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Abstract
Landmark universal function approximation results for neural networks with trained weights and
biases provided impetus for their ubiquitous use as learning models in Artificial Intelligence (AI)
and neuroscience. Recent work has pushed the bounds of universal approximation by showing
that arbitrary functions can similarly be learned merely by tuning smaller subsets of parameters of
otherwise random networks, for example the output weights. Motivated by the fact that biases can
be interpreted as biologically plausible mechanisms for adjusting unit outputs in neural networks,
such as tonic inputs or activation thresholds, we investigate the expressivity of neural networks
with random weights where only biases are optimized. We provide theoretical and numerical
evidence demonstrating that feedforward neural networks with fixed random weights can be trained
to perform multiple tasks by learning biases only. We further show that an equivalent result holds
for recurrent neural networks predicting dynamical system trajectories. Our results are relevant to
neuroscience, where they demonstrate the potential for behaviourally-relevant changes in dynamics
without modifying synaptic weights, as well as for AI, where they illuminate and generalize multi-
task methods such as bias fine-tuning and network gating/masking and other non-parametric learning
mechanisms.

1. Introduction

The universal approximation theorems [6, 11, 13] of the late 1900s highlighted the expressivity of
neural network models–their ability to approximate or express a broad class of functions through
tuning of weights and biases, heralding the central role neural networks play in Machine Learning
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(ML) and neuroscience today. Since these foundational studies, a rich literature has explored the limits
of the expressivity of neural networks by finding smaller parameter subsets whose tuning still results
in the approximation of wide classes of functions or dynamics. Prior work has explored approximation
capabilities of feed-forward (FFNs) and Recurrent Neural Networks (RNNs) where only the output
weights are trained [8, 9, 17, 20], and deep FFNs where only normalization parameters [2, 7], or
binary masks–either over units or parameters–are trained, leading to the lottery ticket hypothesis [15]
and gated neural networks [24]. Recently, a study has also explored the approximation abilities of
transformers where only context is tuned [18]. Here, motivated by recent insights from neuroscience,
we initiate the investigation of expressivity in both FFNs and RNNs where only biases are trained, an
avenue that remains largely unexplored.

Learned biases are of fundamental relevance to neuroscience and ML. In the latter domain, recent
work highlights the optimization or the careful selection of bias vectors: fine-tuning of biases for
multi-task learning [29], time-encoding as a bias in score matching [23], and the context tokens used
for in-context learning [25] can all be viewed as methods of carefully setting the bias in a model
where other connectivity parameters are fixed in order to perform a task.

In neuroscience, single neurons employ diverse mechanisms to adjust their response to inputs,
beyond synaptic plasticity. Importantly, some of these mechanisms can be construed as manipulating
the firing onset of neurons which, in a firing rate model, is represented by the bias. Among
these mechanisms, we have shunting inhibition [10], threshold adaptation [1], and a host of other
mechanisms that participate in shaping the input-output transfer function of neurons (reviewed in [5],
see also [16]). Experimental evidence also suggests that bias-related signals play a role in learning
[22, 30] but, despite this, most work modelling learning in neuroscience has focused on synapses.

If tuning the biases of a neural network will only span a reduced set of functions, or output
dynamics, then this would solidify the role of synaptic plasticity as the critical component in
biological and artificial learning. Conversely, if one can sufficiently express arbitrary dynamics
solely by changing biases, this would motivate deeper investigation of when and how non-synaptic
plasticity mechanisms might shoulder some of the effort of learning. In this paper we address the
question of the expressivity of bias learning. In a regime where all weight parameters are randomly
initialized and frozen, and only hidden layer biases are optimized, we provide theoretical guarantees
demonstrating that (1) feed-forward neural networks with wide hidden layers are universal function
approximators with high probability and (2) rate-style Recurrent Neural Networks (RNNs) with wide
hidden layers can arbitrarily approximate finite-time trajectories from smooth dynamical systems
with high probability.

We provide empirical support for, and a deeper interrogation of, these theoretical findings with
an array of numerical experiments.

2. Theory

Our theory builds off classic results on universal function approximation [14]. In the interest of space
we state theorems without proof. We begin with a theorem for single-hidden layer feed-forward
neural networks. Let ϕ be a ReLU or step-function activation, α > 0, and pα be a uniform distribution
on the interval [−(α+ 1), α+ 1].

Theorem 1. Consider a single hidden layer, feed-forward, neural network with each individual
weight parameter sampled from pα. We can find a hidden layer width and bias vector such that,
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with a probability that is arbitrarily close to 1, the random-weight neural network approximates any
continuous function on compact support with any strictly positive degree of accuracy on (0, 1).

