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Abstract: Pre-explored Semantic Maps, constructed through prior exploration
using visual language models (VLMs), have proven effective as foundational el-
ements for training-free robotic applications. However, existing approaches as-
sume the map’s accuracy and do not provide effective mechanisms for revising
decisions based on incorrect maps. To address this, we introduce Context-Aware
Replanning (CARe), which estimates map uncertainty through confidence scores
and multi-view consistency, enabling the agent to revise erroneous decisions stem-
ming from inaccurate maps without requiring additional labels. We demonstrate
the effectiveness of our proposed method by integrating it with two modern map-
ping backbones, VLMaps and OpenMask3D, and observe significant performance
improvements in object navigation tasks. More details can be found on the project
page: https://care-maps.github.io/.

Keywords: Object Navigation, Vision-Language Models, Uncertainty Measure-
ment, Training-Free Replanning

1 Introduction

Navigating in indoor environments to locate and reach target objects is a fundamental capability for
robotic applications. Conventional training-based object navigation methods necessitate extensive
annotations, meticulous model design, and prolonged training periods to effectively align the con-
trol actions with visual perception. Advancements in visual language models (VLMs) have led to
the development of modular approaches that separate perception from actions, utilizing pre-trained
knowledge. Under this framework, visual perception can be independently learned without direct
control, making exploration prior to task execution an effective strategy. Pre-explored Semantic Map
[1, 2, 3, 4, 5], constructed through prior exploration and using visual language models (VLMs), has
become a fundamental backbone for robotics tasks. By constructing the map during environmen-
tal exploration, Pre-explored Semantic Map equips the agent with pre-existing knowledge of the
environment, facilitating training-free robotic tasks such as manipulation motion planning [6], in-
teractive exploration [7], and zero-shot object navigation [5]. However, current approaches presume
that Pre-explored Semantic Map is always accurate—unbiased and noise-free—and they lack ef-
fective mechanisms for revising decisions based on incorrect maps. This assumption is flawed for
real-world applications, where visual perception must contend with diverse environments, including
varying lighting conditions, textures, weather, and dynamic elements. Consequently, visual per-
ception cannot be assumed to be perfect. In addition, evaluating the quality of the Pre-explored
Semantic Map is also challenging, as there are no existing labels for comparison.

Intuitively, the map-based agent plans its path by retrieving the goal from the map, where retrieval is
facilitated by sorting confidence scores based on map-query matching. Therefore, should the initial
attempt fail, the agent can proceed to another unvisited location with the highest confidence score.
Nevertheless, this approach assumes the map is accurate. However, failure to retrieve the map
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Figure 1: Motivation. When the initial map query fails, high-
confidence regions also tend to fail due to biases in visual per-
ception. (Query: Table, Grounding: Chair) Figure 2: Method Overview.

with the highest confidence score may indicate a mismatch or error in the map-query alignment.
Given the observation that the visual observation upon which the map is based fails to satisfy the
query, we hypothesize that integrating Uncertainty measurement into the decision-making process
can enhance the agent’s ability to cope with inaccuracies in the map. By prioritizing areas with
the greatest uncertainty, the agent targets high-uncertainty points for maximum information gain.
This improves performance because initial prediction failures often result from biases or errors in
the map data. Replanning based solely on confidence scores can perpetuate these biases. High-
uncertainty areas, however, are less influenced by existing biases. Therefore, integrating uncertainty
measurement reduces bias impact and increases the likelihood of successfully finding the goal. In
addition, the same region can be observed from multiple viewpoints. If the VLM predictions from
these multiple viewpoints are not aligned, the prediction is likely incorrect. Therefore, Multi-view
Consistency can also serve as an unsupervised metric for agent replanning.

To this end, we propose a novel Context-Aware Replanning (CARe) to revise the plan when the
initial planning fails. Specifically, we first select k candidate regions as a strategy to mitigate the
limitations of imperfect perception systems. While the top-ranked region might not always be re-
liable due to potential inaccuracies in perception, selecting a broader set of top candidates ensures
a more robust assessment. Afterward, we measure uncertainty and multi-view consistency for can-
didate regions and select the best candidate based on the measured values. Our evaluation in two
popular Pre-explored Semantic Map backbones, VLMaps [5] and OpenMask3D [3], showcased that
our method consistently outperforms the strategy of selecting the highest-scored unvisited region.

