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Abstract
Hypothesis transfer learning (HTL) contrasts do-
main adaptation by allowing for a previous task
leverage, named the source, into a new one, the
target, without requiring access to the source data.
Indeed, HTL relies only on a hypothesis learnt
from such source data, relieving the hurdle of
expansive data storage and providing great prac-
tical benefits. Hence, HTL is highly beneficial
for real-world applications relying on big data.
The analysis of such a method from a theoretical
perspective faces multiple challenges, particularly
in classification tasks. This paper deals with this
problem by studying the learning theory of HTL
through algorithmic stability, an attractive theoret-
ical framework for machine learning algorithms
analysis. In particular, we are interested in the
statistical behaviour of the regularized empirical
risk minimizers in the case of binary classifica-
tion. Our stability analysis provides learning guar-
antees under mild assumptions. Consequently,
we derive several complexity-free generalization
bounds for essential statistical quantities like the
training error, the excess risk and cross-validation
estimates. These refined bounds allow understand-
ing the benefits of transfer learning and compar-
ing the behaviour of standard losses in different
scenarios, leading to valuable insights for practi-
tioners.

1. Introduction
Traditional supervised machine learning methods share the
common assumption that training data and test data are
drawn from the same underlying distribution. However, this
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assumption is often too restrictive to hold in practice. In
many real-world applications, a hypothesis is learnt and de-
ployed in different environments that exhibit a distributional
shift. A more realistic assumption is that the marginal dis-
tributions of training (source) and testing (target) domains
are different but related. This is the framework of domain
adaptation (DA), where the learner is provided little or no
labeled data from the target domain but a large amount of
data from the source domain. This problem arises in vari-
ous real-world applications like natural language processing
(Dredze et al., 2007; Ruder et al., 2019), sentiment analysis
(Blitzer et al., 2007b; Liu et al., 2019), robotics (Zhang et al.,
2012; Bousmalis et al., 2018) and many other areas.

Several works shed light on the theory of DA (Blitzer et al.,
2007a; Mansour et al., 2009; Ben-David et al., 2010; Zhang
et al., 2012; Cortes et al., 2015; Zhang et al., 2019) and sug-
gest schemes that generally rely on minimizing some simi-
larity distances between the source and the target domains.
However, the theoretical analysis shows that a DA proce-
dure needs many unlabeled data from both domains to be
efficient. Besides, even when unlabeled data are abundant,
minimizing a similarity distance can be time-consuming in
many scenarios.

To tackle this practical limitation, a new framework that
relies only on the source hypothesis was introduced, the
so-called hypothesis transfer learning (HTL) (Li & Bilmes,
2007; Orabona et al., 2009; Kuzborskij & Orabona, 2013;
Perrot & Habrard, 2015; Kuzborskij & Orabona, 2017; Du
et al., 2017). HTL is tailored to the scenarios where the
user has no direct access to the source domain nor to the
relatedness between the source and target environments. As
a direct consequence, HTL does not introduce any assump-
tions about the similarity between the source and target
distributions. It has the advantage of not storing abundant
source data in practice.

In this work, we analyze HTL through Regularized Empiri-
cal Risk Minimization (RERM) in the binary classification
framework. Our working assumptions encompass many
widely used surrogate losses, such as the exponential loss
used by several boosting algorithms like AdaBoost (Fre-
und & Schapire, 1997), the logistic loss, the softplus loss,
which serves as a smooth approximation of the hinge loss
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(Dugas et al., 2000), the mean squared error (MSE) and the
squared hinge that represents the default losses for least
squares/modified least squares algorithms (Rifkin et al.,
2003). The attractive quality of these surrogate losses is
that they are classification calibrated (Zhang, 2004; Bartlett
et al., 2006). In other words, they represent a convex up-
per bound for the classification error and minimizing the
expected risk regarding a surrogate loss yields a predictor
with sound accuracy.

This paper’s theoretical analysis uses the notion of algorith-
mic stability. Formally, assuming that one has access to a
small labeled set, we derive many complexity-free generali-
sation bounds that depend only on the source hypothesis’s
quality. In particular, such an analysis allows us to compare
the behavior of different losses in different scenarios and to
answer some practical questions such as: which surrogate
loss is recommended when the source and target domains
are related? Which surrogate loss is robust to heavy distri-
bution shift?

The notion of algorithmic stability and its consequences in
learning theory has received much attention since its intro-
duction in (Devroye & Wagner, 1979). It allows obtaining
complexity-free generalization bounds for a large class of
learning algorithms such as k-nearest-neighbours (Devroye
& Wagner, 1979), empirical risk minimizers (Kearns &
Ron, 1999), Support Vector Machine (Bousquet & Elisse-
eff, 2002), Bagging (Elisseeff et al., 2005), RERM (Zhang,
2004; Wibisono et al., 2009), stochastic gradient descent
(Hardt et al., 2016), neural networks with a simple archi-
tecture (Charles & Papailiopoulos, 2018), to name but a
few. For an exhaustive review of the different notions of
stability and their consequences on the generalization risk
of a learning algorithm, the reader is referred to (Kutin &
Niyogi, 2002).

Only a few works derive theoretical guarantees for RERM
in the HTL framework and are all formalized in a regres-
sion setting. A stability analysis has been provided for
the HTL algorithm in the case of RLS for regression in
Kuzborskij & Orabona (2013) limited to the least-squares
loss. Later, Kuzborskij & Orabona (2017) considered the
class of smooth losses and obtained statistical rates on the
empirical risk, being a particular case of the stability guar-
antees. However, this smoothness assumption may be con-
sidered strong since it is not satisfied for hypotheses learnt
from the exponential loss or vacuously satisfied for hypothe-
ses learnt from the softplus loss. Besides, Du et al. (2017)
proposed a novel algorithm to adapt the source hypothesis to
the target domain. Nonetheless, the theoretical guarantees
they derived are obtained with several strong assumptions,
unverifiable in practice. The obtained bounds depend on
many unknown parameters (for further details, see Sec-
tion 3, where all these assumptions are explicitly listed and

discussed). Other theoretical results studying HTL outside
the framework of RERM can be found (Li & Bilmes, 2007;
Morvant et al., 2012; Perrot & Habrard, 2015; Dhouib &
Redko, 2018). However, most of these theoretical results
depend on a complexity/distance measure or/and are valid
on a different framework than classification. For example,
Perrot & Habrard (2015) explores the notion of algorithmic
stability in metric learning with Lipschitz loss functions
to study the excess risk of some algorithms. The obtained
bounds are not intuitive as they depend on the Lipschitz
constant and cannot be easily extended to many usual clas-
sification losses. Furthermore, the proof techniques in the
latter work are far from ours.

On the other hand, when the source is known, many theo-
retical guarantees can be found in the domain adaptation
literature, see e.g. Mansour et al. (2009); Ben-David et al.
(2010); Zhang et al. (2012); Cortes et al. (2015) and Zhang
et al. (2019), among others. Their rates involve the com-
plexity of the hypothesis class and the distance between the
source and the target distribution that may be unknown in
practice and drastically deteriorate the rates.

Another related subject is meta learning, broadly described
as leveraging data from pre-existing tasks to derive algo-
rithms or representations that yield superior results on unen-
countered tasks. Many theoretical works such as (Khodak
et al., 2019; Balcan et al., 2019; Denevi et al., 2019) or
(Denevi et al., 2020) have studied this problem. Yet, the
obtained theoretical guarantees in the latter works depend
on the smoothness parameters of the loss function and the
regularizers. The proof techniques from the present paper
can be incorporated into the proof of the latter references
to obtain more sharp and intuitive learning bounds, that is,
bounds exclusively depending on the quality of the source
hypothesis.

Contributions In this paper, we investigate the statistical
risk of the hypothesis transfer learning procedure dedicated
to the binary classification task. To that end, we adopt the
angle of algorithmic stability that offers an appealing the-
oretical framework to analyze such a method. This is the
first work exploring algorithmic stability for HTL with the
usual classification loss functions. In this paper, we provide
a (pointwise) hypothesis stability analysis of the HTL in the
classification framework for any losses satisfying mild con-
ditions. Furthermore, we show that our main assumptions
are valid for the most popular classification losses and derive
their associated constants. Based on these stability results,
we investigate the statistical behavior of the generalization
gap and the excess risk of the HTL procedure. We provide
an intuitive finite-sample analysis of these quantities and
highlight the statistical behavior of common losses.
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2. Background and Preliminaries
In this section, we start by recalling the framework of Hy-
pothesis transfer learning and describe the concept of stabil-
ity.

2.1. Hypothesis Transfer Learning

Considering the source and target domains, hypothesis trans-
fer learning leverages the learnt hypothesis with the source
dataset, without having access to the raw source data or any
information between source and target domains, to solve
a machine learning task on the target domain. Formally,
we denote by ZS and ZT the source and target domains
and assume that we have access to n ∈ N, n ≥ 1 i.i.d.
observations DT = Z1, . . . , Zn ∈ ZT with a distribu-
tion PT lying in the target domain and a source hypoth-
esis hS learnt from m ∈ N,m ≥ 1 i.i.d. observations
DS = ZS

1 , . . . , Z
S
m ∈ ZS drawn from the source distribu-

tion PS . In the HTL framework, we do not have access to
the source observations but only to the resulting source hy-
pothesis hS . It is worth noting that n≪ m in many practical
scenarios. In this paper, we focus on the binary classification
task. Therefore, our domains consist of a Cartesian prod-
uct of a source/target covariate space XS/XT and the set
{−1, 1}, i.e. ZS = XS×{−1, 1} and ZT = XT ×{−1, 1}.
In addition, we assume that XT ⊂ XS ⊂ Rd. Consider two
classes of hypotheses HS and HT , an HTL algorithm aims
to use a source hypothesis hS ∈ HS learnt on DS to im-
prove the performance of a classification algorithm over DT .
Precisely, it is defined as a map

A : (ZT )
n ×HS → HT

(DT , hS) 7→ hT .

