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a b s t r a c t

We address the class masking problem in multiclass linear discriminant analysis (LDA). In the multiclass
setting, LDA does not maximize each pairwise distance between classes, but rather maximizes the sum
of all pairwise distances. This results in serious overlaps between classes that are close to each other in
the input space, and degrades classification performance. Our research proposes Pareto Discriminant
Analysis (PARDA); an approach for multiclass discriminative analysis that builds over multiobjective
optimizing models. PARDA decomposes the multiclass problem to a set of objective functions, each
representing the distance between every pair of classes. Unlike existing LDA extensions that maximize
the sum of all distances, PARDA maximizes each pairwise distance to maximally separate all class means,
while minimizing the class overlap in the lower dimensional space. Experimental results on various data
sets show consistent and promising performance of PARDA when compared with well-known multiclass
LDA extensions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fisher Discriminant Analysis (FDA) originally developed by
Fisher in 1936 [1] is a technique for supervised linear dimension-
ality reduction that is optimal for classification under two assump-
tions: (i) the number of classes c is exactly two, and (ii) the
samples in each class are assumed to be generated from a multi-
variate Gaussian distribution with different means and equal
covariance matrices (homoscedastic data) [2]. In this context,
FDA is guaranteed to find a one dimensional subspace that will
classify the samples with the optimal error rate, Bayes error, and
the subspace is known to be Bayes optimal [2]. Rao [3] extended
this approach to the multiclass homoscedastic case ðc42Þ, under
the condition that the data features dZc (and assuming the
number of samples n4d). The resultant c�1 dimensional sub-
space is also guaranteed to be Bayes optimal, and the technique
has become known as Linear Discriminant Analysis (LDA). Rao also
noted that in the homoscedastic case, if the lower dimensional

subspace has dimensionality d0oc�1, the resultant subspace will
not be Bayes optimal. It is only recently that Hamsici and Martinez
[4] pushed the homoscedastic case further and derived a Bayes
optimal one dimensional subspace when c42.

When the equal covariance assumption does not hold for cZ2
(heteroscedastic data), Rao proposed to approximate the heterosce-
dastic problem with a homoscedastic setting and solve the approxi-
mated problem instead. His approximated problem considered that
all classes have different means but share a common covariance
matrix which is a weighted average of all the covariance matrices of
the original problem. This approximation matrix became known as
the pooled sample covariance matrix, or the average within-class
scatter matrix Sw. Rao's final solution became the well known
formulation based on the Rayleigh quotient of the between-class
scatter matrix Sb and Sw. The obtained subspace, however, is not
Bayes optimal for the original heteroscedastic problem.

Several researchers, backed by theoretical justifications, have
scrutinized the limitations and non-optimality (in terms of Bayes
error) of LDA when its strong assumptions do not hold and
proposed extensions derived from Gaussian assumptions [5–8]
and kernel methods [9,10] to generalize LDA to the multiclass
heteroscedastic case. The result was a plethora of algorithms that
have been reported to perform well in a variety of application
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domains, most notably face recognition (see [4,11–14] for a good
review of these methods).

Of particular interest is the extension proposed by De La Torre
and Kanade [15], namely Multimodal Oriented Discriminant Ana-
lysis (MODA), where it was shown that FDA's objective function is
a special case of a more general objective that maximizes the
Kullback–Leibler (KL) divergence [16] between two Gaussian
densities, when the two Gaussians share the same covariance
matrix. Note that the symmetric KL divergence considers the
difference in mean locations and the difference in covariance
matrices (size and orientation). Therefore, MODA searches for a
linear transformation that maximizes the symmetric KL diver-
gence between the two classes in the low dimensional subspace.

To account for the multiclass heteroscedastic case, MODA sums
over all KL divergences between every pair of different classes and
maximizes that sum in the lower dimensional subspace. This is
similar to LDA's objective function which, as shown by Loog et al.
[11], maximizes the sum of pairwise FDAs between all pairs of
different classes. Hence MODA is a consistent generalization of
FDA/LDA to multimodal Gaussian distributions with different
means and covariance matrices.

However, as noted by several researchers [11,12,17,18], even if all
the homoscedastic assumptions are satisfied, LDA and MODA suffer
from the serious problem of merging classes that are close to each
other in the original input space, a.k.a the class masking problem.
This is due to the fact that LDA and MODA shift the 2-class problem
to the multiclass setting by maximizing the sum of all KL diver-
gences, which is a suitable objective function when all classes are
equally distant from each other in terms of KL divergence.

Fig. 1A depicts a synthetic example for a 3-class problem with
three dimensional data. Traditional methods like LDA or MODA
find projections that maximize the sum of pairwise Mahalanobis
distance (for LDA) or the KL divergence (for MODA) between
pairwise classes. Note that the first term in the symmetric KL
divergence – for two multivariate Gaussians see Eq. (6) – and the
Mahalanobis distance (a special case from the KL divergence) are
positive quadratic distance functions. From the optimization of

minimax functions [19], it is known that the sum of positive
powered functions, ∑m

j ¼ 1½f j�p, where p41, is a smooth approx-
imation for max1r jrm½f j�p, as p is increasing, and hence
∑m

j ¼ 1½f j�p � ½f r �p where f r4 f j 8 jar. Using this argument,1 and
for p¼2, we argue that LDA is in fact maximizing a smooth
approximation of the maximum of quadratic distances. Similarly,
due to the quadratic distance in the first term of the symmetric KL
divergence (in the case of Gaussians), MODA also maximizes
a smooth approximation of the maximum divergences between
Gaussians. Hence, LDA and MODA intrinsically prefer solutions
that encourage maximizing the largest distance in the input space
to make it even larger in the lower dimensional subspace, i.e., LDA
and MODA put needless effort to maximize already distant classes
in the input space. This effect can be seen in Fig. 1B, where MODA's
projection gives relatively better increase in terms of KL diver-
gence to the classes that are farther away in the input space, while
it only makes a slight effort to separate between classes that are
closer to each other in the input space.

1.1. Contribution

We note that the multiclass problem for LDA and MODA defines
an independent objective function for each pair of different classes
that needs to be optimized, namely maximize the symmetric KL
divergence between every pair of different classes. Hence, the set
of all pairs of different classes defines an optimization problem
with multiple objective functions that share one final solution, and
if possible, they all need to be simultaneously optimized. Given this
perspective, maximizing the sum over all pairwise KL divergences
(or quadratic distances) does not consider each objective function
independently, since as explained above, maximizing that sum
approximates a max function that only encourages maximizing the
largest KL divergence. In other words, upgrading the problem of
learning a discriminant subspace from the 2-class setting to the

Fig. 1. (A) A Synthetic example of a 3-class problem with three dimensional data; L1 triangles, L2 squares, and L3 circles. The numbers shown on arrows indicate the KL
divergence between classes. The contribution of each pairwise divergence to the total divergence is 60%, 33%, and 7% for ðL1 ; L2Þ, ðL1; L3Þ, and ðL2 ; L3Þ, respectively. (B) and
(C) Projections using MODA and PARDA, respectively, on two-dimensional subspaces. Note that the divergences in the lower dimensional subspaces are always less than the
divergences in the original input space. This is due to the information loss incurred from the linear transformation and it shall be explained in Section 4.3. For MODA's
projection, the contribution of each pairwise divergence to the total divergence is 72%, 28%, and 3% for the same class ordering. Note that the largest KL divergence in the
input space increased in the lower dimensional subspace, and that the other (less) KL divergences became even smaller in the lower dimensional subspace – which is the
class masking effect. For PARDA's projection, the contribution of each pairwise divergence to the total divergence is 44%, 31%, and 25% for the same class ordering. Note that,
while MODA decreases the separation from 7% to 3% for (L2,L3), PARDA increases the separation to 25%.

1 This will be explained in more detail in Section 4.
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multiclass setting by summing over all pairwise KL divergences as
in LDA/MODA is not the appropriate path to handle a multi-
objective optimization problem.

Our contribution in this research stems from the above obser-
vation. In particular, we propose four models for multiclass
heteroscedastic linear discriminant analysis (HDA) based on the
theory of multiobjective optimization (MOP) [20–22]. Due to their
parametrization, these objective functions can adapt to the class
configuration2 for any classification problem. While LDA and
MODA's objectives pull apart the two classes with the largest KL
divergence, PARDA, or Pareto Discriminant Analysis, encourage
solutions in which all classes are equally spread from each other.

PARDA concentrates its effort on overlapping classes while it
safeguards well separated classes from overlapping in the lower
dimensional subspace. That is, PARDA puts more effort in max-
imizing the distance between classes that are closer in the
projected space, and will relax the distance between classes that
are farther away. Fig. 1C shows the projection obtained by PARDA
in a two dimensional space. Unlike MODA, the 2D projection
obtained by PARDA encourages the case where in the lower
dimensional subspace, the class means are maximally separated
from each other, and hopefully equally distant from each other as
well, while the class overlap (due to class spread) is minimized.