The contribution of this work is summarized as follows:

• We propose a novel Context-Aware Replanning (CARe), which replans based on the con-
text of an incorrect Pre-explored Semantic Map when the initial task fails.

• We design two variants of Context-Aware Replanning, based on uncertainty and multi-view
inconsistency, without requiring additional annotations.

• Our method consistently outperforms the strategy of selecting the highest-scored unvisited
region using two different backbones [5, 3], demonstrating its effectiveness and robustness.

2 Related Work

Visual Language Models (VLMs) serve as the backbone of modern modular training-free robotic
applications by aligning visual perception with language, enabling robots to understand and follow
natural language instructions. CLIP [8] achieves this alignment through contrastive learning, form-
ing the foundation for various training-free robotic applications. For instance, OpenMask3D [3]
and CLIP-Fields [2] utilize CLIP to construct maps. Additionally, several open-vocabulary visual
perception tools, such as GLIP [9] for object detection and LSeg [10] for semantic segmentation,
are crucial for robotic applications. For instance, VLMaps [5] uses LSeg to build its maps. While
VLMs achieve significant performance on various computer vision tasks, robotic applications must
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handle diverse environments with varying lighting conditions, textures, weather, and object cate-
gories. Therefore, accounting for and replanning with errors in maps is crucial when leveraging
maps constructed with VLMs.

3 Method

In this section, we first introduce the background of our method in 3.1. Next, we illustrate the moti-
vating concept behind our method to address a significant issue in current approaches in Section 3.2.
We then detail our approach, which primarily focuses on leveraging uncertainty measures to select
from a set of high-confidence candidates, as described in Section 3.3. Within this section, we further
explain the single and multi-view uncertainty measures that our method utilizes. Subsequently, we
outline the strategies we tested to generate the set of high-confidence candidates in Section 3.4. Fi-
nally, we describe the maps used in our experiments and discuss how they were adapted to integrate
with our method in Section 3.5. Figure 2 illustrates a brief overview of our method.

3.1 Map-Based Navigation.

3.1.1 Goal-Oriented Object Navigation as Object Retrieval from Map.
Navigating in a pre-explored environment typically involves an agent’s internal representation of the
environment, referred to as the map. Recent methods [3, 5] have reframed the goal-oriented object
navigation task into an object retrieval task on the map by employing a path planner that devises a
route from the agent’s current position to the target, coupled with a policy that actuates the agent to
follow this planned path.

3.1.2 Replanning on Failure.
In practical scenarios, retrieval from the map is not always successful. In such cases, the capability
to automatically replan becomes crucial for an autonomous agent, as it circumvents the need for
costly human intervention. An intuitive approach to replanning would involve selecting the unvisited
candidate location with the highest retrieval score.

3.2 Uncertainty aware object retrieval.

The conventional way to use navigation maps typically involves using a text query to retrieve the can-
didate with the highest matching score. Such a score is calculated with pretrained visual-language
grounding models such as CLIP[8]. These grounding models have demonstrated impressive gen-
eralization abilities due to the large dataset used in the pertaining phase, which is probably why
most of the works navigating with maps assume that the map is perfect. Nevertheless, we argue that
despite the size of the training dataset, there might still be bias introduced by the model architecture
or the dataset, which causes the user expectation of a query to diverge from the model’s belief. Fur-
thermore, during the construction phase of the map, the model prediction might be interfered with
by surrounding objects or some view-dependent bias, causing the extracted feature to be noisy.

To address these issues, our framework integrates uncertainty measures to enhance retrieval accu-
racy. These measures can potentially reflect biases or noise associated with a candidate, thereby
improving retrieval performance.