Throughout the paper, we assume that hS is given and
fixed, and we use the shorthand notation A(DT ) instead
of A(DT , hS) for the sake of clarity.

Let ℓ : HT × ZT 7→ R+ denote a loss function so that
ℓ(hT , Z) is the error of hT ∈ HT on the observation Z =
(X,Y ) ∈ ZT . In this work, we assume that ℓ(hT , Z) =
ϕ (hT (X)Y ) for some non negative convex function ϕ. The
generalization risk of the predictor A(DT ) is denoted by

R
[
A (DT )

]
= EZ∼PT

[ℓ (A (DT ) , Z)]

= E [ℓ (A (DT ) , Z) | DT ] .

Notice that the randomness in the latter expectation stems
from the novel observation Z only while the trained algo-
rithm A(DT ) is fixed. Its empirical counterpart, the training
error of A (DT ) writes as

R̂
[
A(DT )

]
=

1

n

n∑
i=1

ℓ(A(DT ), Zi).

The latter estimate is known to be optimistic since most
learning algorithms are conceived to minimize the training
loss. Thus, a more reliable estimate would be the deleted
estimate or the so-called leave-one-out (l.o.o.) estimate:

R̂loo

[
A(DT )

]
=

1

n

n∑
i=1

ℓ
(
A(D\i

T ), Zi

)
, (2.1)

where D\i
T = DT \ {Zi} denotes the dataset DT with the

i’th element removed.

Remark 2.1 (ACCELERATED l.o.o.). At first sight, one can
notice that computing the l.o.o. risk measure is a heavy task
in practice since one needs to train the algorithm n times.
However, in our case, one can use the closed form formula
of the l.o.o. estimate for RERM algorithms derived in Wang
et al. (2018).

2.2. Algorithmic Stability

In this part, we briefly recall important notions of stability
that will be used in the paper. The notion of stability was
first introduced in Devroye & Wagner (1979) to derive non-
asymptotic guarantees for the leave-one-out estimate. Let
denote by [n] the set of indices {1, . . . , n}. The algorithm A
is called stable if removing a training point Zi, i ∈ [n], from
the DT or replacing Zi with an independent observation Z ′

drawn from the same distribution does not alter the risk of
the output. Later, Bousquet & Elisseeff (2002) introduced
the strongest notion of stability, namely uniform stability, an
assumption used to derive probability upper bounds for the
training error and the l.o.o. estimate (Bousquet & Elisseeff,
2002; Elisseeff et al., 2005; Hardt et al., 2016; Bousquet
et al., 2020; Klochkov & Zhivotovskiy, 2021). Equipped
with the above notations, uniform stability, also called leave-
one-out stability, can be defined as follows.

Definition 2.1. The algorithm A is said to be β(n)-
uniformly stable with respect to a loss function ℓ if, for
any i ∈ [n] and Z ∈ ZT , it holds:∣∣∣ℓ (A(DT ), Z)− ℓ

(
A(D\i

T ), Z
)∣∣∣ ≤ β(n).

In practice, uniform stability may be too restrictive since the
bound above must hold for all Z, irrespective of its marginal
distribution. While weaker, the following notion of stabil-
ity is still enough to control the leave-one-out deviations
(Devroye & Wagner, 1979; Bousquet & Elisseeff, 2002;
Elisseeff et al., 2005; Kuzborskij & Orabona, 2013).

Definition 2.2. The algorithm A has a hypothesis stability
β(n) with respect to a loss function ℓ if, for any i ∈ [n], it
holds: ∥∥∥ℓ (A(DT ), Z)− ℓ

(
A(D\i

T ), Z
)∥∥∥

1
≤ β(n),
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where ∥X∥q = (E [|X|q])1/q is the Lq norm of X .

We now recall a direct analogue of hypothesis stability:
the pointwise hypothesis stability. The latter property is
used to derive PAC learning bounds for the training error
(Bousquet & Elisseeff, 2002; Elisseeff et al., 2005; Charles
& Papailiopoulos, 2018).

Definition 2.3. The algorithm A has a pointwise hypothesis
stability γ(n) with respect to a loss function ℓ if, for any
i ∈ [n], it holds:∥∥∥ℓ (A(DT ), Zi)− ℓ

(
A(D\i

T ), Zi

)∥∥∥
1
≤ γ(n).

Note that the approach based on stability does not refer
to a complexity measure like the VC dimension or the
Rademacher complexity. There is no need to prove uniform
convergence, and the generalization error (cf. Equation 4.1
below) depends directly on the stability parameter. Our
work aims to use the notion of algorithmic stability to de-
rive sharper bounds for the HTL problem. More precisely,
the magnitude of the obtained bounds is directly related
to the quality of hS on the target domain

(
represented by

R[hS ]
)

instead of the complexity of the hypothesis class
(Ben-David et al., 2010; Zhang et al., 2012; Cortes et al.,
2015; Zhang et al., 2019).

2.3. Working Framework

This paper analyses hypothesis transfer learning through
regularised empirical risk minimization (RERM). In par-
ticular, it includes the popular Regularized Least Squares
(RLS) with biased regularization (Orabona et al., 2009) that
has been analyzed in Kuzborskij & Orabona (2013) and
Kuzborskij & Orabona (2017). Formally, we consider the
following algorithm A such that:

A(DT , hS) = ĥ(· ;DT ) + hS(·), (2.2)

where the function ĥ : Rd → R is obtained from the target
set of data via the minimization problem:

ĥ = argmin
h∈H

1

n

n∑
i=1

ϕ ((h (Xi) + hS (Xi))Yi) + λ∥h∥2k

= argmin
h∈H

R̂(h+ hS) + λ∥h∥2k, (2.3)

with the family of hypotheses H being a reproducing kernel
Hilbert space (RKHS) endowed with a kernel k, an inner
product ⟨·, ·⟩ and a norm ∥·∥k. The resulting map arising
from the HTL is the sum of the source hypothesis hS and the
target hypothesis ĥ where ĥ is learnt involving the source
map.

It is worth noting that our analysis encompasses the least
square with biased regularization (Schölkopf et al., 2001;

Orabona et al., 2009) commonly studied in transfer learning
(Kuzborskij & Orabona, 2013; 2017), briefly recalled below.

Remark 2.2 (LINK WITH RLS). The RLS with biased
regularization is a particular case of the proposed algo-
rithm 2.2. Indeed, by choosing k as the linear kernel
k(x1, x2) = x⊤1 x2 and the loss ϕ(x) = (1− x)

2, it is
equivalent to

A = ĥ+ hS ,

with ĥ(x) = û⊤x and

û = argmin
u∈Rd

1

n

n∑
i=1

(
u⊤Xi + hS(Xi)− Yi

)2
+ λ∥u∥22.

(2.4)

Furthermore, if hS(x) = v⊤x is a linear classifier with
v ∈ Rd, then

û = argmin
u∈Rd

1

n

n∑
i=1

(
u⊤Xi − Yi

)2
+ λ∥u− v∥22,

which is the original form of biased regularisation algo-
rithms (Schölkopf et al., 2001; Orabona et al., 2009). See
Appendix A.1 for technical details.

3. Stability Analysis
The subsequent analysis requires technical assumptions,
listed below. We assume that the source hypothesis and the
kernel k are bounded, as stated in the following assumptions.

Assumption 1. The source hypothesis is bounded on the
target space:

∥hS∥∞ = sup
x∈XT

|hS(x)| <∞.

Assumption 2. The kernel k is bounded:

sup
x1,x2∈XT

k(x1, x2) ≤ κ.

The boundness of the kernel is a common and mild assump-
tion (see e.g. Bousquet & Elisseeff, 2002; Zhang, 2004;
Wibisono et al., 2009). It is satisfied by many usual kernels
like the Gaussian kernel and the sigmoid kernel. Further-
more, when XT is bounded, then polynomial kernels are
also bounded.

We now investigate the accuracy of the HTL proposed frame-
work and provide general stability results under slight as-
sumptions. Furthermore, we show that these assumptions
are satisfied by most of the popular ML surrogate losses
used in practice and derive precisely the associated constants
involved in our theoretical results.
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3.1. Hypothesis Stability

This section analyzes the hypothesis stability of general
surrogate ML losses for the proposed HTL framework. To
study the stability of Algorithm 2.2, we start by showing
that the solution of the optimization problem 2.3 lies in the
sphere with a data-driven radius, as stated in the following
lemma.

Lemma 3.1. Suppose that Assumptions 1 and 2 are sat-
isfied. Then the solution of Equation (2.3) lies in the set
{h ∈ H, ∥h∥∞ ≤ r̂λ} with

r̂λ = κ

√
αR̂ [hS ],

where α = κ/λ .

Proof. The proof is postponed in the Appendix B.1.