Our paper is organized as follows. Following the introduction,
Section 2 briefly covers two aspects in the LDA literature: LDA
extensions to HDA, and the class merging (masking) problem. In
order to make our paper self-contained, Section 3 covers all the
necessary material the reader will need for multiobjective optimiza-
tion. Section 4 introduces the model proposed in this paper, Pareto
discriminant analysis (PARDA), and Section 5 extends PARDA to the
case when the class distribution is non-Gaussian and multimodal.
Experimental results are reported in Section 6, and concluding
remarks with future research directions are drawn in Section 7.

2. Literature review

The literature on discriminant analysis (DA) is immense and a
thorough review will be beyond the scope of the paper. We first
review the basic notations for LDA, then focus on two research
directions for DA; heteroscedastic and multiclass extensions of
LDA, and the class masking problem.

2.1. LDA notations

We are given a data set D¼ fðxi;ℓiÞni ¼ 1DRd � Lg with labels
ℓiAL¼ fL1;…; Lcg (find our notations' explanation in the foot-
note3). LDA's objective is to find a linear transformation matrix
BARd�d0 , with d05d such that the class means are maximally
separated from each other, while the average spread of classes is
minimized. Throughout the text, we will use the notion of well
separated classes to imply that the class means are maximally
separated from each other, while the class overlap due to class
spread is minimized.

There are various objective functions that define the transfor-
mation matrix B, from which Rayleigh type quotients are among
the most popular LDA objective functions [2]. Some of these

objective functions include

E1ðBÞ ¼ tr ðB> S2BÞ�1ðB> S1BÞ
n o

; E2ðBÞ ¼
trfB> S1Bg
trfB> S2Bg

;

E3ðBÞ ¼
jB> S1Bj
jB> S2Bj

;

where matrix S1 can be any of the matrices fSb; Sb; Stg, matrix S2 can
be any of the matrices fSw; St ; Swg, and Sb, Sw and St are known as
the between-class scatter matrix, the within-class scatter matrix
and the total-class scatter matrix, respectively. Note that Sb is a
measure for the average distance between the means of all classes,
while Sw is an average covariance matrix that acts as a measure of
compactness for all classes. The upper bound on the ranks of Sb, Sw
and St is minðc�1; dÞ, minðn�c; dÞ and minðn�1; dÞ, respectively.

The objective function E1ðBÞ is among the most popular LDA
objective functions in the literature. However, this formulation is
restricted to the original homoscedastic setting, i.e., the samples in
each class Lj are assumed to have a Gaussian distribution N ð�; μj;ΣjÞ
with Σ1 ¼⋯¼ Σc ¼ Σ. In practice, when the homoscedastic assu-
mption does not hold, or when the classes are not Gaussians, all
parameters are approximated by their sample estimates, and Σ is
approximated by Sw. Unfortunately, this approximation does not
fully exploit the rich information in the heteroscedastic setting
which lies in the covariance matrix of each class.

2.2. Heteroscedastic multiclass extensions of LDA

Campbell [5] was the first to develop a general formulation for
LDA as a maximum likelihood (ML) estimation of the parameters of a
Gaussian model. His model's structure relied on two assumptions:
(i) all class means (or all discriminatory information between the
classes) lie in a ðc�1Þ-dimensional subspace of the original
d-dimensional input (or feature) space; and (ii) all classes have equal
covariance matrices (homoscedastic setting). Kumar and Andreou [7]
extended Campbell's ML model to the heteroscedastic setting and
named it HDA. Their objective function is the log-likelihood of the
Gaussian models in the projected low dimensional subspace. By
taking the gradient of this objective, they derive ML estimators for
the class means and covariances in the low dimensional subspace.
Hastie and Tibshirani [23] tried to work around the homoscedastic
assumption of Campbell and proposed that each class can be
modelled as mixtures of Gaussians while maintaining that all classes
and sub-classes share a pooled covariance matrix. In a similar vein,
Zhu and Martinze [13] proposed subclass discriminant analysis
(SDA), in which the between class scatter matrix Sb is replaced by
the between subclass scatter matrix, where each class now is divided
(by means of a clustering algorithm) into several subclasses. In
addition, the authors propose two criteria to select the number of
subclasses that maximizes the classification accuracy.

Tou and Heydorn derived LDA's objective function E1ðBÞ in
Section 2.1 from maximizing the symmetric KL divergence between
two Gaussian densities under the heteroscedastic assumption.
Independently, De La Torre and Kanade [15] proposed MODA which
is a more general formulation than the one proposed in [24] since it
considers a multiclass heteroscedastic setting, and that each class is
a mixtures of Gaussians (i.e. multimodal).

Saon et al. [25] maximize an objective function based determi-
nants' ratio:

ESAONðBÞ ¼ ∏
c

j ¼ 1

jB> SBBj
jB>ΣjBj

 !nj

; ð1Þ

which is a weighted product of each individual direction (or
dimension in the low dimensional subspace) of the data. This
objective function models the data orientation (or directionality)
and has the property of being invariant to transformations to the

2 The relative location of classes to each other in the input space.
3 Notations: Bold capital letters denote matrices (A, B, C). Bold lower-case

letters denote column vectors (x, y, z). Non-bold lower case letters represent scalar
variables (a; b; c) or indexes (i; j; k). Sets are denoted by calligraphic upper case
letters (X , Y, R). Spaces are denoted by double–bold upper case letters (R, S). I is
the identity matrix of suitable dimension. trðAÞ ¼∑iaii is the trace of the matrix A,
and jAj is the determinant of matrix A. The multivariate Gaussian distribution is
denoted by N ð�; μ;ΣÞ with mean vector μARd , covariance matrix ΣASd�d

þ þ , and
Sd�d

þ þ is the space of symmetric and positive definite (PD) matrices.

K.T. Abou-Moustafa et al. / Pattern Recognition 48 (2015) 1863–1877 1865



range of the solution (eigenvectors). In addition, similar to LDA
and HDA, it is invariant to linear transformations of the data in the
input space. Note that each column of B in ESAON corresponds to
one class. Zhu and Hastie [8] proposed a feature extraction
criterion for nonparametric DA, which generalizes the Fisher
criterion when the data for each class is not Gaussian. For a fixed
direction b, they define the marginal generalized log-likelihood-
ratio (LR) statistic:

LRðbÞ ¼ log
maxPrLj∏

c
j ¼ 1∏xi ALjPr

ðbÞ
Lj
ðb>xiÞ

maxPrLj ¼ Pr∏c
j ¼ 1∏xi ALjPr

ðbÞðb>xiÞ
; ð2Þ

where PrðbÞLj
ð�Þ is the marginal density along the projection defined

by b for class Lj, and PrðbÞð�Þ is the corresponding marginal density
under the null hypothesis that classes share the same density
function. Note that if for all classes Lj, Pr

ðbÞ
Lj
ðxÞ �N jðμj;ΣÞ, Σ¼ Σj for

1r jrc, then the discriminant directions maximizing LRðbÞ are
equivalent to Fisher's LDA (see Result 1 in [8]).

Loog and Duin [26] consider the multiclass heteroscedastic
setting using the Chernoff distance which is a symmetric divergence
measure between probability distributions. The Chernoff distance,
similar to the symmetric KL divergence employed in this work,
considers the means and covariance matrices when measuring the
discrimination between classes. The authors formulate the Chernoff
distance between two classes (modelled as Gaussians) as a trace
function of a symmetric PD matrix – the directed distance matrix
(DDM) –which yields more than one direction (its eigenvectors) that
can discriminate between the two different Gaussians. For the
multiclass case, they use the DDM as a building block in the
multiclass weighted pairwise formulation of [11] (discussed below),
and the final linear transformation B is obtained by means of an
eigenvalue problem for the final DDM.

Recently, Hamsici and Martinez [4] find a Bayes optimal
discriminant direction for multiclass (c42) homoscedastic pro-
blems. Their solution is based on realizing that the class projected
whitened means on a single discriminant direction b have the
same ordering for a range of other directions b0. This set of
discriminant directions defines a convex polyhedron on which
the Bayes error function is convex as well, and hence can be
minimized by standard convex optimization algorithms. For the
multiclass heteroscedastic Gaussian case, they extend their result
using the kernel trick, and to obtain a d0-dimensional subspace,
their approach is repeated recursively on the null space of the
previous projection directions. Gao et al. [27], motivated by graph
embedding approaches and manifold learning algorithms [28],
propose an enhanced Fisher discriminant criterion (EFDC) based
on modelling the within class variability by means of neighbour-
hood graphs. EFDC find bases matrix B that maximizes

B> SwB
� ��1

B> ½αSbþð1�αÞSd�B
� �

; ð3Þ
where Sd ¼X> ðD�KÞX, K is a kernel (and/or adjacency) matrix that
encodes the similarity using Gaussian kernels between points in the
same class, D¼ diagðK1nÞ, Xn�d is the data matrix, and 0oαo1 is a
tuning parameter that controls the balance between the discrimina-
tive information in Sb and the similarity information in Sd. Recall that
Sb is based on the heteroscedastic Gaussian assumption, while Sd can
be seen as carrying density information based on a kernel density
estimate for the data, which is a nonparametric approach. Hence Sb
and Sd are complimentary to each other since Sd together with
α relax the Gaussian assumption in Sb, thereby increasing the
stability of LDA when dealing with real world data sets.