3.3 Uncertainty Measures.

3.3.1 Single-View Uncertainty Measures.
We hypothesize that when the grounding model retrieves the wrong object with high confidence,
the model might have shown some bias in the object category. This is a common failure mode
in conventional map-based navigation because the algorithm always chooses the candidate with
the highest score/confidence. When the model bias occurs, solely looking at the confidence/score
might give misleading retrieval results. On the other hand, completely ignoring the confidence/score
might also be suboptimal, as it disregards valuable information from the strong grounding model. In
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this case, encouraging the retrieval of high confidence and high classification uncertainty candidates
might be helpful as it both leverages the confidence information and mitigates the impact of potential
biases by encouraging the exploration of uncertain candidates. Specifically, we first identify a list of
high-confidence candidates and choose the candidate in the list with the highest entropy.

3.3.1.1 Entropy: Let C = {c1, c2, . . . , cn} be the set of high-confidence candidates. For each
ci, we compute the entropy H(ci) of its classification distribution Pi = {p1, p2, . . . , pk} as:

H(ci) = −
k∑

j=1

pj log pj

where pj is the probability of candidate ci belonging to class j. We select the candidate c∗ with the
highest entropy:

c∗ = arg max
ci∈Chigh

H(ci)

With this definition, a high entropy indicates that the classification distribution resembles a spread-
out probability distribution, suggesting that the model considers several classes as plausible alterna-
tives, thereby reflecting uncertainty. This approach ensures that we are not only considering candi-
dates with high confidence but also those with high uncertainty, thereby reducing the likelihood of
biased retrievals. For the specific method of selecting high-confidence candidates, please refer to
Section 3.4.

3.3.2 Multi-View Uncertainty Measures.
When the feature of a candidate is extracted by a small number of views, the resulting feature can
easily be interfered by nearby objects or view-dependent model bias. To mitigate this issue, we pro-
pose to encourage multi-view consistency when retrieving the candidate. Similar to the single-view
case, we first identify a list of high-confidence candidates and then encourage the retrieval of low-
multi-view inconsistency (uncertainty) candidates. We experimented with two kinds of multi-view
uncertainty measures: channel-average feature standard error and mean pairwise KL divergence on
multi-view classification probabilities.

Let C = {c1, c2, . . . , cn} be the set of candidates, and Vi = {v1, v2, . . . , vmi
} be the set of views

for candidate ci. For a candidate ci with only a single view feature, we set the uncertainty score
U(ci) to infinity.

3.3.2.1 Channel-average Feature Standard Error: For each candidate ci with multiple views,
the standard error SE(ci) is computed as:

SE(ci) =
1

d

d∑
k=1

σk√
mi

where σk is the standard deviation of the k-th feature across all views, d is the dimensionality of the
feature vector, and mi is the number of views for candidate ci.

Finally, we choose the candidate c∗with the lowest standard error. Since most maps utilize the mean
feature from multiple views for retrieval, a low standard error on these multi-view features indicates
that the mean feature is statistically more reliable. Therefore encouraging low standard error could
potentially reduce noisy retrievals.

3.3.2.2 Mean Pairwise KL Divergence: For each candidate ci, let Pij = {pij1, pij2, . . . , pijk}
be the classification probability distribution for view vj . The mean pairwise KL divergence DKL(ci)
is computed as:

DKL(ci) =
2

mi(mi − 1)

mi−1∑
j=1

mi∑
l=j+1

(
1

2
DKL(Pij ∥ Pil) +

1

2
DKL(Pil ∥ Pij)

)
where DKL(P ∥ Q) is the KL divergence between two probability distributions P and Q.
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We then choose the candidate c∗with the lowest mean pairwise KL divergence. A low mean pairwise
KL divergence indicates that the classification distribution is consistent across multiple views. Sim-
ilar to the standard error, promoting consistency in the classification distribution could help reduce
noisy retrievals.

3.4 Selection of High Confidence Candidates.

In perception process, the highest-ranked class may not always be accurate because of potential
errors or limitations in the system’s capabilities. By selecting the top k candidate instead of relying
solely on the top-ranked one, we mitigate the risk of inaccuracies and enhance the robustness of
the assessment. This approach allows us to account for possible errors and improve the overall
reliability by considering multiple promising candidates.