We now turn to RNNs, where we study the problem of approximating the (partially observable)
dynamical system zn+1 = F (zn, xn), yn = Qzn, z0 ∈ U where zn, xn, and yn are real vectors of
finite dimension, Q is a readout matrix, and U is compact. It is further assumed that F is continuous
and arbitrary except for the constraint that for any input x (in a set of interest), and any z ∈ Ũ ,
F (z, x) ∈ Ũ , where Ũ ⊂ U is compact such that for any z ∈ Ũ we have z + c0 ∈ U for ||c0|| < c.
In words, Ũ is an invariant set of F that is also compact and contained in U with some minimal
margin c between the edge of Ũ and that of U .

Theorem 2. Consider a single hidden layer RNN with activations ϕ, defined above, with each element
in the input, recurrent, and output weight matrices sampled from pα. We can find a hidden layer
width, a bias vector, and a hidden-state initial condition for the RNN such that, with a probability
that is arbitrarily close to 1, the RNN approximates finite trajectories from the above dynamical
system with any strictly positive degree of accuracy on (0, c).

Proof Intuition: both proofs work in two steps. First, the function (dynamical system trajectory)
is approximated with a single hidden layer neural network (RNN), N , with weights and biases
chosen according to universal approximation theory. Second, we randomly initialize parameters
according to pα in a very wide neural network and show that, if the network is wide enough, the
Strong Lottery Ticket Hypothesis at the level of nodes holds so that we can find a sub-network, N̂ , in
the given feed-forward net (RNN) that approximates N . We then tune the biases in N̂ to match the
biases of the corresponding nodes in N , and set the biases to be very negative for all nodes in the
second network not in N̂ , thus shutting off their outputs.

Remark: a key element of our proofs is that the random network hidden layers are much larger
than those of neural networks which have fully-tuned weights.

3. Numerical Results

3.1. Multi-task Learning with Bias-learning Feed-forward Networks

Before tackling the multi-task setting, we first examined whether a single-hidden-layer, bias-learning
FFN could learn to perform digit recognition on the MNIST dataset [4]. Initial weights were sampled
from a uniform distribution on [−0.1, 0.1] and were then frozen. In connection with our theory, we
investigated the effect of hidden-layer width on performance by training networks with increasing
widths and evaluated the validation accuracy. The network did learn the task and validation accuracy
increased with layer width, with quickly diminishing returns above 5000 units (Fig. 1A).

We then investigated the flexibility of bias-learning FFNs to learn multiple tasks. We used the
same setup as above with 32000 hidden units to train on 7 different tasks: MNIST [4], KMNIST [3],
Fashion MNIST [27], Ethiopic-MNIST, Vai-MNIST, and Osmanya-MNIST from Afro-MNIST [26],
and Kannada-MNIST [19]. All tasks involved classifying 28×28 grayscale images into 10 classes.
The random weights were fixed across tasks while different biases were learned. We compared bias
learning against a fully-trained neural network with the same size and architecture (Fig. 1B). We
found that the bias-only network achieved similar performance to the fully-trained network on most
tasks (only significantly worse on KMNIST). A crucial difference here is that the networks had
matching size and architecture, so that the number of trainable parameters in the bias-only network
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Figure 1: A. Validation accuracy on MNIST vs layer width. B. Validation accuracy on multiple
image classification tasks for bias-only (blue) and fully-trained (orange) networks. In
panels A and B, training was on 20 epochs and error bars on 5 runs are omitted because
the standard errors are of order 10−3. C. Top: K-mean clustering of task-variance (TV)
reveals task-specific clusters. Bottom: Pearson correlation between TV and bias vectors
(mean across neurons in each cluster). In this and all others figures Adam optimization
was used.

(32 000 parameters) was several orders of magnitude smaller than in the fully-trained case (25 440
010 parameters). Notably, a different set of biases was learned for each task. We conclude that
bias-only learning in FFNs is a viable avenue to perform multi-tasking with randomly initialized and
fixed weights.

We finally investigated the relationship between the bias of a hidden unit and its task variance
(TV). We hypothesized that only groups of hidden-layer units would be useful for each task, resulting
in a pattern where subsets of units are ‘active’, with high variance for a given task, while others
are quiet. This hypothesis was confirmed experimentally as shown in Fig. 1C. In the appendix, we
clustered the biases of all hidden units in the same way as the TVs; the results are shown in Fig. H.
We saw qualitatively similar clusters as those for TVs.