2.3. The class masking problem

To solve the class masking problem, Lotlikar and Kothari [29]
proposed fractional step DA (F-LDA) where the dimensionality is

reduced in fractional steps, i.e., iteratively from d to d�1 (one
dimension at a time) while applying proper weighting on the data
in order to avoid the class masking problem. Lu and Plataniotis
[12], in a two-stage algorithm, proposed a weighted variant of
direct-LDA [30] combined with fractional step LDA [29]. For the
between-class scatter matrix Sb, they applied weights that are
inversely proportional to the distance between class means.
Alternatively, Loog et al. [11] suggested that the weights applied
to Sb should link the distance between the class means to the
amount of error they cause. Therefore, the weight between two
classes is measured as ð1=2δijÞerfðδij=2

ffiffiffi
2

p
Þ, where erfð�Þ is the error

function and δij is the Euclidean distance between class means i
and j in the whitened space. In Section 4.9, we will discuss other
approaches for the class masking problem [31,32] and see how the
proposed Pareto model differs from these approaches.

3. Multiobjective optimization

Multiobjective optimization (MOP), or vector optimization (VOP),
is a branch of optimization science that is concerned with the
simultaneous optimization of more than one objective function. In
real world applications, it is often the case that the objectives are
contradictory in a way that optimizing one of the objective functions
entails the inefficiency of another one. In such cases, one would
require a good compromise solution which is suboptimal but
acceptable as much as possible to the individual objective functions.
MOP is the science that can find this good compromise solution [21].

Let fðθÞ ¼ ½f 1ðθÞ…f κðθÞ�> be the vector valued objective function
to be optimized where fðθÞARκ , θARDRp is the parameter vector
for the set of objective functions, f jðθÞAR is the jth objective
function, R is the feasible set for the values of the parameter
vector θ, and Rκ is the objective space. For the sake of a consistent
discussion in this section, we will consider that our objective is to
minimize4 fðθÞ. The goal of VOP is to find θn that simultaneously
minimizes all f jð:Þ's. In practice, the individual objective functions
can be in contradiction to each other, i.e., an improvement with
regard to one objective can cause the deterioration of at least
another objective function. For this, a formal definition is needed
for the task of VOP, the order relation “r” in VOP, efficient points,
and Pareto optimal points.

Definition (Order relation “r” in the objective space Rκ). Let z1
and z2 be two points in the objective space Rκ . The order relation
“r” is defined as z1rz2⟺z2�z1ARκ

þ , where Rκ
þ ¼ fzA

RκjziZ0; and 1r irκg is the nonnegative orthant of Rκ and,
8 iAf1;…; κg, zi1rzi2, ( jAf1;…; κg s.t. zj1ozj2.

Definition (Efficient point). Let Z ¼ fðRÞDRκ be the image of
the feasible set RDRd in the objective space. A point znAZ is
called an efficient point with regards to the order relation “r”

defined above on Rκ , iff there exists no other zAZ s.t. zrzn and
zazn.

Definition (Pareto optimal point). A feasible point θnAR, where
R is the feasible set for θ, is called Pareto optimal iff zn ¼ fðθnÞ is an
efficient point.

VOP is formally defined as finding efficient points znAZ with
regard to the order relation “r” on Rκ , along with their Pareto
optimal points θn pertaining to them [22]. It could be the case that
all objective functions are of equal importance. In this case, the
best that VOP can do is to provide the decision maker a set of all
efficient points along with their Pareto optimal points pertaining to
them. These two sets are known as the Efficient Set and the Pareto
Front (or Pareto Set), respectively.

4 Inverting the discussion on maximizing fðθÞ can be simply done by minimiz-
ing �fðθÞ.
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There are various techniques for solving VOP problems [21,22],
and a class of these techniques form what are known as determi-
nistic methods. These methods scalarize the vector optimization
problem through a parametric formulation and then solve the new
objective function using standard optimization techniques. From
the deterministic methods, the weighted-sum method and the
weighted Lp-Metric method were found to be well studied with
theoretical results that guarantee Pareto optimal solutions.

3.1. The weighted-sum method

The weighted-sum (WS) method assigns a weight wj to each
objective function such that wjZ0, 1r jrκ, and ∑κ

j ¼ 1wj ¼ 1; i.e. a
convex combination of the objective functions. The final optimiza-
tion problem to be solved is

θn ¼ argmin
θAR

w> fðθÞ; ð4Þ

where w¼ ½w1…wκ �> . The weight wj reflects the significance of
the individual objective function f jð�Þ, and hence, it can reflect
some a priori knowledge from the problem domain or, impose
some bias on the final solution θn. By varying the weight vector w,
one can obtain a subset of the efficient set and its pertaining subset
of Pareto optimal solutions. We state here Theorem (4.1) from [22]
that guarantees a Pareto optimal solution for the WS method for
Problem (4).

Theorem 3.1. Let θnAR be an optimal solution of (4), then the
following statements hold: (i) If wZ0, then θn is a Pareto optimal
point. (ii) IfwZ0 and θn is a unique optimal solution of (4), then θn is
a global Pareto optimal point. (iii) If w40, i.e., all its components are
strictly greater than zero, then θn is a proper Pareto optimal point. (iv)
If w40 and θn is a unique optimal solution of (4), then θn is a strong
Pareto optimal point.5

The WS method, however, has an implicit assumption which
can easily be a drawback in practice. The method requires that
Z ¼ fðRÞ be a convex set. In practice the set Z might not be convex
and as a side effect, there will be a set of efficient solutions zn that
cannot be found using the WS method.

3.2. The Lp-metric method

In an ideal situation, the objective of VOP is to achieve the
optimal solution for each individual objective function f jð�Þ. Let
tnARκ be such an ideal target point in the objective space. Then,
8zAZ, tnrz and tn might or might not be in Z. Since in real
world problems, the individual objectives might conflict with each
other, achieving tn is usually impossible, however it can serve as a
reference point with the goal of seeking a solution as close as
possible to tn (see Fig. 2). Note that tn is also known as the Utopia
point. Formally, given a distance function dist : Rκ � Rκ-Rþ , the
Lp-Metric method is given by minθARdistðfðθÞ�tnÞ. Since the
objective space Rκ is endowed with a vector norm J � J then the
induced weighted distance, or the Lp–Metric method can be
defined as follows:

θn ¼ argmin
θAR

dðθÞ where

dðθÞ ¼ ∑
κ

j ¼ 1
wjjf jðθÞ�tnj jp

 !1=p

; ð5Þ

pA ½1;1�, wj40 is the weight for the j-th objective function, and
∑k

j ¼ 1wj ¼ 1. Similar to the WS method, the weight wj reflects the

significance of the objective function f jð�Þ. Note that the WS
method can be considered as a special case from the Lp-Metric
method. Also note that by definition of the Lp-Metric method, the
weight vector w40, and according to (3.1), θn will be at least a
properly Pareto optimal solution. We now state Theorem (4.20)
from [22] (see proof in p. 112) that links the monotonicity of a
norm to the solution obtained by Problem (5) in order to introduce
the main result in Corollary 3.3.

Theorem 3.2 (4.20 in Ehrgott [22]). If J � J is a strictly monotonic
norm and θn is an optimal solution of Problem (5), then θn is Pareto
optimal.

Corollary 3.3. For the Lp norm J � Jp, if 1rpo1 and θn is the
optimal solution for Problem (5), then J � Jp is strictly monotonic and
θn is Pareto optimal.

The Lp-Metric method has a nice interpretation in terms of level
sets fzARκjJz�tn Jprug where such sets contain all points of
distance u or less to tn. From this perspective, the goal of the Lp-
Metric method, illustrated in Fig. 2, is to search for the smallest u
such that the intersection of the corresponding level set with
Z ¼ fðRÞ is nonempty.

The two methods presented so far will be the models that
encapsulate the multiclass HDA problem. In the following, we derive
a multiclass HDA formulation that will fit in these two models, and
then propose PARDA in Section 4.2.

4. Pareto discriminant analysis

We begin our discussion with a formulation for multiclass HDA
that generalizes the LDA formulation presented in Section 2.1. This
formulation will allow a clear understanding for the class masking
problem, and will naturally fit in the MOP models presented in the
previous section.

For two classes, Li and Lj, each modelled as a Gaussian distribution
N i and N j, respectively, the separability or discriminability between
the two classes can be measured using the symmetric KL divergence
defined as

JKLðN i;N jÞ ¼
1
2

Z
N ðx; μi;ΣiÞ�N ðx; μj;ΣjÞ
� �

log
N ðx; μi;ΣiÞ
N ðx; μj;ΣjÞ

dx;

¼ 1
2
ðμi�μjÞ> ðΣ�1

i þΣ�1
j Þðμi�μjÞþ

1
2
tr ΣiΣ�1

j þΣ�1
i Σj�2I

� �
:

ð6Þ

Fig. 2. The intersection of level sets for the Lp-Metric method for p¼2 and with
Z ¼ fðRÞ in the objective space. Note that the ideal point tn =2fðRÞ and the efficient
point zn is the closest to it.

5 We will rely on this property of the weight vector when this method will be
presented in the context of LDA in Section 4.
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Note that (6) measures the difference between two Gaussians in
terms of the differences in means (positions), and covariances (size
and orientation). The divergence, in general, is a measure of distance
or separability between probability distributions, and hence, the
larger the interclass divergence JKLðN i;N jÞ, the greater the separation
between N i and N j.