3.4.1 Top-k Confidence:
Following the conventional and intuitive method, we simply choose the point with the highest con-
fidence:

argmax
i

confcls
i

where confcls
i is the confidence, which is the probability or LSeg[10] score in the case of

OpenMask3D[11] and VLMaps[5] respectively, of a single point i with the specified goal class
cls in the task.

3.4.2 Top-k Category:
Similar to the concept of top-k accuracy (Acc@K), we filter the point by whether its top-k confident
predicted class contains the specified goal class or not, which can be formulated as follows:

Filter(cls, confi, k) =
{

True, if cls ∈ (argsortcls confi) [0 : k]

False, otherwise

where cls is the target class and (argsortcls confi) [0 : k] is the highest k class prediction for the
point i.

3.5 Maps.

We experimented with the proposed uncertainty-aware navigation method on two popular maps for
object navigation: OpenMask3D [11] and VLMaps [5]. As described in Section 3.1.1, we focus
on retrieval from the map by assuming successful path planning and following in OpenMask3D.
In VLMaps, we employed the built-in path planner and follower from the HabitatSim simulator
[12, 13, 14].

3.5.1 OpenMask3D.

OpenMask3D[11] takes in the scene point cloud and posed RGB images, generates class-agnostic
3D masks on the point cloud, and uses the posed RGB images where the object is visible to provide
semantic features. The features are calculated with CLIP with cropped images of the corresponding
object and thus enable retrieval later on. If the object is visible in multiple views, OpenMask3D
takes the average of multi-view features. The implementation details are further described in A.2.

3.5.2 VLMaps.

VLMaps takes the RGB-D image and its corresponding pose as input. It first generate the local
point cloud which is then projected to the world coordinate frame and the map position with the
information of camera poses. After that, the RGB image is fed into Visual Encoder of LSeg[10] to
get its image feature, which will then be projected to the corresponding map position. Though we
do not modify the process of building the map, we store some more data such as the standard error
and KL divergence of each point on the map to decrease the size of the map and avoid repetitive
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Replan Strategy Selection Criteria k=2 k=4 k=8 k=16 k=40

No replan (top1 acc) - 12.09 12.09 12.09 12.09 12.09
Oracle - 36.40 36.40 36.40 36.40 36.40

Max confidence (top2 acc) - 17.05 17.05 17.05 17.05 17.05
Random replan - 13.77 13.77 13.77 13.77 13.77

Random from top-k confidence (3.4.1) 17.12 16.92 16.81 16.34 14.97
category (3.4.2) 13.79 13.72 13.54 13.63 13.44

Max entropy (3.3.1) confidence 17.49 18.11 18.20 17.66 15.20
category 17.77 17.71 17.78 17.69 17.09

Min stderr (3.3.2.1) confidence 17.64 17.71 17.65 16.40 15.19
category 18.07 18.00 18.00 17.86 18.07

Min pwKL (3.3.2.2) confidence 17.49 17.36 17.73 17.44 16.07
category 18.09 18.13 18.29 18.33 18.75

Table 1: OM3D Object Retrieval Success Rates. The upper half of the table presents the baseline
methods, as described in 4.1.1, while the lower half displays variants of our method. The ’Replan
Strategy’ column indicates the replanning strategies used, as detailed in 3.3. The ’Selection Criteria’
column specifies the criteria employed to generate the high-confidence candidate set, as described
in 3.4. The best-performing entry for each column, excluding the Oracle, is bolded to emphasize
the best-performing method given k. The best-performing entry for each row is highlighted to
showcase the performance of each method when a hyper-parameter search on k is available. Finally,
the best-performing baseline entry is italicized for easier comparison.

computation in the evaluation process. When calculating the Channel-average Feature Standard
Error, we incorporate the distance weighting [1, 5] information of each feature which is utilized
when building the map. For more details, please refer to A.3.

4 Experiments

4.1 OpenMask3D Object Retrieval Benchmark.

To validate our method, we conducted an experiment in the Matterport3D environment [13, 14, 12]
using OpenMask3D on a two-shot object retrieval task. In this task, a second retrieval attempt is
allowed if the first one fails. Each room is benchmarked separately, and the results are presented
in Table 1. Note that in all baselines, the first candidate is always retrieved based on maximum
confidence in the query class.