3.2. Bias-learning of Dynamical Systems with Recurrent Neural Networks

Finally, we explored the capabilities of an RNN trained on a non-autonomous dynamical system,
namely a single dimension of the Lorenz system where the other dimensions are unobserved (Fig.
2). As in the feedforward case, only the biases of the input layer were trained and all of the weights
were initialized randomly and frozen. The objective was formulated as follows: given a window of
size w from time-points t to t+ w, predict the output of the system at a future window of s+ τ for
s = t..x.t+ w observing only the x-coordinate from t to s. This offset value (τ = 27) was chosen
to be the half-width at the half-max of the auto-correlation function of the single observed dimension
of the Lorenz system, taking into account the numerical integration time step ∆t = 0.01). Each
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Figure 2: Learning non-autonomous dynamical systems. A. The outputs of the fully-trained (top)
and bias-only (bottom) networks on a window of a Lorenz system unseen during training
(ẋ = σ(y− x), ẏ = x(ρ− z)− y, ż = xy− βz). The system was generated using Euler’s
method with a step size ∆t of 0.01 from an initialization at (0,1,0), with σ = 10, ρ = 28,
and β = 8

3 . Standard deviation error bars were computed over 5 seeds, but are not visible.
B. Generalization to sequences longer (4320 time-points) than those trained on. C. Output
of the bias-only network diverges from the ground truth signal when using its own outputs
as context (starting from the grey line).

model had a hidden-layer width of 1024 units and was trained on different windows of 1080 (i.e.,
40τ ) time-points.

We found that both the fully-trained and bias-only networks accurately predicted future points
of the system, evidenced by a consistent R2 metric of >0.99 (n=5) on a window of the generated
Lorenz attractor held out from training (Fig. 2A). Furthermore, the models showed stability when
predicting windows that were several times larger than the ones used during training, continuing to
reconstruct the system without a notable change in accuracy (Fig. 2B). However, when the networks
were fed their own previous predictions as input, their prediction accuracy decreased, demonstrating
the devastating effect of small compounding deviations propagated through time (Fig. 2C).

4. Discussion

In this paper, we presented theoretical results demonstrating that feed-forward and recurrent neural
networks with fixed random weights but learnable biases can approximate arbitrary functions. We
showcased the expressitivity of bias-learned networks in numerical experiments where we perform
auto-regressive modelling, multi-task learning, dynamic pattern generation, and dynamical system
forecasting. Finally, we showed how functional specialization emerges from bias learning and
elucidated signatures and advantages of bias-only learning, notably in multi-task learning.

While we showcase the expressivity of learning biases in random networks, bias learning would
likely be much more efficient if the connectivity weights were not random, but rather we pre-trained
or meta-learned for a corpus of tasks. Indeed, brain networks–where analogous input-driven learning
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might takes place–are not random, but have instead evolved or developed to be optimally useful
in a variety of conditions. Future work into bias learning with non-random networks might yield
important advances for meta-learning and amortized learning techniques where context-dependent
biases can quickly "reconfigure" generalist networks for specific tasks. Bias learning may also
advance the field of In Context Learning (ICL) in modern Transformer architectures, where attention
heads that operate over sequences of tokens (i.e. the input context or latent tokens) provide attention
scores to a MLP that outputs to subsequent layers. When learning in-context, the input tokens provide
essentially a set of constant inputs to an MLP which are equivalent to our learned biases. A better
understanding of the functions produced by this procedure through bias learning could help advance
our understanding of ICL (see also [18]).
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Throughout the appendix the proofs are restated for ease of reference. We will always take || · ||
to be the 1-norm, unless otherwise stated.

Appendix A. Parameter-Bounding Activations

A suitable activation ϕ is referred to as a γ-parameter bounding activation if it allows for universal
approximation even when each individual parameter, e.g. an element of a weight matrix or bias
vector, is bounded. This is a property that we use in the main proofs. We show that this property
holds for ReLU and Heaviside activations, below.

Proposition 1. The ReLU and the Heaviside step function are γ-parameter bounding activations for
any γ > 0.

Proof We prove this solely for the ReLU, as the logic for the Heaviside is effectively the same. Let ϕ
thus be a ReLU. First, observe the following useful property: for all α > 0 we have αϕ(x) = ϕ(αx).
From this, consider the neural network of hidden layer width n with ReLU activations, yn(θ), and
observe:

yn(θ) = α2
n∑

i=1

A:i

α
ϕ

(
Bi:

α
x+

bi
α

)
= α2yn

( θ

α

)
. (A.1)

Moreover, if α ∈ N we have

yn(θ) =
α2n∑
i=1

Ã:iϕ
(
B̃i:x+ b̃

)
= yα2n(θ̃), (A.2)

where θ̃ = [ θ1α , . . . , θnα , . . . θ1α , . . . , θnα ] so that each element is simply a re-scaled and repeated
version of the original parameters (we have α2 repeats).

Now, given an arbitrary compact set U ∈ Rd, continuous function h : Rd → Rl, and ε > 0, by
the universal approximator theory (see e.g. [12, 14]) we can find n such that∫

U
||h(x)− yn(x, θ)|| ≤ ϵ (A.3)

holds. Because n is finite we can bound every individual (scalar) parameter by M , for some
sufficiently large M . Suppose we want the parameters to be bounded instead by γ with M > γ > 0.
If we select α ∈ N s.t. α > M

γ then we can find yα2n(x, θ̃) such that yα2n(x, θ̃) = yn(x, θ). Thus
we have found a parameter-bounding ReLU neural network satisfying Eq.A.3, completing the proof.