Let uij ¼ μi�μj and Uij ¼ uiju>
ij , then (6) can be rewritten as

JKLðN i;N jÞ ¼
1
2
tr Σ�1

i ðΣjþUijÞ
� �þ1

2
tr Σ�1

j ðΣiþUijÞ
n o

�d: ð7Þ

For the c-class problem, the total divergence will be

ETot ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
JKLðN i;N jÞ;

¼ 1
2
tr ∑

c

i ¼ 1
Σ�1
i Si

( )
�cðc�1Þ

2
d; ð8Þ

where

Si ¼ ∑
c

j ¼ 1;ja i
½ΣjþUij�: ð9Þ

MODA seeks a linear transformation BARd�d0 with d05d such
that ETot in the lower dimensional subspace is maximized. Note
that the columns of B form the bases for the sought low dimen-
sional subspace, and that B can have any number of bases d0 such
that 1rd0rd�1. This is unlike FDA/LDA that can only define
subspaces of dimensionality d0rminðc�1; d�1Þ. In the lower
dimensional subspace, classes Li and Lj will be projected as
N iðB> μi;B

>ΣiBÞ and N jðB> μj;B
>ΣjBÞ, respectively, and hence

JKLðN i;N j;BÞ ¼
1
2
tr ðB>ΣiBÞ�1B> ðΣjþUijÞB
n o

þ1
2
tr ðB>ΣjBÞ�1B> ðΣiþUijÞB
n o

�d0; ð10Þ

and for the c-class problem, the total divergence will be

EMODAðBÞ ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
JKLðN i;N j;BÞ;

¼ 1
2
tr ∑

c

i ¼ 1
ðB>ΣiBÞ�1ðB> SiBÞ

( )
�cðc�1Þ

2
d0; ð11Þ

which defines MODA's objective function. The optimal Bn

MODA is
then

Bn

MODA ¼ argmax
B

EMODAðBÞ; ð12Þ

which is optimized using a gradient ascent procedure. Note that
maximizing Problem (12) under the assumption that Σi ¼ Σj ¼Σ,
for 1r i; jrc, yields the standard LDA formulation (up to a scaling
factor) for the multiclass problem. Based on this general formula-
tion for the multiclass HDA, we can proceed to the class masking
problem and see how it becomes a natural manifestation from
such a formulation.

4.1. The class masking problem

In the 2-class setting, LDA (i.e. Σ1 ¼ Σ2) and MODA (i.e. Σ1aΣ2)
search for an optimal Bn that maximizes JKLðN 1;N 2;BÞ in (10). To
account for the multiclass setting, LDA/MODA use the same objec-
tive function that sums over all pairwise KL divergences and
searches for Bn that maximizes the total divergence EMODAðBÞ in (11).

Note that the original KL divergence in (6) has in fact two
terms: (i) the first term, which is a quadratic distance, measures
the difference between the means μi and μj weighted by the
covariance matrices, and (ii) the second term, which is indepen-
dent of μi and μj, only measures the discrepancy (or dissimilarity)
between Σi and Σj [16]. If Σi ¼Σj, the second term will be zero and
(6) reduces to a quadratic distance. Hence, the second term

increases the final JKLðN 1;N 2;BÞwhenever there is a disagreement
between Σi and Σj.

From the optimization of minimax functions [19], it is known that
the sum of positive powered smooth positive functions, ∑m

j ¼ 1½f j�p,
where p41, is a smooth approximation for max1r jrm½f j�p, as p is
increasing. That is, for large pZ2, ∑m

j ¼ 1½f j�p � ½f r �p where
f r4 f j 8 jar.

Using this argument, let f ¼ Jμi�μj J
p
A . Then for p¼2 and

A¼ ðΣ�1
i þΣ�1

j Þ, we get ðμi�μjÞ>Aðμi�μjÞ which is the quadratic
distance in (6). It is possible to see that LDA (i.e. Σi ¼Σj)
intrinsically prefers solutions that encourage maximizing the
largest quadratic distance between μi and μj, to make it larger at
the output space. Similarly, due the first and second terms in (6) as
explained above, we argue that MODA's objective function is a
smooth approximation for EMODAðBÞ �max1r i;jr cJKLðN i;N j;BÞ.

Hence, MODA also encourages solutions that maximize the
largest KL divergence to make it larger at the output space. Therefore,
shifting the problem from the two-class setting to the multiclass
setting using this scalarization technique (plain sum over all objec-
tive functions) intrinsically yields the class masking problem. Based
on this understanding, it is possible to introduce the PARDA model
and see how its mechanism counteracts the class masking effect.

4.2. A multiobjective optimization model for HDA

We propose different scalarization functions for the multiclass
HDA problem using the MOP models introduced in the previous
section. Since each pair of classes, N i and N j, 1r i; jrc, ia j,
define their own individual objective function JKLðN i;N j;BÞ, then
all κ¼ cðc�1Þ=2 pairs of classes result in κ objective functions that
need to be simultaneously optimized. Since it is expected that the
objective functions can conflict with each other, MOP models can
guarantee that the obtained subspace will be in maximal agree-
ment with all pairwise objective functions, but suboptimal for
each individual objective function.

Using the WS method or the Lp-Metric method, and setting the
appropriate weight vector for each model, the optimization effort
will be distributed according to the relative position of classes to
each other (with respect to class means together with covariance
matrices). The simultaneous optimization of the objective functions
will put more effort on overlapping classes while safeguards distant
classes from overlapping in the lower dimensional subspace.

This is the major difference between MODA and LDA on one
side and PARDA on the other side. While MODA (and LDA in the
homoscedastic case) sum over all JKLðN i;N j;BÞ's, and search for a
bases that maximizes that sum, PARDA uses all the pairwise
objective functions in a multiobjective optimization model and
searches for a bases that is in maximal agreement with all pairwise
objective functions and simultaneously maximizes them.

Formally, using the scalarization of the WS method in Problem
(4), with (3.1), Pareto discriminant analysis can be defined using
the following optimization problem:

Bn

PDAWS ¼ argmax
BAR

EPDAWSðBÞ where

EPDAWSðBÞ ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
wijJKLðN i;N j;BÞ;

s:t: ∑
i;j
wij ¼ 1;wij40: ð13Þ

Similarly, using the scalarization of the Lp-Metric method in (5),
with Corollary 3.3, another Pareto discriminant analysis can be
defined using the following optimization problem:

Bn

PDALP ¼ argmin
BAR

LPDALPðBÞ where
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LPDALPðBÞ ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
wij½JKLðN i;N j;BÞ�tnij�2;

s:t: ∑
i;j
wij ¼ 1;wij40; ð14Þ

and RDRd�d0 . The subscript PDA stands for Pareto Discriminant
Analysis, while WS and LP stand for the WS and Lp-Metric
methods, respectively. According6 to Theorem 3.1 and Corollary
3.3, and given a proper target vector tn, Bn

PDAWS and Bn

PDALP will be
Pareto Optimal.

4.3. Information loss in DA

We consider now the information loss incurred from the linear
transformation y¼ B>x, for any BARd�d0 with rank d0, and how it
relates JKLðN i;N jÞ to JKLðN i;N j;BÞ. Since the transformation
y¼ B>x produces a linear combination of the components of the
input vector x, it can be shown that, in general, there is an
information loss [16,33], and hence

JKLðN i;N j;BÞr JKLðN i;N jÞ; 8 i; j; ð15Þ
and the amount of loss is

JKLðN i;N jÞ� JKLðN i;N j;BÞZ0: ð16Þ
Summing over all classes in (15), and recalling (8), (11), and (12) it
turns that

EMODAðBn

MODAÞrETot : ð17Þ
Similarly, it is easy to verify that for Bn

PDAWS and Bn

PDALP the
following holds:

JPDAWS � ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
JKLðN i;N j;B

n

PDAWSÞrETot and ð18Þ

JPDALP � ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
JKLðN i;N j;B

n

PDALPÞrETot : ð19Þ

Two aspects are related to the discussion above. First, recall
Figs. 1B and C and note that the divergences between different
classes are smaller than their corresponding values in Fig. 1A. This
is due to the impact of the linear dimensionality reduction (via
matrix B) on the divergence as expressed in inequality (15).
Although the total divergence is reduced, note that due to the
class masking effect, LDA/MODA have increased the separation
between L1 and L2 from 60% to 72%, and reduced the separation
between other classes.

Second, note that from the inequalities in (18) and (19), it is not
possible to select the weights wij and the targets tij based on the KL
divergences in the input space since these values will be very large
compared to the divergences in the low dimensional subspace and
hence, will mask all the differences between classes. These aspects
will be explained in the following sections.