We utilized the Matterport raw category, which contains 1658 classes, as the vocabulary required
by OpenMask3D. In total, 10 scans (houses), 214 rooms, and 5370 object instances were evaluated
in this experiment.

4.1.1 Baselines.
• No replan: This is the top-1 retrieval accuracy without a second retrieval attempt.
• Oracle: This is the upper-bound baseline where we count it success if any of the predicted

3D masks, regardless of its class scores, matches the GT one. This can also be seen as a
top-infinity accuracy baseline.

• Max confidence (top2 acc): This is a naive baseline where the candidate with the second-
highest confidence is selected when the first one fails, which matches the typical usage of
navigation maps.

• Random replan: This baseline randomly selects a candidate from all unvisited candidates
as the second attempt.

• Random from top-k: This baseline randomly selects a candidate from the high-confidence
candidates set with the corresponding selection criteria as described in 3.4.
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Replan Strategy Selection Criteria k=4 k=8 k=16 k=40 k=100

No replan - 54.4 54.4 54.4 54.4 54.4

Max confidence - 67.0 67.0 67.0 67.0 67.0
Random replan - 56.2 56.2 56.2 56.2 56.2

Max entropy (3.3.1) confidence (3.4.1) 81.0 67.6 67.9 66.8 65.4
category (3.4.2) 70.4 67.3 64.2 63.3 63.3

Min stderr (3.3.2.1) confidence 82.7 79.9 80.5 79.7 77.7

Table 2: VLMaps Replanning Subgoal Success Rates. Similar to table 1, the baseline methods
and ’Replan Strategy’ column are explained in 4.1.1 and 3.3, respectively. The ’Selection Criteria’
column describes the criteria for generating the high-confidence candidate set, as detailed in 3.4.

4.1.2 Evaluation Metric.

Given an object mask retrieved with the text query, we calculate its point cloud IoU with the GT
mask corresponding to the query. We count it a success if the IoU between GT mask and the
retrieved mask is greater than 0.25.

4.1.3 Results.

The best baseline entry from Table 1 is the ”Random from top-2 confidence” method, which sur-
passes the naive maximum confidence baseline. This suggests that the map begins to provide biased
confidence after the first failed retrieval.

Our experiments demonstrate that both single-view and multi-view methods can enhance replanning
performance. Specifically, 20 out of 25 experiment entries outperformed the best baseline entry,
highlighting the efficacy and robustness of replanning with uncertainty and multi-view consistency.

4.2 VLMaps.

To show the effectiveness of our method on the downstream task brought by the improvement of
the object retrieval performance, we further conducted some experiments on object navigation tasks
using VLMaps. Following the setup of [5], we randomly generate 10 scenes as well as some random
poses for building the maps, and 10 object navigation tasks with some subtasks and subgoals for
each scene. We use the Matterport3D dataset with HabitatSim simulator[13, 14, 12] for the agent to
perceive and navigate. If the navigation fails, we then propose a new position of the specified class
and check whether it is near the correct object. Due to the computational budget, we only select
those methods with competitive results in the previous section.

4.2.1 Evaluation Metric.

Given a proposed point for replanning, we follow the settings of VLMaps which checks whether the
distance from the point to the nearest specified object is less than 1 meter.

4.2.2 Results.

Table 2 showcases the effectiveness of various replanning strategies compared to the ”Max con-
fidence (highest score)” baseline. The ”Max entropy” strategies demonstrate significant improve-
ments over the baseline, reducing bias by considering entropy. The ”Min stderr” strategy consis-
tently outperforms all other methods, including the baseline, by focusing on minimizing the stan-
dard error in confidence predictions. This approach proves to be the most robust and effective,
highlighting the importance of incorporating uncertainty and multi-view consistency in replanning.
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Figure 3: Entropy vs. K. If a model is bi-
ased, selecting low-entropy candidates from it
might further reinforce the bias and ultimately
degrade performance. This figure illustrates the
performance of choosing minimum entropy tar-
gets from top-k confidence candidates.