This lemma ensures that the norm of the solution of the
optimisation problem 2.3 decreases when the quality of hS
increases. In the rest of the paper, for a given index i ∈ [n],

we denote by r̂iλ = κ

√
αR̂\i [hS ], R̂\i the training error

with the i’th sample removed and ρ̂iλ = max
(
r̂λ, r̂

i
λ

)
.

Before stating our main theorem, we first require an addi-
tional assumption involving the empirical radius obtained
in Lemma 3.1.

Assumption 3. The function ϕ is differentiable and convex.
Furthermore, ∀i ∈ [n], it holds:

E

[
sup

|y′|,|y|≤ρ̂i
λ

|ϕ′(hS(X ′)Y ′ + y′)ϕ′(hS(X)Y + y)|

]
≤ Ψ1 (R [hS ]) ,

where Z = (X,Y ), Z ′ = (X ′, Y ′) are two samples drawn
from PT independent of D\i and Ψ1 is a decreasing function
verifying Ψ1(0) = 0.

The bound stated in the theorem below reveals the generali-
sation properties of the presented HTL procedure through
the stability framework.

Proposition 3.1. Suppose that Assumptions 1, 2 and 3 are
satisfied. Then the algorithm A (cf. Equation (2.2)) is
hypothesis stable with parameter

β(n) =
α
(
Ψ1 (R [hS ]) ∧ ∥ϕ′∥2∞

)
n

.

Proof. The proof is postponed to the Appendix B.2.

We obtain a stability rate of order O
(

Ψ1(R[hS ])α
n

)
for any

losses satisfying Assumption 3. It naturally depends on

the risk of the source classifier, where the expectation is
taken on the target data distribution. Therefore, the source
task directly influences the rate of the HTL classifier. The
standard stability rate of RERM without transfer learning
(without source) is of order O(α/n), see Theorem 4.3 in
Zhang (2004) or Theorem 3.5 in Wibisono et al. (2009). A
relevant source hypothesis allows us to obtain faster rates
than in standard RERM. Thus, one can directly notice the
benefits of using a good source hypothesis on the stability
of RERM. The negative transfer, i.e. the source hypothesis
has a negative effect and deteriorates the target learner, is
analyzed and discussed in Section 4.1.

Remark 3.1 (RELATED WORK). The only existing result
studying hypothesis stability in HTL is in Kuzborskij &
Orabona (2013). However, the analysis is only in a regres-
sion framework with the mean squared error loss. The proof
techniques in Kuzborskij & Orabona (2013) rely heavily
on the closed-form formulas of the ordinary least square
estimate, which does not hold in a general setting like ours.
Furthermore, we obtain equivalent (up to constants) stabil-
ity rates as in Kuzborskij & Orabona (2013). More details
are given in Section 3.3 where we explicit constants Ψ1 for
most of popular losses.

Existing assumptions in DA and HTL literature Statis-
tical guarantees obtained in these fields generally assume
that the loss function verifies a smoothness condition. For
example, in Mansour et al. (2009) and Cortes et al. (2015),
their analysis supposes that ℓ verifies the triangle inequality,
which holds only for the MSE and squared hinge. More-
over, the obtained upper bounds in these works depend on
the complexity of H and some discrepancy distances be-
tween the source and target distributions PS and PT , which
deteriorates the statistical rates. In Kuzborskij & Orabona
(2017), they suppose that the derivative of the loss is Lips-
chitz which is not the case for the exponential. Furthermore,
even if the loss satisfies this smoothness assumption, their
constants depend heavily on the smoothness parameter, and
it would yield vacuous bounds in many practical situations.
For example, the softplus function ψs(x) = s log(1+e

1−x
s )

with small values of s serves as an approximation of the
hinge loss max(0, 1−x) and is 1/s Lipschitz. This function
converges to the Hinge loss when s→ 0 and usual choices
of s are usually close to 0. Therefore, the Lipschitz constant
of the derivative 1/s verifies 1/s≫ 1, and the bounds from
Kuzborskij & Orabona (2017) become vacuous. Besides,
Du et al. (2017) made several assumptions about the true
regression function of both the source and target domains.
To clarify, by the true regression function, f , we refer to
the actual model denoted by Y = f(X). However, these
assumptions are challenging to empirically confirm due to
their reliance on the real source and target distributions,
which generally remain unknown. Moreover, the theoretical
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guarantees achieved depend on several constants, also de-
rived from the true distribution, that makes quantifying the
bounds magnitude a complex task.

To our best knowledge, the vast majority of existing theoreti-
cal results from the HTL literature have similar assumptions
to those discussed above. However, in this work, our as-
sumptions are flexible: we only require the differentiability
of the loss and a local majorant of the derivative, which
will make the analysis more flexible and more suited for the
usual classification losses.

To understand the intuition behind Assumption 3 notice that,
when R[hS ] → 0, ϕ(hS(X)Y ) approaches the minimum
then ϕ′(hS(X)Y ) approaches 0 (in expectation). Thus, the
function Ψ1 can be seen as a function that dictates the rate
of convergence of the derivative to 0 as hS approaches the
optimal hypothesis. One must note that the latter assump-
tion is verified for many loss functions, namely any loss
satisfying the following inequality |ϕ′(x)| ≤ Ψ(ϕ(x)) for
some concave loss function Ψ. The function Ψ effectively
mediates between ϕ and ϕ′. As an example, in the context
of Mean Squared Error (MSE) loss, it is straightforwardly
observable that |ϕ′(x)| ≤

√
ϕ(x). Thus ϕ′ is directly linked

to ϕ(x) via the square root function.

Remark 3.2 (SCORE SCALING). RERM for regression
(cf. Equation 2.4) is equivalent to fitting a predictor on
the residuals Yi − hS(Xi). However, in the classification
case, if we follow the standard approach that hS : X 7→
Y = {−1, 1} is a binary classifier (Mansour et al., 2009;
Cortes et al., 2015), then latter residuals are either 1 or
0. Thus, this won’t provide enough information for many
losses to improve the training. To see this, see the example
of the logistic loss and notice that ϕ(1) = log(1+ e−1) and
ϕ(−1) = log(1 + e1). Therefore, in the best case scenario,
R[hS ] = log(1+e−1), which is far from the minimum (that
is zero). To tackle this problem, we suggest taking the score
learned on the source, which is more informative, especially
when the loss function used to train the algorithm on the
source has the same minimum as the loss used to train on
the target. Note that one can also think of transforming
the score, for example, if ϕ is the logistic loss ϕ(x) =
log(1 + e−x) and hS ∈] − 1, 1[ we can use an increasing
transformation function to an interval ]−C,C[ withC >> 1
in order to adapt to the target loss which is nearly 0 for large
values x.

3.2. Pointwise Hypothesis Stability

To go further than the widely used hypothesis stability, we
analyze our HTL problem through the angle of pointwise
hypothesis stability. Results presented in this part will be
the cornerstone of those shown in Section 4. To analyze the
pointwise hypothesis stability of Algorithm 2.2, we require
a direct analogue of Assumption 3, involving the data-driven

radius provided in Lemma 3.1.

Assumption 4. The function ϕ is differentiable and convex.
Furthermore, ∀i ∈ [n], it holds:

E

[
sup

|y′|,|y|≤ρ̂i
λ

|ϕ′(hS(X)Y + y′)ϕ′(hS(X)Y + y)|

]
≤ Ψ2 (R [hS ]) .

where Z = (X,Y ) is a sample drawn from PT independent
of D\i and Ψ2 is a decreasing function verifying Ψ2(0) = 0.

Under the latter assumption, the following proposition is
obtained in a similar manner to Proposition 3.1.

Proposition 3.2. Suppose that Assumptions 1, 2 and 4 are
satisfied. Then the algorithm A (cf. Equation (2.2)) is
pointwise hypothesis stable with parameter

γ(n) =
α
(
Ψ2 (R [hS ]) ∧ ∥ϕ′∥2∞

)
n

.

Proof. The proof is postponed to the Appendix B.3.

Again, this result shows the benefits of using a good hy-
pothesis on the pointwise hypothesis stability of RERM.
This stability result, combined with that of Proposition 3.1,
can be leveraged to propose new convergence results on the
generalisation gap and the excess risk of this HTL problem
for a wide class of losses, as shown in Section 4. In the
sequel, we explicitly compute the functions Ψ1 and Ψ2 for
many widely used classification losses.

3.3. Deriving Constants for Popular Losses

As the results of Propositions 3.1 and 3.2 are general and
stated for any losses satisfying Assumptions 3 and 4, it
is the purpose of this part to investigate our results with
widespread machine learning losses. To that end, we first
show that these Assumptions are satisfied for the most popu-
lar losses. Second, we derive constants involved in these two
statistical rates. In particular, we focus on the five following
losses:

• Exponential: ϕ(x) = e−x.

• Logistic: ϕ(x) = log (1 + e−x).

• Mean Squared Error: ϕ(x) = (1− x)2.

• Squared Hinge: ϕ(x) = max(0, 1− x)2.

• Softplus: ϕs(x) = s log
(
1 + e

1−x
s

)
, for some s > 0.