4.4. Solving PARDA

Unlike the closed form solution for E1ðBÞ in (2.1) as a general-
ized eigenvalue problem (GEP), the objective functions for
EPDAWSðBÞ and LPDALPðBÞ in (13) and (14), respectively, do not have
such a feature. Further, EPDAWSðBÞ and LPDALPðBÞ are not convex in B,
and therefore, only a local optimum solution can be achieved. To
solve PARDA, we use an iterative procedure based on gradient
ascent (descent), with multiple restarts, since the gradient of
JKLðN i;N j;BÞ with respect to B has a closed form expression. For

maximizing the energy EPDAWSðBÞ, the gradient step is

Btþ1 ¼ Btþη1
∂
∂B

EPDAWSðBÞ where ð20Þ

∂
∂B

EPDAWSðBÞ ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
wij

∂
∂B

JKLðN i;N j;BÞ: ð21Þ

For minimizing the loss LPDALPðBÞ, the gradient step is

Btþ1 ¼ Bt�η2
∂
∂B

LPDALPðBÞ where ð22Þ

∂
∂B

LPDALPðBÞ ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
2wij½JKLðN i;N j;BÞ�tnij�

∂
∂B

JKLðN i;N j;BÞ;

ð23Þ

and η1 and η2 are the step lengths for the gradient ascent (descent)
procedures. The closed form expression for ð∂=∂BÞJKLðN i;N j;BÞ
is [34]

½SiB�ΣiBðB>ΣiBÞ�1B> SiB�ðB>ΣiBÞ�1

þ½SjB�ΣjBðB>ΣjBÞ�1B> SjB�ðB>ΣjBÞ�1; ð24Þ

where Si ¼ ΣjþUij from (9), and Sj ¼ ΣiþUij.
The step length parameters, η1 and η2, are initially small (0.01 in

all our experiments) and they are decreased by a factor of 50% if the
objectives EPDAWSðBÞ and LPDALPðBÞ decrease (instead of increase) or
increase (instead of decrease). Other strategies such as explicit line
search are possible but this simple method has provided good
results in all our experiments. Since the gradient ascent (or descent)
method can be trapped into local minima, the algorithm is restarted
with multiple initializations (10 times in all our experiments) and
the solution with the lowest error on the training (or validation) set
is selected as the final solution. Alternatively, Bn can be selected
using cross-validation.

The optimal solution Bn obtained from (13) and (14) is a local
optimum for EPDAWSðBÞ and LPDALPðBÞ, respectively. Note that Bn is
declared an optimal solutionwhen the gradient is zero and there is no
change in the objective function. From (3.1) and (3.3), Bn is Pareto
Optimal and by definition, it is one of the solutions in the Pareto front.

Discussion: The WS method is in the same spirit of MODA, albeit
it assigns the objective function for each pair of classes JKLðN i;N jÞ
a weight wij. If the weights are properly set such that overlapping
classes have large weights, and well separated classes have a small
weight, then the WS method will counteract the class masking
effect. Note that the gradient for the WS method is also a weighted
combination of the gradient from each objective function in (21).
Hence, the total gradient will be dominated by gradient directions
that separate between overlapping classes.

The Lp-Metric method, on the other hand, is different from the
WS method and MODA/LDA as well due to the targets tij which act
as constraints on the minimum divergence that each objective
function must achieve. If tij is large enough 8 i; j to ensure that all
classes are well separated from each other, then by minimizing the
difference JKLðN i;N jÞ�tij, the Lp-Metric method will try to max-
imize the separation between classes such that it gets as close as
possible to the desired tij. Here, the weights wij play a slightly
different role for each objective function. If JKLðN i;N jÞ is close to tij,
the corresponding wij should be small, while if JKLðN i;N jÞ is far
from tij, then the corresponding wij should be large. In this way,
the total gradient in (23) will be dominated by gradient directions
for objective functions that are far away from the minimum
desired KL divergence tij. Note that the WS method, similar to
LDA/MODA, does not impose any constraints on the minimum
divergence between classes.

6 For the Lp-Metric method in Problem (5), p was set to 2 according to
Corollary 3.3.
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4.5. Initial bases B0

In order for the gradient ascent and descent procedures in (20)
and (22) to find a good and stable local solution Bn, a good initial
bases B0 is needed to start the procedures. Such an initial bases
can, for instance, keep all the discriminatory information in the
data, and discard all dimensions with small or constant variance.
This suggests that a good initial bases can be the bases obtained
from principal component analysis (PCA), i.e., the columns of B0

are the d0 largest eigenvectors of the total scatter matrix St , since
the null space of St contains no useful discriminatory information
in the data [14,35]. Note that for zero mean data, the maximum
rank for St is minðd�1;n�1Þ, and hence this allows B to be of
dimension d� d0, where 1rd0rminðd�1;n�1Þ.

Another possible option is to use the first few eigenvectors of the
between-class scatter matrix Sb. This option, however, has two
limitations: (i) it will bias PARDA towards the LDA solution which
already suffers from the class masking problem, and (ii) the
maximum rank of Sb is minðc�1; d�1Þ, and hence the dimension-
ality d0 of the embedding space will be limited to the rank of Sb. For
this reason, we opted for the first option in all our experiments.

4.6. The target vector tn

Before discussing the selection of the weights wij, it is impor-
tant to discuss first how to set the targets tij for the Lp-Metric
method in (14). Selecting the weights wij for the WS and for Lp-
Metric methods will rely on the targets tij. The rational for
selecting the target values as discussed below rests on our under-
standing for the class masking problem (Section 4.1), the informa-
tion loss due to the linear dimensionality reduction (Section 4.3),
the ideal (or utopia) point in the Lp-Metric method (Section 3.2),
and the optimal separation between Gaussian densities for learn-
ing mixtures of Gaussians [36].

Recall that an ideal solutionwould be a low dimensional subspace
in which all class means are maximally separated, while the class
spread is minimized. Since the targets tij in (14) are constraints on the
desired minimum interclass divergences, it is possible to encourage
such an ideal solution by setting all tij's to be equal to one large value
tn. A large enough value for tn will encourage solutions in which the
class means are far from each other as much as possible (while
minimizing the overlap between classes due to class scatter), and
setting tij ¼ tn, 8 i; j, will encourage solutions in which all class means
are equally distant from each other, while class overlap is minimized.
However, how large should be tn? For the purpose of the following
discussion only, we will be dealing with the transformed Gaussians
N jðB>

0 μj; B>
0 ΣjB0Þ, 1r jrc, in Rd0 obtained from B0. To reduce

notations' cumbersomeness, B0 will be omitted from the notation.
An early result on learning mixtures of Gaussians (MOG) [36]

states that two Gaussian densities, N 1 and N 2, are said to be
τ–separated in Rd0 if

Jμ1�μ2 J24τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0maxðλmaxðΣ1Þ; λmaxðΣ2ÞÞ

p
; ð25Þ

where λmaxðΣÞ is the largest eigenvalue of matrix Σ. Further, a MOG
is τ-separated if its Gaussian components are pairwise τ-separated.
In high dimensions, a 2-separated MOG is almost a completely
separated set of Gaussians [36]. Setting τ¼2 and squaring the left
and right terms of (25) we get

‖μi�μj‖2244d0λn where λn ¼ max
1r jr c

λmaxðΣjÞ;

which is the minimum squared distance between any two means μi
and μj to ensure separation. Hence, a reasonable value for tn would be

tn ¼ 4d0λn: ð26Þ
Note that τ can be slightly bigger for very high dimensional data,

and in practice it can be selected using cross validation. In all our

experiments however, we used τ¼2. Recall that tn is defined in the
lower d0 dimensional subspace defined by the initial bases B0, and
hence tn is in fact a function of B0. Based on the value of tn, it is
worth noting the following. First, tn could have been computed in
the original input space Rd, however due to the information loss
incurred from B0 (Section 4.3), such a value will be huge with
respect to all the pairwise divergences JKLðN i;N j;BÞ, and will mask
all the differences among them. This is unlike tn in (26) which is a
function of B0, and hence it is suitably large enough for all the
divergences JKLðN i;N j;BÞ, and scales reasonably with them. Second,
it is not expected that any objective function JKLðN i;N j;BÞ; 8 i; j, will
ever attain tn, rather it only encourages the optimization procedure
to search for solutions where class means are maximally separated,
while the overlap between classes due to class scatter is minimized.
Last, this unachievable value for tn coincides with the role of the
ideal point in the Lp-Metric method which happens to be mean-
ingful and useful for DA.

4.7. The weights wij

The weights wij play a crucial role for the WS and the Lp-Metric
methods since they drive the optimization procedure to concen-
trate on more important objective functions (with large weights)
in favour of other less important ones (with small weights). Recall
that the gradients in (21) and (23) involve all wij's.