Remark 1: The intuition behind this result, for the ReLU, is credited to this stack exchange
answer.

Appendix B. γ-Bias-Learning Activations

If ϕ is a γ-parameter bounding activation and if ∃τ ∈ R such that for x < τ ϕ(x) = 0 then we say
that ϕ is a γ-bias-learning activation.
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Appendix C. Random Neural Network Formulation

The proofs of this section revolve around masked, random, neural networks:

r̃Mm = −αr0 + M̄ ⊙ βϕ(Wr0 +Bx+ b), ỹMm = Ar̃Mm , (C.1)

where 0 ≤ α < ∞, 0 < β < ∞, m ∈ N, r0, r̃Mm ∈ Rm, x ∈ Rd, ỹMm ∈ Rl, M ∈ {0, 1}m, and
all other matrices and vectors have real elements with the dimensions required by the above definitions.
We assume that ϕ is γ-parameter bounding and that each individual (scalar) parameter, be it weight
or bias, is sampled randomly–before masking–from a uniform distribution on [−(γ + 1), γ + 1].
In this way the parameters are random variables with compact support. If M = 1 then we drop
the superscript. To account for feed-forward neural networks we simply assume that W is the zero
matrix.

W.l.o.g. assume there are n non-zero elements in M. We construct WM ∈ Rn×n–the recurrent
matrix restricted to participating (non-masked) hidden units–by beginning with W and deleting the
ith row and ith column of the matrix if Mi = 0. We construct BM ∈ Rn×d, AM ∈ Rl×n, and
bM ∈ Rn by deleting the ith row of B, A, and ith element of b if Mi = 0.

Consider the case where the ith element of r0 is 0 whenever Mi = 0. Then, regardless of
whether Eq.C.1 represents a feed-forward network or the transition function for an RNN, the masked
units will always be zero. We can thus simply track the n units that correspond with 1’s in M as
the outputs, yM will depend solely on these. We observe that the behaviour of these units can be
described by the following network:

rMm = −αr0 + βϕ(WMr0 +BMx+ bM), yMm = AMrMm . (C.2)

It is networks of the form of Eq.C.2 that will be the primary subject of study in what follows.
Note that the ‘∼’, over the r, is dropped to denote the fact that r is a different vector on account
of dropping the zero units. In the feed-forward case we use subscripts, as we have done above, to
denote hidden layer width. Whenever we discuss RNNs or dynamical systems we will instead use
the subscript to denote time.

Lastly, we define the class of dynamical systems that we will approximate by learning only
biases:

zt+1 = F (zt, xt), yt = Qzt, z0 ∈ Uz, (C.3)

where t and xt are as defined for the RNN, F : Uz × Ux → Rs is continuous, and Q ∈ Rl×s.
Because we build from the classic universal approximation results, we must be working with
functions operating on compact sets. To guarantee that this will be the case we must make several
more assumptions about the dynamical system. First, Uz ⊂ Rs is assumed to be a compact invariant
set of the dynamical system: if the system is in Uz it remains there for all t and for all inputs, xt in
Ux. Second, we will assume that the dynamical system is well-defined on a slightly larger compact
set, Ũz = {z0 + c0 : z0 ∈ Uz, ||c0|| < c} for some c > 0, containing Uz × Ux.

Appendix D. Proofs for the Feedforward and Recurrent Networks

For function approximation we study a single-layer feedforward network whose output is given by
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yn(x, θ) =

n∑
i=1

A:iϕ(Bi:x+ b), (D.1)

with A ∈ Rl×n, B ∈ Rn×d, b ∈ Rn, and θ = {B,A, b}. For the dynamical system approxima-
tion we study a vanilla recurrent network architecture in discrete time, given by

rt = −αrt−1 + βϕ(Wrt−1 +Bxt−1 + b), yt = Crt, (D.2)

where rt ∈ Rm for all 0 ≤ t ≤ T for some T ∈ N, α and β control the time scale of the
dynamics, W ∈ Rm×m, C ∈ Rl×m, and B and b are as in the previous section. The parameters are
now θ = {W,B,A, b} and the input is a function of time: x = {xt}t≥1, s.t. xt ∈ Rd. Throughout,
we will assume xt ∈ Ux ⊂ Rd, with Ux being compact for all t. When α = 0, β = 1 one gets the
standard vanilla RNN formulation; alternatively α and β can be set to approximate continuous time
dynamics using Euler’s method.