In the next proposition, we show that most of classical losses
verifies Assumptions 3, 4 and we detail their associated
functions Ψ1 and Ψ2.
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Loss Ψ1(x) Ψ2(x)

Sq. hinge 8x(4α+ 1) 8x(4α+ 1)
MSE 8x(4α+ 1) 8x(4α+ 1)
Exponential CSx

2e2αx MSCSxe
2αx

Logistic CSe
2αx(e

√
x − 1)2 CSe

2αx(e
√
x − 1)

Softplus CSe
2αx(e

√
x
s − 1)2 CSe

2αx(e
√

x
s − 1)

Table 1. Examples of losses verifying Assumptions 3, 4 and their
corresponding functions. The constants MS and CS are given by

MS = supz∈ZT
ℓ(hS , z), CS = exp

{
2 + 2αMS

n
+

4α2M2
S

n−1

}
.

Proposition 3.3. The exponential, logistic, squared hinge,
MSE and softplus losses satisfy Assumptions 3 and 4 with
corresponding functions Ψ1 and Ψ2 listed in Table 1.

Proof. The proof is postponed to the Appendix B.4.

This result shows that bounds derived in Propositions 3.1
and 3.2 are therefore valid under mild assumptions. Indeed,
our results only require the kernel and the source hypothe-
sis to be bounded, classical in the HTL framework. Thus,
we obtain the first stability result in HTL without limiting
assumptions, which remains valid in a practical setting.

As shown in Table 1, functions Ψ1 and Ψ2 are linear for
the square hinge and the MSE losses. Besides, for the
softplus and logistic losses, we have ∥ϕ′∥∞ = 1 and their
stability parameters capped by α/n. Thus, the impact of an
irrelevant source hypothesis hS with large R[hS ] remains
negligible on the stability of RERM when using these losses.
In contrast, for the exponential loss, the functions Ψ1 and
Ψ2 are roughly exponential, and the corresponding conver-
gence rate deteriorates quickly as R[hS ] increases. This is
indeed not surprising since a prediction in the wrong direc-
tion (sign(hS(X)) ̸= Y ) would increase the loss e−hS(X)Y

exponentially fast. In the particular case of the MSE, we
obtain the same stability rate O

(
αR[hS ]

n

)
as in the regres-

sion framework (Kuzborskij & Orabona, 2013). In the next
section, we shall discuss the implications of these stability
rates on the generalization gap (Hardt et al., 2016; Charles
& Papailiopoulos, 2018), cross-validation schemes and the
excess risk of Algorithm 2.2.

4. Generalisation Guarantees for HTL with
Surrogate Losses

In this part, we leverage the stability results provided in
Section 3 in several statistical errors commonly used.

4.1. Generalization Gap

Here we investigate the accuracy of the algorithm A through
the generalization gap. Precisely, this gap is defined as the
expected error between the empirical risk and the theoretical
risk of the algorithm A:

Egen =
∣∣∣E [R̂ [A(DT )]−R [A(DT )]

]∣∣∣ .
To discuss the impact of hS on the generalization gap, it
suffices to analyse the stability parameters β(n) and γ(n).
Indeed, Egen is directly linked to these quantities, as stated
in the following theorem.

Theorem 4.1. Suppose that A has a hypothesis stability
β(n) and a pointwise hypothesis stability γ(n). Then, it
holds:

Egen ≤ β(n) + γ(n).

Furthermore, suppose that Assumptions 1, 2, 3 and 4 are
satisfied. Thus, β(n) and γ(n) are given by Propositions 3.1
and 3.2 and the generalization gap of A (cf. Equation (2.2))
is upper-bounded as:

Egen ≤ α
(Ψ1 (R [hS ]) + Ψ2 (R [hS ])) ∧

(
2 ∥ϕ′∥2∞

)
n

.

Proof. The proof is postponed to the Appendix B.5.

When the source hypothesis is relevant, the risk R[hS ] is
close to zero so that eR[hS ] − 1 ≈ R[hS ] and eαR[hS ] ≈ 1.
Equipped with Table 1, this theorem yields the following
upper bounds for Egen:

• MSE, Sq. hinge: Egen = O
(

αR[hS ]
n

)
.

• Logistic: Egen = O
(
α

√
R[hS ]∧2

n

)
.

• Softplus: Egen = O
(
α

(√
R[hS ]/s

)
∧2

n

)
.

• Exponential: Egen = O
(

αMSR[hS ]
n

)
.

Thus, if R[hS ] is small, the exponential, the squared hinge
and the MSE losses have the fastest generalization gap
rate. Therefore, our analysis suggests that the user should
privilege using the latter losses if one disposes of a good
hypothesis hS .

Negative learning The phenomenon of negative transfer
occurs when the hypothesis hS learned from the source
domain has a detrimental effect on the target learner. In
such a case, training without using hS on the target do-
main would yield a better learner. We refer the reader to

7
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Weiss et al. (2016) and Wang et al. (2019) for further details
about this topic. For the softplus and the logistic losses,
the generalization gap remains bounded by O(α/n) even
if R[hS ] → ∞. As a consequence, Algorithm 2.2 with
the sofplus and logistic losses is robust to negative learning
since the generalization gap still achieves the same rate of
convergence O(α/n) as a standard RERM algorithm with
no source information i.e. hS = 0 (see e.g. Zhang, 2004;
Wibisono et al., 2009). Finally, we must highlight that one
should avoid using the exponential loss when the source and
target domains are unrelated due to the presence of the term
eαR[hS ] in the corresponding upper bound.

Remark 4.1 (CROSS VALIDATION PROCEDURES). The no-
tion of stability has many attractive qualities. In particular,
it yields complexity-free bounds for cross-validation meth-
ods. (see e.g. Bousquet & Elisseeff, 2002; Kumar et al.,
2013; Celisse & Mary-Huard, 2018). For example, one can
easily show that

E
[∣∣∣R̂loo [A (DT )]−R [A (DT )]

∣∣∣] ≤ β(n).

Proposition 3.1 shows that the quality of risk estimation
with l.o.o. depends directly on the quality of the source pre-
dictor hS . Note that the same conclusion holds for model
selection with l.o.o. cross-validation: Given a family of
source hypotheses, the quality of the model selection proce-
dure depends directly on the quality of the provided learners
independently of the complexity of HT . Besides, using the
same proof techniques, we can show that Algorithm 2.2 is
L2 stable with stability parameter depending on Ψ(R [hS ]).
L2 stability is similar to hypothesis stability, where the L1

moment is replaced by the L2 moment in Definition 2.2.
The latter notion allows obtaining theoretical guarantees
regarding the K-fold and the l.o.o. schemes. It also de-
rives asymptotic confidence intervals for cross-validation
procedures in risk estimation and model selection (Bayle
et al., 2020; Austern & Zhou, 2020). In our particular case,
Proposition 3.1 implies that the tightness of the confidence
intervals of cross-validation methods depends only on the
quality of hS .

4.2. Excess Risk

In this section we analyse the excess risk of Algorithm 2.2
defined as:

Eex = E [R [A]−R [h∗ + hS ]] ,

where h∗ = argminh∈H R [hS + h]. To this end, we start
by showing that Eex depends on the upper bounds of the
(pointwise) hypothesis stability and the regularization pa-
rameter λ. Further, we derive precise finite-sample rates for
the surrogate losses introduced in Section 3.3.

Theorem 4.2. Suppose that ∥h∗∥k <∞. Then, the excess

risk of algorithm 2.2 verifies,

Eex ≤ γ(n) + β(n) + λ ∥h∗∥2k .

Making λ varying with the sample size n, we obtain various
consistent bounds for different losses. In the sequel, we
assume that κ ≤ 1 and MS ≤ 1 to avoid notional burden.
When ϕ is either the MSE or the squared hinge and λ =√

R[hS ]√
n

, it holds:

Eex ≤ O

(√
R[hS ]√

n

)
.

Furthermore, if ϕ is the exponential loss and n ≥ M2
S ln(n)2

R[hS ] ,

picking λ = 4

√
R[hS ] ∧ 1
ln(n)

yields:

Eex ≤ O

(√
R[hS ] ∧ 1

ln(n)

)
,

otherwise picking λ = ln(n)2√
n

gives:

Eex ≤ O
(
ln(n)2√

n

)
.

Suppose that the function ϕ is the logistic loss or the softplus.
Then the choice λ = 1√

n
yields:

Eex ≤ O
(

1√
n

)
.

In particular, Theorem 4.2 yields the consistency of RERM.
Furthermore, the Remark 4.1 regarding the generalization
gap still holds for the excess risk. First, when R[hS ] is
small, Algorithm 2.3 with MSE or squared hinge would
have the fastest convergence rate. Second, when R[hS ]
is large compared to the sample size n, then the safest
option is to use the logistic or the softplus losses with
λ = 1√

n
. Note that, if R[hS ] is small an improved con-

vergence rate
(
1/
√

−n ln (R[hs])
)

can be achieved for the
latter losses (see Appendix B.6 for further details). Finally,
Algorithm 2.2 with the exponential loss is likely to suffer
from negative learning. Indeed, if R[hS ] is large, one needs
a large amount of data to ensure the non-triviality of the rate
R[hS ]/ ln(n). It is worth noting that the rate of convergence
with the exponential loss is naturally logarithmic even with-
out a source hypothesis; see, for instance, Corollary 4.1 and
Theorem 4.4 in Zhang (2004). To conclude, using a good
source hypothesis improves convergence rates of RERM
compared to those derived without transfer (Zhang, 2004).
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Remark 4.2 (ON THE UNIVERSAL CONSISTENCY). If we
assume that the kernel k is non-polynomial, hS is contin-
uous and the distribution of X ∈ XT is regular (see e.g.
Definition 4.2 in Zhang, 2004). Then, one can use any uni-
versal approximation theorem (see for instance Theorem 4.1
in Zhang, 2004) to obtain

h∗ = argmin
h∈H

R [hS + h] = argmin
h∈L(XT ,R)

R [hS + h] ,

where L(XT ,R) is the space of real-valued functions de-
fined on XT . The universal consistency of A follows imme-
diately from Theorem 4.2. Further, all the losses presented
in this paper are classification calibrated (Bartlett et al.,
2006) meaning that:

argmin
h∈L(XT ,R)

R [h] = argmin
h∈L(XT ,R)

R0-1 [h] ,

where R0-1 [h] = PT (sign (h(X)) ̸= Y ) is the usual clas-
sification accuracy. Thus, minimizing the excess risk would
likely yield a classifier with good accuracy.