Figure 4: KL Divergence vs. K. When the
multi-view prediction is noisy, it’s more likely
to provide false information. This figure depicts
the performance of selecting the least consistent
candidate (i.e., maximum mean pairwise KL di-
vergence) from top-k confidence candidates.

4.3 Ablation Studies: Different Choice on Choosing Maximal/Minimal Uncertainty.
To further support our assumptions, we conducted an ablation study with the OpenMask3D setting
by examining different directions of the uncertainty metric. Results in figures 3 and 4 indicate that
the variants consistently underperform the baselines.

5 Limitation

While our proposed CARe effectively cooperates with existing pre-explored semantic maps and
navigation models in a training-free manner to achieve better performance, it may be limited by one
major assumption: CARe assumes that the navigation model has consistent decision biases. This
assumption holds true when working with a frozen model. However, if the navigation model is up-
dated, these decision biases may be eliminated or changed, resulting in less significant performance
improvements from CARe. While our proposed uncertainty measures are theoretically modality-
agnostic and applicable to various 2D or 3D modalities, practical challenges such as sensitivity
to channel scale in feature-based methods and the need for classifiers or alternative approaches in
distribution-based methods should be considered to ensure their effectiveness. Additionally, because
the structure of the semantic map may vary, CARe only uses the fixed semantic map for re-planning
and does not further update the map with new information during the process. This research direc-
tion has the potential to continuously improve performance but is beyond the scope of this study.
We will discuss and verify this direction in our future work.

6 Conclusion

Summary: We propose a novel method, Context-Aware Replanning (CARe), which accounts for
unavoidable errors in Pre-explored Semantic Map and revises the plan. By leveraging uncertainty
and multi-view consistency in Pre-explored Semantic Map, we replan the agent without additional
human effort. We demonstrate the effectiveness and robustness of CARe by integrating it with
two Pre-explored Semantic Map backbones, VLMaps [5] and OpenMask3D [3]. This integration
consistently outperforms all baselines with various hyperparameters, achieving a peak success rate
of 18.75% and a subgoal success rate of 82.7%.

Future Work: Given the portability of CARe, we are optimistic about its potential benefits for
future robotic research and applications. By leveraging CARe, future research areas such as visual-
and-language navigation (VLN) and applications like healthcare robots could facilitate replanning
with reduced labeling costs. For example, a VLN system can leverage Pre-explored Semantic Map
and enhance its success rate and Success weighted by Path Length (SPL) by replanning. The concept
of CARe can also be adopted in the pre-exploring stage to enhance the quality of the Pre-explored
Semantic Map by measuring with uncertainty and re-exploring.
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A More Method Details.

A.1 Pseudocode of CARe.

To further enhance the reproducibility of our work, we present CARe’s pseudocode in Algorithm 1.
Additionally, we will open-source the code once our work is accepted.

A.2 CARe with OpenMask3D .

Method Overview: Following OpenMask3D [3], a transformer-based 3d instance segmentation
model is used to propose 3d masks. After the masks are proposed, up to 5 views where the object is
visible can be selected for calculating the mask feature.

Main Augmentation: To enable multi-view uncertainty calculation, we augmented OpenMask3D
not to take the average of the multi-view features, but to record features from all visible views for
each object mask.

Let:

• P be the scene point cloud.

• I = {I1, I2, . . . , In} be the set of posed RGB images.

• M = {m1,m2, . . . ,mk} be the set of class-agnostic 3D masks generated on the point
cloud.

• Vi be the set of views where object mi is visible.

For each visible object mi: 1. Extract the semantic features using CLIP with cropped images from
the corresponding views:

Fij = CLIP(crop(Ij ,mi)), ∀Ij ∈ Vi

where Fij is the feature vector for object mi from view Ij .