Lemma 1. Let h : U → Rl be a continuous function on compact support U ⊂ Rd. Then for
any ϵ, δ both in (0, 1), we can find a layer width m ∈ N such that with probability at least 1 − δ
∃M ∈ {0, 1}m satisfying the following:∫

U
||h(x)− yMm (x)||dx ≤ ϵ. (D.3)

Proof
First, we find a neural network with parameters that approximate the desired function h. Given

the assumptions on ϕ, we can use Proposition 2 to find n and parameters θ∗ = {A∗, B∗, b∗} such
that ∫

U
||h(x)− yn(x, θ

∗)||dx ≤ ϵ

2
, (D.4)

because U is compact and h is continuous.
We make a brief comment about the domain of a given activation function in yn. ϕ will be

operating on a compact domain {ux+ b : u ∈ [−γ, γ]d, x ∈ U, b ∈ [−γ, γ]}, as a consequence of
the compactness of the support of the parameters, and of the assumed compactness of U . By its
continuity, ϕ is Lipschitz and bounded on this domain. We label Lipschitz constant and bound Kϕ

and Mϕ respectively. We further define Mx to be the bound for x on U , and |U | to be the value∫
U dx, which is finite by the boundedness of the domain.

Next, we construct a masked random network that approximates yn with high probability. By
Lemma 3, we can find a random feed-forward neural network of hidden layer width m such that
a mask, M, exists satisfying |θ∗i − θMi | < ε for some arbitrarily ε on (0, 1). In particular, we can
choose ε as:

|θ∗i − θMi | < ε =
ϵ

2|U |max
(
nl(Kϕγ[1 +Mx] +Mϕ), 1

) (D.5)

for all i with probability at least 1− δ. If we are in the regime of probability 1− δ where the mask
satisfying the above error bound exists then we get
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||yMm (x)− yn(x)|| ≤ nl[Kϕγ(1 +Mx) +Mϕ]ε ≤
ϵ

2|U |
, (D.6)

where, in addition to Eq.D.5, we use the assumptions on ϕ and U stated before the start of the
proof and repeated applications of the triangle inequality.

Integrating the error over the domain and using Eq.D.4 and Eq.D.6 gives

∫
U
||h(x)− yMm (x)||dx ≤

∫
U
||h(x)− yn(x)||dx+

∫
U
||yMm (x)− yn(x)||dx ≤ ϵ, (D.7)

with probability 1− δ.

Theorem 3. Assume that ϕ is γ-bias learning and, for compact U ⊂ Rd, h : U → Rl is continuous.
Then for any degree of accuracy ϵ ∈ (0, 1), there exists m ∈ N and b ∈ Rm such that a neural
network of the form shown in Eq.D.1 with hidden layer width m, each individual weight sampled
from pR, and bias vector b approximates h with error less than ϵ.

Proof Observe that, once we have choosen an m satisfying the desiderata of Lemma 1, because ϕ
is assumed to be γ-bias-learning, m is some finite value and all variables that make up the input of
ϕ are bounded, we can implement the mask by setting bi to be very negative for every i such that
Mi = 0. For every bi such that M = 1 we simply leave bi at its original randomly chosen value.

Corollary 1. Assume d = l, that is, the output and input spaces are the same. Then the results
of Lemma 1 and Theorem 3 also hold for res-nets; that is, networks whose output is of the form
x+ yMm (x).

Proof This follows by observing that h(x) + x is also a continuous function and then replacing h(x)
with h(x) + x in Eq.D.3 and rearranging.

Lemma 2. Consider a discrete time, partially observed dynamical system of the form of, and
satisfying the same conditions as, the one in Eq.C.3. Let 0 < T < ∞, initial condition z0 ∈ Uz ,
input x ∈ UT

x , ϵ ∈ (0, c) and δ ∈ (0, 1). Then we can find an RNN initial condition r0 and a layer
width m ∈ N such that with probability at least 1− δ ∃M ∈ {0, 1}m satisfying the following:

T∑
t=1

||yt − yMt || < ϵ. (D.8)

Proof
It is well known that we can arbitrarily approximate this dynamical system with an RNN ; we

provide a simple proof of this in Proposition 3. In particular, for arbitrary ϵ ∈ (0, 1) we can find an
RNN of the form in Eq.D.2, with hidden layer width n ∈ N and output ŷ, satisfying:

T∑
t=1

||ŷt − yt|| <
ϵ

2
, (D.9)

for any initial condition of the dynamical system selected within the invariant set Uz . We note
that this is a point-wise convergence. It can be shown (see Prop.3) that the hidden states of this

12
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RNN–not including its initial conditions–remain on a compact set when approximating finite time
trajectories of the original dynamical system with initial conditions in Uz . We will name the compact
set containing RNN hidden states Ur. Given this compactness, we can then show that the following
set

Ũ = {ur + vx+ b : u ∈ [−γ, γ]n, v ∈ [−γ, γ]d, r ∈ Ur, x ∈ U, b ∈ [−γ, γ]}, (D.10)

is itself compact, by the compactness of the sets from which it is formed. By its own compactness
and the assumptions on ϕ we observe that ϕ has Lipschitz constant Kϕ. By the compactness of U
and Ur, we can bound x and r on these sets, to get bounds Rx and Rr respectively.