5. Numerical experiments
We illustrate our analysis by providing some results using
simulated data that aim to underscore the robustness of
each loss to negative learning scenarios. The experiment
is conducted as follows. A source domain is considered
with random variables (XS , YS) ∈ R2 × {−1, 1}, where
the positive and negative classes are respectively drawn
from two multivariate t-distributions T ((r, 0), 3I2, 2.5) and
T ((−r, 0), 3I2, 2.5). We train a linear classifier hS on a
source dataset of size 10000 using the SVM algorithm.

To emphasize the impact of negative learning on each
loss, we generate a smaller target dataset of size
100. The distributions for positive and negative classes
are given by T (((r + d)cos(θ), (r + d)sin(θ)) , 3I2, 2.5)
and T ((−(r + d)cos(θ),−(r + d)sin(θ)) , 3I2, 2.5), re-
spectively. For different values of θ, the target risk
R
[
ĥ+ hs

]
of the analyzed RERM algorithm (with λ = 1)

trained on the small size dataset is estimated using a test set
of size 10000.

It is important to note that when θ = 0, it corresponds to the
scenario of positive learning since the decision boundaries
of both domains are similar. On the other hand, the case
where θ = π corresponds to negative learning since the true
decision functions of the source and the target domain are
pointing to opposite directions.

Figure 1 presents the median true risk of the HTL algorithm
(cf. Equation 2.3) as a function of θ for (r, d) = (5, 5)
computed over 1000 simulations. The parameter s of the
softplus loss is set to 0.1. Consistent with our theoretical

0 π
2 π

0

2

4

6

8

10

12
MSE

Exponential

Logistic

Squared hinge

Softplus

Figure 1. Target risk of Algorithm 2.2 as a function of θ.

analysis, the softplus and logistic functions exhibit signifi-
cant robustness to negative transfer.

6. Conclusion
In this paper, we study hypothesis transfer learning through
the angle of Algorithmic Stability. Following the work of
Kuzborskij & Orabona (2013), where hypothesis stability is
shown for the MSE in the regression setting, we derive sim-
ilar hypothesis stability rates in classification with general
losses under slight assumptions. Furthermore, we show that
our assumptions are satisfied for the most popular machine
learning losses, making our work valuable for practitioners.
Moreover, we leverage our stability results to provide finite-
sample analysis on the generalization gap and the excess
risk. We show that HTL framework is efficient and explicit
(fast) rates for these popular losses. Our theoretical analysis
will help practitioners better understand the benefits of HTL
and give insight into the loss choices.

The proposed work is general and may fit with many other
domains. Future work may involve our analysis for differ-
ent Machine Learning tasks where transfer learning pro-
cedures can be beneficial such as robust learning (Shafahi
et al., 2020; Laforgue et al., 2021; Staerman et al., 2021a),
anomaly detection (Andrews et al., 2016; Chandola et al.,
2009; Staerman et al., 2020; 2022a), speech (Campi et al.,
2021; 2023), automatic language generation (Staerman et al.,
2021b; Golovanov et al., 2019), knowledge distillation (Cho
& Hariharan, 2019), events-based modelling (Staerman
et al., 2022b), fairness (Colombo et al., 2022b) or general
neural-networks based tasks (Colombo et al., 2022a; Picot
et al., 2023; Darrin et al., 2023).
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A. Preliminary Results
In this section, we show some useful technical lemmas used in the subsequent proofs.
Lemma A.1. Suppose that X,Y, Z are three mutually independent random variables such that E(X) = E(Y ). Then it
holds:

E [(X + Z)(Y + Z)] ≤ 2
(
E [X]

2
+ E

[
Z2
])
.

Proof. Since X,Y, Z are mutually independent one has the following identities,

E [(X + Z)(Y + Z)] = E [X]E [Y ] + E [X]E [Z] + E [Z]E [Y ] + E
[
Z2
]

= E [X]
2
+ 2E [X]E [Z] + E

[
Z2
]
.

Now, noticing that
(
E[Z]2 ≤ E[Z2]

)
we get:

E [X]
2
+ 2E [X]E [Z] + E

[
Z2
]
≤ 2E [X]

2
+ E [Z]

2
+ E

[
Z2
]

≤ 2
(
E [X]

2
+ E

[
Z2
])
,

which is the desired result.

In the sequel, we shall provide an upper bound for the exponential of τ̂ iλ defined as:

τ̂ iλ =

√
α

(
R̂\i[hS ] +

MS

n

)
, (A.1)

with MS = supz∈ZT
ℓ(hS , z) and

R̂\i[h] =
1

n− 1

∑
j ̸=i

ℓ(h, Zj), (A.2)

the training error of a hypothesis h with the i’th datum removed. The quantity τ̂ iλ will serve as an upper bound of
ρ̂iλ = max(r̂λ, r̂

i
λ) independent of the observation Zi ∈ DT . Indeed, by definition:

τ̂ iλ ≥ r̂iλ =

√
α
(
R̂\i[hS ]

)
.

Moreover, it holds:

R̂ [h] ≤ R̂\i [h] +
ℓ(h, Zi)

n
≤ R̂\i [h] +

MS

n
,

so that τ̂ iλ ≥ r̂iλ. Thus, we have τ̂ iλ ≥ ρ̂iλ.
Lemma A.2. Let W1,W2, . . . ,Wn be a sequence of i .i .d . random variables bounded by C > 0. Then one has

E
[
eµ̂
]
≤ eµ+

C2

n ,

where µ = E [W1] and µ̂ = 1
n

∑n
i=1Wi.

Proof. The proof follows in two steps. First, we apply Hoeffding’s inequality to obtain:

P (|µ̂− µ| ≥ t) ≤ e
−nt2

C2 .

Second, applying Theorem 2.5.2 in Vershynin (2018) yields:

E
[
eµ̂−µ

]
≤ e

C2

n ,

which leads to the desired result.
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Lemma A.3. For all i ∈ [n] and p ∈ N, the quantity eτ̂
i
λ verifies:

E
[
epτ̂

i
λ

]
≤ ep+

αpMS
n +

α2p2M2
S

n−1 epαR[g].

Proof. First, using the fact that
√
x ≤ x+ 1, one has:

eτ̂
i
λ ≤ epαR̂

\i[hS ]+α
pMS

n +p.

Since pαR̂\i [hS ] =
1

n− 1
∑

i ̸=j pαℓ(h, Zi), applying Lemma A.2 with Wi = pαℓ(h, Zi) and C = pαMS yields the
desired result.

To prove Propositions 3.1 and 3.2, we extend Theorem 4.3 in Zhang (2004), that gives an upper bound for standard RERM
to the HTL framework. This extension leads to the next lemma.

Lemma A.4. The leave one out deviations of the algorithm A (cf. Equation (2.2)) verifies:

∥∥∥A (DT )−A
(
D\i

T

)∥∥∥
k
≤ k (Xi, Xi)

1/2 |ϕ′ (A (DT , Xi)Yi)|
λn

.

Proof. Since ϕ is convex, the Bregman divergence of ϕ is non negative. More precisely,

dϕ(x, y) = ϕ(x)− ϕ(y)− (x− y)ϕ′(y) ≥ 0,

so that, for any Zi = (Xi, Yi) ∈ DT one has:

ℓ
(
A
(
D\i

T

)
, Zi

)
− dϕ

(
A
(
D\i

T , Xi

)
Yi,A (DT , Xi)Yi

)
≤ ℓ

(
A
(
D\i

T

)
, Zi

)
,

where A (DT , Xi) is the prediction of the input Xi by the algorithm A. Also, the term on the left side in the above inequality
can be written as follows:

ℓ
(
A
(
D\i

T

)
, Zi

)
−dϕ

(
A
(
D\i

T , Xi

)
Yi,A (DT , Xi)Yi

)
= ℓ (A(DT ), Zi)

+ϕ′ (A(DT , Xi)Yi)
(
A
(
D\i

T , Xi

)
−A (DT , Xi)

)
Yi,

so that:
ℓ (A(DT ), Zi) + ϕ′ (A(DT , Xi)Yi)

(
A
(
D\i

T , Xi

)
−A (DT , Xi)

)
Yi ≤ ℓ

(
A(D\i

T ), Zi

)
.