To handle multi-view features: - Instead of averaging the features, record all feature vectors for each
object mask:

Fi = {Fij | Ij ∈ Vi}

This recorded set of features Fi for each object mi enables both single-view and multi-view uncer-
tainty calculations as described in the previous sections.
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Algorithm 1 Pipeline of CARe

1: S = SelectionMethod ∈ {TopConfidence, TopPrediction}
2: k = The boundary of ranking for the selection method
3: U = UncertaintyMeasure ∈ {Entropy, StandardError, KL}
4: N = Number of all the points
5: f = Feature dimensions
6: m = Number of all possible classes
7: O = Set of every point, shape (N, f)

8: if original plan fails then
9: if S == TopConfidence then ▷ Filter with selection method

10: C = score of O from high to low, shape (N, 1)
11: O′ = points with top k highest scores, shape (N ′, f)
12: else if S == TopPrediction then
13: P = predicted class from high to low for each point in O, shape (N,m)
14: O′ = points where their top k predicted classes include the target class, shape (N ′, f)
15: end if
16: if U == Entropy then ▷ Choose a point with uncertainty measure
17: E = entropy of O′, shape (N ′, 1)
18: O∗ = argmax(E), shape(1, f)
19: else if U == StandardError then
20: SE = standard error of O′, shape (N ′, 1)
21: O∗ = argmin(SE), shape(1, f)
22: else if U == KL then
23: KL = KL divergence of O′, shape (N ′, 1)
24: O∗ = argmin(KL), shape(1, f)
25: end if
26: return O∗

27: end if

View Selection: Given a 3d object mask, the 3d points in the mask are projected back to 2d for
all posed RGB images in the scene. We then validate whether the object is visible in a view by
checking if any of the points projected to 2d lies within the image. If there are more than 5 views
where the object is visible, we rank the images by the number of object pixels and choose the top
5 views. This not only helps us manage the computation cost but also encourages the selection of
views that are closer to the object, which might be helpful in filtering out far-away views that might
not capture the object clearly.

Feature Extraction: Following the original OpenMask3D implementation, we used CLIP-ViT-
L/14 for encoding images and texts. The 3d to 2d projection operation mentioned in the last para-
graph has also allowed us to calculate the bounding-box of the object which we refer to as ”object
crops”. For feature extraction, we encode the object crops with the CLIP visual encoder and save
them all instead of taking the average of them. In the original OpenMask3D implementation, they
also used multi-scale cropping for each object crop as a data augmentation. Since data augmentation
is orthogonal to the direction of this work, we omitted this part for simplicity.

A.3 CARe with VLMaps.

Method Overview: Following the original VLMaps [5], we first select 10 scenes and randomly
generate several poses, which includes position and rotation, with their corresponding RGBD obser-
vations. Then, the image features generated by LSeg[10] model are projected to the global frame.
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Channel-average Feature Standard Error for VLMaps: Let C = {c1, c2, . . . , cn} be the set of
candidates, and Vi = {v1, v2, . . . , vmi} be the set of views for candidate ci. For a candidate ci with
only a single view feature, we set the uncertainty score U(ci) to infinity.

Recall that for each candidate ci with multiple views, we compute the standard error SE(ci):

SE(ci) =
1

d

d∑
k=1

σk√
mi

where σk is the standard deviation of the k-th feature across all views, d is the dimensionality of the
feature vector, and mi is the number of views for candidate ci.

And in the case of VLMaps, we incorporate the distance weighting [1, 5] information of each feature
which is utilized when building the map, that is we replace the standard deviation and the sample
size with the weighted version:

SEw(ci) =
1

d

d∑
k=1

σw
k√

meff
i

where σw
k is the weighted standard deviation and meff

i is the effective sample size, calculated as
follow:

meff
i =

(
∑n

i=1 wi)
2∑n

i=1 w
2
i

Finally, we choose the candidate c∗with the lowest standard error.

Map Generation: As previously mentioned, we build the map by the method that is identical to
VLMaps. However, we further save some metrics for each grid which are utilized in our work, such
as entropy, standard error, and KL divergence. Additionally, to align with the method of feature
fusion [1] adopted in VLMaps, we calculate the above metrics in their weighted version.

Navigation and Planning: In the navigation stage, VLMaps first generate a mask indicating the
presence of a specific object class, and it then plans a path to the boundary of the nearest object.
With the provided path, it further calculate the angle and distance between two subsequent halfway
point, generating the low-level actions that is used in the HabitatSim [13, 14, 12].