To encourage the optimization procedure to achieve the ideal
DA setting, we will rely on the target tn and the initial bases B0 in
order to set all the weights wij. If JKLðN i;N j;B0Þ is close to tn, it is
expected that classes N i and N j are well separated. Hence, the
optimization procedure should consider minimal effort to further
maximize JKLðN i;N j;B0Þ. In the contrary, if JKLðN i;N j;B0Þ5tn, it is
expected that N i and N j are close to each other. In this case, the
optimization procedure should put more effort to increase the
separation between these two classes, while at the same time,
prevent all other classes from overlapping over each other. To
achieve such a mechanism, we set the weights wij as follows:

wij ¼
δij

∑c�1
i ¼ 1∑

c
j ¼ iþ1δij

and δij ¼
tn

JKLðN i;N j;B0Þ
: ð27Þ

Under this weighting scheme, the smaller the separation (or diver-
gence) between N i and N j, the larger the δij will be, and hence the
larger is the weightwij, i.e., a more important objective function since
it is far away from tn. In contrast, the larger the divergence between
N i and N j, the smaller the δij will be, and hence the smaller is the
weight wij, i.e., less important objective function since it is closer to
tn. Note that this weighting scheme does not differentiate between
the WS and the Lp-Metric methods, and hence it is used for both of
them. To see how this weighting mechanism works against the class
masking effect, consider the gradient for the WS and LP-Metric
methods in (23) and (21), respectively. The right-hand side of (23),
for instance, is a weighted convex combination of all the gradients
from each objective function JKLðN i;N j;BÞ, 8 i; j. If the objective
function is close to tn, the corresponding weightwij will be small, and
hence the contribution of this gradient to the total gradient will be
minimal. Vice versa, when the objective function is far away from the
minimum desired separation tn, the corresponding weight wij will be
large, and hence this gradient direction will have a major contribu-
tion to the total gradient. That is, the total gradient is dominated by
gradient directions for those objective functions that are far away
from tn since they contribute with large weights. Note that a similar
interpretation follows for the gradient of the WS method. This is,
however, the opposite of LDA/MODA in which the total gradient is
dominated by the largest symmetric KL divergence (i.e. the most
distant pair of classes).

K.T. Abou-Moustafa et al. / Pattern Recognition 48 (2015) 1863–18771870



The weights wij assigned to the multiobjective function (WS or
LP-Metric) at the beginning of the optimization procedure are fixed
and do not change during the iterative procedure. The reason for
that has to do with convergence.7 If the weights are changed in
each iteration, each set of weights will define a new optimization
problem in each gradient ascent (descent) step. Consequently, the
sequence of gradient vectors will point to different directions in
the objectives space and will not converge to a solution. However,
having adaptive weights at each gradient step is indeed possible
assuming that the weights updating rule will result in consistent
gradient directions towards the optimal solution.

4.8. Computational complexity

Maximizing EPDAWS in (13) and minimizing LPDALP in (14) rely on
the iterative gradient ascent and descent procedures in (20) and
(22), respectively. A sensible quantity for PARDA's time complexity
is the complexity of each iteration in these procedures. Each
iteration is dominated by two main operations: (i) Eq. (10) which
evaluates the KL divergence between two Gaussian densities, and
(ii) Eq. (24) which evaluates the expression for the gradient.

The time complexity for evaluating the KL divergence in (10) is
Oðϵd30þϵ1d

2
0dÞ in the worst case. The cubic term is due to the

matrix inversions and it occurs in the d0-dimensional subspace
(where d05d). Similarly, the time complexity for the gradient
expression in (24) is Oðϵd30þϵ2d

2
0dÞ in the worst case. The cubic

term is also due to the matrix inversion in the d0-dimensional
subspace. The term d20d is due to matrix vector multiplications.
These complexities, however, are for one pair of classes, and for a
c-class problem, the complexity is O ðcðc�1Þ=2Þðϵd30þϵ1d

2
0dÞ

� �
for

Eq. (10), and O ðcðc�1Þ=2Þðϵd30þϵ2d
2
0dÞ

� �
for Eq. (24), in the worst

case, where 1oϵ; ϵ1; ϵ2ANþ . Note that these complexities are
independent of the number of samples n, linear in the number of
input features d, and quadratic in the number of classes c. Note
also that, at each iteration, the gradient expression is evaluated
once, and hence, searching for the optimal step size η is dominated
by evaluating the KL divergence in the low dimensional subspace.

4.9. Relation to other approaches

We consider here the differences between the proposed PARDA
models and some other approaches for the class masking problem.
Unlike aPAC [11] and similar methods that focus on better estimates
for the between-class scatter matrix Sb, Tang et al. [31] propose a
better estimate for the within-class scatter matrix Sw to be used
within the aPAC algorithm. In their approach, Sw is a weighted
average of classes' covariance matrices: Sw ¼∑c

j ¼ 1pjrjΣj, where pj is
the a priori probability for class Lj, and rj is a measure of separability
between class Lj and all other classes in the original input space. If Lj
is already well separated from all other classes, then rj will be small.
This method, however, relies on separability information from the
original input space which is avoided in PARDA as discussed in
Section 4.6. Further, similar to aPAC, these methods do not provide
an explicit mechanism that encourages a minimum separation
between the classes in the lower dimensional subspace.

Bian and Tao [32] propose a more direct approach for the class
masking problem, namely mini–max distance analysis (MMDA) for
dimensionality reduction. MMDA searches for a bases matrix B that
maximizes the pairwise squared Euclidean distance between the class
means in the homoscedastic Gaussian setting. For the heteroscedastic
Gaussian setting, they extend their model using the kernel trick.
MMDA's original objective function is non-smooth, and hence the
authors lean to a relaxed objective function as an approximation to the

original one, and then solve it by sequences of semi-definite programs
(SDPs). Similar to PARDA, their approach encourages a minimum
separation (in Euclidean distance sense) between classes in the lower
dimensional space. PARDA, on the other hand, directly considers a
heteroscedastic Gaussian setting and maximizes the separation
between classes by means of a discrimination measure, the symmetric
KL divergence, which takes the means and covariance matrices into
consideration. Note that the approximated problem heavily relies on
the initial solution since the final solution will be around this initial
point. Also, it is not clear how the sequence of relaxed formulations
that MMDA is solving affects the final discriminating subspace. In
addition, the sequence of SDPs is solved via an interior point method
which, despite all recent advances, is still not computationally
attractive.8

Finally, the weights proposed in the aPAC algorithm for Sb, and
the weights rj proposed in [31], can be investigated as alternatives
for, or complimentary to the weights wij based on the τ-separated
MOG [36] proposed here. Other direct approaches based on cost
sensitive classification can also be used in PARDA [38].

5. Extension to multimodal classes

In this section we extend PARDA to the realistic setting in which
the class distributions are non-Gaussian and multimodal. As it will be
shown, the model will be able to handle this setting in a smooth
manner with almost no changes to any of the details presented earlier.

To handle multimodal class distributions, it is reasonable to
approximate each class distribution as a mixture of Gaussians
(MOG) [23,15,13]. However, there are two main usual concerns
associated with such an approximation: (i) which clustering
algorithm to use, and (ii) the number of mixture components for
each class. A simple, yet an efficient solution is to use the k-Means
clustering algorithm (with multiple initializations) to cluster each
class into h subsclasses. Zhu and Martinez [13] studied two criteria
for optimal subclass division, and proposed the nearest neighbour
(NN) clustering algorithm to divide a class into h subclasses.
Alternatively, De La Torre and Kanade [15] used multiway normal-
ized cuts [39] for the same purpose. For all these approaches, the
number of subclasses h can be empirically chosen to minimize the
training or validation error, or chosen using cross validation. Once
each class Lj is divided into hj subclasses, each subclass is modelled
as Gaussian distribution N jk, where 1r jrc, and 1rkrhj. This
turns the optimization problem for PDAWS to be

Bn

PDAWS ¼ argmax
BAR

EPDAWSðBÞ;

s:t: ∑
i;j;k1 ;k2

wik1 ;jk2 ¼ 1; wik1 ;jk2 40 where ð28Þ

EPDAWSðBÞ ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
∑
hi

k1

∑
hj

k2

wik1 ;jk2 JKLðN ik1 ;N jk2 ;BÞ
 !

: ð29Þ

For PDALP the optimization problem becomes

Bn

PDALP ¼ argmin
BAR

LPDALPðBÞ;

s:t: ∑
i;j;k1 ;k2

wik1 ;jk2 ¼ 1; wik1 ;jk2 40 where ð30Þ

LPDALPðBÞ ¼ ∑
c�1

i ¼ 1
∑
c

j ¼ iþ1
∑
hi

k1

∑
hj

k2

wik1 ;jk2 ½JKLðN ik1 ;N jk2 ;BÞ�tn�2
 !

: ð31Þ

To understand how the formulation in (29) and (31) handle the
multimodal setting, it is important to note that index j is always

7 Personal communication with M. Ehrgott [22].

8 Currently, there is a surge in solving SDPs by means of Frank–Wolfe type
algorithms, a.k.a first order methods, or conditional gradient methods. See for
instance [37].
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greater than index i, and hence there is no weight wik1 ;jk2 in which
i¼ j. That is, the set of weights exists only between subclasses from
different classes, and zero otherwise. Note also that the gradients
for EPDAWS and LPDALP in (21) and (23) will include the weights
wik1 ;jk2 . Given how the weights are set based on the target tn,
PARDA will be encouraged to search for subspaces in which
subclasses from different classes are separated from each other.
Note that the weights between classes are now replaced by the
weights between subclasses from different classes.