Let the parameters of the above-defined approximating RNN be given by θ∗ = {A∗,W ∗, B∗, b∗}.
Then by Lemma 3 we can find a random RNN of hidden width m and with parameters θ such that a
mask, M, exists satisfying

|θ∗i − θMi | < ε =
ϵ

2nT max
(
RnβKϕR̃

∑T−1
t=0 (α+RβKϕn)t +Rr, 1

) , (D.11)

for all i with probability at least 1− δ, where R̃ = Rx +Rr + 1. One can show quite simply using
induction that if |θ∗i − θMi | < ε for all i we get

T∑
t=1

||yMt − ŷt|| < nT
[
RnβKϕR̃

T−1∑
t=0

(α+RβKϕn)
t +Rr

]
ε. (D.12)

The triangle inequality on ||yMt − ŷt + ŷt − yt||, along with Equations D.9, D.11, and D.12
completes the proof.

Theorem 4. Consider the RNN in Eq.D.2 with ϕ a γ-bias learning activation, and input, output,
and recurrent weight parameters for each hidden unit sampled from pR. We can find a hidden layer
width, a bias vector, and a hidden-state initial condition for the RNN such that, with a probability
that is arbitrarily close to 1, the RNN approximates finite trajectories from the dynamical system
defined in Eq.C.3 to any positive error on the interval (0, c), where c is defined above.

Proof This follows directly from Theorem 2, by observing that one can replace the mask by simply
setting biases to some sufficiently low value.

Appendix E. Supplementary Lemmas

The following result is well known in the literature; see e.g. Proposition 1 of [14].

Proposition 2. For any ϵ > 0 ∃n ∈ N s.t.∫
U
||h(x)− yn(x, θ

∗)||dx ≤ ϵ (E.1)

Corollary 2. The above result holds if we restrict the output weight matrix of the neural network to
have rank equal to the output dimension.

13
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Proof This is because the set of full rank matrices is dense in Rm×n for m,n ∈ N.
Consider matrices W ∗ ∈ Rn×n, B∗ ∈ Rn×d, A∗ ∈ Rl×n, and vector b∗ ∈ Rn. We can vectorize

and concatenate their elements into the single long vector θ ∈ Rπ, where π = n(n + d + l + 1).
Assume that |θ∗i | < γ for all i.

Next, construct W ∈ Rm×m, B ∈ Rm×d, A ∈ Rl×m, and vector b ∈ Rm, by sampling each
element randomly from a uniform distribution on [−(γ + 1), (γ + 1)]. We analogously group these
into a single vector, θ ∈ Rm(m+d+l+1) Observe that for each M ∈ {0, 1}m, we can construct
sub-matrices of W , B, A, and sub-vector of b by deleting column and row pairs in W , rows in B,
columns in A, and elements of b whose indices correspond to i ∈ {1, . . . ,m} such that Mi = 0.
For a given M, we define θM to be the vector constructed by flattening and concatenating these
sub-matrices and vector. We then have the following lemma:

Lemma 3. For θ∗ defined above (and otherwise arbitrary), and arbitrary ϵ, δ both on (0, 1), we can
find m > n such that with probability at least 1− δ ∃M ∈ {0, 1}m with only n non-zero elements
such that |θ∗i − θMi | < ϵ for all i ∈ {1, . . . , n}. In particular, any m ≥ n log δ

log[1−( ϵ
γ+1

)π ] will satisfy the

result.

Proof We will refer to the event that the desiderata of the lemma are satisfied as A1, that is:
∃M ∈ {0, 1}m with only n non-zero elements such that |θ∗i − θMi | < ϵ for all i ∈ {1, . . . , n}. The
event that the desiderata are not satisfied is Ac

1.
Assume that m⋆ = kn for some k ∈ N+. Consider the ‘block’ mask Mk1 s.t. Mk1

i = 1 only
for i ∈ {(k1 − 1)n + 1, . . . , k1n}, with 0 < k1 ≤ k. Note that the n elements selected by these
block masks are non-overlapping for two different k1. Let event A2 be the event that there is a block
mask that occurs satisfying the desiderata of the lemma. Clearly A2 ⊂ A1 =⇒ Ac

1 ⊂ Ac
2 =⇒

P (Ac
1) ≤ P (Ac

2). A
c
2 is the probability that there is no block mask satisfying the desiderata of the

lemma. Observe that

P (Ac
2) = P

[ k⋂
k1=1

{kth1 block mask doesn′t work}
]
=

k∏
k1=1

P ({kth1 block mask doesn′t work})