Evaluation and Re-proposing: After all the actions are executed, we calculate the distance be-
tween the agent and the approximate boundary of the nearest object with the ground truth data
provided by the simulator. Following the settings in VLMaps, we count it success when the distance
is less than or equal to 1 meter. If it fails, we then generate a new proposal of where the object may
be by our method CARe. Similarly, we calculate the distance between the new point and its nearest
object, checking whether the distance is less than or equal to 1 meter.

B Experimental Details.

Quantitative Results: In the setting of VLMaps, we also conduct the KL divergence method as
our uncertainty measure as shown in Table 3. However, some scenes with larger space or more data,
may cause the calculation of pairwise KL divergence become quite computational intensive. Thus,
we have to skip two larger scenes due to the limitation of memory size, which makes the result not
comparable to others.

Qualitative Results: We provide more qualitative results on the anonymized project page1, in-
cluding the process of our proposed CARe solving an object navigation task. These qualitative
results support our claims and make our work more convincing.

1https://carmaps.github.io/supplements/
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Replan Strategy k=4 k=8 k=16 k=40 k=100

No replan 54.4 54.4 54.4 54.4 54.4

Max confidence (highest score) 67.0 67.0 67.0 67.0 67.0
Random replan 56.2 56.2 56.2 56.2 56.2

Min KL from topk confidence 82.7 83.1 85.2 84.5 82.7
Min KL from topk category 79.2 77.1 73.9 64.4 64.4

Table 3: VLMaps Replanning Subgoal Success Rates with KL divergence

C Supplementary Experiments and Analysis.

C.1 Computational Complexity Analysis.

Our method incorporates a replanning phase when the initial retrieval attempt is unsuccessful. Such
replanning phase includes the calculation of uncertainty measures, which introduces additional com-
putational time compared to the baseline methods. To evaluate the computational overhead intro-
duced by our approach, we performed a supplementary experiment and analysis.

Replaning Strategy entropy stderr pwKL

Time Complexity O(n) O(n) O(n2)
Space Complexity O(n) O(n) O(n2)

Table 4: Complexity Analysis with Respect to Candidate Count n.

Table 4 presents a theoretical analysis for each replanning strategy. The computational complexity
for the entropy and stderr measures increases linearly, whereas, for the pwKL measure, the com-
plexity grows quadratically due to the need for pairwise computations between candidates. While
the pairwise KL divergence method provides superior retrieval performance in the main experi-
ments, this theoretical analysis suggests that it might suffer from larger computational costs when
the candidate count n is too large. In this case, users could consider using the stderr metric with
linear complexity to measure multi-view consistency.
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Figure 5: Latency for Top-k Confidence.
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Figure 6: Latency for Top-k Category.

To further demonstrate the real-time applicability of our method, we measured the time requirements
in the OpenMask3d experiment setting. We assumed that object features are precomputed and stored
in the maps, with uncertainty measures such as entropy and KL divergence computed on the fly.
Figures 5 and 6 present the results under different top-k strategies. For all uncertainty measures,
both top-k selection criteria and all tested values of k, a retrieval attempt typically takes less than
15 milliseconds. Considering that real-world physical navigation involves seconds or minutes of
path-following interactions after determining a destination, we believe that the millisecond-level
computational overhead introduced by our method is negligible.
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Note that in practice, the uncertainty measures can also be precomputed like the object features. In
this case, the latency for our method could be further decreased. In latency-critical scenarios, users
of our method can trade space for time by precomputing and storing the uncertainty measures.

D Limitations and Future Works.

While our proposed CARe effectively cooperates with existing pre-explored semantic maps and
navigation models in a training-free manner to achieve better performance, it may be limited by
one major assumption: CARe assumes that the navigation model has consistent decision biases.
This assumption holds true when working with a frozen model. However, if the navigation model
is updated, these decision biases may be eliminated or changed, resulting in less significant per-
formance improvements from CARe. Additionally, because the structure of the semantic map may
vary, CARe only uses the fixed semantic map for re-planning and does not further update the map
with new information during the process. This research direction has the potential to continuously
improve performance but is beyond the scope of this study. We will discuss and verify this direction
in our future work.
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