6. Empirical analysis

In this section we carry out different types of experiments using
PARDA to compare its performance to that of well known and
modern DA algorithms. Two types of data sets were used in all our
experiments: synthetic and real. The synthetic data set, referred here
as Gaussians, has 5 classes, each has a 20 dimensional Gaussian
distribution with a full covariance matrix. The data set has 1000
samples for training (200 samples/class), and 1000 samples for test
(200 samples/class). The data set was generated as follows [15]. Each
sample xi from class Lj is generated as xi ¼ Tjbþμjþn, where
xiAR20, TjAR20�7, b�N 7ð0; IÞ, n�N 20ð0;2IÞ for training samples,
and n�N 20ð0;2:3IÞ for test samples. The bases Tj are random
matrices where each element is generated from N ð0;5Þ. Further,
the bases Tj are enforced to be orthogonal to each other; that is
trðTiT

>
j Þ ¼ 0; 8 ia j. This can be achieved using the following Gram–

Schmidt approach: Tj ¼ Tj�∑j�1
k ¼ 1trfðTkT

>
k Þ�1T>

j TkgTk, for j¼ 2;
…;5. The means of each class were as follows: μ1 ¼ 4120, μ2 ¼ 020,
μ3 ¼ �4½010;110�> , μ4 ¼ 4½110;010�> , and μ5 ¼ 4½15;05;15;05�> .

The real data sets, shown in Table 1, were selected from various
domain knowledge to verify whether PARDA can generalize on a
large variety of problems. All data sets were selected such that
they have more than two classes: (i) Nine data sets from the UCI
machine learning repository [40]; newthyroid (for illustration
purposes only), isolet, optdigits, pageblocks, pendigits,
satimages, segment, shuttle, and vowel, (ii) The Ohio sitting
posture (osp) data set [41], (iii) The usps [42] and mnist [43]
data sets, and (iv) Two faces data sets: cmupie [44] & yaleb [45].

For comparisons with PARDA, the following algorithms were
selected from the literature: Principal Component Analysis (PCA),
WhiteþLDA [46] which is known to work well in practice for face
recognition problems, Approximate Pairwise Accuracy Criterion
LDA (aPAC)9 [11], Subclass Discriminant Analysis (SDA)10 [13],
Relevant Component Analysis (RCA) [47], and MODA [15]. Note
that RCA was proposed as an algorithm for learning a Mahalanobis
metric over data sets with side information (equivalence con-
straints in this case). When provided with a fully labeled data set,
and noticing its algorithmic implementation, it is equivalent to
performing PCA followed by LDA.

The performance measure in our experiments is the classification
error of a quadratic discriminant analysis (QDA) classifier in the low
dimensional subspace. That is, a sample x in the input space is
projected into the low dimensional subspace using the low rank
matrix B obtained from the Pareto model or from a competitive
algorithm, B>x¼ y, and then y is assigned to the class that yields the
smallest discriminant score: ðy�bμ jÞ> bΣjðy�bμ jÞþ log jbΣ jj�2log bπ j; 8 j,
where bμ j and bΣ j are, respectively, the low dimensional estimates for
the mean vector and covariance matrix for class Lj, and bπ j is the
empirical class prior probability.

6.1. Experimental results

In our first experiment, we consider the projection quality
obtained from PARDA and how it compares to the projections
obtained from other algorithms. Figs. 3 and 4 show the 2D projections
for Gaussians and newthyroid, respectively. Note that for LDA, the
maximum d0 is c�1, which for the two data sets are d0 ¼ 4 and
d0 ¼ 2, respectively. In each figure, the projections are obtained using
PCA, WLDA, aPAC, RCA, MODA, PDAWS, and PDALP.

For the Gaussians case, Fig. 3, all algorithms give very similar
projections. Note that the class compactness, class overlap, relative
location of classes to each other, and the classification error are
similar in all cases, except for the error resulting from the PCA
projection. This is understandable since PCA projects the data on
the directions with maximum variance irrespective of the class
labels. For newthyroid, Fig. 4, one can notice the difference
between PDALP on one hand, and all other methods on the other
hand. PDALP yields projections with less overlap than all other
methods and resulted in the lowest error rate. This is due to the
mechanism of the target values tij and the weights wij. To see this,
note that PDAWS (which does have similar weights but without
target values) resulted in higher error rate than PDALP. MODA,
which does not have weights or target values, resulted in higher
overlap between classes and higher error rate. RCA and aPAC
yielded very similar projections and resulted in the same error
rate. Although both algorithms performed better than PDAWS in
this case, Tables 2–4, will show various cases where PDAWS
outperforms these two algorithms.

In our second experiment, we consider the behaviour for the
training error and test error when increasing the number of bases
d0 for the low rank projection matrix B (i.e. adding more features),
especially when d04c�1. Fig. 5a and b shows the average
training and test errors (with standard deviations) versus the
number of bases d0 for Gaussians and optidigits, respectively.
The average errors were measured as follows. First, we generated
10 different instances from the Gaussians data set described
earlier. The final training and test errors were the average error
over the 10 training sets and 10 test set errors, respectively.
Second, for optidigits, the average training and test errors
were obtained using 10 folds double cross validation.

For the Gaussians case, the training error decreases as more
dimensions (or features) are added to the data representation. The
test error, on the other hand, starts high when d0oc�1, minimum
at d0 ¼ c�1, and then increases as more dimensions (features) are
added. These profiles, especially for the average test error, are the
typical profiles for error vs. model's complexity of a learning
algorithm when the data set is fixed [48, p. 194]. Note that the

Table 1
Data sets used in our experiments with their size (n), number of features (d), and
number of classes (c).

Name n d c

uci newthyroid 215 5 3
uci isolet 7797 617 26
uci pageblocks 5473 10 5
uci satimages 6435 36 6
uci segment 2310 18 7
uci shuttle 58,000 9 7
uci vowel 990 11 11
digits usps 9298 16 �16 10

faces cmupie 11,554 32 �32 68
faces yaleb 2414 32 �32 38
OSP 2500 1080 10

digits mnist 60–10 K 24 �24 10

9 From the PRTools found at: prtools.org.
10 From the authors' website.
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model's complexity here refers to the complexity of the repre-
sentation (or features), which is represented here by adding more
bases (or columns) to matrix B. Hence, PARDA behaves normally in
that regard.

In our last experiments, the PARDA models are compared with
the six algorithms (mentioned earlier) on the 13 real data sets in

Table 1. Four different PARDA based algorithms are included in the
comparison: (i) The Lp-Metric method (PDALP), (ii) The WS method
(PDAWS), (iii) The Lp-Metric method with each class modelled as a
MOGwith two components (MOGLP), and (iv) TheWSmethod with
each class modelled as a MOG with two components (MOGWS). For
PARDA models, the number of dimensions d0 can be selected to

Fig. 3. 2D projections for Gaussians with training error using PCA, WLDA, aPAC, RCA, MODA, PDAWS, and PDALP.

Fig. 4. 2D projections for newthyroid with training error using PCA, WLDA, aPAC, RCA, MODA, PDAWS, and PDALP.
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minimize the training error or the validation error, or by means of
cross validation for the number of samples is small. For MOGLP and
MOGWS, note that the number of classes is doubled and the
discriminant subspace can have a dimensionality up to 2c�1,
assuming d42c. Although the number of Gaussians per class is
fixed for all data sets, a better approach would be to optimize the
number of components per data set. Nevertheless, we obtained
satisfactory results using this setting.

For all data sets, the performance measure is the test error of a
QDA classifier. Column three in Tables 2 and 3 shows the average
test error rates (with standard deviation) for the QDA classifier
(using 10 folds cross validation) on the data sets before applying
any dimensionality reduction. For convenience, column two in
Tables 2–4 shows the number of feature d for each data set, while
column four shows the value of d0 ¼minðd�1; c�1Þ.

Except mnist, columns 5–13 in Tables 2 and 3 show the average
test error rates (with standard deviation) for the QDA classifier (using
10 folds cross validation) after applying the different dimensionality
reduction algorithms. For the mnist data set, the training set (60 K
samples) was split into two smaller sets: the first 40 K samples as a
new training set, and the last 20 K samples as a validation set. All
algorithms were trained on the new training set and used the
validation set for parameter optimization. The results reported in
Table 4 are the error rates for the QDA classifier on the mnist test set
(10 K samples). Note that no preprocessing or feature extractionwere
applied to any of the images data sets (mnist,usps,cmupie,
yaleb) – just raw vectorial data.

Table 2 shows the results for the UCI and USPS data sets. It can
be seen that PARDA is consistently better or as good as other

dimensionality reduction methods. For satimages, shuttle,
vowel, and pageblocks, PARDA achieves the lowest error rates
at fewer number of discriminant dimensions (shown in square
brackets) than is required by other algorithms.

Table 3 shows the results for cmupie, yaleb, and osp data
sets. In these cases PARDA outperforms WLDA, aPAC, RCA, SDA,
and MODA. However, it can be noticed that PCA (which completely
ignores the class labels) outperforms these algorithms as well and
yields very competitive results to PARDA. This behaviour is not
surprising and it has been shown in [49] that, if nj, the number of
samples per class, is much smaller than d, or if the training data is
not uniformly sampled from its underlying manifold, PCA can
outperform discriminant analysis methods. While these factors
have hampered other DA methods, PARDA seemed to be robust
against these factors and yielded competitive results. Note that
MODA outperformed WLDA, aPAC, RCA, and SDA on these data
sets but not as good as PCA for the same reasons. If taking the
differences between MODA and PARDA into consideration, this
shows that iterative methods for DA seem to be more robust
against these factors.