Thus, we get:

R̂\i [A (DT )] + Si ≤ R̂\i
[
A
(
D\i

T

)]
, (A.3)

where R̂\i is defined previously in Equation (A.2) and Si =
1
n
∑

j ̸=i ϕ
′ (A(DT , Xj)Yj)

(
A
(
D\i

T , Xj

)
−A(DT , Xj)

)
.

Let ĥ\i denote the solution of the optimization problem 2.3 with the i’th datum removed. One gets by definition of A (cf.
Equation (2.2)),

R̂\i
[
A
(
D\i

T

)]
+ λ∥ĥ\i∥2k ≤ R̂\i [A (DT )] + λ∥ĥ∥2k.

Using (A.3), it yields:

Si ≤ λ

(∥∥∥ĥ∥∥∥2
k
−
∥∥∥ĥ\i∥∥∥2

k

)
≤ −λ∥ĥ− ĥ\i∥2k − 2λ⟨ĥ, ĥ\i − ĥ⟩,
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where the second line follows from ∥x∥ − ∥y∥ = ∥x− y∥2 + 2⟨x− y, y⟩. Reverting the inequality leads to:

λ∥ĥ− ĥ\i∥2k ≤ − 1

nT

∑
j∈T\i

ϕ′ (A(DT , Xj)Yj) ⟨ĥ\i − ĥ, k (Xi, ·)⟩ − 2λ⟨ĥ, ĥ\i − ĥ⟩

≤
∥∥∥∥ 1

nT

∑
j∈T\i

ϕ′ (A(DT , Xj)Yj) k (Xi, ·) + 2λg

∥∥∥∥
k

∥ĥ\i − ĥ∥k. (A.4)

The last inequalities hold because of the definition of Si:

Si =
1

n

∑
j ̸=i

ϕ′ (A(DT , Xj)Yj)
(
A
(
D\i

T , Xj

)
−A(DT , Xj)

)
=

1

n

∑
j ̸=i

ϕ′ (A(DT , Xj)Yj)
(
ĥ\i (Xj)− ĥ (Xj)

)
=

1

n

∑
j ̸=i

ϕ′ (A(DT , Xj)Yj) ⟨ĥ\i − ĥ, k(Xj , ·)⟩.

On the other hand, since A(DT , Xj) = hS(Xj) + ⟨ĥ, k(Xj , ·)⟩ and by Theorem 3.1.20 in Nesterov et al. (2018), we know
that the following optimality condition holds:

1

n

n∑
j=1

ϕ′ (A(DT , Xj)Yj) k (Xj , ·) + 2λĥ = 0.

Therefore Inequality (A.4) becomes:

λ∥ĥ− ĥ\i∥2 ≤
∥∥∥∥ 1nϕ′ (A(T,Xi)Yi)

∥∥∥∥
k

∥k(Xi, ·)∥k∥ĥ\i − ĥ∥k.

it remains to remind that ∥k (Xi, ·)∥2 = k (Xi, Xi) and
∥∥∥A (DT )−A

(
D\i

T

)∥∥∥
k
=
∥∥∥ĥ\i − ĥ

∥∥∥
k

to complete the proof.

Before highlighting the link between Algorithm 2.2 with RLS, let’s remind a useful lemma (representer theorem) that allows
simplifying the optimization problem 2.3 in practice.

Lemma A.5. The learning rule ĥ (cf. Equation 2.3) lies in the linear span in H of the vectors (k (Xi, ·))1≤i≤n, i.e.

ĥ ∈ HD,

with HD = {
∑n

1 αik (Xi, ·) | α1, . . . , αn ∈ R}.

Proof. Since HD is a finite dimensionnal subspace of H, any h ∈ H can be decomposed as:

h = hD + h⊥,

with hD ∈ HD and h⊥ ⊥ HD. Furthermore using the fact that h(x) = ⟨h, k(x, ·)⟩k, for all i ∈ [n], one obtains:

h(Xi) = ⟨h, k(Xi, ·)Yi⟩ = ⟨hD, k(Xi, ·)Yi⟩ = hD(Xi)Yi.

Thus, for any Zi ∈ DT , it holds:

ℓ(h+ hS , Zi) = ϕ ((h(Xi) + hS(Xi))Yi) = ϕ ((hD (Xi) + hS (Xi))Yi) = ℓ(hD + hS , Zi),

which gives
R̂(h+ hS) = R̂(hD + hS).
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On the other hand, by the Pythagorean theorem,

∥hD∥2k ≤ ∥h∥2k,

and
R̂(h+ hS) + λ∥hD∥2k ≤ R̂(hD + hS) + λ∥hD∥2k.

Thus, the solution of the minimization problem 2.3 must lie in HD.

A.1. Link with Least Squares with Biased Regularisation

To begin, it is a well know fact that, when the kernel k is linear then the RKHS space consists of the set of linear classifiers:

H =
{
h(x) = u⊤x | u ∈ Rd

}
.

In this case, the solution of the optimization problem with the mean square loss ℓ(h, Z) = (1 − h(X)Y )2, writes as
ĥ = û⊤x with

û = argmin
u∈Rd

1

n

n∑
i=1

(
u⊤XiYi + hS(Xi)Yi − 1

)2
+ λ∥u∥22

= argmin
u∈Rd

1

n

n∑
i=1

Y 2
i

(
u⊤Xi + hS(Xi)−

1

Yi

)2

+ λ∥u∥22

= argmin
u∈Rd

1

n

n∑
i=1

(
u⊤Xi + hS(Xi)− Yi

)2
+ λ∥u∥22,

where the last inequality follows from the facts that Y 2
i = 1 and 1

Yi
= Yi. Furthermore, if hS(x) = vTx for some v ∈ Rd

one has:

û = argmin
u∈Rd

1

n

n∑
i=1

(
(u+ v)⊤Xi − Yi

)2
+ λ∥u∥22

= argmin
u∈Rd

1

n

n∑
i=1

(
u⊤Xi − Yi

)2
+ λ∥u− v∥22.

This is the original form of biased regularisation algorithms.

B. Technical Proofs of the Main Results
Before starting the proof of our main results, we remind two properties of RKHS spaces that are:

∀x, y ∈ XT , ⟨k(y, ·), k(x, ·)⟩ = k(x, y),

and
∀h ∈ H , ∀x ∈ XT , h(x) = ⟨h, k(x, ·)⟩.

Under Assumption 2, using Cauchy Schwartz-inequality yields:

∀h ∈ H , ∥h∥∞ ≤
√
κ ∥h∥k .

B.1. Proof of Lemma 3.1

This lemma follows from our assumptions and a simple fact. Indeed, notice that by definition of ĥ

R̂(ĥ+ hS) + λ∥ĥ∥2 ≤ R̂(0+ hS).

Furthermore, R̂(hS + ĥ) is non-negative since ϕ is non-negative which concludes the proof.
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B.2. Proof of Proposition 3.1

Let Z = (X,Y ) ∈ ZT and remind that, by definition of A, one has:∣∣∣ℓ (A (DT ) , Z)− ℓ
(
A
(
D\i

T

)
, Z
)∣∣∣ = ∣∣∣ϕ((ĥ(X) + hS(X)

)
Y
)
− ϕ

((
ĥ\i(X) + hS(X)

)
Y
)∣∣∣ ,

where ĥ is the solution of the optimization problem 2.3. Moreover, since ϕ is differentiable, one can apply the mean value
theory to obtain:∣∣∣ℓ (A (DT ) , Z)− ℓ

(
A
(
D\i

T

)
, Z
)∣∣∣ = |ϕ′ ((yD + hS(X))Y )|

∣∣∣ĥ(X)− ĥ\i(X)
∣∣∣

≤
√
κ |ϕ′ ((yD + hS(X))Y )|

∥∥∥ĥ− ĥ\i
∥∥∥
k

=
√
κ |ϕ′ ((yD + hS(X))Y )|

∥∥∥A(DT )−A
(
D\i

T

)∥∥∥
k
,

for some |yD| ≤ max
(
ĥ(X), ĥ\i(X)

)
. By Lemma 3.1, we have |yD| ≤ ρ̂iλ = max

(
r̂λ, r̂

\i
λ

)
. Now, Using Theorem A.4

with Assumption 2 yields:

∣∣∣ℓ (A (DT ) , Z)− ℓ
(
A
(
D\i

T

)
, Z
)∣∣∣ ≤ κ

∣∣∣ϕ′ ((yD + hS(X))Y )ϕ′
((
ĥ(Xi) + hS(Xi)

)
Yi

)∣∣∣
λn

, (B.1)

which gives using the fact that
∥∥∥ĥ∥∥∥

∞
≤ r̂λ ≤ ρ̂λ:

∣∣∣ℓ (A (DT ) , Z)− ℓ
(
A
(
D\i

T

)
, Z
)∣∣∣ ≤ sup

|y|,|y′|≤ρ̂i
λ

α |ϕ′(hS(Xi)Yi + y)ϕ′(hS(X)Y + y′)|
n

, (B.2)

with α = κ
λ

. Now, by taking the expectation and using the fact that ϕ verifies assumption 3, Inequality (B.2) becomes:

E
[∣∣∣ℓ (A (DT ) , Z)− ℓ

(
A
(
D\i

T

)
, Z
)∣∣∣] ≤ α

Ψ1(R [hS ])

n
.

Besides, notice that by Equation (B.1),

∀DT ∈ Zn
T , ∀Z ∈ ZT ,

∣∣∣ℓ (A (DT ) , Z)− ℓ
(
A
(
D\i

T

)
, Z
)∣∣∣ ≤ α

∥ϕ′∥2∞
n

.