=
k∏

k1=1

1− P ({kth1 block mask works}) =
[
1−

( ϵ

γ + 1

)π
]m⋆

n

, (E.2)

which follows from the fact that the elements of the matrices are independently sampled and the
elements corresponding to sub-matrices selected by a given block mask are independent of those
associated with another block mask. By making m⋆ very large we can make P (Ac

2) arbitrarily small.
Because P (Ac

1) ≤ P (Ac
2)–and the desiderata of the lemma are not satisfied solely on Ac

1–the result
follows by selecting m⋆ = m such that P (Ac

2) ≤ δ, and taking M to be a block mask which, from
the above, we can do with probability greater than or equal to 1− δ.

Remark: We note that, in Eq.E.2, n will likely also depend implicitly on γ. If γ is very small
then we will need to stack many ReLUs on top of each other to approximate the desired function,
leading to a larger number of units. Conversely, if γ is very large we will need to sample a large
number of units to before we get a unit appropriately close to the correct parameter value. This
suggests the existence of some sweet spot in the value γ, which we leave for future work to explore.

For the following proposition we consider the discrete time dynamical system that we wish to
approximate to be as in Eq.C.3.
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Proposition 3. For any initial condition z0 ∈ Uz , input x ∈ UT
x , ϵ ∈ (0, c) and any ∞ > α, β > 0

we can find an RNN of the style of Eq. D.2 of hidden width n ∈ N and an initial value r0 for the
RNN such that:

T∑
t=1

||ŷt − yt|| < ϵ (E.3)

where ŷt is the output of the RNN and yt is that of the dynamical system.

This result is well known, see e.g. [21]. For completeness, we provide one such proof that works
from the case of universal approximation with feed-forward neural networks.
Proof We want to approximate the dynamical system:

zt+1 = F (zt, xt), yt = Czt, z0 ∈ Uz, (E.4)

defined on set Ũz = {z0 + c0 : z0 ∈ Uz, ||c0|| < c}, where Uz is an invariant set (see §??).
We define the set:

Uzx = {[z + c0 x] : z ∈ Uz, x ∈ U, ||c0|| < c}. (E.5)

Importantly, this set is compact given the compactness assumptions on U and Uz . Also note that,
since F is assumed continuous, it will be KF -Lipschitz on this compact set for some constant KF .
We can thus use the corollary to Proposition 2 to find a neural network of hidden dimension n ∈ N
that approximates F with a maximum-rank output matrix, A. We write this neural network:

ẑ = −αz + βAϕ(Wz +Bx+ b) = F̂ (z, x), (E.6)

assuming z ∈ Uz and x ∈ U , with A ∈ Rs×n, W ∈ Rn×s, B ∈ Rn×d, and b ∈ Rn. In particular,
we can find arbitrary ϵ with 0 < ϵ < c such that:

||F̂ (z, x)− F (z, x)|| < ε =
ϵ

T max(RC
∑T−1

t=0 Kt
F , 1)

, (E.7)

where RC = ||C||. Fix T ≥ 1. To prove that we can approximate the underlying dynamical
system, we use induction starting at time t = 1. The base case will be

||ẑ1 − z1|| = ||F̂ (z0, x0)− F (z0, x0)|| ≤ ε, (E.8)

by our choice of n and initial condition, and that [z0, x0] ∈ Uzx. Importantly, this implies also
that ||ẑ1 − z1|| < ε. Because ε < c this means that [ẑ1 x1]

⊤ ∈ Uzx.
For t = 1, ε =

∑t−1
t′=0K

t′
F ε. We thus make the induction hypothesis that ||ẑt−zt|| <

∑t−1
t′=0K

t′
F ε

and that [ẑt xt]
⊤ ∈ Uzx. If T = 1 we are finished. If T > 1 we assume 1 < t < T and use this

hypothesis to prove the induction step:

||ẑt+1 − zt+1|| ≤ ||F̂ (ẑt, xt)− F (ẑt, xt)||+ ||F (ẑt, xt)− F (zt, xt)|| (E.9)

≤ ε+KF ||ẑt − zt|| = ε
t∑

t′=0

Kt′
F <

c

T
. (E.10)
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Because c
T ≤ c, [ẑt+1 xt+1]

⊤ ∈ Uzx. Then

T∑
t=1

||ŷt − yt|| ≤ RCTε

T∑
t=0

Kt
F ≤ ϵ. (E.11)

While we have approximated the dynamical system it is not yet in the standard rate-style RNN
form. However, we can obtain the rate form by changing from tracking ẑ to a different dynamical
variable: rt ∈ Rn. Because A is assumed to be maximum rank, we can find r0 ∈ Rn such that
z0 = Ar0. Take this as the initial value for an RNN with dynamics:

rt+1 = −αrt + ϕ(WArt +Bxt + b) (E.12)

It is easy to see that ẑt = Art for all 0 ≤ t ≤ T . It follows that yt = CArt ∀t. Thus, this RNN
approximates the original partially observed dynamical system.