Table 4 shows the results for all algorithms on the mnist data
set. At d0 ¼ c�1, PDALP and PDAWS are better than all other
algorithms, while MOGLP and MOGWS achieve the lowest error
rate due to the modelling of each class as MOG. As d0 slightly
increases for PDALP and PDAWS, both algorithms achieve the
lowest error rates.

The results for QDA without applying dimensionality reduction
are worth discussing. In two cases (pendigits, pageblocks), QDA
without dimensionality reduction resulted in the lowest error rates,

Table 2
Average test error rates (with standard deviation) for all algorithms on the nine UCI data sets and the usps data set. Default d0 ¼minðc�1; d�1Þ. Numbers in square brackets
indicate d0's value when it is different from the default value.

Data set d QDA d0 PCA WLDA aPAC RCA SDA MODA PDALP PDAWS MOGLP MOGWS

pendigits 16 1.8 (0.5) 9 5.2 (0.7) 6.9 (1.4) 7.0 (1.5) 7.0 (1.5) 6.9 (1.5) 5.1 (0.7) 3.4 (0.4) 4.2 (0.5) 4.3 (0.6) 4.2 (0.5)
satimages 36 15.8

(3.8)
5 17.5 (5.2) 16.9 (4.8) 17.4 (4.9) 17.4 (4.8) 18.2 (5.4) 16.9 (4.9) 14.0 (4.5) [4] 14.8 (3.8) 14.1 (4.0) 14.8 (4.3)

segment 18 11.1 (2.3) 6 22.2 (1.7) 7.6 (1.8) 7.6 (1.8) 8.1 (1.8) 7.2 (1.9) 10.2 (2.3) 7.1 (2.3) 7.5 (1.2) 6.9 (1.7) 7.5 (2.4) [10]
shuttle 9 5.4 (0.8) 6 4.3 (0.3) 19.2 (3.6) 6.2 (0.4) 6.2 (0.4) 4.3 (0.2) 4.0 (0.3) 3.4 (0.6) [5] 3.6 (0.3) 3.6 (0.3) 2.6 (0.3)
vowel 11 36.4 (7.7) 10 35.8 (8.4) 42.1 (8.7) 42.2 (8.8) 42.2 (8.8) 40.2 (8.6) 38.5 (8.1) 34.9 (9.1) 33.1 (8.4) [5] 33.7

(9.1)
35.8 (8.8) [9]

isolet 617 14.3
(2.4)

25 9.2 (2.8) 6.1 (1.7) 6.2 (1.8) 6.2 (1.8) 6.3 (1.8) 13.8 (3.5) 5.9 (2.1) 8.6 (2.1) 6.5 (1.7) 6.9 (1.7)

optdigits 64 3.8 (0.7) 9 5.0 (1.1) 3.9 (1.2) 3.9 (1.2) 3.9 (1.1) 3.9 (1.1) 5.5 (1.4) 3.5 (0.8) 4.7 (1.2) 3.7 (1.0) 5.2 (1.2)
1.9 (0.6) [16] 2.2 (0.8) [20] 1.8 (0.6) [19] 2.6 (0.7) [20]

pageblocks 10 6.8 (3.5) 4 67.9
(12.9)

25.4
(12.9)

43.5
(15.2)

43.9
(15.2)

54.0 (19.0) 55.8 (14.2) 8.92 (3.4) [3] 7.8 (3.2) [3] 8.4 (3.4) 9.9 (5.6)

6.3 (10.6) [7]
usps 256 7.4 (4.0) 9 11.3 (1.3) 6.91 (1.4) 7.2 (1.5) 7.2 (1.5) 7.1 (1.5) 19.4 (1.2) 5.4 (1.3) 7.3 (1.1) 5.5 (1.0) 8.9 (1.2)

3.2 (0.9) [19] 3.6 (0.8) [20] 3.8 (1.0) [17] 4.2 (1.3) [19]

Table 3
Average test error rates (with standard deviation) for all algorithms on cmupie, yaleb, and osp data sets. Default d0 ¼minðc�1; d�1Þ. Numbers in square brackets indicate
d0's value when it is different from the default value.

Data set d QDA d0 PCA WLDA aPAC RCA SDA MODA PDALP PDAWS MOGLP MOGWS

cmupie 1024 9.1 (17.7) 67 7.7 (17.1) 13.8 (19.9) 15.7 (20.3) 15.7 (20.3) 17.1 (20.6) 10.4 (18.5) 7.6 (17.1) 7.5 (16.9) 7.8 (17.0) 7.5 (16.9)
yaleb 1024 54.5 (14.3) 37 6.6 (10.1) 13.1 (16.1) 14.2 (16.3) 14.2 (16.3) 25.5 (19.5) 20.1 (15.8) 5.8 (9.5) 5.6 (8.8) 6.9 (11.1) 6.5 (9.6)
osp 1080 57.5 (5.5) 9 31.1 (8.6) 45.9 (8.5) 46.7 (8.5) 46.7 (8.5) 45.8 (7.9) 39.2 (6.3) 31.0 (8.1) 32.5 (9.1) 29.6 (6.9) 29.7 (7.4)

30.7 (9.0) [13]

Table 4
Test error rates for all algorithms on the mnist data set. Default d0 ¼minðc�1; d�1Þ. Numbers in square brackets indicate d0's value when it is different from the
default value.

Data set d QDA d0 PCA WLDA aPAC RCA SDA MODA PDALP PDAWS MOGLP MOGWS

mnist 576 12.6 9 11.4 12.1 12.7 12.6 12.6 24.1 8.9 9.1 4.8 [19] 4.6 [19]
3.9 [31] 4.1 [35]
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and only PARDA yielded the closest performance. If this is the case in
a practical setting, then dimensionality reduction is not useful.
However in all other cases, dimensionality reduction methods and
PARDA, in particular, yielded subspaces with fewer dimensions and
better discriminability between classes. This can be clearly seen in
the cases of high dimensional data such as isolet, optdigits,

usps, cmupie, yaleb, osp and mnist. Note that when the
number of samples per class is much smaller than d (yaleb, osp),
QDA had the worst performance. This demonstrates the crucial role
of dimensionality reduction methods.

In general, the results above show that PARDA results in a pro-
mising performance with a sufficient room for improvements if one
considers optimizing the dimensionality of the embedding sub-
space, and the number of mixture's components for each class.
When comparing MODA to all PARDA based algorithms, one can
notice how the convex weights try to counteract the class masking
effect. Further, it can be noticed that PDALP and MOGLP yield better
results than PDAWS and MOGWS. This is due to the target value tn

which plays a dual role: (i) it encourages subspaces with maximum
separation between classes, and (ii) it acts as a constraint on the
minimum divergence between classes.

7. Concluding remarks and outlook

We propose a new approach for supervised linear dimension-
ality reduction in the multiclass setting. In this approach, each class
is modelled as a Gaussian distribution with a full covariance matrix,
thereby casting the original problem into a multiclass heterosce-
dastic discriminant analysis (HDA) model. Unlike previous objective
functions for HDA, our approach perceives the multiclass HDA as a

set of functions, each representing the distance (in terms of
symmetric KL divergence) between two different classes (or Gaus-
sians). An ideal solution for such a set of functions is a low rank
linear transformation matrix Bn that defines a low dimensional
subspace in which all the pairwise distances between class means
are maximized, and the overlap between classes due to class spread
is minimized. Although such an ideal solution will not exist in
practice, it raised the need for a mathematical model that can
encourage such ideal solutions, and hopefully, attain an approxima-
tion for it.

The mathematical model turns to be the machinery of multi-
objective optimization for which its optimal solution is known to exist.
The Pareto optimal solution is suboptimal for each individual objective
function, but is in maximal agreement between all the possibly
conflicting objective functions. The proposed model, PARDA, concen-
trates on separating overlapping classes with an explicit mechanism to
counteract the class masking effect. Experimental results on real data
sets showed promising performance in favour of PARDA when
compared with well known algorithms from the literature.

PARDA offers additional flexibility on two different aspects:
parallel implementation for large scale settings, and using differ-
ent measures of separation between classes. First, for problems
with large number of classes, the iterative gradient ascent (or
descent) procedure can be easily parallelized on today's multicore
architectures, with minimal communications between the cores.
To see this, note that in order to compute the gradient for one
objective function, each core needs to have Bt , μi, μj, and the
regularized low rank estimates of Σi and Σj. Note also that
computing EPDAWS and LPDALP can be parallelized in a similar
fashion. Such a parallel implementation can offer a substantial
speedup for the time required to learn the model.

Fig. 5. Average training error (left) and average test error (right), with standard deviation, vs. d0 using MODA, PDAWS, and PDALP, on (a) Gaussians, and (b) optdigits.
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Second, PARDA is not restricted to the symmetric KL divergence
as a measure of separation between two classes. For instance, the
Bhattacharyya distance and the Hellinger distance are well known
symmetric divergence measures with closed form expressions for
Gaussian densities. Using these divergence measures does not
change any conceptual idea in the model, however, the expres-
sions for the objective functions and the gradients will indeed
change accordingly. Important questions in that regard are those
related to the nature of the divergence measure, its capability as a
measure of discrimination between classes, and its computational
burden. A natural extension for this line of research is that of non-
parametric DA within the PARDA model, and extending PARDA to
operate in a kernel feature space.
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