It remains to take the expectation to complete the proof.

B.3. Proof of Proposition 3.2

The proof is similar to the previous one thus we will only give the key step: replace Z = (X,Y ) by Zi = (Xi, Yi) in
Equation (B.2) to obtain:∣∣∣ℓ (A (D) , Zi)− ℓ

(
A
(
D\i
)
, Zi

)∣∣∣ ≤ sup
|y|,|y′|≤ρ̂i

λ

α |ϕ′(hS(Xi)Yi + y)ϕ′(hS(Xi)Yi + y′)|
n

.

To conclude the proof, take the expectation of both sides of the last inequality and use the Assumption 4.

B.4. proof of Proposition 3.3

First, let i ∈ [n] and |y| , |y′| ≤ ρ̂iλ. Furthermore let Z = (X,Y ) and Z = (X ′, Y ′) be two observations independent of
D\i. We start by showing that the MSE and squared hinge verify Assumptions 3, 4 and explicit their corresponding function
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Ψ1,Ψ2 . To do so, remind that: (
ρ̂iλ
)2

= max(r̂iλ, r̂λ)
2

≤ (r̂iλ + r̂λ)
2

≤ 2
(
r̂iλ
)2

+ 2 (r̂λ)
2

= 2α
(
R̂[hS ] + R̂\i[hS ]

)
. (B.3)

B.4.1. MSE

Recall the MSE loss ϕ(x) = (1− x)2. For all x ∈ R, one has:

|ϕ′(x+ y)| = 2 |1− x− y|
≤ 2 |1− x|+ 2 |y|

≤ 2
√
ϕ(x) + 2ρ̂iλ. (B.4)

Thus,

sup
|y′|,|y|≤ρ̂i

λ

|ϕ′(hS(X ′)Y ′ + y′)ϕ′(hS(X)Y + y)| ≤ 4
(√

ϕ (hS(X ′)Y ′) + ρ̂iλ

)(√
ϕ (hS(X)Y ) + ρ̂iλ

)
.

Taking the expectation of the latter inequality and using Lemma A.1 with X =
√
ϕ (hS(X ′)Y ′) , Y =

√
ϕ (hS(X)Y ) and

Z = ρ̂iλ yields:

E

[
sup

|y′|,|y|≤ρ̂i
λ

|ϕ′(hS(X ′)Y ′ + y′)ϕ′(hS(X)Y + y)|

]
≤ 8

(
E
[√

ϕ (hS(X)Y )
]2

+ E
[(
ρ̂iλ
)2])

(by Jensen’s Inequality) ≤ 8
(
E [ϕ (hS(X)Y )] + E

[(
ρ̂iλ
)2])

(ϕ (hS(X)Y ) = ℓ(hS , Z)) ≤ 8
(
R[hS ] + E

[(
ρ̂iλ
)2])

(Inequality (B.3)) ≤ 8 (R[hS ] + 4αR[hS ]) .

This means that the MSE verifies Assumption 3 with Ψ1(x) = 8x(1 + 4α). Now using Inequality (B.4) again yields:

sup
|y′|,|y|≤ρ̂i

λ

|ϕ′(hS(X)Y + y′)ϕ′(hS(X)Y + y)| ≤ 4
(√

ϕ (hS(X)Y ) + ρ̂iλ

)2
.

By taking the expectation and mimicking the previous step one can show that the MSE verifies Assumption 4 with
Ψ2(x) = 8x(1 + 4α).

B.4.2. SQUARED HINGE

First recall the loss function ϕ(x) = max (0, 1− x)
2
. By simple calculation we obtain:

|ϕ′(x+ y)| = 2max (0, 1− x− y) .

On the other hand, one has: {
0 ≤ max(0, 1− x) + |y| ,
1− x− y ≤ max(0, 1− x) + |y| .

Thus, it holds:

|ϕ′(x+ y)| ≤ 2max(0, 1− x) + 2 |y|

≤ 2
√
ϕ(x) + 2ρ̂iλ.

The result follows using the same steps as in the MSE case.
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B.4.3. EXPONENTIAL

Recalling the loss function ϕ(x) = e−x, first notice that the exponential loss verifies:

|ϕ′(x+ y)| = e−xe−y = ϕ(x)e−y ≤ ϕ(x)eρ̂
i
λ ≤ ϕ(x)eτ̂

i
λ , (B.5)

where τ̂ iλ is given by Equation (A.1). Thus, we get:

E

[
sup

|y′|,|y|≤ρ̂i
λ

|ϕ′(hS(X ′)Y ′ + y′)ϕ′(hS(X)Y + y)|

]
≤ E

[
ϕ(hS(X

′)Y ′)ϕ(hS(X)Y )e2τ̂
i
λ

]
(Z ⊥⊥ Z ′ ⊥⊥ τ̂ iλ) ≤ R[hS ]

2E
[
e2τ̂

i
λ

]
.

(By Lemma A.3 with p = 2) ≤ R[hS ]
2e2+

2αMS
n +

4α2M2
S

n−1 e2αR[g]

Thus the exponential loss verifies Assumption 3 with Ψ1(x) = CSx
2e2αx and CS = e2+

2αMS
n +

4α2M2
S

n−1 . Besides, using (B.5)
again yields:

E

[
sup

|y′|,|y|≤ρ̂i
λ

|ϕ′(hS(X)Y + y′)ϕ′(hS(X)Y + y)|

]
≤ E

[
ϕ(hS(X)Y )2e2τ̂

i
λ

]
(MS = sup

Z∈ZT

ℓ(hS , Z)) ≤MSE
[
ϕ(hS(X)Y )e2τ̂

i
λ

]
(Z ⊥⊥ τ̂ iλ) ≤MSR[hS ]E

[
e2τ̂

i
λ

]
(By Lemma A.3 with p = 2) ≤MSR[hS ]e

2+
2αMS

n +
4α2M2

S
n−1 e2αR[g].

Therefore the exponential loss verifies Assumption 4 with Ψ2(x) = CSMSxe
2αx.

B.4.4. LOGISTIC

Recall the loss function ϕ(x) = log(1 + e−x) and its derivative:

|ϕ′(x)| = e−x

e−x + 1
.

Thus, we have:

|ϕ′(x+ y)| = e−x−y

e−x−y + 1

≤ e−ye−x

= e−y
(
eϕ(x) − 1

)
≤ eρ̂

i
λ

(
eϕ(x) − 1

)
≤ eτ̂

i
λ

(
eϕ(x) − 1

)
,

where the two last inequalities result from the facts that y ≤ ρ̂iλ and ρ̂iλ ≤ τ̂ iλ respectively. Using the facts that ∥ϕ′∥∞ ≤ 1

19



Hypothesis Transfer Learning with Surrogate Classification Losses

and eτ̂
i
λ ≤ 1, one obtains:

|ϕ′(hS(X)Y + y)| ≤ min
(
eτ̂

i
λ

(
eϕ(hS(X)Y ) − 1

)
, 1
)

= min
(
eτ̂

i
λ

(
eℓ(hS ,Z) − 1

)
, 1
)

≤ min
(
eτ̂

i
λ

(
eℓ(hS ,Z) − 1

)
, eτ̂

i
λ

)
≤ eτ̂

i
λ min

((
eℓ(hS ,Z) − 1

)
, 1
)
. (B.6)

The latter inequality yields:

sup
|y′|,|y|≤ρ̂i

λ

|ϕ′(hS(X ′)Y ′ + y′)ϕ′(hS(X)Y + y)| ≤ e2τ̂
i
λ min

(
eℓ(hS ,Z) − 1, 1

)
min

(
eℓ(hS ,Z′) − 1, 1

)
.

Thus, since Z,Z ′ are independent of D\i
T , they are also independent of τ̂ iλ. It follows:

E

[
sup

|y′|,|y|≤ρ̂i
λ

|ϕ′(hS(X ′)Y ′ + y′)ϕ′(hS(X)Y + y)|

]
≤ E

[
e2τ̂

i
λ

]
E
[
min

(
eℓ(hS ,Z) − 1, 1

)]2
(By Lemma A.3) ≤ CSe

2αR[hS ]E
[
min

(
eℓ(hS ,Z) − 1, 1

)]2
. (B.7)

Now using the fact that:

eℓ(hS ,Z) − 1 ≤ 1 =⇒ ℓ(hS , Z) ≤ 1 =⇒ ℓ(hS , Z) ≤
√
ℓ(hS , Z),

we have:
E
[
min

(
eℓ(hS ,Z) − 1, 1

)]
≤ E

[
min

(
e
√

ℓ(hS ,Z) − 1, 1
)]
.

In addition, notice that:

(e
√
x − 1) ∧ 1 =

{
e
√
x − 1 if x ≤ ln(2)2,

1 otherwise,

which is concave. Therefore, it holds:

E
[
min

(
eℓ(hS ,Z) − 1, 1

)]
≤ min

(
e
√

R[hS ] − 1, 1
)
.