Lastly, we note that for the choice of r0 that we have made all rt that we encounter will be
contained within a compact set. This is because all Art = ẑt (not including r0). We will define this
set to be Ur, for use in Lemma 2.

Appendix F. Task Variance Analysis for FFNs in Section 3.1

We investigated the task-specific functional organization of the hidden units by estimating the single-
unit task variance (TV) [28] (same setup as in Fig. 1B), defined as the variance of a hidden unit
activation across the test set for each task. The TV conveys the overall amount of stimulus-related
information a unit encodes during each task. A unit with high TV in a particular task indicates that
its responses vary across stimuli, suggesting that the unit is instrumental for that task performance. A
unit with high TV in one task and low TV for all other tasks is specialized to one particular task and
does not participate in other tasks. We clustered the hidden units TV using K-means clustering (K
chosen by cross-validation) on the vectors of TVs for each unit and found that distinct functional
clusters of hidden units emerged (Fig. 1C). Most units reflected strong task specialization, i.e., they
were only being used for specific tasks (ex: cluster 3 for KMNIST and cluster 10 for Osmanya).
Others were used for many or all tasks (ex: clusters 1 and 8), although a smaller fraction of clusters
exhibited shared activation across multiple tasks. Overall, we conclude that multi-task bias-learning
leads to the emergence of task-specific functional organization.

Appendix G. Relationship Between Bias Learning and Masked Learning in FFNs

As our theory shows that biases can universally approximate simply by turning units off, we wished
to test whether bias learning performs similarly to learning masks, and to what extent solutions
learned by these approaches are different from each other. We compared training mask to bias
learning on networks with the same random input/output weight matrices. For mask-training, we
approximated binary masks with ‘soft’ sigmoid masks and optimized the sigmoid parameters. The
sigmoid was steepened over the course of training to approximate the mask, and at test time the
slope was effectively binarized. We compared pairs of masks learned in this fashion with learned
biases on single-hidden layer ReLU networks with 10, 000 hidden units. We observed a trend of
bias-training slightly improving upon mask-training (Fig.G.1.A), an expected increase given the
added flexibility of biases over masks. Further research is needed to determine if this trend is reliable

16



EXPRESSIVITY OF NEURAL NETWORKS WITH RANDOM WEIGHTS AND LEARNED BIASES

Figure G.1: Comparing bias and masked learning on Same Weights. A. Bias-learning achieved ∼
1 percentage points higher accuracy on MNIST over mask-learning (0.915± 0.0028SD
bias vs. 0.905± 0.0028SD mask). B. Histograms of hidden unit variances, calculated
over 10, 000 MNIST samples, for bias-trained (orange) and mask-trained (black). His-
togram counts are log-scaled. C. Scatter plot of hidden unit variances from C but taking
only units that are non-zero/not approximately-zero in mask/bias-trained networks; bias-
trained on x-axis and mask-trained on y-axis. We observe a mean correlation coefficient
of 0.461± 0.022SD. Plot A is mean±1sd over 4 mask-trained/bias-trained nets. Plot B,
and C are both one representative network trained with biases and with masks. Learned
parameters were initialized to uniform on [−0.1, 0.1], weights to uniform on [− 1√

d
, 1√

d
];

all other hyper-parameters can be found in the codebase.

across datasets/different network parameterizations, and whether there might be scenarios where one
style of learning works better or worse.

Interestingly, we found that bias and mask learning find different, albeit correlated, solutions. We
calculated the variance of each hidden unit across 10, 000 MNIST images, in both bias and mask
trained paradigms, as a measure of the hidden layer representation of MNIST. The histogram over
hidden units of these variances is plotted for trained masks/biases (black/orange) on the same network
weight (Fig.G.1.B). The mask-trained networks find sparser solutions (more 0s, far left histogram
bin) and perform the task with lower unit variance values (see middle/right of histogram) compared
to the bias-trained networks. We also plotted the correlation (scatter plot; Fig.G.1.C) between hidden
unit variances for units in mask and bias-trained networks. The scatter plot and correlation were
calculated after removing unit variances that were zero in the mask-trained net and sufficiently close
to zero (mean variance divided by 100) in the bias-trained network. Despite the differences observed
in the histogram, we do notice a correlation between hidden unit variances, suggesting that there is
some overlap in the way that these two methods evaluate on MNIST.
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Appendix H. Bias Distribution

Figure H.1: Bias distribution of bias-only network with 32000 hidden units. We observe similar
clusters as in Figure 1C, further showing the relationship between task variance and bias
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