dθγn(t)−

dθ∑
k=1

(cn(t))k

)
+ L2η2G2 τ(τ − 1)(2τ − 1)

12
(25)

Finally, we multiply both sides of (25) by 1
T and sum over t = 1, . . . , T . Then, Theorem E.5 is

concluded by considering that the first term on the right-hand side of (25) is a telescoping series. We
have

2

ητT

T∑
t=0

(EF (wg(t))− EF (wg(t+ 1))) =
2

ητT
(F (wg(1))− EF (wg(T + 1)))

≤ 2

ητT
(F (wg(1))− F ∗) (26)

where the last inequality is obtained by considering that EF (wg(t+ 1)) ≥ F ∗.

25

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

26

Justification: Please see the limitation discussion in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical convergence analysis provides the full set of assumptions and
a complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper fully discloses all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.

27

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We consider to provide open access to the data and code if the paper is
accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see our experiment setup in main paper and supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see the statistical comparison in Appendix B.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All information about the computational resources is provided in the experi-
mental setup section.
Guidelines:

• The answer NA means that the paper does not include experiments.

29

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is foundational research and not tied to particular applications, which
has no negative societal impacts of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

30

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The models and datasets in our paper have no such risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we have cited the original papers for the code, data and models in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: If the paper is accepted, we will consider providing open access to the data
and code, but not now.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

31

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Background and Motivation
	FedEL Design
	Sliding Window Training
	Sliding Window
	Insert ElasticTrainer into Windows

	Tensor Importance Adjustment

	Evaluation
	Experiment Setup
	End-to-End Performance
	Ablation

	Conclusion
	Acknowledgments
	The Algorithm of FedEL
	Detailed Datasets and Baselines
	Ablation
	Important Tensor Selection
	How much does the training time deviate from the target time Tth?
	FedEL with particular algorithms which try to address any data non-IIDness.
	Statistical Comparison.
	Does the method rolling back blocks if necessary?

	The Improvements and Clarifications from NeurIPS Rebuttal
	Client Partitioning Scripts
	Jetson Power Modes
	Communication and System Overhead
	Discussing potential extensions of our work to handle communication heterogeneity and integration with differential privacy.
	Detailing how our approach can be adapted for transformer models.
	More Related Works

	Limitation
	Convergence Theorem.