To show that the logistic loss verifies Assumption 3 with Ψ1(x) = CSe
2αR[hS ](e

√
x − 1)2, it suffices to plug the latter

inequality in (B.7). Now, using (B.6) again yields:

E

[
sup

|y′|,|y|≤ρ̂i
λ

|ϕ′(hS(X)Y + y′)ϕ′(hS(X)Y + y)|

]
≤ E

[
e2τ̂

i
λ min

(
eℓ(hS ,Z) − 1, 1

)2]
≤ E

[
e2τ̂

i
λ

]
E
[
min

(
eℓ(hS ,Z) − 1, 1

)]
.

Finally, using the same steps as before, we show that the logistic loss verifies Assumption 4 with Ψ1(x) = CSe
2αR[hS ](e

√
x−

1).

B.4.5. SOFTPLUS

The proof is similar to that of the logistic loss and is left for the reader.

20



Hypothesis Transfer Learning with Surrogate Classification Losses

B.5. Proof of Theorem 4.1

First, notice that:

Egen =
∣∣∣E [R̂ [A(DT )]−R [A(DT )]

]∣∣∣ = ∣∣∣∣∣E
[
1

n

n∑
i=1

ℓ (A (DT ) , Zi)− ℓ
(
A
(
D\i

T

)
, Z
)]∣∣∣∣∣

=
∣∣∣E [ℓ (A (DT ) , Z1)− ℓ

(
A
(
D\i

T

)
, Z
)]∣∣∣ .

Using triangle inequality and the fact that Z and Z1 have the same distributions, we obtains:

Egen ≤
∣∣∣E [ℓ (A (DT ) , Z1)− ℓ

(
A
(
D\i

T

)
, Z1

)]∣∣∣+ ∣∣∣E [ℓ(A(D\i
T

)
, Z1

)
− ℓ

(
A
(
D\i

T

)
, Z
)]∣∣∣

=
∣∣∣E [ℓ (A (DT ) , Z1)− ℓ

(
A
(
D\i

T

)
, Z1

)]∣∣∣+ ∣∣∣E [ℓ(A(D\i
T

)
, Z
)
− ℓ

(
A
(
D\i

T

)
, Z
)]∣∣∣ .

The desired result follows from Propositions 3.1 and 3.2.

B.6. Proof of Theorem 4.2

First introduce
hλ = argmin

h∈H
R [hS + h] + λ ∥h∥2k ,

and write

R [A]−R[h∗ + hS ] = R [A]− R̂ [A] + R̂ [A] + λ ∥f∥2k −R[hλ + hS ] +R[hλ + g′]−R[h∗ + hS ].

Now by rearranging and reminding that:

R̂ [A] + λ ∥f∥2k ≤ R̂ [hλ + hS ] + λ ∥hλ∥2k ,

we obtain:

R [A]−R[h∗ + hS ] ≤ R [A]− R̂ [A] + R̂ [hλ + hS ]−R[hλ + hS ]

+R[hλ + hS ] + λ ∥hλ∥2k −R[h∗ + hS ].

For the first term notice that:

E
[
R [A]− R̂ [A]

]
≤ Egen ≤ β(n) + γ(n).

Regarding the second term, since hλ is independent of DT we have:

E
[
R̂ [hλ + hS ]−R[hλ + hS ]

]
= 0.

Finally, notice that by definition of gλ that:

R[hλ + hS ] + λ ∥hλ∥2k −R[h∗ + hS ] ≤ λ ∥h∗∥2k .

Combining the latter four inequalities yields:

Eex = R [A]−R[h∗ + hS ] ≤ β(n) + γ(n) + λ ∥h∗∥k , (B.8)

which concludes the first part. For the second part we shall use Table 1 and the fact that

γ(n) + β(n) ≤ α
(Ψ1 (R [hS ]) + Ψ2 (R [hS ])) ∧

(
2 ∥ϕ′∥2∞

)
n

. (B.9)
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B.6.1. MSE AND SQUARED HINGE

For these two losses, Ψ1(x) = Ψ2(x) = 8x(4α+ 1), so that by inequality (B.9) we get:

γ(n) + β(n) ≤ α
16R [hS ] (4α+ 1)

n

=
16κR [hS ] (4

κ

λ
+ 1)

λn
.

Thus for small λ one has:

γ(n) + β(n) = O
(
R[hS ]

λ2n

)
.

To conclude, set λ =

√
R[hS ]√

n
and use Inequality (B.8) to obtain:

Eex = O

(√
R[hS ]√

n

)
.

B.6.2. EXPONENTIAL

Using Table 1, remind that the functions Ψ1(x) and Ψ2 are given by: Ψ1(x) = CSx
2e2αx , Ψ2(x) = CSMSxe

2αx with
MS = supz∈ZT

ℓ(hS , z) and

CS = exp

{
2 +

2αMS

n
+

4α2M2
S

n− 1

}
= exp

{
2 +

2κMS

λn
+

4κ2M2
S

λ2(n− 1)

}
.

Assume that n ≥ max
(

M2
S ln(n)2

R[hS ] , 2
)

and λ = 4

√
R[hS ]∧1

ln(n) = 4

√
R[hS ]

ln(n) . The case where R[hS ] ≥ 1 is similar and thus
omitted. Now, write

n ≥ M2
S ln(n)2

R[hS ]
=
M2

S

λ2
=⇒ M2

S

λ2(n− 1)
≤ n

n− 1
≤ 2.

The latter condition also implies that MS

λn ≤ λ
MS

≤
√

R[hS ]

MS ln(n) ≤
1

2MS
. By these two facts, we deduce that CS can be bounded

independently of n. Thus, using (B.9) yields:

γ(n) + β(n) ≤ α
CS

(
R[hS ]

2 +MSR[hS ]
)
e2αR[hS ]

n
(B.10)

= ln(n)
CS

(
R[hS ]

3/2 +MSR[hS ]
1/2
)
(
√
n)κ

√
R[hS ]

n

= O

(√
R[hS ]√
n

)
,

where the two last inequalities follow from the facts that α = κ
λ = κ ln(n)√

R[hS ]
and κ ≤ 1. It remains to use the (B.8) to

conclude the first part. For the second part, set λ = ln(n)2√
n

and notice that, if n ≤ M2
S ln(n)2

R[hS ] then R[hS ] ≤ M2
S ln(n)2

n ≤M2
Sλ

and αR[hs] ≤ M2
Sκ ≤ 1. Furthermore, the constant CS can be bounded independently of n with such a choice of λ.

Inequality (B.10) becomes:

γ(n) + β(n) = O
(

R[hS ]√
n ln(n)2

)
.

It remains to use Inequality (B.8) to complete the proof.
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B.6.3. LOGISTIC

For this loss, we have ∥ϕ′∥∞ = 1 and Inequality (B.9) becomes:

β(n) + γ(n) ≤ 2α

n
=

2κ

λn
≤ 2

λn
.

Thus, setting λ = 1√
n

and using Inequality (B.8) yields:

Eex = O

(√
1

n

)
.

Furthermore, if n ≥ 9 and R[hS ] ≤ 1√
n
≤ 1

e , then with the choice λ = 8√
−n ln(R[hS ])

one has:

Eex = O

(
1√

−n ln (R[hS ])

)
.

Indeed, in the setting above, it leads to that:

eαR[hS ] = e
κ
λR[hS ] = e

κ
√

− ln(R[hs])

8

(κ ≤ 1) ≤ e

√
− ln(R[hs])

8

(− ln(R[hS ]) ≥ 1) ≤ e
− ln(R[hs])

8 = R[hS ]
−1/8,

and

e
2κMS

λn ≤ e
2

λn = e
−

√
ln(R[hS ])

4
√

n ≤ e

√
ln(n)
4n ≤ e1/4.

Besides, since n
n−1 ≤ 2,

e
4κMS
λ2n ≤ e

4
λ2(n−1) = e−

ln(R[hS ])(n)

16(n−1) ≤ R[hS ]
−1/8.

Moreover, using Inequality (B.9) and Table 1 gives:

γ(n) + β(n) ≤ α
CSe

√
R[hS ]e2αR[hS ]

(
e
√

R[hS ] − 1
)

n

= κ

exp

{
2 +

2αMS

n
+

4α2M2
S

n− 1
+
√
R[hS ] + 2αR[hS ]

}(
e
√

R[hS ] − 1
)

λn

= O

√− ln (R[hS ])
(
e
√

R[hS ] − 1
)

R[hS ]
1/4

√
n

 .

Now, since the function e
√
x − 1 ≤ 2

√
x for all x ≤ ln(2)2 and R[hS ] ≤ 1

n ≤ 1
3 ≤ ln(2)2 the latter inequality becomes:

γ(n) + β(n) = O

(√
− ln (R[hS ])R[hS ]

1/4

√
n

)
.

To conclude the proof notice that, for all x ≤ 1, we have ln(x−1/4) ≤ x−1/4 and thus x1/4(− ln(x)) ≤ 4. This leads to :

x1/4
√

− ln(x) ≤ 4√
− ln(x)

.
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Therefore,

γ(n) + β(n) = O

(
1√

−n ln (R[hS ])

)
.

It remains to use Inequality (B.8) to complete the proof.

B.6.4. SOFTPLUS

For the softplus, the choice λ = 1/
√
n yields:

Eex = O

(√
1

n

)
.

Furthermore, if n ≥ 9 and R[hS ] ≤ 1√
n

and 1
s ≤ − ln(R[hS ]), then with the choice λ = 8√

−n ln(R[hS ])
, one has:

Eex = O

(
1√

−sn ln (R[hS ])

)
.

The proof is identical to the previous one and thus omitted.
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